
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Digital Numeration

© 2018-2024 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 21 November 2024

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

1.1 Recommendations for students . 3

1.2 Challenging concepts related to numeration systems 5

1.3 Recommendations for instructors . 6

2 Case Tutorial 7

2.1 Example: signed integer examples . 8

2.2 Example: bitwise logical operations . 9

2.2.1 Bitwise-AND . 9

2.2.2 Bitwise-OR . 9

2.2.3 Bitwise-XOR . 10

2.2.4 Bitwise-complement . 10

3 Tutorial 11

3.1 Numbers versus numeration . 12

3.2 Place-weighted numeration . 13

3.3 Unsigned integers . 18

3.4 Signed integers . 21

3.5 Fixed-point notation . 24

3.6 Binary-Coded Decimal . 27

3.7 Shorthand representations of digital words . 29

3.8 Decimal conversions . 33

3.8.1 Binary to decimal . 33

3.8.2 Octal to decimal . 33

3.8.3 Hexadecimal to decimal . 34

3.8.4 Decimal to binary by cut-and-try . 34

3.8.5 Decimal to octal or hexadecimal by cut-and-try 36

3.8.6 Conversion from decimal by repeated division 37

3.9 Floating-point . 41

3.10 Big endian and little endian formats . 45

3.11 Incompatible format errors . 49

iii

iv CONTENTS

4 Historical References 55

4.1 A binary resistance box . 56
4.2 Big-endians and Little-endians . 58

5 Programming References 61

5.1 Programming in C++ . 62
5.2 Programming in Python . 66
5.3 Numeration formats in Python and C++ . 71

6 Questions 81

6.1 Conceptual reasoning . 85
6.1.1 Reading outline and reflections . 86
6.1.2 Foundational concepts . 87
6.1.3 Mayan numeration . 90
6.1.4 Number transmission via cable . 92

6.2 Quantitative reasoning . 94
6.2.1 Miscellaneous physical constants . 95
6.2.2 Introduction to spreadsheets . 96
6.2.3 Counting in binary, octal, and hexadecimal 99
6.2.4 Binary to decimal and hex conversions . 100
6.2.5 Decimal to binary conversions . 101
6.2.6 Half-life of an anesthetic . 101
6.2.7 Stepper motor sequence . 102
6.2.8 Integer conversion table . 103
6.2.9 Fixed-point integer conversion table . 104
6.2.10 Signed integer conversion table . 105
6.2.11 Using Python to convert between bases . 106
6.2.12 C++ program converting decimal to other formats 107
6.2.13 Dissecting floating-point numbers . 109
6.2.14 Microcontroller driving seven-segment displays 112
6.2.15 Microcontroller driving an LED array . 114

6.3 Diagnostic reasoning . 116
6.3.1 Strange floating-point addition . 117
6.3.2 Testing endianness . 118

A Problem-Solving Strategies 121

B Instructional philosophy 123

C Tools used 129

D Creative Commons License 133

E References 141

F Version history 143

CONTENTS 1

Index 146

2 CONTENTS

Chapter 1

Introduction

1.1 Recommendations for students

Digital words may represent a wide variety of things. We may use digital words to represent whole
(natural) numbers, integers, alphabetical characters, machine positions, and analog quantities such
as voltage, among others. In this learning module we will focus on the use of digital words to
represent numerical quantities.

Important concepts related to digital numeration include natural numbers versus integers

versus rational versus irrational numbers, signed versus unsigned integers, radix, two’s

complement, encoders, fixed-point notation, binary-coded decimal (BCD), hexadecimal

notation, octal notation, remainder (division), scientific notation, floating-point notation,
mantissa, big-endian versus little-endian formats, registers, swapping bytes and words, and
number system incompatibilities.

An important problem-solving technique applied in the Tutorial is the thought experiment.
Another technique is the cut-and-try method.

Here are some good questions to ask of yourself while studying this subject:

• What are some alternatives to our common decimal-based numeration system?

• Which numeration systems result in the most compact expressions?

• Which numeration systems result in the lengthiest expressions?

• What types of numerical quantities cannot be expressed in certain numeration systems?

• Why is binary the preferred numeration system for digital electronic circuits?

• How does the concept of a place-weight apply to multiple numeration systems?

• How may we calculate the total possible amount of numbers given a limited range of characters?

• How does BCD differ from binary?

3

4 CHAPTER 1. INTRODUCTION

• What practical purpose does octal or hexadecimal serve for human beings working with binary
quantities?

• What are some different ways to perform the same type of numeration system conversion?

• How do we express negative quantities using binary?

• What purpose does floating-point notation serve?

• What does a shift register do?

• What is the concept of “serial” data communication?

• What are some different ways in which multiple numeration schemes may be incompatible
with each other?

1.2. CHALLENGING CONCEPTS RELATED TO NUMERATION SYSTEMS 5

1.2 Challenging concepts related to numeration systems

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Non-decimal numeration – decimal numeration is so commonplace that many people
assume this is the only possible way to represent numbers. So, when faced with non-
decimal numeration schemes such as binary, octal, or hexadecimal the first impression may
be unnerving. Fortunately, though, these are all place-weighted systems which means a close
examination of how decimal actually works will shed light on how the others work too.

6 CHAPTER 1. INTRODUCTION

1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment – Students show how each of the counting sequences results were obtained by
the author in the Tutorial chapter’s examples.

• Outcome – Manually convert between different systems of integer numeration

Assessment – Determine equivalent representations in binary, octal, and hexadecimal
for given integer values; e.g. pose problems in the form of the “Integer conversion table”
Quantitative Reasoning question.

• Outcome – Manually convert between decimal and floating-point binary numeration

Assessment – Determine the decimal value of a given floating-point binary number.

Assessment – Determine the floating-point binary equivalent for a given decimal value.

• Outcome – Independent research

Assessment – Read and summarize in your own words reliable source documents on the
subject of numeration systems utilized by cultures around the world.

Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

7

8 CHAPTER 2. CASE TUTORIAL

2.1 Example: signed integer examples

Here are all possible bit-combinations for a three-bit signed integer binary number, along with their
decimal equivalent values. All place-weight values are the same as for unsigned binary, except for
the most-significant bit (MSB) which has a place-weight of negative four:

• 000 = 0

• 001 = 1

• 010 = 2

• 011 = 3

• 100 = −4

• 101 = −3

• 110 = −2

• 111 = −1

Here are all possible bit-combinations for a four-bit signed integer binary number, along with
their decimal equivalent values. All place-weight values are the same as for unsigned binary, except
for the most-significant bit (MSB) which has a place-weight of negative eight:

• 0000 = 0

• 0001 = 1

• 0010 = 2

• 0011 = 3

• 0100 = 4

• 0101 = 5

• 0110 = 6

• 0111 = 7

• 1000 = −8

• 1001 = −7

• 1010 = −6

• 1011 = −5

• 1100 = −4

• 1101 = −3

• 1110 = −2

• 1111 = −1

2.2. EXAMPLE: BITWISE LOGICAL OPERATIONS 9

2.2 Example: bitwise logical operations

The following examples show bitwise operations being performed on 8-bit words (bytes).

2.2.1 Bitwise-AND

Word A

Word B

Word C
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 1 1 0 0 1 0

0 0 0 01 1 1 1

0 0 1 1 0 0 0 0

Bitwise-AND: A & B → C

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Example: 0b10110010 & 0b00111100 → 0b00110000

2.2.2 Bitwise-OR

Word A

Word B

Word C
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 1 1 0 0 1 0

0 0 0 01 1 1 1

1 1 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bitwise-OR: A | B → C

Example: 0b10110010 | 0b00111100 → 0b10111110

1 0 1 1 1

10 CHAPTER 2. CASE TUTORIAL

2.2.3 Bitwise-XOR

Word A

Word B

Word C
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 1 1 0 0 1 0

0 0 0 01 1 1 1

0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 1 1 1

Bitwise-XOR: A ^ B → C

Example: 0b10110010 ^ 0b00111100 → 0b10001110

0 0

2.2.4 Bitwise-complement

Word B
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 01 1 1

0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 1 110 0

Word A 1 00

1

Example: ~0b10110010 → 0b01001101

Bitwise-complement: ~A → B

Chapter 3

Tutorial

For any technically literate person, numbers are as familiar as letters in the alphabet: we tend
to take them for granted after learning how to express numerical quantities with these symbols.
However, when studying the representation of numbers using electronic circuit states rather than
written symbols, we must re-examine our assumptions.

11

12 CHAPTER 3. TUTORIAL

3.1 Numbers versus numeration

First we must clearly distinguish between numbers versus the symbols (i.e. numeration) we
commonly use to represent numbers. For example, if I say there are one dozen apples in a box,
we clearly understand that to mean twelve apples. Furthermore, we would most likely write that on
paper using two symbols, a “1” followed by a “2” as shown here:

12 apples in the box

This, however, is not the only way to symbolically represent the number twelve. Alternatively,
we could elect to use hash-marks to represent the number of apples, or even Roman numerals:

||||| ||||| || apples in the box XII apples in the box

You may notice that our “decimal” system of numeration uses fewer written characters (called
ciphers) to express the number twelve than either hash-marks or Roman numerals. This efficiency
improves as the numbers in question become much larger, and it is entirely due to the place-weighted
nature of the decimal numeration system. Each numeral, or cipher, occupies a place with a particular
weight value associated. We would say that in the number twelve the numeral 1 occupies the ten’s
place while the numeral 2 occupies the one’s place, and therefore the decimal number 12 means one
portion of ten added to two portions of one (i.e. 12 = 10 + 2). Larger decimal numbers use more
places, with each successive place-weight being ten times the one before it: after the ten’s place
comes the hundred’s place followed by the thousand’s place, etc.

Please note that the decimal expression of twelve is not the same thing as the quantity twelve,
but rather merely a convention for expressing that quantity. Decimal notation happens to be very
efficient and works well for human beings to use, but it is not the only way to express quantities. As
we will soon see, other methods exist for representing numerical quantities which lend themselves
better to electronic switching circuits than the decimal numeration system.

3.2. PLACE-WEIGHTED NUMERATION 13

Before we begin exploring alternative numeration systems, it is worth reviewing some of the
different types of numerical quantities we may need to represent with any numeration system. What
follows are some examples of common number types:

• Who1e numbers (or “Natural” numbers): 1, 2, 3, 4, 5, 6, 7

• Integer numbers: −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5

• Fractional (rational) numbers: 1

2
, 3

4
, − 5

17

• Irrational1 numbers: π, e

• Real numbers: the combined set of whole, integer, fractional, and irrational numbers

• Imaginary numbers:
√
−1 or any multiple thereof

• Complex numbers: the combined set of real and imaginary numbers

Standards exist to represent every one of these number types in digital form, but since the
simplest case is whole numbers (commonly called unsigned integers in computer programming) we
will start our exploration there.

3.2 Place-weighted numeration

Modern numeration schemes use the concept of place-weighting to express large ranges of numerical
quantities with an economy of symbols. All readers of this text are no doubt very familiar with
decimal notation, where we have a one’s place, a ten’s place, a hundred’s place, and so on in
successively weightier digit-places. For example, the number 378 really means “3” hundreds plus
“7” tens plus “8” ones (i.e. (3)(100) + (7)(10) + (8)(1)) for a total of three hundred seventy eight.
The decimal place-weighted system of numeration is far more efficient in terms of symbols used than
hash-marks, Roman numerals (CCCLXXVIII), or some other schemes we might use.

The use of place-weights assigns different multiplier values to each of the digits of a multi-digit
decimal number. The fact that each successive place-weight differs in value from the adjacent place
ten-fold is a consequence of there being exactly ten unique symbols in the decimal system (0, 1, 2,
3, 4, 5, 6, 7, 8, and 9). In other words, decimal is a base-ten numeration system with ten unique
symbols and place-weights following powers of ten.

1Here, the term “irrational” does not mean illogical or nonsense as the word “irrational” is used in common
parlance. In mathematics, a rational number is one which may be expressed as a quotient (i.e. a fraction) of integers,
literally as a ratio (hence, “rational”) of integers. By contrast, an irrational number is one that cannot be expressed
by any quotient of integers. For example, many students of mathematics learn to approximate pi as 22

7
, but this is

not actually equal to π as any quick check on a hand calculator will prove: 22

7
= 3.142857 · · · ; π = 3.1415926535 · · ·.

One of the hallmarks of an irrational number is that its digits continue indefinitely without ever repeating, while a
rational number’s digits either always repeat at some point or do not repeat at all as in the case of an integer number.

14 CHAPTER 3. TUTORIAL

If we count in decimal from zero upwards using two-digit representation, we see a pattern of how
the digit values and the place-weights work together to make successively larger totals:

Decimal characters Word representation Sum

00 Zero 0 tens + 0 ones

01 One 0 tens + 1 one

02 Two 0 tens + 2 ones

03 Three 0 tens + 3 ones

04 Four 0 tens + 4 ones

05 Five 0 tens + 5 ones

06 Six 0 tens + 6 ones

07 Seven 0 tens + 7 ones

08 Eight 0 tens + 8 ones

09 Nine 0 tens + 9 ones

10 Ten 1 ten + 0 ones

11 Eleven 1 ten + 1 one

12 Twelve 1 ten + 2 ones

13 Thirteen 1 ten + 3 ones

14 Fourteen 1 ten + 4 ones

15 Fifteen 1 ten + 5 ones

16 Sixteen 1 ten + 6 ones

17 Seventeen 1 ten + 7 ones

18 Eighteen 1 ten + 8 ones

19 Nineteen 1 ten + 9 ones

20 Twenty 2 tens + 0 ones

21 Twenty-one 2 tens + 1 one

As soon as we run out of unique symbols when counting upwards, we must increment the digit
in the next-higher place and start the pattern over again in the previous place: so, the next count
after nine (09) is ten (10) where the one’s place returns to 0 and the ten’s place increments from 0
to 1. This same pattern occurs in the transition from 19 to 20, and so on.

3.2. PLACE-WEIGHTED NUMERATION 15

Such patterns are easy to take for granted in a numeration system like decimal we’ve seen our
entire lives, but their explicit understanding becomes essential when counting in numeration systems
other than our familiar base-ten. For example, consider the octal numeration system which is base-
eight, using eight unique symbols (0, 1, 2, 3, 4, 5, 6, and 7) with places having weights defined by
powers of eight:

Octal characters Word representation Sum

00 Zero 0 eights + 0 ones

01 One 0 eights + 1 one

02 Two 0 eights + 2 ones

03 Three 0 eights + 3 ones

04 Four 0 eights + 4 ones

05 Five 0 eights + 5 ones

06 Six 0 eights + 6 ones

07 Seven 0 eights + 7 ones

10 Eight 1 eight + 0 ones

11 Nine 1 eight + 1 one

12 Ten 1 eight + 2 ones

13 Eleven 1 eight + 3 ones

14 Twelve 1 eight + 4 ones

15 Thirteen 1 eight + 5 ones

16 Fourteen 1 eight + 6 ones

17 Fifteen 1 eight + 7 ones

20 Sixteen 2 eights + 0 ones

21 Seventeen 2 eights + 1 one

22 Eighteen 2 eights + 2 ones

23 Nineteen 2 eights + 3 ones

24 Twenty 2 eights + 4 ones

25 Twenty-one 2 eights + 5 ones

As strange as it may look to see “10” representing the number eight, this makes perfect sense if
the numeration system is base-eight rather than base-ten. Our association of “10” with the value
ten is nothing more than a cultural assumption of all numbers belonging to a decimal system.

16 CHAPTER 3. TUTORIAL

A base-sixteen system called hexadecimal uses sixteen different symbols (0 through 9 followed by
A through F), with place-weights scaling by powers of sixteen:

Hexadecimal characters Word representation Sum

00 Zero 0 sixteens + 0 ones

01 One 0 sixteens + 1 one

02 Two 0 sixteens + 2 ones

03 Three 0 sixteens + 3 ones

04 Four 0 sixteens + 4 ones

05 Five 0 sixteens + 5 ones

06 Six 0 sixteens + 6 ones

07 Seven 0 sixteens + 7 ones

08 Eight 0 sixteens + 8 ones

09 Nine 0 sixteens + 9 ones

0A Ten 0 sixteens + A (ten) ones

0B Eleven 0 sixteens + B (eleven) ones

0C Twelve 0 sixteens + C (twelve) ones

0D Thirteen 0 sixteens + D (thirteen) ones

0E Fourteen 0 sixteens + E (fourteen) ones

0F Fifteen 0 sixteens + F (fifteen) ones

10 Sixteen 1 sixteen + 0 ones

11 Seventeen 1 sixteen + 1 one

12 Eighteen 1 sixteen + 2 ones

13 Nineteen 1 sixteen + 3 ones

14 Twenty 1 sixteen + 4 ones

15 Twenty-one 1 sixteen + 5 ones

16 Twenty-two 1 sixteen + 6 ones

17 Twenty-three 1 sixteen + 7 ones

18 Twenty-four 1 sixteen + 8 ones

19 Twenty-five 1 sixteen + 9 ones

1A Twenty-six 1 sixteen + A (ten) ones

3.2. PLACE-WEIGHTED NUMERATION 17

Perhaps the most useful numeration system in electronics is binary where only two symbols exist
(0 and 1), and where the place-weights scale by powers of two. This results in a one’s place followed
by a two’s place followed by a four’s place, etc. The benefit of binary is that each character (called
a bit) is either 1 or 0 which maps nicely to a transistor being either on or off, a switch being closed
or open, etc. and so the binary numeration system lends itself well to numerical representation by
digital electronic circuitry. The following table shows a count sequence of zero through fifteen using
four binary bits:

Binary characters Word representation Sum

0000 Zero 0 eights + 0 fours + 0 twos + 0 ones

0001 One 0 eights + 0 fours + 0 twos + 1 one

0010 Two 0 eights + 0 fours + 1 two + 0 ones

0011 Three 0 eights + 0 fours + 1 two + 1 one

0100 Four 0 eights + 1 four + 0 twos + 0 ones

0101 Five 0 eights + 1 four + 0 twos + 1 one

0110 Six 0 eights + 1 four + 1 two + 0 ones

0111 Seven 0 eights + 1 four + 1 two + 1 one

1000 Eight 1 eight + 0 fours + 0 twos + 0 ones

1001 Nine 1 eight + 0 fours + 0 twos + 1 one

1010 Ten 1 eight + 0 fours + 1 two + 0 ones

1011 Eleven 1 eight + 0 fours + 1 two + 1 one

1100 Twelve 1 eight + 1 four + 0 twos + 0 ones

1101 Thirteen 1 eight + 1 four + 0 twos + 1 one

1110 Fourteen 1 eight + 1 four + 1 two + 0 ones

1111 Fifteen 1 eight + 1 four + 1 two + 1 one

As you can see, there are multiple ways to apply the place-weighting concept. What we consider
“normal” (base-ten) is nothing more than a cultural convention, most likely based on the fact
that humans have ten fingers. Binary lends itself exceptionally well to digital electronic circuitry
where logic signal states are limited to only two possibilities (1 or 0, true or false, high or low).
Hexadecimal actually serves a useful purpose too for digital systems, as a condensed representation
of binary numbers: each hexadecimal character with its range of zero to fifteen representing four
binary bits with the same zero-to-fifteen range (0000 to 1111). For example, the binary number
10011101 is equal to the hexadecimal number 9D (1001 being 9 and 1101 being D). Likewise, the
hexadecimal number B6 is equal to the binary number 10110110 (B being 1011 and 6 being 0110).

18 CHAPTER 3. TUTORIAL

3.3 Unsigned integers

An electric or electronic switching circuit2 has only two valid states, on and off, and we may use
these discrete states to represent numerical values of 1 and 0. If we construct a numeration system
using only these two ciphers (i.e. a base-two system, as opposed to our decimal system which is base-
ten because it uses ten unique ciphers 0 through 9 and has place-weight values that are powers of
ten) we may represent whole numbers in a manner similar to whole numbers in the decimal system.
Instead of referring to these 1 and 0 cipher as digits, we will refer to them as bits.

Let’s explore this idea by example. Consider the number fifty three represented in both decimal
form (base-10) and binary form (base-2). In each numeration system we have a series of places for
ciphers to occupy, and each of those places has an associated weight :

5 3 1 1 0 1 0 1

O
nes place

T
ens place

O
nes place

T
w

os place

F
ours place

E
ights place

S
ixteens place

T
hirty-tw

os place

(10
1)

(10
0)

(2
0)

(2
1)

(2
2)

(2
3)

(2
4)

(2
5)

Fifty-three = (5 × 101) + (3 × 100) = 50 + 3

Fifty-three = (1 × 25) + (1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 20)

Fifty-three in decimal Fifty-three in binary

Fifty-three = (1 × 32) + (1 × 16) + (0 × 8) + (1 × 4) + (0 × 2) + (1 × 1)

In either numeration system – decimal or binary – the total value is equal to the sum of all the
ciphers multiplied by their respective place-weight values. Fifty three written as a decimal number
is five times ten, plus 3 times one. Fifty three written as a binary number is one times thirty two,
plus one times sixteen, plus one times four, plus one times one3.

It should not be difficult to see that the weight values for each place in either numeration system
are mathematical powers of the numeration system’s base value. For the decimal system (base-
ten) the place-weights are powers of ten: a one’s place (100) and a ten’s place (101), and if our
example number were much larger we would need a hundred’s place (102) and perhaps a thousand’s
place (103). Similarly, in the binary system (base-two) the place-weights are powers of two: one’s
(20), two’s (21), four’s (22), eight’s (23), sixteen’s (24), and thirty-two’s (25). Note how the least-
significant place (i.e. the far-right digit or bit place in the number) weight is always one. Base value,
also known as radix, is often shown as a trailing subscript to denote the numeration system when

2Actually, a great many physical systems may be reduced to just two states: magnetic polarization (north versus
south), light waves (present or absent), particle spin (up or down), etc. which extends the discrete representation
of data to systems other than electric/electronic switching circuits. In fact, many digital data storage technologies
exploit this fact by using non-electrical means to encode 1 and 0 states.

3We may omit the place-weights carrying “0” bits, in this case the eight’s and two’s places, because they do not
contribute to the sum.

3.3. UNSIGNED INTEGERS 19

written so as to avoid confusion4. Our example value of fifty three could be written in decimal as
5310 or in binary as 1101012. In computer programming where the code exists as plain text lacking
the capability of subscripts, decimal is assumed unless the number is prefaced by a special character
sequence identifying it as non-decimal: in the case of binary that character sequence is often 0b, so
we would write the binary value fifty-three as 0b110101.

The largest whole number representable in any place-weighted numeration system is equal to the
base value raised to the power of the number of places (i.e. number of characters in the number)
minus one, and is realized when all places are filled with the largest cipher. For example, a two-digit
decimal number can represent ninety nine (9910) as its maximum value (102 − 1) when all digits are
set to “9”, and a six-bit binary number can represent sixty three (1111112) as its maximum value
(26 − 1) when all bits are set to “1”.

Below are listed some binary-decimal equivalent number pairs. You, the reader, are advised to
try converting each of the binary numbers into decimal form by adding up all the place-weight values
containing “1” bits, for practice. This is an example of active reading where you engage with the
text in a deeper way than merely reading what’s presented, in this case testing your understanding
of binary numeration by trying to convert binary to decimal on your own:

• 0b101 (binary) = 5 (decimal)

• 0b111 (binary) = 7 (decimal)

• 0b11000 (binary) = 24 (decimal)

• 0b11101 (binary) = 29 (decimal)

• 0b110010 (binary) = 50 (decimal)

• 0b111111 (binary) = 63 (decimal)

• 0b1000000 (binary) = 64 (decimal)

• 0b1001101 (binary) = 77 (decimal)

• 0b1111111 (binary) = 127 (decimal)

• 0b10000100 (binary) = 132 (decimal)

• 0b10110111 (binary) = 183 (decimal)

• 0b11111111 (binary) = 255 (decimal)

Before we proceed to more advanced forms of binary numeration, it is useful to reflect on
the significance of what we have accomplished so far: we now have a way to represent simple
numerical quantities using nothing more than discrete bits which may take the form of electrical
switch states, voltage or current pulses, magnetization states, optical transparency/reflectivity, etc.

4Imagine someone seeing the binary number 110101 written on a page and thinking it was supposed to be decimal,
which would make it one hundred and ten thousand one hundred and one! This mistake can be avoided by writing
the binary number as 1101012.

20 CHAPTER 3. TUTORIAL

This fundamental principle allows us to encode not only numbers, but potentially any other form
of data amenable to discrete states (e.g. alphabetical characters, color grades, standardized-pitch
musical tones), into very simple physical forms. This is the essence of the digital revolution: encoding
important data as large collections of bits which may be processed, archived, and communicated
with relative ease.

3.4. SIGNED INTEGERS 21

3.4 Signed integers

As useful as whole numbers are, they do not form a number system complete enough for all
practical purposes. It is important, for example, to be able to express negative quantities as
well. The mathematical term for the set of numbers including whole numbers and their negative
counterparts is integer. While “whole number” and “integer” are proper mathematical terms, it is
more commonplace in the computer programming and digital electronics domains to refer to these
number types as unsigned and signed integers, respectively.

When writing decimal numbers on paper, our solution for full integer representation is to prepend
a “minus” symbol (−) to the left-hand side of the number, which is in essence adding one more cipher
to our decimal numeration system. This is not an option for us in binary, the point of which is to
represent numbers using only two states (1 and 0) for the purpose of exploiting the simplicity of
electronic switching circuits, and therefore there is no third state available to serve as a negative
symbol.

One possible solution is to simply create a new place for an additional bit, and interpret a 1
in that place as a negative symbol5. However, a more elegant solution has been invented called
two’s complement notation which achieves the same end. In two’s complement notation, we make
the most-significant bit (MSB) of the binary number bear a negative weight rather than a positive
weight as all the other places. For example, the six-bit binary number scheme shown previously
would have a negative thirty two’s place followed by a sixteen’s place followed by an eight’s place,
etc. In this scheme, a six-bit two’s-complement representation of negative seventeen (−17) would
be written as 1011112:

O
nes place

T
w

os place

F
ours place

E
ights place

S
ixteens place

1 0 1 1 1 1

N
egative thirty-
tw

os place

(2
0)

(2
1)

(2
2)

(2
3)

(2
4)

(-2
5)

A good way to understand two’s complement notation is to test different patterns of 1 and 0 bits
to see what these patterns will equate to when their place-weights are summed. This is an example
of a kind of thought experiment, whereby we explore the consequences of some idea by imagining
different conditions acting upon that idea. We will use the same six-bit digital word for consistency
with prior examples, testing what happens when we set all bits to zero and when we set all bits to
one:

0000002 = (0)(−32) + (0)(16) + (0)(8) + (0)(4) + (0)(2) + (0)(1) = 010

1111112 = (1)(−32) + (1)(16) + (1)(8) + (1)(4) + (1)(2) + (1)(1) = −110

Setting all bits to zero is unsurprising: the total sum is simply zero. Setting all bits to one,
however, generates a novel result: negative one. In whole-number binary representation, setting all

5This scheme is referred to in computer science literature as sign-magnitude notation.

22 CHAPTER 3. TUTORIAL

bits to one yields the largest possible value, but here (with the MSB bearing a negative weight) it
does not.

Having seen how the MSB of a two’s complement binary number interacts with the other bits, we
might try to find the binary patterns resulting in the largest positive and largest negative numbers
possible with six bits. Since the MSB is the only negative place-weight, we ought to be able to
achieve the largest negative number by setting only that bit to one (and the rest to zero). Likewise,
we ought to be able to achieve the largest positive number possible by setting the MSB to zero and
letting all other bits be one:

1000002 = (1)(−32) + (0)(16) + (0)(8) + (0)(4) + (0)(2) + (0)(1) = −3210

0111112 = (0)(−32) + (1)(16) + (1)(8) + (1)(4) + (1)(2) + (1)(1) = 3110

From these “thought experiments” we see that a six-bit two’s complement binary number has a
range extending from −32 to +31. This stands in contrast to the six-bit whole binary number with
could range from 0 to +63. Note that in either case the six-bit number still has sixty four possible
values (including zero as one of those), but with two’s complement notation that range is offset with
zero approximately in the middle instead of zero being the low end.

The fact that two’s complement notation works by granting a negative weight to only the most-
significant place means it is important for us to define the width of our digital word prior to using it
to represent numerical values. Consider how our earlier example of a six-bit representation of −17
would appear if cast into a binary word eight bits in width:

O
nes place

T
w

os place

F
ours place

E
ights place

S
ixteens place

1 0 1 1 1 1

T
hirty-tw

os place

S
ixty-fours place

00

"Padding" zeros

N
egative one hundred

tw
enty eights place

(2
0)

(2
1)

(2
2)

(2
3)

(2
4)

(2
5)

(2
6)

(-2
7)

001011112 = (0)(128) + (0)(64) + (1)(32) + (0)(16) + (1)(8) + (1)(4) + (1)(2) + (1)(1) = 4710

Casting smaller binary numbers into larger word fields is not a problem when dealing with whole
numbers only, where every place-weight has a positive value. Here, however, we must be careful –
clearly, −17 and 47 are not the same quantities, but 101111 could mean either one depending on
how many total bits are in the binary word!

3.4. SIGNED INTEGERS 23

Any signed negative binary number will differ in value from an unsigned binary number made
up of the exact same bits by twice the value of its most-significant place-weight. Consider the
previous example of 101111 which represents −17 as a signed integer but 47 as an unsigned integer:
47− (−17) = 64 is twice the most significant place-weight of a six-bit number (25 = 32). The reason
for this should be clear with just a little thought: if that most-significant place-weight of a six-bit
binary number represents −32 as signed but +32 as unsigned, then we would logically expect the
signed-versus-unsigned interpretations of that six-bit number to disagree by the difference between
+32 and −32, or 64.

This fact may be exploited as a means of identifying the bits needed to represent any given
negative integer quantity. Suppose we wished6 to express −50 in 8-bit signed binary format. The
most-significant place-weight of an 8-bit number is either −128 (signed) or +128 (unsigned), and
so whatever the combination of bits needed in signed binary to represent −50 will be the same
combination of bits that represent −50 + (2)(128) in unsigned form. This would be +206 which is
11001110 as an unsigned binary number. Therefore, 11001110 is the proper representation of −50
in 8-bit signed binary form.

The Introduction to computer programming subsection of the Quantitative reasoning section of
this learning module (beginning on page 77) contains example programs contrasting the use of signed
versus unsigned binary numbers.

6Most modern electronic hand calculators will easily perform decimal-binary conversion for unsigned integers, but
not necessarily for signed integers. This technique of adding double the most-significant place-weight works well to
quickly determine a signed binary number’s bit-states if we have an easy means of converting decimal to (unsigned)
binary.

24 CHAPTER 3. TUTORIAL

3.5 Fixed-point notation

In many applications we must digitally represent numbers with fractional values, lying between
integer increments. If we assume that a “point” symbol lies between two places within a number,
this will force characters to the left of that point to be whole and characters to the right of that
point to be fractional. This is commonly called fixed-point binary notation.

Consider a case where an eight-bit word has a “binary point” located between the second and
third bits (from the least-significant end) as shown in the following illustration:

1 0 1
O

nes place

T
w

os place

F
ours place

E
ights place

S
ixteens place

T
hirty-tw

os place

01

O
ne-half’s place

O
ne-quarter’s place

0 0 0

(2
-2)

(2
0)

(2
-1)

(2
1)

(2
2)

(2
3)

(2
4)

(2
5)

100010.012 = (1)(32) + (0)(16) + (0)(8) + (0)(4) + (1)(2) + (0)(1) + (0)(1
2
) + (1)(1

4
) = 34.2510

In this scheme, the digital word 10001001 would be interpreted to have the binary value
100010.012, which in turn would be equal to a decimal value of 34.2510. If desired, we could also
apply signed (two’s complement) notation with a fixed binary point by making the MSB have a weight
of −32 instead of +32, and thusly be able to represent both positive and negative quantities with
fractional portions. The word interpreted is used quite intentionally here, for the existence of this
“binary point” as well as the decision to use two’s complement (or not) are our own arbitrary choices,
neither one of which appears literally as a discrete electrical state or other physical entity. To the
digital circuitry, this is nothing but an eight bit word (10001001). It is only our human interpretation
of these bits as being an unsigned binary number having a fixed point located between six whole-
weighted bits and two “fractional” bits (wwwwww.ff) that gives it definite numerical meaning.

With this example – an eight-bit word having six whole-numbered bits and two “fractional” bits –
the smallest increment we may represent is one-quarter (0.2510). Finer precision would require more
bits to the right of the binary point, which may be achieved either by moving the binary point to
the left (which will give us finer resolution but also limit the maximum representable values) and/or
by adding more bits to the digital word which requires an expansion of hardware. The fundamental
limit of eight bits is that it only has 256 possible combinations (28) of ones and zeroes, and so to
optimize one form of numerical expression means we must compromise elsewhere.

3.5. FIXED-POINT NOTATION 25

Now that we have seen how integers may be “forced” to express fractional values by
interpretation, we will explore another way of applying the same concept: forcing the placement
of a “point” after the binary integer value has been converted into decimal form.

Many years ago I encountered a very literal application of this concept while working on a digital
motion indicator for a large industrial machine. This machine used a rotary shaft pulse encoder to
track the angular position of one of its parts, to be displayed as a decimal number using 7-segment
LED indicators. The encoder happened to output exactly 3600 pulses per revolution, or ten pulses
per degree of shaft rotation, and the digital counter display had four decimal digits. With every
low-to-high pulse transition output by the encoder, the counter would increment by one:

Digital counter

Rotary shaft
pulse encoder

+
−

In

+V

Gnd

Out

+V

Gnd

Obviously, if the encoder shaft turned one complete revolution, the counter would increment from
0000 to 3600. What we desired, however, was for the counter to register actual degrees of rotation.
In other words, what we needed was for the counter to register 360.0 after one full revolution of the
shaft rather than 3600.

Internally, the digital counter used a 12-bit (unsigned) binary number to represent the number
of pulses it received from the encoder, giving it the ability to accumulate up to 4095 pulses. It had
no provision for a decimal point on its display, and so our solution was to place a dot of bright red
paint between the least-significant digit and the next-most-significant digit on the counter’s face:

Digital counter

Rotary shaft
pulse encoder

+
−

In

+V

Gnd

Out

+V

Gnd

Spot of red paint

This “paintbrushed” solution was a literal realization of fixed-point decimal notation where we
forced a decimal point to appear between digits of the decimal number for the purpose of representing
fractional values (in this case, tenths of a degree of rotation), even though the underlying binary
value driving that display was just a simple integer.

Modern Human-Machine Interface (HMI) graphical displays provide this same solution in a
more sophisticated form: the HMI device may be programmed to receive a binary integer from some
other digital device via a data network, then insert a decimal point between specified digits while
converting and displaying that binary word as a decimal number on a graphical screen.

26 CHAPTER 3. TUTORIAL

A common industrial application of fixed-point decimal notation is in the speed command for
a motor-control device called a Variable Frequency Drive or VFD. A VFD serves the purpose of
controlling the shaft speed of an AC induction motor by varying the frequency of the AC electricity
powering that motor. VFDs are digital devices, and as such they usually come equipped with
digital network connections for receiving command codes from a computer. These command codes
include such commands as Start, Stop, Forward, Reverse, and Speed (frequency). In the following
illustration, a VFD is shown connected to the terminals of a three-phase AC induction motor, and
also connected to the network7 port of an industrial control computer called a PLC (Programmable
Logic Controller).

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

PLC

VFD

L1 L2 L3

T1 T2 T3

AC induction motor

Fwd

Rvs

Fwd jog

Com

Modbus
RS-485

Stop

To 480 VAC
3-phase

power source

Modbus
RS-485

Analog
speed
command

Analog
output

With the standard AC line frequency being either 60 Hz or 50 Hz in most parts of the world, an
integer value for VFD output frequency would result in fairly coarse speed control (i.e. 0 Hz, 1 Hz,
2 Hz, . . . 59 Hz, 60 Hz). In order achieve speed adjustment finer than 1 Hz intervals, the integer
number received by the VFD as the speed command is usually assumed to have an implied decimal
point at the “tenth’s” place, commonly notated as XXX.X. For example, to command such a VFD
to output a frequency of 30 Hz (half-speed for a 60 Hz motor), the control computer would need
to transmit the binary equivalent8 of 30010 to the VFD. The VFD is programmed to interpret the
received value of 300 as 30.0 which it then uses as a target value for output frequency. This fixed-
point scheme allows for a speed resolution of 0.1 Hz which is much finer than the 1 Hz increments
we would be forced to use without any decimal point fixing.

7Many different types of digital networks are popular for industrial use, including the Modbus/RS-485 network
type shown here which uses a single pair of wires between the PLC and the VFD.

8For an unsigned integer, a decimal value of 300 would be represented as 1 0010 1100, with as many padding zeros
as necessary prepended to the left-hand side to round out the digital word. Since the Modbus network shown in the
illustration happens to assume 16-bit words, the transmitted speed data would be 0000 0001 0010 1100.

3.6. BINARY-CODED DECIMAL 27

3.6 Binary-Coded Decimal

Legacy numerical display technologies such as 7-segment LEDs, 7-segment LCDs, and Nixie tubes9

driven by special-purpose display driver integrated circuits (ICs) were once very common in digital
systems. The seven illuminated (or shaded) segments of a 7-segment display are activated by the
driver IC based on the status of the four data input lines. The illustration below shows a three-
digital decimal display built using this technology, with examples of 4-bit data and the corresponding
7-segment patterns for the decimal number 629:

+V

Driver IC

4-bit data in

7-segment
display

+V

Driver IC

4-bit data in

7-segment
display

+V

Driver IC

4-bit data in

7-segment
display

(One’s place)(Ten’s place)(Hundred’s place)

0 1 1 0 1 000 1 10 0

If we combine the three sets of 4-bit data into a single 12-bit digital word, we find that it does
not represent six hundred twenty nine if interpreted as a regular binary integer:

0110 0010 10012 6= 62910

The reason for this mismatch is the place-weights of the respective bits. For normal binary
integers, the place-weights are all powers of two. Here, however, since each group of four bits is
supposed to represent a distinct decimal digit, the place-weights between 7-segment displays must
differ by factors of ten:

+V

Driver IC

+V

Driver IC

+V

Driver IC

(One’s place)(Ten’s place)(Hundred’s place)

0 1 1 0 1 000 1 10 0
124880 40 20 10800 400 200 100BCD place-weights

9For the uninitiated, a Nixie tube is a clear glass tube containing metal elements shaped like numerals and filled
with a gas such as neon which visibly glows when ionized. By electrically energizing different metal elements within
a Nixie tube, any one of several numerals would be made to glow and thereby display one digit of a decimal number.

28 CHAPTER 3. TUTORIAL

This digital numeration format is called Binary Coded Decimal, or BCD, because each set of four
binary bits represents (i.e. encodes) a single decimal digit. Its use, although much less common
now than it was in the days of discrete-digit numerical displays, was not limited just to display
but also for input of number values into digital systems. One such legacy example is shown in the
following photograph, where a set of four thumb-wheel switches appears on the face of an industrial
weigh-feeding scale:

The digits 1120 are clearly visible in this photograph, as are the plastic “thumb-drive” tabs on
each wheel allowing a human operator to increment or decrement each digit of the four-digit decimal
value. Pushing up or down on these tabs would rotate a wheel, each wheel having the numerals 0
through 9 printed in white text along their circumference, with one of those numerals visible from the
front of the switch at any given time. These thumb-wheel switches contained four sets of electrical
contacts which generated a BCD code corresponding to the displayed value on the thumb-wheel’s
edge.

Occasionally you may even encounter a computer using BCD internally for its numeration.
Certain models of industrial PLC (Programmable Logic Controller) were like this, which was often
a source of confusion to any programmer accustomed to plain binary numeration.

3.7. SHORTHAND REPRESENTATIONS OF DIGITAL WORDS 29

3.7 Shorthand representations of digital words

Modern digital systems can have very long word lengths, typically multiples of 8 bits (i.e. one
byte10), with 32 bits being quite common for many applications. It is not difficult to understand
the human difficulties of accurately reading and writing long binary words. Consider the following
32-bit binary number, written with spaces between every four bits to aid in readability:

1001 0010 0111 0100 1101 1000 0110 1010

Even with the spaces, it would be very easy to mis-read this long string of 32 bits.

For this reason “shorthand” notations for binary exist called octal and hexadecimal numeration.
Both of these are place-weighted numeration systems like decimal and binary, differing only by
base value: octal is base-eight while hexadecimal is base-sixteen. This means octal numbers are
written only with the characters 0 through 7 as valid ciphers, and place-weights are powers of eight;
hexadecimal numbers use all ten Arabic numerals (0 through 9) plus the first six letters of the
English alphabet, usually capitalized (A through F), and its place-weights are powers of sixteen.

The base values for octal and hexadecimal are not arbitrary, but were chosen such that each
character is directly equivalent to three or four binary bits, respectively11. Let’s see how each
of these works by example, first taking the number three thousand seven hundred forty nine and
expressing in 12-bit binary form:

1 0 1

O
nes place

T
w

os place

F
ours place

E
ights place

S
ixteens place

T
hirty-tw

os place

01 00

(2
0)

(2
1)

(2
2)

(2
3)

(2
4)

(2
5)

1 1 1 0 1

S
ixty-fours place

(2
6)

O
ne hundred tw

enty eights place
(2

7)

T
w

o hundred fifty sixths place
(2

8)

F
ive hundred tw

elves place
(2

9)

O
ne thousand tw

enty fours place
(2

10)

T
w

o thousand forty eights place
(2

11)

Our goal will be to take this binary representation of 374910 and express it in both octal and
hexadecimal notations.

10The term “byte” is actually a formal label for a group of eight bits. Not wanting anyone to think computer
scientists were lacking in humor, a lexicon of terms grew from byte including nybble (4 bits), playte (16 bits), and
even dynner (32 bits).

11Note that each octal character is equivalent to three bits because 23 = 8, and each hexadecimal character is
equivalent to four bits because 24 = 16.

30 CHAPTER 3. TUTORIAL

If we separate these bits into groups of three (starting from the least-significant bit, or LSB) and
tally the place-weights of the bits within each group (i.e. treating each three-bit cluster as its own
binary number), we get the following result:

1 0 101 001 1 1 0 1

7 2 4 5

Binary

Octal

O
nes place

E
ights place

S
ixty fours place

F
ive hundred tw

elves place

(8
0)

(8
1)

(8
2)

(8
3)

111 010 100 1012 = 7 2 4 58

Here is a listing of equivalent values between three-bit binary clusters and octal characters to aid
in the conversion from binary to octal:

0002 = 08
0012 = 18
0102 = 28
0112 = 38
1002 = 48
1012 = 58
1102 = 68
1112 = 78

Note the convention of appending the subscript “8” to the character string 7245 so that any
reader will know this is an octal number rather than a decimal number.

3.7. SHORTHAND REPRESENTATIONS OF DIGITAL WORDS 31

Conversion from binary to hexadecimal is not much different. Instead of grouping bits by three
we will group them by four, and then tally place-weights for the bits within each of those groups to
find the equivalent hexadecimal character for each. Starting with the same binary number as before
(111010100101), beginning our four-bit groupings at the LSB as before, we apply this technique
and arrive at the following result:

1 0 101 001 1 1 0 1

5

Binary
O

nes place

Hexadecimal

(16
0)

(16
1)

(16
2)

AE

S
ixteens place

T
w

o hundred fifty sixths place
1110 1010 01012 = E A 516

Here is a listing of equivalent values between four-bit binary clusters and hexadecimal characters
to aid in the conversion from binary to hexadecimal:

00002 = 016 10002 = 816
00012 = 116 10012 = 916
00102 = 216 10102 = A16
00112 = 316 10112 = B16
01002 = 416 11002 = C16
01012 = 516 11012 = D16
01102 = 616 11102 = E16
01112 = 716 11112 = F16

Note once again the convention of using a subscript to denote the radix, or “base”, of the
numeration system. Although the presence of lettered characters in the number EA516 should be
enough to indicate it is neither decimal or octal, the “16” subscript shows its merit in cases where
the hexadecimal number in question happens to lack letter-characters.

32 CHAPTER 3. TUTORIAL

Subscripts work well for this purpose, but in documents such as computer program source code
where alternative fonts, subscripts, and other typesetting features are notably absent we must find
other means of denoting when a number is hexadecimal. Shown here are some common notations
using EA5 as the example number, the last form used in this series of learning modules:

• A trailing12 “H” character (e.g. EA5H)

• A leading dollar-sign ($) character (e.g. $EA5)

• A leading pound-sign (#) character (e.g. #EA5)

• Leading “0h” characters (e.g. 0hEA5)

• Leading13 “0x” characters (e.g. 0xEA5)

It should be clear to see how either 72458 or EA516 are easier for a person to manage than the
binary form 1110101001012, given their dramatically smaller character counts. This is the sole
purpose of octal and hexadecimal: to make it easier for human beings to manage large binary words
by “compressing” groups of bits into single characters easier to read, write, and remember. Octal
representation “compresses” a binary word by a ratio of 3:1 (i.e. three binary bits are represented
in each octal character), while hexadecimal “compresses” at a 4:1 ratio.

12This same convention of appending or prepending a letter to the end of a non-decimal number is sometimes used
for binary numbers as well as hexadecimal. For example 101102 could be written as 10110B, or as 0b10110 instead.
However, this introduces another problem: what if someone sees the letter “B” and thinks this is a hexadecimal

number because “B” is a legitimate hexadecimal cipher?
13This same convention of prepending characters to the front end of a non-decimal number is sometimes used for

octal numbers as well as hexadecimal. For example, in the C and C++ programming languages, prepending a zero
(0) or 0o to a constant typically denotes it as being octal, while prepending 0x to a constant value denotes it as
hexadecimal.

3.8. DECIMAL CONVERSIONS 33

3.8 Decimal conversions

In the course of working with binary numbers, one must frequently convert between our conventional
decimal numeration and one of the other numeration systems (binary, BCD, octal, hexadecimal).
We saw examples of this in Unsigned integers section (3.3) and Signed integers section (3.4) of
this tutorial, where we assigned place-weight values to each of the bits within a binary integer and
tallied their sum to arrive at the equivalent decimal value. We saw a very similar example in the
Binary-Coded Decimal section (3.6) where we assigned place-weight values for each of the bits in
every four-bit grouping, and again tallied the sum of the weighted places bearing “1” bits.

This technique is not limited to finding the decimal equivalent of binary or BCD numbers, but
in fact is applicable to any non-decimal place-weighted numeration system: simply label the place-
weight values for each digit or character, compute the product of each numeral and its respective
weight, then sum all of those values. To illustrate, we will convert three different numbers into
decimal format using this technique.

3.8.1 Binary to decimal

First, let us consider the unsigned binary number 101100. The six bits of this number all have place-
weights, from 25 at the most-significant-bit (MSB weight = thirty two) to 20 at the least-significant
bit (LSB weight = one). To convert to decimal, we simply find the product of each bit and its
corresponding weight, then sum all those products:

Bit 5 = (1)(25) = 32 (MSB)
Bit 4 = (0)(24) = 0
Bit 3 = (1)(23) = 8
Bit 2 = (1)(22) = 4
Bit 1 = (0)(21) = 0
Bit 0 = (0)(20) = 0 (LSB)

This sum of all the multiplied place-weights is 32+0+8+4+0+0 which is equal to 4410 for this
unsigned binary number. If we happened to know this number was signed binary, our conversion
procedure would only differ in making the MSB’s weight negative rather than positive, in which case
the value would be −20.

3.8.2 Octal to decimal

Next, consider the octal number 4207. Each of the four octal characters’ places have weight values
ordered as powers of eight. Arranging all the characters in order with their respective place-weights
as we did with binary, performing the multiplication, and then summing the total will result in the
decimal equivalent value:

Octal character 3 = (4)(83) = 2048 (Most-significant character)
Octal character 2 = (2)(82) = 128
Octal character 1 = (0)(81) = 0
Octal character 0 = (7)(80) = 7 (Least-significant character)

The final tally is 2048 + 128 + 0 + 7 = 218310, and so we can say that 42078 = 218310.

34 CHAPTER 3. TUTORIAL

3.8.3 Hexadecimal to decimal

Finally, consider the hexadecimal number 3D9. Each of the three hexadecimal characters’ places
have weight values ordered as powers of sixteen. Arranging all the characters in order with their
respective place-weights as we did with binary and octal, performing the multiplication, and then
summing the total will result in the decimal equivalent value:

Hexadecimal character 2 = (3)(162) = 768 (Most-significant character)
Hexadecimal character 1 = (D = 13)(161) = 208
Hexadecimal character 0 = (9)(160) = 9 (Least-significant character)

The final tally is 768 + 208 + 9 = 98510, and so we know 3D916 = 98510.

As you can see, converting from any non-decimal, place-weighted numeration to decimal is a
fairly clear procedure based on what it means for any numeration system to be place-weighted.
Each cipher in such a numeration system occupies a place, and each place has its own unique weight
value based on the place number and the “base” of that numeration system.

3.8.4 Decimal to binary by cut-and-try

Converting from decimal into some non-decimal, place-weighted format requires a different approach.
One way to do it is by cut-and-try, where we repeatedly plug different cipher values into the places
of the target numeration system until we obtain the desired sum. This is easiest to demonstrate
with binary, and so for our example we will convert the decimal number 93 into binary.

Our first task is to determine how many binary bits we will need to represent 9310. This may be
done by examining place-weight values for a series of binary bits, as we have done here with eight
bits:

Bit 7 place-weight = 27 = 128
Bit 6 place-weight = 26 = 64
Bit 5 place-weight = 25 = 32
Bit 4 place-weight = 24 = 16
Bit 3 place-weight = 23 = 8
Bit 2 place-weight = 22 = 4
Bit 1 place-weight = 21 = 2
Bit 0 place-weight = 20 = 1 (LSB)

Clearly, we will not require the bit 7 or beyond to represent 9310, because the place-weight value
for that bit is already larger than our desired value. Therefore, we begin by setting the bit value of
bit 6 to a “1” and proceed down toward the LSB setting bit values at either “1” or “0” as needed
to meet our decimal goal. After setting the 26 bit to 1 we subtract that value from our target to see
how much is left (93− 64 = 29). If the next-lower bit’s place-weight is more than that we make it 0,
if not we make it 1. Here we see that the next bit (25) is larger than our remainder, so we set that
bit to 0 and move on to the 24 bit, which we set to 1. At this point our remainder is 29− 16 = 13
and so all we need now is thirteen from the remaining bits to make our goal. This will require setting
the 23, 22, and 20 bits all to 1 states.

3.8. DECIMAL CONVERSIONS 35

Reviewing our work:

Bit 6 = (1)(26) = 64 (MSB)
Bit 5 = (0)(25) = 0
Bit 4 = (1)(24) = 16
Bit 3 = (1)(23) = 8
Bit 2 = (1)(22) = 4
Bit 1 = (0)(21) = 0
Bit 0 = (1)(20) = 1 (LSB)

Arranging all the bits in order to form a binary number, we have 10111012, which is the binary
(unsigned) integer equivalent of 9310. If we were asked to convert a positive decimal integer into
a signed binary integer (i.e. two’s complement notation), we would follow all the same steps, but
include an additional bit (set to 0) as the new MSB which holds an (unused) negative place-weight.
To use the decimal example of 93 once again, 9310 = 010111012 (signed).

Converting a negative decimal integer into signed binary format is not much different, except
now to determine the requisite number of binary bits to use in our word we must find the smallest
negative place-weight that is not more negative than our target number. For example, if our given
decimal value was −50, we would need to use a seven-bit signed binary number because −32 is not
negative enough but −64 will suffice (with some positive-weighted bits set to 1, of course, to bring
the total to negative fifty).

More often than not, though, the binary word size will already be prescribed for us, since most
digital systems are fixed at bit widths some multiple of eight (e.g. 8-bit, 16-bit, 32-bit, 64-bit). In this
case we set the MSB at 1 to make sure the result will be negative, then set as many positive-weighted
bits at 1 as necessary to reach our desired value.

36 CHAPTER 3. TUTORIAL

3.8.5 Decimal to octal or hexadecimal by cut-and-try

We may apply this same cut-and-try method to the conversion of decimal into any place-weighted
numeration system including octal and hexadecimal, but this requires substantially more work.
Conversion into binary by cut-and-try is relatively easy because the decision to mark each place
with either a “1” or a “0” as we consider each bit from MSB to LSB is a simple yes-or-no decision
based on whether the sum would be less than or greater than or equal to the target value. When
converting to octal or hexadecimal, we must not only consider the value of each place-weight, but also
the effect of marking each place with one out of eight (or sixteen!) different ciphers. This typically
requires multiple “trials” per place, making the process laborious for all but small quantities.

A hybrid alternative is to use the cut-and-try method to convert the given decimal quantity into
binary (as previously shown), then group those binary bits into clusters of three or four, then convert
each bit-cluster into one octal or hexadecimal character, respectively. Using the previous example
decimal value of 9310 first converted into an unsigned binary number (10111012), we may show how
to group bits into threes and convert to octal as a multi-step process:

Step Description Numerical value

1 The given decimal value 9310

2 After conversion to binary using cut-and-try 10111012

3 Grouping bits into threes starting from the LSB 1 011 101

4 Translating each group into an octal cipher 1358

Shown in this next table is the value 9310 similarly converted into hexadecimal form:

Step Description Numerical value

1 The given decimal value 9310

2 After conversion to binary using cut-and-try 10111012

3 Grouping bits into fours starting from the LSB 101 1101

4 Translating each group into a hexadecimal cipher 5D16

As with any lengthy mathematical procedure, it is always a good idea to check your work at the
end. A good work-checking strategy for this application is to take the octal or decimal quantity and
convert back into decimal14 to prove it matches the original value:

1358 = (1)(64) + (3)(8) + (5)(1) = 9310

5D16 = (5)(16) + (13)(1) = 9310

14This is easily done by summing the products of ciphers and place-weights as shown previously.

3.8. DECIMAL CONVERSIONS 37

3.8.6 Conversion from decimal by repeated division

A more efficient method for converting a decimal quantity into any non-decimal, place-weighted
numeration system involves repeated integer division by the radix (i.e. the base-value). The phrase
integer division means dividing one integer value by another, expressing any “remainder” quantity
as another integer.

Anyone familiar with the arithmetic procedure of long division knows what a “remainder” is.
For example, if we divide 5 by 3 using an electronic calculator, the decimal result is displayed as
1.666666667. If we express this quotient more accurately as a mixed number (i.e. an integer plus
a fraction), we obtain 1 2

3
. The value “2” which appears as the numerator in the fractional portion

of the mixed number is the remainder. When I learned long division many years ago, prior to my
introduction to fractions, I was taught to express this quotient as 1 R 2 (i.e. one with a remainder
of 2). When we divide integers to convert from decimal to some non-decimal numeration system, we
will pay close attention to these remainders. If the concept of a remainder is too abstract, know that
you can calculate the remainder of any fractional answer by multiplying the fractional portion of the
answer by whatever integer you were dividing by. For this example, we would take the 0.666666667
(i.e. 2

3
) and multiply by 3 to compute a remainder of 2.

The general procedure of repeated division is as follows, iterated until the integer quantity is reduced
to zero (i.e. there is nothing left to divide):

1. Divide the integer quantity by the radix

2. Note the remainder left over after the division – each remainder constitutes one character in
the converted number

3. Discard the remainder and return to step one using just the integer portion

38 CHAPTER 3. TUTORIAL

Consider an example where we intend to convert the decimal quantity 10510 into binary. Since
binary has a radix (base) value of two, we must use repeated division by two. What follows is the
complete procedure for this particular conversion:

105÷ 2 = 52.5 = 52
1

2
= 52 R 1

52÷ 2 = 26.0 = 26
0

2
= 26 R 0

26÷ 2 = 13.0 = 13
0

2
= 13 R 0

13÷ 2 = 6.5 = 6
1

2
= 6 R 1

6÷ 2 = 3.0 = 3
0

2
= 3 R 0

3÷ 2 = 1.5 = 1
1

2
= 1 R 1

1÷ 2 = 0.5 =
1

2
= 0 R 1

Listing all the remainders together as a binary word constitutes our binary integer: 11010012.
Checking our work to make sure it is correct, we will sum all the “1” place-weights to ensure we
obtain 10510:

(1)(64) + (1)(32) + (0)(16) + (1)(8) + (0)(4) + (0)(2) + (1)(1) = 10510

This procedure is generally trouble-free, but there is often a point of uncertainty among those
first learning it: do the remainder values begin at the LSB, or the MSB? In this example, someone
new to the procedure might be left wondering, is the binary number 1001011 or is it 1101001? For
multiple reasons15, the first remainder calculated must be the least-significant cipher.

15At least two lines of reasoning conclusively address this question. The first is to consider what it means when
we begin the procedure by dividing an integer by two for the first time. What does it mean if our first remainder is
either one or zero? This, simply put, is a test for whether that integer is odd or even. You will note that all place-
weighted integer numeration systems have only one place-weight that is odd, and it is always the least-significant –
all other place-weights are even-numbered. This means the even-ness or odd-ness of any number is defined by its
least-significant cipher. If our first step of division-by-two tells us whether the given number is odd or even, and we
know it is the LSB of a binary number that defines its odd-ness or even-ness, then the first remainder we calculate

must be the LSB. The second line of reasoning is based on the conclusion of the repeated-division procedure: what
would happen if we continued dividing by two? The answer to this question is that we would obtain an endless string
of 0 remainder values. If those additional zeroes were placed on the LSB-end of the number (i.e. on the right-hand
end), it would affect the number’s value and thereby make that value depend entirely on when we happened to stop
calculating more zeroes. This makes no sense, as it would render the result arbitrary instead of definite. Therefore,
by reductio ad absurdum we demonstrate that last remainder cannot be least-significant.

3.8. DECIMAL CONVERSIONS 39

Repeated division-by-radix works just as well for numeration systems other than binary. Let’s
take another decimal number, say 58910, and repeatedly divide by eight to convert into octal:

589÷ 8 = 73.625 = 73
5

8
= 73 R 5

73÷ 8 = 9.125 = 9
1

8
= 9 R 1

9÷ 8 = 1.125 = 1
1

8
= 1 R 1

1÷ 8 = 0.125 = 0
1

8
= 0 R 1

Listing all the remainders together constitutes our octal integer: 11158. Checking our work to
make sure it is correct:

(1)(512) + (1)(64) + (1)(8) + (5)(1) = 58910

Of course, this also works for hexadecimal. Let’s begin with an example decimal value of 49110
and begin dividing by sixteen:

491÷ 16 = 30.6875 = 30
11

16
= 30 R 11

30÷ 16 = 1.875 = 1
7

8
= 1

14

16
= 1 R 14

1÷ 16 = 0.0625 = 0
1

16
= 0 R 1

Assembling the remainders16 into a hexadecimal integer results in an answer of 1EB16. Checking
our work to make sure it is correct:

(1)(256) + (14)(16) + (11)(1) = 49110

16Recall that hexadecimal uses sixteen unique ciphers, 0 through 9 plus A through F. This means ten is represented
by A, eleven by B, twelve by C, thirteen by D, fourteen by E, and fifteen by F.

40 CHAPTER 3. TUTORIAL

As your familiarity with the repeated-division technique grows, you will likely notice two
efficiencies to your benefit:

1. The larger the radix, the faster the conversion (i.e. fewer steps necessary)

2. The last step can actually be skipped if you pay close attention to the quotients

The first efficiency is of benefit to you if your goal is to convert a large decimal number into binary.
Rather than divide by two over and over again (once for every bit of the binary number), you can
save time and effort by converting into hexadecimal (which, as you recall, is merely a shorthand
notation for binary), then quickly translating each hexadecimal character into four binary bits.

The second efficiency is realized in any case by noting whether the whole-numbered portion of
the quotient is less than the radix. If so, that will be the remainder of the next (last) step! For
example, note the second-to-last step of the decimal-to-hexadecimal conversion example: there we
divided 30 by 16 to obtain 1 R 14. Since the whole-numbered portion of this quotient (1) is less
than 16, we know it is going to be the remainder of the last quotient (1 ÷ 16 = 0 R 1) and therefore
we can skip this last act of division.

3.9. FLOATING-POINT 41

3.9 Floating-point

All binary number representation is limited in range, but integer representation is especially limited.
For example, a 16-bit unsigned integer has a range from 0 to 65535 (decimal), while a signed 16-bit
integer ranges from −32768 to +32767. Increasing the number of bits will of course extend the
range, but even with 32 bits an unsigned integer is limited to a range of 0 to 4,294,967,296, and
a signed integer limited to a range of −2, 147, 483, 648 to +2, 147, 483, 647. If we require fractional
capability this means assuming a binary point somewhere within the binary word, or similarly fixing
a decimal point in the displayed value, with a corresponding decrease in range.

This fundamental problem has an analogue in the world of pencil-and-paper: how to write very
large as well as very small numbers using a minimum of printed characters. A solution to this problem
commonly used in scientific endeavors is scientific notation, where some fractional quantity between
1 and 10 is immediately followed by a power-of-ten multiplier which effectively sets the placement of
the decimal point. For example, the decimal number 3600 would be written in scientific notation as
3.6×103. If we needed to express a number such as 3,600,000 or 0.000000000036 it would be as easy
as writing 3.6× 106 or 3.6× 10−11, respectively. Instead of a fixed decimal point, the power-of-ten
gives us a floating decimal point whose position is defined by the exponent. No longer need we waste
paper or pencil by writing place-holding zero digits for very large or very small numbers.

This same concept has been applied to binary numbers, and it is called floating-point notation.
A floating-point number is defined by a digital word of some length (typically 32 bits) with groups
of those bits serving different purposes. One of them is used as a sign bit, a small group represents
the exponent, and the remaining bits represent the significand (the “significant” bits of the number,
analogous to the 3.6 in the previous scientific notation example).

ANSI/IEEE standard 754 specifies a form of binary floating-point notation that is nearly
universal in digital systems today, with multiple word-lengths for differing degrees of precision and
range capabilities. The basic format follows this mathematical pattern, with m and E representing
binary numbers comprised of different groups of bits in the floating-point word:

±1.m× 2E

Alert readers will note that the format shown here (±1.m×2E) provides no way to represent the
number zero, since 1.0 ×20 (m = 0 and E = 0) is actually equal to one! Here is our first case where
floating-point notation must provide special representation of quantities. In the IEEE 754 standard,
the significand’s format shifts to ±0.m × 2E if ever all exponent bits are 0 (E = 0). In order to
still be able to represent 1 (1.0 ×20), the IEEE standard assumes the exponent value is biased with
a negative number17, so that an exponent bit field of 0 does not mean 20, but rather 2−bias. This
makes it possible to have an exponent value of 0 using non-zero E bits. Similarly, an exponent field
consisting entirely of 1 bits is used as special representation for infinity or for an error code called
Not a Number (NaN), depending on the values of the m bits. These special representations are
important for handling the results of calculations such as division-by-zero and the square-roots or
logarithms of negative numbers.

17Having an implied negative bias added to an integer number is an alternative scheme to two’s complement for
representing negative numbers in binary numeration, and is commonly referred to as excess in computer science
literature. The IEEE 754 standard’s exponent bias could be said as being excess-127.

42 CHAPTER 3. TUTORIAL

Given these special cases of representation required in floating-point notation, the task of doing
calculations with floating-point numbers requires special processor circuitry designed to implement
these rules. Inside a digital computer, this task is managed by a floating-point processor unit, usually
a special section of the microprocessor. Some simpler microprocessors cannot support floating-point
arithmetic, and thus some control system hardware (e.g. low-cost PLCs) must do all tasks using
integer numbers (or fixed-point notation, if fractional quantities must be represented).

The ANSI/IEEE standard 754 specifies multiple floating-point number formats, including one
that is 32 bits in length (“single-precision”) and another that is 64 bits in length (“double-precision”).
In the IEEE standard, one bit is reserved for the sign of the number (0 for positive and 1 for negative),
a certain number of bits for the power-of-two exponent18, and the rest of the bits for the mantissa19

(the fractional portion of the normalized value). Both formats20 are shown here:

Sign bit Exponent bits Mantissa bits
(1) (8) (23)

Single-precision IEEE floating-point number format

Sign bit Exponent bits
(1)

Double-precision IEEE floating-point number format

(11) (52)
Mantissa bits

26 25 24 23 22 21 20

26 25 24 23 22 21 20
.

272829

(E)

(E)

(m)

(m)

27

210

A third floating-point IEEE standard called extended uses 80 total bits: 1 for the sign, 15 for
the exponent, and 64 for the mantissa.

Floating-point number representation greatly simplifies the task of digitally calculating real-world
values. Integer numbers, by contrast, are rather clumsy when used to represent most real-world
measurements or statistics. For this reason, floating-point numbers are sometimes referred to as real
values in digital computer systems.

18Note how the place-weights shown for the exponent field do not seem to allow for negative values. There is
no negative place-weight in the most significant position as one might expect, to allow negative exponents to be
represented. Instead the IEEE standard implies a bias value of −127 (i.e. the exponent integer is in “excess-127”
signed format). For example, in a single-precision IEEE floating-point number, an exponent value of 11001101
represents a power of 78 (since 11001101 = 205, the exponent’s actual value is 205 − 127 = 78).

19The term mantissa is somewhat ambiguous because it has alternative definitions in mathematics. Some references
prefer to use the phrase trailing significand instead, but the term “mantissa” has been used for so long that it is still
common to see.

20Both formats shown here, with the sign bit on the left and mantissa bits on the right, assume big endian formatting,
which is another topic entirely!

3.9. FLOATING-POINT 43

The ANSI/IEEE 754 floating-point format can be rather confusing to learn, and so some
illustrative examples are helpful. I will be using a simple computer program written in C++21

to take any given floating-point number and display its constituent bits.

For the first example we will enter the floating-point decimal number −2.75 and see what the
analysis of bits looks like:

Enter a floating-point value: -2.75

Sign Exponent Mantissa

1 1000 0000 0110 0000 0000 0000 0000 000

Since −2.7510 is a negative number, the sign bit is set to 1. The 8-bit exponent value of 1000
0000 is equal to 12810, and added to the ANSI/IEEE standard’s bias value of −12710 for single-
precision floating-point numbers gives a power-of-two value of 1. The mantissa bits will be appended
to a leading 1 bit followed by a “binary point”, so that the whole number in binary format will read
as follows:

1.0110 0000 0000 0000 0000 0000 × 21

This, of course, is equivalent to 10.112 in fixed-point binary notation because the 21 factor shifts
the “binary” point one place right, just as 101 shifts the decimal point one place right in scientific
notation. Remember that floating-point numeration is just scientific notation in binary. The binary
number 10.11 is then converted into decimal form by summing all the place-weights bearing “1”
bit values. Place-weights to the left of the binary point ascend by multiples of two (as we have seen
before), while place-weights to the right of the binary point descend by factors of two:

(1)(2) + (0)(1) + (1)

(

1

2

)

+ (1)

(

1

4

)

= 2.75

21To see the source code for this program, refer to section 5.3 beginning on page 79. The program written to
“dissect” a floating-point number is one of several programs shown and demonstrated in this section of the module.

44 CHAPTER 3. TUTORIAL

For the second example we will analyze the floating-point decimal number 3×10−8 which happens
to be the approximate value of the speed of light in a vacuum expressed in meters per second:

Enter a floating-point value: 3e8

Sign Exponent Mantissa

0 1001 1011 0001 1110 0001 1010 0011 000

The sign bit is zero, which indicates this is a positive quantity. The exponent value of 1001

1011 is equal to 15510, which yields a power-of-two value of twenty eight after the −127 bias value
has been added to it. Prepending a 1 to the mantissa bits and including the power-of-two factor,
we arrive at the following:

1.0001 1110 0001 1010 0011 000 × 228

Our multiplication factor of 228 shifts the binary point twenty eight places to the right, moving it
to the far right and requiring five additional “0” bits for padding. The result is the following binary
integer:

1 0001 1110 0001 1010 0011 0000 0000

Converting this binary integer into decimal form by summing all the place-weights occupied by
“1” bits reveals what we expected, a value of 300 million:

268, 435, 456 + 16, 777, 216 + 8, 388, 608 + 4, 194, 304 + 2, 097, 152+

65, 536 + 32, 768 + 8, 192 + 512 + 256 = 300, 000, 000

As useful as floating-point numbers are, they are not without liabilities. One of these is the
computational expense (i.e. the number of steps necessary for a computing circuit to complete
the calculation) of floating-point addition and subtraction. Multiplication and division of floating-
point values is relatively simple, for the same reason22 that multiplication and division of decimal
quantities in scientific notation is relatively simple; however, addition and subtraction is not nearly
as straightforward a process which means an inordinate amount of time may be required for a
computer to add or subtract two floating-point values. For this reason it is common to find smaller
digital computers (especially so-called embedded computers used in a wide range of consumer,
commercial, and industrial applications, and even some industrial PLCs23 at the time of this writing)
entirely lacking floating-point capability, which means these devices must perform all their arithmetic
functions using only integer quantities24.

22Multiplication of scientific-notation numbers consists of multiplying the significands and summing the exponents.
For example 3.2× 105 multiplied by 1.8× 1011 is equal to 5.76× 1016 because 3.2 times 1.8 is 5.76, and 5 plus 11 is
16. Division is similar: divide the significands and subtract the exponents.

23The Rockwell (Allen-Bradley) MicroLogix 1000 programmable logic controller (Bulletin 1761), for example, is
only capable of integer arithmetic, and cannot even represent a quantity using floating-point notation.

24Early personal computers suffered this disadvantage as well. A common upgrade for these computers was to install
a math co-processor IC which served the purpose of performing floating-point calculations using definite-purpose logic
circuitry rather than have the main processor IC emulate floating-point arithmetic using integer values.

3.10. BIG ENDIAN AND LITTLE ENDIAN FORMATS 45

3.10 Big endian and little endian formats

A very popular form of digital data communication is called serial, where the individual bits of a
multi-bit word travel along some communications channel (e.g. copper cable, optical fiber, radio
waves) one bit at a time. An important design decision must be made for both the transmitting and
receiving devices in order for this to work, and that is which bit will be sent first?.

Imagine two digital devices, each one with a register25 storing an eight-bit word. Both registers
are designed to be able to shift their bit-contents from one place to the next following the timing of a
“clock” pulse signal, and the way serial communication occurs is to tie the one communications line
to one of the far-end bits of each register, so that when these registers are both shifted, the data gets
“pumped out” of one and “pumped in” to the other. The following illustration shows one way of
doing this, with the transmitting register’s most-significant bit (MSB) linked to the communication
line, which in turn connects with the least-significant bit (LSB) of the receiving register:

1 0 0 0 0 1 1

MSB LSB

1

Transmitting device

MSB LSB

Receiving device

Communication
channel

1 0 0 0 0 1 1 1

Time

Shift direction Shift direction

0 0 1 1

MSB LSB

1

MSB LSB
Communication

channelShift direction Shift direction

1 0 0

MSB LSB MSB LSB
Communication

channelShift direction Shift direction

1 0 0 0 0 1 11

Start

After three
clock pulses

Finished

Serial data

As this illustration shows, the eight-bit digital word held in the transmitting device gets shifted
out of its register beginning with the MSB (the “big end”) while the receiving register fills up from
its LSB end. This is called a big-endian sequence, where the MSB (the “big end”) of the word gets
sent first.

25A “register” is simply a collection of electronic circuits having the ability to store a digital word as individual “1”
and “0” states.

46 CHAPTER 3. TUTORIAL

This next illustration shows the same eight-bit data communicated in reverse order, or little-
endian:

1 0 0 0 0 1 1

MSB LSB

1

Transmitting device

MSB LSB

Receiving device

Communication
channel

10000111

Time

Shift direction Shift direction

MSB LSB MSB LSB
Communication

channelShift direction Shift direction

MSB LSB MSB LSB
Communication

channelShift direction Shift direction

1 0 0 0 0 1 11

Start

After three
clock pulses

Finished

1 111 0 0 0 0

Serial data

As you can see from this illustration, the eight-bit word gets shifted out of the transmitting
register starting with the LSB (the “little end”) while the receiving register fills up from its MSB
end. This is called little-endian sequence, where the LSB (the “little end”) of the word gets sent
first.

There is no functional advantage of one scheme over the other – both big-endian and little-
endian sequences get the job done. However, it should be clear that both transmitting and receiving
devices must agree on one of these formats, or else the digital word is going to be have all of its
bits rearranged in reverse order at the conclusion of the serial communication! Big-endian versus
little-endian serial sequence is just one of many parameters which must be agreed upon when the
transmitting and receiving devices are of different manufacture, which is why common standards are
important to codify and also to heed.

3.10. BIG ENDIAN AND LITTLE ENDIAN FORMATS 47

Although the question of big-endian versus little-endian arises from the challenge of serial
data communication, it does not end there. Even if two digital systems perfectly agree on the
communication order of bits, they may still disagree on the meanings of those bits once they arrive.

It is important to note that most digital systems manage data in words, which are quantities
comprised of multiple bits. Digital computers have a standard word-length dependent on the
hardware used in the processor (or microprocessor) unit. For example, legacy microprocessor
ICs such as the Motorola 6502 operated using eight-bit words. Later microprocessors such as the
Motorola 68000 used sixteen-bit words. Even later processors such as the Intel Pentium used 32-bit
words, and at the time of this writing the state-of-the-art for personal computer microprocessors is
a word length of 64 bits. At first one might be tempted to think that a computer using small words
would be incapable of handling large numbers, but that is not the case. For example, an 8-bit (i.e.
one-byte) digital computer may still be capable of performing certain operations on 16- or 32-bit
binary quantities, but this is done by regarding multiple bytes as comprising larger words: using two
consecutive bytes to represent a 16-bit word, or four consecutive bytes to represent a 32-bit word.

Here is where endianness rears its ugly head again: the way in which a digital system subdivides
large words into smaller words, bytes, and bits is arbitrary. In other words, no natural law makes
one type of ordering more sensible than another. In the absence of some formal standard declaring
a “conventional” order, the inevitable result is that different engineers designing digital systems for
different manufacturers wind up choosing different ordering schemes.

Consider the example of a 32-bit digital word represented by the following hexadecimal value:
1B2C3D4E16. Since we know each hexadecimal character is “shorthand” for four binary bits, every
two hexadecimal characters must represent one byte, and every four characters a 16-bit word. As
readers of English, we might assume the breakdown would maintain consistent left-to-right reading
order, so that any string of smaller words would read in the same order as the original 32-bit word
(i.e. 1B2C3D4E left-to-right):

1B2C3D4E

1B2C 3D4E

1B 2C 3D 4E

One 32-bit word

Two 16-bit words

Four bytes

LittleBig

However, this is only true in a big-endian system where the first sub-word in a set begins with
the highest-weight (i.e. the biggest) portion of the original word. In a “big endian” structure, the
most significant bit/byte/word (i.e. the “bigger end”) always comes before the others.

48 CHAPTER 3. TUTORIAL

If a digital system is little-endian, the structure is reversed so that the “little end” always comes
before the others. In such a case, our original 32-bit word gets its portions “swapped” about as
shown in this next illustration:

1B2C3D4E

1B2C3D4E

1B2C3D4E

One 32-bit word

Two 16-bit words

Four bytes

Little Big

Alternative descriptions for these scenarios include the terms byte-swapped and word-swapped26.
In the “big-endian” scheme previously shown, there is no swapping at all because everything reads
in the same order no matter how it is subdivided. In the “little-endian” scheme previously shown, it
is both word-swapped and byte-swapped because with each level of subdivision the front and back
halves get reversed.

If we consider (16-bit) word-swapping and (8-bit) byte-swapping to be separate configurations,
we find exactly four combinations are possible. These are shown in the following table, using the
32-bit data from the previous example (1B2C3D4E16) along with written descriptions of swapping
and a byte order written symbolically using the four letters A, B, C, and D:

Data as four bytes Swapping Byte order

1B 2C 3D 4E No swapping (original 32-bit data word) ABCD

3D 4E 1B 2C Word-swapped, but no byte-swapping CDAB

2C 1B 4E 3D No word-swapping, but byte-swapped BADC

4E 3D 2C 1B Word-swapped and byte-swapped DCBA

If all of this seems confusing and perhaps even pointless, you are in good company. Within the
confines of any given digital system, whichever ordering scheme is chosen should be consistent across
all portions of the system and therefore transparent to most (if not all) people using that system.
In other words, if the system is well-designed you probably won’t have to worry about any of this.
However – and this is a big “however” – when different digital systems must exchange data across
some form of communications network, problems are likely to arise if the byte-ordering of one system
differs from the other. This problem is often compounded by a lack of comprehensive documentation
on one or both systems in question, which means it might be necessary to experimentally determine
the byte-ordering of data by trial-and-error. In such cases it is very good to know what byte-swapping
is and the various forms it takes.

26The use of “word” here can be misleading, since technically the bit-width of a word is system-dependent. However,
for a long time “word” was taken to mean 16 bits, and in cases such “word-swapping” it is assumed to mean the
swapping of two 16-bit words.

3.11. INCOMPATIBLE FORMAT ERRORS 49

3.11 Incompatible format errors

At a very fundamental level all digital systems are identical: information is represented by collections
of discrete (on or off) states. This means it ought to be possible, at least on a theoretical basis, to
translate any digital data to make sense within any digital system. As you might imagine, though,
the fact that this is theoretically possible does not mean it will be easy27.

One of the many obstacles complicating the inter-operation of digital systems is differing
numeration formats. This section will not attempt to be comprehensive in describing every type of
incompatibility, but rather will give a few examples to showcase the nature of the problem.

Let’s begin with a numerical example to show how different numeration formats complicate the
exchange of digital data. Suppose we have a sensor counting the number of items passing by on
a conveyor belt. Perhaps these items are assembled machines, or perhaps containers of liquid, or
something else – their identity is unimportant to this discussion. What matters to us is that this
sensor generates an electrical pulse with the passing of each object, and that a digital counter unit
tallies these pulses as a running total:

Conveyor belt

Optical switch
Light source

Binary
counter

Digital
computer

Data network

Digital
display

The digital counter simply increments by one with each pulse from the sensor, and so its value
is best interpreted as an unsigned integer. If we assume a 16-bit counter capacity, and furthermore
assume exactly thirty-eight thousand five hundred items have passed by on the conveyor belt, the
counter should register the binary equivalent of 38,50010. Converting to binary numeration, this
quantity appears as 1001 0110 0110 01002.

27A phrase often used in computer science to describe this theoretical versus practical dichotomy is to say we
have fallen into a Turing tar pit. Alan Turing was an English mathematician who greatly assisted the Allied forces
during World War Two with his pioneering work using computers to decrypt German military messages which were
encrypted by a sophisticated algorithm. He also described a universal computing machine (called a Turing machine)
theoretically capable of executing any mathematical algorithm, which used a long tape upon which characters could
be written and read, those characters directing the machine to increment and decrement the tape’s position to other
character places, continuing the process indefinitely. Turing’s idea was not far removed from that of a digital processor,
which reads data from and writes data to locations in a digital memory array, the data stored in that array giving
commands to the processor what to do next. His concept for a computer, though, was so rudimentary as to require
an inordinate amount of time and processing time to complete even the simplest of practical tasks. That is to say,
even though a Turing machine is theoretically capable of performing any kind of mathematical operation, trying to
program a Turing machine to actually perform some practical operation is akin to crawling out of a tar pit: possible
in principle but nearly impossible in practice.

50 CHAPTER 3. TUTORIAL

If the receiving computer accepts this 16-bit binary quantity as the unsigned integer it is, and
all other aspects of the system are compatible, the digital display will faithfully register 38500 after
the sensor counts 38,500 items as shown in the following illustration:

Conveyor belt

Optical switch
Light source

Binary
counter

Digital
computer

Data network

Digital
display

Value = 38500
Reads data as
unsigned 16-bit

integer

1001011001100100

Let’s suppose, though, that someone mistakenly programmed the computer to interpret this
exact same 16-bit data as a signed 16-bit integer rather than the unsigned 16-bit integer it actually
is. The data received via the communication link is nothing but a stream of sixteen sequential bits,
and so the receiving computer cannot naturally “know” what these bits are supposed to represent.
It is the programmer’s responsibility to instruct the computer to properly interpret this data, and
in this scenario the interpretation is improper. What would happen in this case? We can tell from
the binary expression of this quantity that the leading bit is 1, which means in two’s complement
notation it will have a negative value (−27036 to be precise).

Conveyor belt

Optical switch
Light source

Binary
counter

Digital
computer

Data network

Digital
display

Value = 38500
Reads data as

integer

1001011001100100

signed 16-bit

Not only will this improperly-configured system register an entirely non-sensical count value (i.e.
a negative number of items!), but the problem won’t appear for quite some time. Up to a count value
of 32767 the MSB of this 16-bit binary number will be zero, and for that reason will be interpreted
as a positive quantity whether the computer regards it as signed or unsigned. Only after the count
value exceeds 3276710 will the discrepancy between unsigned and signed integer formats become
apparent (i.e. when the display begins to register negative values).

This example not only demonstrates one way in which disparate number formats can cause
problems, but it also proves why it is necessary in the design of complex systems to fully test
all functions of that system before relying on them to perform as designed. Here we have an
incompatibility that does not reveal itself until a large number of items have been detected by
the sensor, which may equate to weeks or months or even years of operation in this conveyor belt

3.11. INCOMPATIBLE FORMAT ERRORS 51

application. A full test of the system would have included at least a simulation of item count up
to the maximum possible with an unsigned 16 bit binary number (6553510) in order to verify no
unusual problems lurked in the system.

Let us now assume a different programming flaw, one where the computer is incorrectly
programmed to interpret the received 16-bit data as BCD rather than unsigned binary. In this
case, the computer will translate each grouping of four bits in the 16-bit word as a separate decimal
digit, and so the data 1001 0110 0110 01002 will be interpreted as the decimal value 966410 as the
following illustration shows:

Conveyor belt

Optical switch
Light source

Binary
counter

Digital
computer

Data network

Digital
display

Value = 38500
Reads data as

1001011001100100

BCD

What is more, every time the binary count value happens to generate a grouping of four bits
whose value exceeds nine, the computer will display some sort of nonsensical character for that
digit, since BCD expects only the codes 0000 through 1001 (i.e. 0 through 9) for each four-bit
group. What exactly the computer does with any non-conforming four-bit code (e.g. 1011, 1100,
etc.) depends on details of its operating code which may not even be accessible to the engineers and
technicians tasked with installing and configuring the computer for this conveyor belt system. The
programming manual for this computer might not even document the response for non-compliant
BCD data.

Yet another faulty scenario is one where the computer assumes a different byte order than what
is transmitted by the counter. In this case a binary count value of 1001 0110 0110 01002 would
be interpreted as 0110 0100 1001 01102, which is interpreted as 2575010:

Conveyor belt

Optical switch
Light source

Binary
counter

Digital
computer

Data network

Digital
display

Value = 38500

1001011001100100

Reads data in
byte-swapped order

An interesting characteristic of this error is that it is not user-generated. In other words, it was
not the fault of the person programming this computer to receive and display the data, but rather

52 CHAPTER 3. TUTORIAL

an inherent incompatibility between the counter’s 16-bit register and the computer’s 16-bit registers
resulting from disparate data-organizing philosophies on the part of each manufacturer. In order
to correct this problem, the people installing and programming the computer for this conveyor belt
application must include additional programming code to intentionally swap bytes in this 16-bit
word so that it will read correctly.

This problem of byte-order and word-order is so common between manufacturers of industrial
computing hardware that many programmable computers (e.g. PLCs) provide ready-to-use functions
just for this purpose. A screenshot showing an image of such a data-swapping function in the
programming editor of a Koyo brand “Do-More” PLC appears here:

This particular function provides user-selectable “flag” options to swap bytes, swap words, or
both.

And, of course, it is possible for multiple data-format incompatibilities to simultaneously coexist:
consider a case with byte-swapped data on top of a signed/unsigned mismatch. These problems can
be frustrating to diagnose because they require just the right combination of fixes to remedy.

A helpful tool for diagnosing such incompatibilities is to view the system’s data in hexadecimal
form. Examining the “raw” data in hexadecimal form rather than formatted decimal values
eliminates one step of translation, allowing you to more easily discern patterns indicating data
format. Many industrial computing systems such as Programmable Logic Controllers (PLCs) provide
means to view data in raw form with little or no display formatting. In text-programmed systems
you may need to insert your own code to force the computer to display hexadecimal values if no “raw
data view” feature exists. This approach is analogous to taking electrical measurements of signals
within an electronic circuit rather than merely relying on the ordinary indicators of that circuit’s
function, giving yourself a view of the circuit’s “raw” status.

Another way to attack a problem such as this is to force certain “test” values such as zero, one,
or any other value providing an easily-predicted result. Forcing certain input values and examining
their results provides a way to actively explore how the system interprets data. This approach is
an example of the general problem-solving strategy of simplifying the system: inserting a numerical
value into the digital system for which the results are simpler to predict than the random value that
happened to be there when you first encountered the problem.

3.11. INCOMPATIBLE FORMAT ERRORS 53

So far we have discussed errors resulting from the exchange of data between incompatible number
formats. A different type of incompatibility error is seen with floating-point digital numbers: an
internal incompatibility with specific numerical values whereby it is impossible to precisely represent
a seemingly simple decimal value using binary floating-point. The following example shows a set of
simple arithmetic calculations performed on a computer28, each of them intended to generate the
same result of 1.8:

>>> 1.3 + 0.5

1.8

>>> 1.2 + 0.6

1.7999999999999998

>>> 1.1 + 0.7

1.8

>>> 1.0 + 0.8

1.8

>>> 0.9 + 0.9

1.8

>>> 0.8 + 1.0

1.8

>>> 0.7 + 1.1

1.8

>>> 0.6 + 1.2

1.7999999999999998

>>> 0.5 + 1.3

1.8

As you can see, all the sums are correct except for those adding 1.2 and 0.6. Clearly, the problem
is not an inability to represent 1.8 because most of these sums are exactly that. The problem must
have something to do either with representing 1.2, or representing 0.6, or both. A second experiment
helps us diagnose the problem a little further:

>>> 0.6 + 0.6

1.2

>>> 1.2 + 1.2

2.3999999999999999

28The software used to perform these computations is an interpreter for a text-based programming language called
Python. Rather than type commands into a text file and then use compiler software to translate those commands
into a format the computer can execute, an interpreter does the translation as soon as you type the commands. This
immediacy makes interpreted programming languages especially easy for beginners to learn. Python in particular is
a very well-designed language with relatively simple syntax, yet possesses many advanced functions, and is highly
recommended for beginning programmers to learn.

54 CHAPTER 3. TUTORIAL

Clearly, 0.6 is representable in floating-point format, but it has a problem representing the value
1.2. Continuing our experiments with the value 1.2 represented as a floating-point number:

>>> 1.2 * 1

1.2

>>> 1.2 * 2

2.3999999999999999

>>> 1.2 * 3

3.5999999999999996

>>> 1.2 * 4

4.7999999999999998

>>> 1.2 * 5

6.0

>>> 1.2 * 6

7.1999999999999993

>>> 1.2 * 7

8.4000000000000004

>>> 1.2 * 8

9.5999999999999996

>>> 1.2 * 9

10.799999999999999

>>> 1.2 * 10

12.0

Some additional experimentation with different numbers reveals other anomalous values:

>>> 0.5 - 0.6

-0.09999999999999998

>>> -0.4 - (-0.3)

-0.10000000000000003

It is important to note that none of these errors are the fault of poorly-written software. Rather,
they reveal inherent limitations of the binary floating-point numbers themselves, and/or limitations
of the algorithms responsible for floating-point arithmetic. Imprecise floating-point representations
of numbers such as these may result in malfunctioning computer programs if the computer is
programmed to check a floating-point number for some expected result. If the expected result
happens to be one of these anomalous cases the program may fail to properly recognize it (e.g. the
product of 1.2 and 8 ought to be 9.6, but if the result comes out as 9.5999999999999996 it won’t be
deemed “equal” to 9.6 and the computer will not recognize it for what it ought to be).

Chapter 4

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism
written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.

55

56 CHAPTER 4. HISTORICAL REFERENCES

4.1 A binary resistance box

The Scottish physicist James Clerk Maxwell (1831-1879) wrote a book entitled A Treatise on
Electricity and Magnetism, within which he describes the construction and use of a “resistance
box” which could be used to simulate any number of different resistance values by shorting past
certain resistive wire coils in particular patterns.

There are various arrangements by which resistance coils may be easily introduced into
a circuit.

For instance, a series of coils of which the resistances are 1, 2, 4, 8, 16, &c, arranged
according to the powers of 2, may be placed in a box in series.

The electrodes consist of stout brass plates, so arranged on the outside of the box that
by inserting a brass plug or wedge between two of them as a shunt, the resistance of the
corresponding coil may be put out of the circuit. This arrangement was introduced by
Siemens.

Each interval between the electrodes is marked with the resistance of the corresponding
coil, so that if we wish to make

the resistance in the box equal to 107 we express 107 in the binary scale as 64 + 32 + 8
+ 2 + 1 or 1101011. We then take the plugs out of the holes corresponding to 64, 32, 8,
2 and 1, and leave the plugs in 16 and 4.

This method, founded on the binary scale, is that in which the smallest number of
separate coils is needed, and it is also that which can be most readily tested. For if we
have another coil equal to 1 we can test the quality of 1 and 1’, then that of 1 + 1 and
2, then that of 1 + 1’ + 2 and 4, and so on.

The only disadvantage of the arrangement is that it requires a familiarity with the binary
scale of notation, which is not generally possessed by those accustomed to express every
number in the decimal scale. [page 470]

4.1. A BINARY RESISTANCE BOX 57

Maxwell continues by giving an example of a different kind of resistance box also employing
binary patterns. In this design, each resistance coil is labeled with a resistance value (in Ohms) as
before, but with this design the insertion of brass plugs connects these resistances in parallel with
each other to produce greater values of total conductance (measured in units of Siemens, or Mhos).
Recall that conductance (G) is the reciprocal of resistance (G = 1

R
), so that a resistance of 2 Ohms

would be a conductance of 0.5 Siemens, a resistance of 8 Ohms would be a conductance of 0.125
Siemens, etc. Just as resistances add together when connected in series, conductances add together
when connected in parallel:

A box of resistance coils may be arranged in a different way to the purpose of measuring
conductivities instead of resistances. [page 470]

The coils are placed so that one end of each is connected with a long thick piece of metal
which forms one electrode of the box, and the other end is connected with a stout piece
of brass plate as in the former case.

The other electrode of the box is a long brass plate, such that by inserting brass plugs
between it and the electrodes of the coils it may be connected to the first electrode
through any given set of coils. The conductivity of the box is then the sum of the
conductivities of the coils.

In the figure, in which the resistances of the coils are 1, 2, 4, &c, and the plugs are
inserted at 2 and 8, the conductivity of the box is 1

2
+ 1

8
= 5

8
, and the resistance of the

box is therefore 8

5
or 1.6.

This method of combining resistance coils for the measurement of fractional resistances
was introduced by Sir W. Thomson under the name of the method of multiple arcs. See
Art. 276. [page 471]

58 CHAPTER 4. HISTORICAL REFERENCES

4.2 Big-endians and Little-endians

A fictional novel published in 1726 entitled Gulliver’s Travels Into Several Remote Nations of the
World contains a reference to a dispute between two nations, that of Lilliput and of Blefuscu. The
dispute is over the most trivial of matters, namely which end of an egg should be broken prior
to eating. Clearly a satire by Swift on the religious controversies of his day, the schism between
the “Big-endians” and “Little-endians” served as a convenient reference for computer scientists to
describe the differing ways in which digital data could be organized within a digital system.

Without further adieu, I present to you the passage from Swift’s famous book introducing the
term “Big-endian” into the English lexicon:

. . . our histories of six thousand moons make no mention of any other regions than
the two great empires of Lilliput and Blefuscu. Which two mighty powers have, as I
was going to tell you, been engaged in a most obstinate war for six-and-thirty moons
past. It began upon the following occasion. It is allowed on all hands, that the primitive
way of breaking eggs, before we eat them, was upon the larger end; but his present
majesty’s grandfather, while he was a boy, going to eat an egg, and breaking it according
to the ancient practice, happened to cut one of his fingers. Whereupon the emperor his
father published an edict, commanding all his subjects, upon great penalties, to break
the smaller end of their eggs. The people so highly resented this law, that our histories
tell us, there have been six rebellions raised on that account; wherein one emperor lost
his life, and another his crown. These civil commotions were constantly fomented by the
monarchs of Blefuscu; and when they were quelled, the exiles always fled for refuge to that
empire. It is computed that eleven thousand persons have at several times suffered death,
rather than submit to break their eggs at the smaller end. Many hundred large volumes
have been published upon this controversy: but the books of the Big-endians have been
long forbidden, and the whole party rendered incapable by law of holding employments.
During the course of these troubles, the emperors of Blefusca did frequently expostulate
by their ambassadors, accusing us of making a schism in religion, by offending against
a fundamental doctrine of our great prophet Lustrog, in the fifty-fourth chapter of the
Blundecral (which is their Alcoran). This, however, is thought to be a mere strain upon
the text; for the words are these: “that all true believers break their eggs at the convenient
end.” And which is the convenient end, seems, in my humble opinion to be left to every
man’s conscience, or at least in the power of the chief magistrate to determine. Now,
the Big-endian exiles have found so much credit in the emperor of Blefuscu’s court, and
so much private assistance and encouragement from their party here at home, that a
bloody war has been carried on between the two empires for six-and-thirty moons, with
various success; during which time we have lost forty capital ships, and a much a greater
number of smaller vessels, together with thirty thousand of our best seamen and soldiers;
and the damage received by the enemy is reckoned to be somewhat greater than ours.
However, they have now equipped a numerous fleet, and are just preparing to make a
descent upon us; and his imperial majesty, placing great confidence in your valour and
strength, has commanded me to lay this account of his affairs before you.

One of those computer scientists referencing Jonathan Swift’s satirical novel was Danny Cohen, in
a document appropriately dated on April Fool’s Day (April 1), 1980. The tone of Cohen’s document

4.2. BIG-ENDIANS AND LITTLE-ENDIANS 59

is quite humorous, and definitely worth reading especially for those interested in the architectures
of early computing hardware such as the Motorola 68000 microprocessor IC; Digital Equipment
Corporation’s PDP10, PDP11/45, VAX computers; and the IBM model 360 computer. He makes
extensive reference of Swift’s story while describing the fundamental decision of how to organize and
communicate data words in a digital system.

Cohen’s document concludes neatly with the following three sentences, which I include for your
edification:

It may be interesting to notice that the point which Jonathan Swift tried to convey in
Gulliver’s Travels in exactly the opposite of the point of this note.

Swift’s point is that the difference between breaking the egg at the little-end and breaking
it at the big-end is trivial. Therefore, he suggests, that everyone does it in his own
preferred way.

We agree that the difference between sending eggs with the little- or the big-end first is
trivial, but we insist that everyone must do it in the same way, to avoid anarchy. Since
the difference is trivial we may choose either way, but a decision must be made.

At the time of this writing (2018), nearly four decades after Cohen’s missive, the state of anarchy
described by Cohen remains alive and well, with little-endian and big-endian formats commonly
found coexisting across digital data networks. While the problem of which bit to send first in a
serial (i.e. one bit at a time) communication channel seems to be settled1 within each of the various
network standards (e.g. Ethernet, EIA/TIA-232, etc.), the problem of byte and word order for large
data segments remains. It is not uncommon, for example, to find manufacturers of industrial data
equipment arbitrarily using different 16-bit word orders for storing 32-bit binary numbers, so that
when a 32-bit binary number is received by a digital device of different manufacture, swapping of
word or byte orders may be necessary in order to preserve the meaning of that 32-bit number.

1For example, all manufacturers of EIA/TIA-232 serial data communication hardware have agreed to transmit the
LSB first followed by bits of increasing order. Thus, we do not encounter anarchy when connecting one manufacturer’s
232-compliant modem to another manufacturer’s 232-compliant modem. Ditto for the interoperability of all Ethernet
communication hardware. This is a Very Good Thing.

60 CHAPTER 4. HISTORICAL REFERENCES

Chapter 5

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.

61

62 CHAPTER 5. PROGRAMMING REFERENCES

5.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.

5.1. PROGRAMMING IN C++ 63

Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments
to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point
variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x
or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.

64 CHAPTER 5. PROGRAMMING REFERENCES

After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.

5.1. PROGRAMMING IN C++ 65

learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.

66 CHAPTER 5. PROGRAMMING REFERENCES

5.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.

5.2. PROGRAMMING IN PYTHON 67

More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.

68 CHAPTER 5. PROGRAMMING REFERENCES

Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC

6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians ; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.

5.2. PROGRAMMING IN PYTHON 69

assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.

70 CHAPTER 5. PROGRAMMING REFERENCES

If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.

5.3. NUMERATION FORMATS IN PYTHON AND C++ 71

5.3 Numeration formats in Python and C++

In this section we will explore the use of two text-based computer programming languages, Python
and C++, to perform number-format conversions. As we do so, we will discuss the following
programming principles:

• Interpreted versus compiled languages

• Number base prefixes

• Conversion functions (bin, hex, oct)

• Preprocessor directives, namespaces

• Variable types (int 16t, uint 16t), names, and declarations

• Printing text output (cout, <<, endl, dec, oct, hex, uppercase)

• Accepting user input (cin, >>)

• Loops (while)

• Basic arithmetic (+, %)

• Numerical overflow

• Arrays

• Unions

• Bitwise operators (&), masking

• Comments (//)

72 CHAPTER 5. PROGRAMMING REFERENCES

The Python programming language is interpreted, which means a computer is able to immediately
execute single Python commands as they are typed. This makes Python very useful as a scientific
calculator, and also for easily demonstrating elementary programming concepts.

Here, we see a Python console running Python version 3.6.17, being used to convert between
binary, octal, hexadecimal, and decimal expressions of unsigned integers (i.e. whole numbers):

Python 3.6.1 (default, Mar 21 2017, 21:49:16)

[GCC 5.4.0] on cygwin

Type "help", "copyright", "credits" or "license" for more information.

>>> 0b1011011

91

>>> 0x4a32

18994

>>> 0o3721

2001

>>> bin(494)

’0b111101110’

>>> hex(494)

’0x1ee’

>>> oct(494)

’0o756’

>>> quit()

Any number prefaced by 0b is interpreted by Python as a binary number, and its decimal
equivalent immediately appears when that quantity is entered. Similarly, 0x denotes a hexadecimal
quantity, and 0o denotes octal. If we wish to enter a decimal number and see its binary, hexadecimal,
or octal expression, we must use the functions bin(), hex(), and oct(), respectively, with the
decimal value to be converted placed between the parentheses as an “argument” to that function.

To exit the Python interpreter console, simply enter the function quit() as shown.

7In order to initiate Python from a command-line environment, simply type python3 at the command line and
press Enter. The Python version running will be shown as it appears here, followed by a >>> prompt where you may
type and enter lines of Python code.

5.3. NUMERATION FORMATS IN PYTHON AND C++ 73

C++ is a compiled programming language, which means all lines of C++ code must be written
to a file which is then processed by a piece of software called a compiler before the computer can
execute that code. Unlike Python, which may be interpreted live (line by line, as it is typed), C++
executes code in batches saved as plain-text files.

Here is an example C++ program useful to displaying a decimal value entered by the user as a
binary, octal, and hexadecimal 16-bit signed number.

#include <iostream>

#include <cstdint>

#include <bitset>

using namespace std;

int main (void)

{

int16_t x;

while (1)

{

cout << "Enter the decimal number: ";

cin >> x;

cout << dec << "Decimal " << x << " is equal to ";

cout << std::bitset<16>(x) << " (binary) ";

cout << oct << x << " (octal) ";

cout << hex << uppercase << x << " (hex)" << endl;

cout << endl;

}

return 0;

}

This program uses the cin command of the C++ language to receive typed input from whomever
runs the program, and it uses a while loop to repeatedly accept input and display results, so that
the user does not have to re-start the program for each new conversion. Execution of this program
may be interrupted at any time using the <Ctrl-C> key sequence.

The cstdint inclusion near the top of the code listing tells the C++ compiler to include all
necessary definitions for fixed-size integer variables, which is necessary8 in this case because we wish
to use 16-bit signed integers only. If we simply declared the variable x to be a regular integer instead
of a 16-bit integer, the compiler software would default to whatever the standard bit-width of the
operating system happened to be. For this example I wanted to limit the program to using only

8Depending on the version of C++ compiler installed on your computer.

74 CHAPTER 5. PROGRAMMING REFERENCES

16-bit integers, hence the special declaration for x as well as the #include <cstdint> statement.
Similarly, the #include <bitset> statement was necessary in order to have the cout command
express x as a binary number.

Shown here is one test run of this program, with the numerical values 355 and −10722 entered
when prompted by the program:

Enter the decimal number: 355

Decimal 355 is equal to 0000000101100011 (binary) 543 (octal) 163 (hex)

Enter the decimal number: -10722

Decimal -10722 is equal to 1101011000011110 (binary) 153036 (octal) D61E (hex)

5.3. NUMERATION FORMATS IN PYTHON AND C++ 75

Next is an example C++ program demonstrating simple arithmetic using 16-bit binary numbers:

#include <iostream>

#include <cstdint>

using namespace std;

int main()

{

int16_t x, y, sum;

cout << "Enter the 1st number: ";

cin >> x;

cout << "Enter the 2nd number: ";

cin >> y;

sum = x + y;

cout << endl << "The sum of " << x << " and " << y << " is: ";

cout << dec << sum << " (decimal) ";

cout << oct << sum << " (octal) ";

cout << hex << uppercase << sum << " (hex)" << endl;

return 0;

}

As with the previous example, this program uses the cin command of the C++ language to
receive typed input from whomever runs the program. This way, different numerical values may be
tested without having to re-compile the source code.

76 CHAPTER 5. PROGRAMMING REFERENCES

Shown here is one test run of this program, with the numerical values 4553 and 8882 entered
when prompted by the program:

Enter the 1st number: 4553

Enter the 2nd number: 8882

The sum of 4553 and 8882 is: 13435 (decimal) 32173 (octal) 347B (hex)

As you can see, everything seems to work well in this example. However, the program generates
strange results when we try a larger sum:

Enter the 1st number: 32341

Enter the 2nd number: 2943

The sum of 32341 and 2943 is: -30252 (decimal) 104724 (octal) 89D4 (hex)

There is no way that the sum of 32341 and 2943 should be −30252, but yet this is what the
program concludes. The problem here is that the actual sum is too large to be represented by a 16-
bit signed integer, and so the result “overflows” with the most-significant-bit (MSB) being 1 rather
than 0 which results in a negative value according to two’s-complement (signed integer) notation.

5.3. NUMERATION FORMATS IN PYTHON AND C++ 77

A solution for this problem is to declare the integer variables in this program to be unsigned
rather than signed 16-bit integers, which allows for higher count values. Note how the first line
within the main() function now declares x, y, and sum to be unsigned (uint16 t) rather than signed
(int16 t) variables:

#include <iostream>

#include <cstdint>

using namespace std;

int main()

{

uint16_t x, y, sum;

cout << "Enter the 1st number: ";

cin >> x;

cout << "Enter the 2nd number: ";

cin >> y;

sum = x + y;

cout << endl << "The sum of " << x << " and " << y << " is: ";

cout << dec << sum << " (decimal) ";

cout << oct << sum << " (octal) ";

cout << hex << uppercase << sum << " (hex)" << endl;

return 0;

}

78 CHAPTER 5. PROGRAMMING REFERENCES

Shown here is a test run of this program, with the same numerical values of 32341 and 2943 as
entered in the previous program:

Enter the 1st number: 32341

Enter the 2nd number: 2943

The sum of 32341 and 2943 is: 35284 (decimal) 104724 (octal) 89D4 (hex)

We can still cause a “collision” with this new program, though, if we make the sum large enough:

Enter the 1st number: 36401

Enter the 2nd number: 51849

The sum of 36401 and 51849 is: 22714 (decimal) 54272 (octal) 58BA (hex)

Even unsigned numbers have their limits (the limit for a 16-bit unsigned number being 216 − 1,
or 65535). The true sum of 36401 and 51849 is 88250, which is why the result “overflows”9 to yield
only 22714.

9To understand exactly how this overflow results in the incorrect sum of 22714, it is instructive to imagine a simpler
case (i.e. applying the problem-solving technique of simplifying the problem in order to obtain a clearer view of the
principles at work). We know that a 16-bit unsigned number can only go as high as 65535, so what would happen if
our true sum happened to be 65536? The correct binary expression for 65536, of course, would be a 17-bit number
with a 1 in as the MSB and all other bits 0. However, the computer “throws away” this 17th bit because it must
fit the result into the 16-bit space allocated, which means the computed result reads zero rather than 65536. Taking
another example, if our true sum happened to be 65537 (just one more), the result would “overflow” to read one.
Therefore, the way to predict the results of an overflow is to take the true sum and subtract 65536. Returning to our
last C++ program example, 36401 + 51849 - 65536 = 22714.

5.3. NUMERATION FORMATS IN PYTHON AND C++ 79

This example program displays all 32 bits of a floating point number:

#include <iostream>

#include <cstdint>

using namespace std;

int main (void)

{

int n;

bool bits[32]; // This is an array of bits 32 long

union {

uint32_t integer;

float fltpnt; } x;

cout << "Enter a floating-point value: ";

cin >> x.fltpnt;

cout << endl << "Sign Exponent Mantissa" << endl;

for (n = 0 ; n < 32 ; ++n)

{

bits[n] = x.integer & 1; // Stores LSB in bits[n]

x.integer = x.integer / 2; // Shifts all bits to the right

}

for (n = 0 ; n < 32 ; ++n)

{

cout << bits[31-n]; // This displays each bit in the proper order

if (n == 0)

cout << " "; // Adds whitespace between Sign and Exponent

if ((n+1) % 4 == 1)

cout << " "; // Adds one space between every four bits

if (n == 8) // Adds whitespace between Exponent and Mantissa

cout << " ";

}

cout << endl;

return 0;

}

80 CHAPTER 5. PROGRAMMING REFERENCES

This program makes use of a construct known as a data union, where two different digital words
having the exact same number of bits are “joined” so that any data written to one may be read
from the other. In this particular case, a union named x is made between a 32-bit unsigned integer
(x.integer) and a 32-bit floating-point value (x.fltpnt). The cin statement reads in a floating-
point value typed by the user, and then this data becomes available for display as an integer number.

Next, this program uses a for loop to read the contents of that integer value bit by bit, exactly 32
times in a row. This is done using the bitwise operator & to “AND” the integer’s 32 bits against an
integer value of 1 (0000 0000 0000 0000 0000 0000 0000 0001). This technique, called masking,
“masks off” all the bits of that integer value except the LSB, the result being placed into one of the
elements of the Boolean array bits[]. After masking the integer and copying its LSB to the array,
the integer is divided by two which has the effect of shifting all its bits one place to the right, with
the old LSB disappearing. Lastly, a second for loop prints the bits stored in the bits[] array, one
by one, formatting them on the console for a pleasant presentation.

Something included in this program to enhance its readability is comments. These are words
written to explain to any human being reading the code how it works. However, we must delineate
comments as such, so the compiler doesn’t try to interpret them as C++ code. For this reason, we
use double-forward-slash characters (//) which C/C++ compilers recognize as comment symbols.
Anything to the right of a comment symbol is ignored by the compiler, but still exists in the source
code as a cue to any human readers.

Here is an example of this program being run, “dissecting” the floating-point number −8.443×105

into its constituent bit-fields:

Enter a floating-point value: -8.443e5

Sign Exponent Mantissa

1 1001 0010 1001 1100 0100 0001 1000 000

This program is a particularly useful tool when learning the ANSI/IEEE 754 floating-point
number format (for single-precision, 32-bit floating point numbers) because it breaks down the 32-
bit digital word into separate bit-fields (Sign bit, Exponent field, Mantissa field) for easier analysis.

Chapter 6

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

81

82 CHAPTER 6. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

83

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

84 CHAPTER 6. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

6.1. CONCEPTUAL REASONING 85

6.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

86 CHAPTER 6. QUESTIONS

6.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

6.1. CONCEPTUAL REASONING 87

6.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Thought experiments as a problem-solving strategy

Working “backwards” to validate calculated results

Simplification as a problem-solving strategy

Reductio ad absurdum

Cut-and-try problem-solving strategy

Numbers versus Numeration

Binary

Place-weight

Whole numbers

Integer numbers

Rational numbers

Irrational numbers

88 CHAPTER 6. QUESTIONS

Real numbers

Imaginary numbers

Complex numbers

Radix

MSB versus LSB

Word width

Two’s complement

Fixed-point notation

Pulse encoding

AC motor speed control

Binary-Coded Decimal (BCD)

Programmable Logic Controller (PLC)

Octal

Hexadecimal

6.1. CONCEPTUAL REASONING 89

Conversion by repeated division

Scientific notation

Floating-point representation

Big- versus Little-endian

Data interpretation errors

90 CHAPTER 6. QUESTIONS

6.1.3 Mayan numeration

The ancient Mayans used a vigesimal, or base-twenty, numeration system in their mathematics.
Each “digit” was a actually a composite of dots and/or lines, as such:

NineteenEighteenSeventeenSixteenFifteen

FourteenThirteenTwelveElevenTen

NineEightSevenSixFive

FourThreeTwoOneZero

To represent numbers larger than twenty, the Mayans combined multiple “digits” the same way
we do to represent numbers larger than ten. For example:

Forty eight Seventy oneTwenty Twenty six Four hundred nineteen

Based on the examples shown above, determine the place-weighting of each “digit” in the
vigesimal numeration system. For example, in our denary, or base-ten, system, we have a one’s
place, a ten’s place, a hundred’s place, and so on, each successive “place” having ten times the
“weight” of the place before it. What are the values of the respective “places” in the Mayan system?

6.1. CONCEPTUAL REASONING 91

Also, determine the values of these Mayan numbers:

? ? ? ?

Challenges

• Compare the advantages and disadvantages of the Mayan versus the decimal systems of
numeration.

92 CHAPTER 6. QUESTIONS

6.1.4 Number transmission via cable

The circuit shown in this diagram is used to transmit a numerical value from one location to another,
by means of multi-position electrical switches and LEDs:

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

One’s

Ten’s

Hundred’s

0
1

2
3

4
5

67
89

89
67

5
4

3

1
2

0

89
67

5
4

3

1
2

0

31 conductor cableSender Receiver

Given the switches and lights shown, any whole number between 0 and 999 may be transmitted
from the switch location to the LED location.

In fact, the arrangement shown here is not too different from an obsolete design of electronic
base-ten indicators known as Nixie tube displays, where each digit was represented by a neon-filled
glass tube in which one of ten distinct electrodes (each in the shape of a digit, 0-9) could be energized,
providing glowing numerals for a person to view.

6.1. CONCEPTUAL REASONING 93

However, this base-ten circuit is somewhat wasteful of wiring. If we were to use the same
thirty-one conductor cable, we could represent a much broader range of numbers if each conductor
represented a distinct binary bit, and we used binary rather than base-ten for the numeration system:

31 conductor cableSender Receiver

How many unique numbers are representable in this simple communications system? Also, what
is the greatest individual number which may be sent from the “Sender” location to the “Receiver”
location?

Challenges

• Identify a practical application for either of these systems.

94 CHAPTER 6. QUESTIONS

6.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

6.2. QUANTITATIVE REASONING 95

6.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

96 CHAPTER 6. QUESTIONS

6.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

6.2. QUANTITATIVE REASONING 97

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

98 CHAPTER 6. QUESTIONS

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

6.2. QUANTITATIVE REASONING 99

6.2.3 Counting in binary, octal, and hexadecimal

Count from one to thirty-one in binary, octal, and hexadecimal, noting patterns you see within each
counting sequence:

One
Two

Three
Four

Binary Octal Hex

Five
Six

Binary Octal Hex

Seventeen

Seven
Eight
Nine
Ten

Eleven
Twelve

Thirteen
Fourteen
Fifteen

Sixteen

Eighteen
Nineteen
Twenty

Twenty one
Twenty two

Twenty three
Twenty four
Twenty five
Twenty six

Twenty seven
Twenty eight
Twenty nine

Thirty
Thirty one

Zero

Challenges

• Which numeration system uses the least number of places to represent any given quantity?
Which numeration system uses the most?

• If binary is how most digital computers represent numbers, why do we ever use octal or
hexadecimal?

100 CHAPTER 6. QUESTIONS

6.2.4 Binary to decimal and hex conversions

Convert the following unsigned integer numbers from binary (base-two) to decimal (base-ten) as well
as to hexadecimal (base-sixteen):

• 102 =

• 10102 =

• 100112 =

• 111002 =

• 101112 =

• 1010112 =

• 111001102 =

• 100011010112 =

Challenges

• How would the results differ if you knew these were signed binary integers instead?

6.2. QUANTITATIVE REASONING 101

6.2.5 Decimal to binary conversions

Convert the following unsigned integer numbers from decimal (base-ten) to binary (base-two):

• 710 =

• 1010 =

• 1910 =

• 25010 =

• 51110 =

• 82410 =

• 104410 =

• 924110 =

Challenges

• How would the results differ if you knew these were signed binary integers instead?

6.2.6 Half-life of an anesthetic

Suppose an anesthetic substance administered to a patient has a half-life of 9 minutes within the
patient’s body. This means the effectiveness of the chemical decreases by half its previous value
every 9 minutes (e.g. 50% after 9 minutes, 25% after 18 minutes, etc.).

Determine how long after ceasing the flow of this anesthetic will its effectiveness be less than 1
percent, and explain how binary numeration is a helpful model to solve this problem.

Challenges

• Suppose your doctor told you the half-life of the anesthetic she was going to give you prior to
a procedure. Explain how this information might be useful to you.

102 CHAPTER 6. QUESTIONS

6.2.7 Stepper motor sequence

Digital computers communicate with external devices through ports : sets of terminals usually
arranged in groups of 4, 8, 16, or more (4 bits = 1 nybble, 8 bits = 1 byte, 16 bits = 2 bytes).
These terminals may be set to high or low logic states by writing a program for the computer that
sends a numerical value to the port. For example, here is an illustration of a microcontroller being
instructed to send the hexadecimal number F3 to port A and 2C to port B:

Port A Port B
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

01 1 1 1 0 1 1

($F3) ($2C)

0 0 1 0 1 1 0 0

Microcontroller

Suppose we wished to use the upper four bits of port A (pins 7, 6, 5, and 4) to drive power
MOSFET gates, which in turn drive coils of a stepper motor in this eight-step sequence:

1. 0001

2. 0011

3. 0010

4. 0110

5. 0100

6. 1100

7. 1000

8. 1001

As each pin goes high, it drives a power MOSFET on, which sends current through that respective
coil of the stepper motor. By following a “shift” sequence as shown, the motor will rotate a small
amount for each cycle.

Write the necessary sequence of numbers to be sent to port A to generate this specific order of
bit shifts, in hexadecimal. Leave the lower four bits of port A all in the low logic state.

6.2. QUANTITATIVE REASONING 103

Also, sketch a diagram showing how one of the microcontroller’s terminals could connect to a
MOSFET, and that MOSFET to just one coil of a stepper motor.

Challenges

• Sketch a circuit whereby each of the four pins on the microcontroller port connect to MOSFET
gates, the rest of each MOSFET connected to drive coils on the stepper motor.

6.2.8 Integer conversion table

Complete this table, performing all necessary conversions between numeration systems of these
unsigned integer quantities:

Binary Octal Decimal Hexadecimal

10010

92

1A

67

1100101

122

1000

1011010110

12

134

32

110111

101

290

1111101000

336 DE

2D6

Challenges

• Which type of conversion do you find most difficult to perform, and why is that?

104 CHAPTER 6. QUESTIONS

6.2.9 Fixed-point integer conversion table

Complete this table, performing all necessary conversions between numeration systems of these
fixed-point unsigned quantities:

Binary Octal Decimal Hexadecimal

101.011

25.2

4.B

72.52

1011.101

AC.11

934.79

641.7

101100.1

5.3

31.146

4.54

111010.101

B.A

172.066

1A1.E

44.5

1110100110.110

Challenges

• Which type of conversion do you find most difficult to perform, and why is that?

6.2. QUANTITATIVE REASONING 105

6.2.10 Signed integer conversion table

Complete this table, performing all necessary conversions between numeration systems of these
16-bit signed integer quantities:

Decimal Binary Hexadecimal

−1

0001 0001 1001 0100 1194

−32768

AFAF

0001 1100 0010 1110

0041

Challenges

• Which type of conversion do you find most difficult to perform, and why is that?

106 CHAPTER 6. QUESTIONS

6.2.11 Using Python to convert between bases

Python is a computer programming language that is able to be run in an interpreted environment.
This means you can start up a software application called a Python interpreter, and within that
application type Python commands which will be immediately executed. One of the many features
of this programming language is the ability to convert between different numeration systems (i.e.
bases).

The following example shows the decimal value 57 being converted into binary, and the binary
value 1100101 being converted into decimal. Commands typed at the prompt (>>>) of a Python
interpreter11 are executed immediately upon pressing the “Enter” key. The final command, quit(),
exits the Python interpreter:

Python 3.8.4 (default, Jul 13 2020, 17:36:52)

[GCC 4.7.1] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> bin(57)

’0b111001’

>>> 0b1100101

101

>>> quit()

Once you have Python installed and working on your computer12, demonstrate the following:

• Converting 1A4F (hexadecimal) to decimal

• Converting 2088 (decimal) to binary

• Converting 371 (octal) to decimal

• Converting 9301 (decimal) to hexadecimal

• Converting 101101 (binary) to hexadecimal

Challenges

• Demonstrate a conversion that Python does not perform correctly.

11To start the Python interpreter, simply type python3 (for version 3 of Python, the newest at the time of this
writing) at the command-line prompt of any computer with Python installed.

12Python may be easily downloaded and installed to your computer from https://python.org. However,
an alternative to installing Python on your computer is to use the online interpreter available at
https://python.org/shell.

6.2. QUANTITATIVE REASONING 107

6.2.12 C++ program converting decimal to other formats

The following computer program written in the C++ language inputs a decimal value from the user
and displays its binary, octal, and hexadecimal equivalents, all assuming a 16-bit signed data word:

#include <iostream>

#include <cstdint>

#include <bitset>

using namespace std;

int main (void)

{

int16_t x;

while (1)

{

cout << "Enter the decimal number: ";

cin >> x;

cout << dec << "Decimal " << x << " is equal to ";

cout << std::bitset<16>(x) << " (binary) ";

cout << oct << x << " (octal) ";

cout << hex << uppercase << x << " (hex)" << endl;

cout << endl;

}

return 0;

}

Compile and run this program13, testing it with a few different number values to verify that it
indeed works as it should. Then, modify this program to use an unsigned 16-bit word instead (using
the integer variable type uint16 t) and test-run it again. Also try signed and unsigned 32-bit words
(int32 t and uint32 t, respectively).

13Using Microsoft Visual Studio community version 2017, here are the steps I needed to follow in order to successfully
compile and run a simple program such as this: (1) Start up Visual Studio and select the option to create a New
Project; (2) Select the Windows Console Application template, as this will perform necessary set-up steps to generate
a console-based program which will save you time and effort as well as avoid simple errors of omission; (3) When the
editing screen appears, type or paste the C++ code within the main() function provided in the template, deleting the
“Hello World” cout line that came with the template; (4) Type or paste any preprocessor directives (e.g. #include

statements, namespace statements) necessary for your code that did not come with the template; (5) Lastly, under the
Debug drop-down menu choose either Start Debugging (F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys)
to compile (“Build”) and run your new program. Upon execution a console window will appear showing the output
of your program.

108 CHAPTER 6. QUESTIONS

Use this program to generate practice problems for yourself: entering random decimal numbers,
and then using the resulting binary, octal, and hexadecimal equivalents to either check your own
conversion work (decimal into binary, octal, and hex) or to take any of those non-decimal values and
check your own conversion work into the other formats.

This program may also serve as a tool to explore the upper and lower range limits of binary
words. How large or small of a number can be represented using a 16-bit signed integer? How about
a 16-bit unsigned integer? 32 bit?

Challenges

• When switching from 16-bit to 32-bit word sizes, you must change more than just the
declaration of the x variable. What other portion of the code must be altered for proper
32-bit operation?

6.2. QUANTITATIVE REASONING 109

6.2.13 Dissecting floating-point numbers

The following computer program written in the C++ programming language prompts the user to
enter floating-point numbers, and then displays the 32-bit contents of each number as an eight-
character hexadecimal number:

#include <iostream>

#include <cstdint>

using namespace std;

int main (void)

{

union

{

uint32_t integer;

float fltpnt;

} x;

while(1)

{

cout << "Enter a floating-point value: ";

cin >> x.fltpnt;

cout << "Floating point " << x.fltpnt;

cout << " equivalent to hexadecimal " << hex << uppercase;

cout << x.integer << endl;

cout << endl;

}

return 0;

}

110 CHAPTER 6. QUESTIONS

When compiled and run, with the user entering the values 1, −1, 0, −0, 3600, and 3.1415, the
following results are obtained:

Enter a floating-point value: 1

Floating point 1 equivalent to hexadecimal 3F800000

Enter a floating-point value: -1

Floating point -1 equivalent to hexadecimal BF800000

Enter a floating-point value: 0

Floating point 0 equivalent to hexadecimal 0

Enter a floating-point value: -0

Floating point -0 equivalent to hexadecimal 80000000

Enter a floating-point value: 3600

Floating point 3600 equivalent to hexadecimal 45610000

Enter a floating-point value: 3.1415

Floating point 3.1415 equivalent to hexadecimal 40490E56

Analyze each of the hexadecimal values displayed by this program by converting each one to
binary form and then mapping the bits to the ANSI/IEEE 754 standard for 32-bit floating-point
numbers:

Sign bit Exponent bits Mantissa bits
(1) (8) (23)

26 25 24 23 22 21 20

(E) (m)

27

6.2. QUANTITATIVE REASONING 111

Challenges

• What might be a practical application for floating-point number representation?

112 CHAPTER 6. QUESTIONS

6.2.14 Microcontroller driving seven-segment displays

Digital computers communicate with external devices through ports : sets of terminals usually
arranged in groups of 4, 8, 16, or more. These terminals may be set to high or low logic states
by writing a program for the computer that sends a numerical value to the port. For example,
here is an illustration of a single-IC computer called a microcontroller being instructed to send the
hexadecimal number 2B to port A and A9 to port B:

Port A Port B
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 1 0 1 10 0

Microcontroller

($2B) ($A9)

0 1 0 1 1 1 0 1

+V

Suppose we wished to use the first seven bits of each port (pins 0 through 6) to drive two
7-segment, common-cathode displays, rather than use BCD-to-7-segment decoder ICs:

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Microcontroller
a

b

c
d

e

f

g

a b c d e f g

a
b

c
d

e

f

g

a b c d e f g

Port 1 Port 2

+V

Write the necessary hexadecimal values to be output at ports 1 and 2 to generate the display
“42” at the two 7-segment display units.

6.2. QUANTITATIVE REASONING 113

Challenges

• What advantage is there in programming port values in hexadecimal rather than use plain
binary?

114 CHAPTER 6. QUESTIONS

6.2.15 Microcontroller driving an LED array

Digital computers communicate with external devices through ports : sets of terminals usually
arranged in groups of 4, 8, 16, or more. These terminals may be set to high or low logic states
by writing a program for the computer that sends a numerical value to the port. For example,
here is an illustration of a single-IC computer called a microcontroller being instructed to send the
hexadecimal number 2B to port A and A9 to port B:

Port A Port B
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 1 0 1 10 0

Microcontroller

($2B) ($A9)

0 1 0 1 1 1 0 1

+V

6.2. QUANTITATIVE REASONING 115

One method of driving pixels in a grid-based display is to organize the pixels into rows and
columns, then select individual pixels for illumination by the intersection of a specific row line and
a specific column line. In this example, we are controlling an 8 × 8 grid of LEDs with two 8-bit
(1-byte) ports of a microcontroller:

Port A Port B
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Microcontroller

($02)

1 0000000

($BF)

11111 1 10

+V

Note that a high state is required on one of port B’s pins to activate a row, and a low state is
required on one of port A’s pins to activate a column, because the LED anodes connect to port B
and the LED cathodes connect to port A.

Determine the hexadecimal codes we would need to output at ports A and B to energize the
LED in the far lower-left corner of the 8 × 8 grid.

Port A =

Port B =

Challenges

• Is it possible to energize more than one LED at a time in this array?

116 CHAPTER 6. QUESTIONS

6.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

6.3. DIAGNOSTIC REASONING 117

6.3.1 Strange floating-point addition

The following computer program written in the C++ language takes a floating-point value of 9999710
and displays the results of adding small values to it:

#include <iostream>

using namespace std;

int main()

{

float x = 999997.0;

cout << x + 0 << endl;

cout << x + 1 << endl;

cout << x + 2 << endl;

cout << x + 3 << endl;

cout << x + 4 << endl;

cout << x + 5 << endl;

return 0;

}

When compiled and executed, the result is as follows:

999997

999998

999999

1e+06

1e+06

1e+06

Explain what is wrong with these results.

Describe a similar scenario with decimal scientific notation which could serve as an analogy to
explain what is happening here in this program.

Challenges

• ???.

• ???.

• ???.

118 CHAPTER 6. QUESTIONS

6.3.2 Testing endianness

The following computer program written in the C++ language is designed to test how an integer
value represented by a 32-bit unsigned binary number is subdivided into 16-bit words and 8-bit bytes
within the computer’s memory:

#include <iostream>

#include <cstdint>

using namespace std;

int main (void)

{

int n;

union {

uint32_t word32;

uint16_t word16[2];

uint8_t byte[4];

} x;

x.word32 = 999998877;

cout << "32-bit word = " << hex << uppercase << x.word32 << endl << endl;

for (n = 0 ; n < 2 ; ++n) {

cout << "16-bit word " << n << " = " << hex << uppercase << x.word16[n];

cout << endl; }

cout << endl;

for (n = 0 ; n < 4 ; ++n) {

cout << "Byte " << n << " = " << hex << uppercase << (int)(x.byte[n]);

cout << endl; }

return 0;

}

6.3. DIAGNOSTIC REASONING 119

When compiled and executed on a particular model of personal computer, the result is as follows:

32-bit word = 3B9AC59D

16-bit word 0 = C59D

16-bit word 1 = 3B9A

Byte 0 = 9D

Byte 1 = C5

Byte 2 = 9A

Byte 3 = 3B

Describe the word-swapping and byte-swapping displayed in this result.

Challenges

• ???.

• ???.

• ???.

120 CHAPTER 6. QUESTIONS

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

121

122 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

123

124 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

125

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

126 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

127

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

128 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

129

130 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

131

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

132 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

133

134 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

135

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

136 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

137

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

138 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

139

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

140 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

Blanc, Bertrand and Maaraoui, Bob, “Endianness or Where is Byte 0?”, 3B Consultancy, December,
2005.

Cohen, Danny, “On Holy Wars and a Plea For Peace”, IEN 137, USC/ISI, April 1, 1980.

“DRAFT Standard for Floating-Point Arithmetic P754”, Draft 1.2.5, IEEE, New York, October 4,
2006.

Giancoli, Douglas C., Physics for Scientists & Engineers, Third Edition, Prentice Hall, Upper Saddle
River, NJ, 2000.

Goldberg, David, “What Every Computer Scientist Should Know About Floating-Point Arithmetic”,
ACM Computing Surveys, Volume 23, Number 1, March 1991.

Hecker, Chris, “Let’s Get to the (Floating) Point”, Game Developer magazine, pages 19-24,
February-March, 1996.

“ieee754.h” header file, GNU C Library, 1999.

“Intel 64 and IA-32 Architectures Software Developer’s Manual”, Volume 2 Instruction Set
Reference, order number 325383-060US, 2016.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Prentice Hall, New
Jersey, 1978.

Maxwell, James Clerk, A Treatise on Electricity and Magnetism, Volume I, Third Edition, Clarendon
Press, Oxford, 1904.

Overton, Michael L., “Floating Point Representation”, 1996.

PDP11/45 Processor Handbook, Digital Equipment Corporation, 1973.

Swift, Jonathan, Gulliver’s Travels, 1726.

141

142 APPENDIX E. REFERENCES

Waser, Schlomo and Flynn, Michael J., Introduction to Arithmetic for Digital Systems Designers,
Holt, Rinehard & Winston, New York, 1982.

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

21 November 2024 – corrected a copy-and-paste error in the decimal number counting table where
it said “zero” instead of “ten”.

9 November 2024 – added an Introduction section on challenging concepts.

19 August 2024 – added a Case Tutorial chapter with a section on bitwise operations with graphic
images borrowed from mod c.

13 August 2024 – additions and edits made to the “Place-weighted numeration” section of the
Tutorial chapter, most notably to include a hexadecimal count sequence.

26 July 2024 – minor formatting to C++ code example in the Programming References chapter
to get the program to fit onto a single page.

15 July 2024 – divided the Introduction chapter into two sections, one for students and one
for instructors, and added content to the instructor section recommending learning outcomes and
measures.

26-29 April 2024 – added some instructor notes, and added a new Tutorial section on place-
weighting. Also elaborated on signed integer numbers.

4 December 2023 – added image and text from “Microcontroller driving seven-segment displays”
Quantitative Reasoning question to the “Microcontroller driving an LED array” question. Otherwise
it felt as though some context were missing, to anyone just reading the latter question without first
reading the former. Also added +V and Ground terminals to the microcontrollers shown in images
2402, 2403, and 2404.

143

144 APPENDIX F. VERSION HISTORY

17 September 2023 – edited image 1167 to show more explicitly how binary place-weighting works.

16 August 2023 – minor edits to the Tutorial chapter, especially comments about number types.
Also added some binary-decimal equivalent examples to the Tutorial, and fixed a typo where I said
“binary” but meant to say “hexadecimal”.

27 April 2023 – corrected an error in the “Microcontroller driving an LED array” Quantitative
Reasoning question where I mistakenly said port A’s lines connected to the LED anodes and port
B’s to the LED cathodes.

6 December 2022 – added a new Case Tutorial section showing examples of counting in signed
integer format.

5 December 2022 – minor edits to the Tutorial.

15 August 2022 – deleted a confusing comment in the Historical References section on James Clerk
Maxwell’s presentation of binary resistance boxes regarding his life versus the publication date of
the copy of the book I referenced (which was published after Maxwell died).

2 May 2022 – corrected an omission in the “Binary to decimal and hex conversions” Quantitative
Reasoning question where I did not actually ask the reader to convert to hex as well as to decimal.

28 April 2022 – improved and added graphical examples of different-base numbers broken down
into individual ciphers and place-weight products. This included editing image 1167 and image 1168
and image 1169 and image 1181, as well as adding some new images.

6-7 December 2021 – corrected typo in a Tutorial section title (!). Instead of “Conversion
to decimal by repeated division” it should read “Conversion from decimal by repeated division”.
Also expanded one of the Quantitative Reasoning questions to include conversion from binary to
hexadecimal (rather than just to decimal).

30 June 2021 – edited footnote in the Quantitative Reasoning question “Using Python to convert
between bases” to eliminate suggestion of installing Cygwin, and also edited the sample Python
console to show binary-to-decimal and decimal-to-binary conversions.

8 May 2021 – commented out or deleted empty chapters.

5 December 2020 – expanded the “Stepper motor sequence” question to include sketching a
diagram showing how the MCU could connect to a MOSFET and to one coil of the stepper motor.

3 December 2020 – minor edits to the Tutorial.

13 October 2020 – added some instructor notes to questions.

2 October 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

10 September 2020 – minor edit to “Microcontroller driving seven-segment displays” question,

145

altering Port A/B to be Port 1/2.

20 July 2020 – added pagebreaks on some questions that contained “framed” verbatim text.

1 July 2020 – added some Challenge questions, and also a Quantitative question on anesthetic.
Personal note: this was added after the author recovered from a routine medical procedure in which
the administered sedative had a 9-minute half-life. This is called “homework imitating life”.

10 May 2020 – renamed “Trial-and-fit” method to “Cut-and-try”.

28 January 2020 – added more Foundational Concepts to the list in the Conceptual Reasoning
section.

27 January 2020 – added Foundational Concepts to the list in the Conceptual Reasoning section.

5 January 2020 – added bullet-list of relevant programming principles to the Programming
References section.

2 January 2020 – removed from from C++ code execution output, to clearly distinguish it from
the source code listing which is still framed.

1 January 2020 – changed main () to main (void) in C++ programming examples.

23 December 2019 – added a Python programming question, challenging students to use the
Python interpreter environment as a number-base converter.

13 November 2019 – swapped a couple of questions from the Quantitative section to the Diagnostic
section.

18 May 2019 – typographical error correction in the Tutorial, having to do with interpreting one
of the hexadecimal characters in a sample conversion – 1DB should have been 1EB. Also, added some
clarifying text to the Tutorial based on student feedback.

16 May 2019 – typographical error correction in the Historical References chapter, and another
one in a different section. Clarified the process of converting negative decimal values into two’s
complement signed binary. Added Python programming example to the Quantitative Reasoning
section. Added 0o as prepended characters denoting octal in the Tutorial.

12 May 2019 – added an Experiment to demonstrate an integer arithmetic error by programming
a computer to specifically for this purpose.

9 May 2019 – added output from a test-run of the numeration conversion C++ program, as well
as a quantitative problem based on use of this program.

8 May 2019 – added an “include” statement for cstdint in all the C++ code examples using
definite-width integer variables such as int16 t, which is necessary for some C++ compilers to
avoid a scope error.

146 APPENDIX F. VERSION HISTORY

7 May 2019 – added more questions.

6 May 2019 – removed the word “module” from the title.

9 January 2019 – added examples of floating-point addition errors using Python.

3 January 2019 – corrected missing numerical examples from a sentence describing one of the
C++ programming examples.

23 December 2018 – elaborated on methods to denote the radix (base) of written numbers,
commented on alternatives to the term “mantissa”, finished the sections on “endianness” and
incompatible format errors, and made other small edits.

20 December 2018 – document first created.

Index

0h, 32
0x, 32

Adding quantities to a qualitative problem, 122
Allen-Bradley, 44
Annotating diagrams, 121
ANSI/IEEE standard 754 for floating-point

numbers, 42, 80, 110
April Fool’s Day, 59

Base, 37
Base eight, 29
Base sixteen, 29
Base ten, 18
Base two, 18
Base value, 19
Base, how to denote, 19, 32
BCD, 28
Big endian, 42, 45
Binary Coded Decimal, 28
Bit, 18
Bitwise operator, 80
Byte, 29, 47
Byte swapping, 48

C++, 62
Checking for exceptions, 122
Checking your work, 36, 38, 39, 122
Cipher, 12
Co-processor IC, 44
Code, computer, 129
Cohen, Danny, 59
Compiler, C++, 62
Complex number, 13
Computer programming, 53, 61
Cut and try, 34, 36
Cut-and-try problem-solving method, 3

Data network, 25
Data union, 80
Decimal numeration, 12
Digit, 18
Digital revolution, 20
Dimensional analysis, 121
Do-More, 52
Double-precision floating-point number, 42

Edwards, Tim, 130
Embedded computer, 42, 44
Endian, big, 42
Excess numeration, 41
Excess-127, 41
Extended floating-point number, 42

Fixed-point binary notation, 24
Fixed-point decimal notation, 25
Floating point, 41
Fraction, 13

Graph values to solve a problem, 122
Greenleaf, Cynthia, 81

Hexadecimal, 29
HMI, 25
How to teach with these modules, 124
Human-Machine Interface, 25
Hwang, Andrew D., 131

Identify given data, 121
Identify relevant principles, 121
Imaginary number, 13
Instructions for projects and experiments, 125
Integer number, 13, 21
Integer, signed, 21, 77
Integer, unsigned, 21, 77
Intermediate results, 38, 121

147

148 INDEX

Interpreter, Python, 66
Inverted instruction, 124
Irrational number, 13

Java, 63

Knuth, Donald, 130
Koyo, 52

Lamport, Leslie, 130
LCD, 27
Least Significant Bit, 30, 33, 38
LED, 27
Limiting cases, 122
Little endian, 46
LSB, 30, 33, 38

Mantissa, floating-point number, 42
Masking, 80
Math co-processor IC, 44
Maximum value, 19
Maxwell, James Clerk, 55
Metacognition, 86
Mho, 57
MicroLogix 1000, 44
Mixed number, 37
Moolenaar, Bram, 129
Most Significant Bit, 21, 33, 38, 76
Motorola 6502 microprocessor, 47
Motorola 68000 microprocessor, 47
MSB, 21, 33, 38, 76
Murphy, Lynn, 81

NaN, 41
Natural number, 13
Network, 25
Nixie tube, 27
Not a Number (NaN), 41
Number, 12
Numeration, 12
Nybble, 29

Octal, 15, 29
Open-source, 129

Place, 13
PLC, 26, 28, 44, 52

Precision, double, 42
Precision, single, 42
Problem-solving: annotate diagrams, 121
Problem-solving: check for exceptions, 122
Problem-solving: checking work, 36, 38, 39, 122
Problem-solving: cut and try, 34, 36
Problem-solving: cut-and-try, 3
Problem-solving: dimensional analysis, 121
Problem-solving: graph values, 122
Problem-solving: identify given data, 121
Problem-solving: identify relevant principles, 121
Problem-solving: interpret intermediate results,

38, 121
Problem-solving: limiting cases, 122
Problem-solving: qualitative to quantitative, 122
Problem-solving: quantitative to qualitative, 122
Problem-solving: reductio ad absurdum, 38, 122
Problem-solving: simplify the system, 52, 78, 121
Problem-solving: thought experiment, 3, 21, 121
Problem-solving: track units of measurement,

121
Problem-solving: visually represent the system,

121
Problem-solving: work in reverse, 122
Programmable Logic Controller, 26, 28, 44, 52
Programming, computer, 53, 61
Python, 53, 66

Qualitatively approaching a quantitative
problem, 122

Radix, 19, 37
Radix, how to denote, 19, 32
Raw data, 52
Reading Apprenticeship, 81
Real number, 13
Reductio ad absurdum, 38, 122–124
Register, 45
Remainder, 37
Resolution, 26
Rockwell, 44

Schoenbach, Ruth, 81
Scientific method, 86
Serial data communication, 45
Siemens, 57

INDEX 149

Sign-magnitude notation, 21
Signed integer, 21, 77
Significand, 41
Simplifying a system, 52, 78, 121
Single-precision floating-point number, 42
Socrates, 123
Socratic dialogue, 124
Source code, 32, 62, 75
Speed of light, 44
SPICE, 81
Stallman, Richard, 129
Subscript, 19, 30

Thought experiment, 3, 21, 121
Torvalds, Linus, 129
Trailing significand, 42
Turing machine, 49
Turing, Alan, 49
Two’s complement, 21

Union, data, 80
Units of measurement, 121
Unsigned integer, 21, 77

Variable Frequency Drive, 26
VFD, 26
Visualizing a system, 121

Weight, 13
Whitespace, C++, 62, 63
Whitespace, Python, 69
Whole number, 13, 21
Word, 47
Word swapping, 48
Work in reverse to solve a problem, 122
WYSIWYG, 129, 130

	Introduction
	Recommendations for students
	Challenging concepts related to numeration systems
	Recommendations for instructors

	Case Tutorial
	Example: signed integer examples
	Example: bitwise logical operations
	Bitwise-AND
	Bitwise-OR
	Bitwise-XOR
	Bitwise-complement

	Tutorial
	Numbers versus numeration
	Place-weighted numeration
	Unsigned integers
	Signed integers
	Fixed-point notation
	Binary-Coded Decimal
	Shorthand representations of digital words
	Decimal conversions
	Binary to decimal
	Octal to decimal
	Hexadecimal to decimal
	Decimal to binary by cut-and-try
	Decimal to octal or hexadecimal by cut-and-try
	Conversion from decimal by repeated division

	Floating-point
	Big endian and little endian formats
	Incompatible format errors

	Historical References
	A binary resistance box
	Big-endians and Little-endians

	Programming References
	Programming in C++
	Programming in Python
	Numeration formats in Python and C++

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Mayan numeration
	Number transmission via cable

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	Counting in binary, octal, and hexadecimal
	Binary to decimal and hex conversions
	Decimal to binary conversions
	Half-life of an anesthetic
	Stepper motor sequence
	Integer conversion table
	Fixed-point integer conversion table
	Signed integer conversion table
	Using Python to convert between bases
	C++ program converting decimal to other formats
	Dissecting floating-point numbers
	Microcontroller driving seven-segment displays
	Microcontroller driving an LED array

	Diagnostic reasoning
	Strange floating-point addition
	Testing endianness

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	References
	Version history
	Index

