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Chapter 1

Introduction

1.1 Recommendations for students

A very useful tool for the simplification of AC circuit analysis is the use of complex numbers to
represent voltages (V ), currents (I), and impedances (Z). Any such quantity represented as a
complex number is called a phasor because that complex-number quantity represents both the
magnitude as well as the phase angle of that parameter. If we represent all AC circuit quantities
as phasors, we find that many of the principles and laws familiar from our study of DC circuit
analysis such as Ohm’s and Kirchhoff’s Laws still hold true. The only challenge remaining to AC
circuit analysis once we embrace the notion of using phasors is the task of performing arithmetic
operations such as addition, subtraction, multiplication, and division on complex numbers rather
than the more customary “real” numbers used in DC circuit analysis. This module explores the use
of complex-number quantities to unify AC circuit analysis with DC circuit analysis.

Important concepts related to phasors include electromagnetic induction, mathematical
sine and cosine functions, polar versus rectangular notation of complex numbers, real versus
imaginary quantities, Kirchhoff’s Voltage Law, instantaneous addition of waveforms,
the Pythagorean Theorem, magnitude, frequency, right triangles, Euler’s Relation,
the j operator, angular velocity, exponential functions, adjacent versus opposite versus
hypotenuse sides of a right triangle, and phase angle.

This module utilizes a lot of projections to relate circular motion to time-based wave patterns,
showing that the two are really just different ways of representing the same fundamental phenomena.
You are encouraged to try sketching your own projections in order to grasp what they represent.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to mathematically demonstrate the
addition of two sinusoids that are phase-shifted from one another, using a computer to perform
the arithmetic? What hypothesis (i.e. prediction) might you pose for that experiment, and
what result(s) would either support or disprove that hypothesis?

• What are some practical applications of phasors?

3



4 CHAPTER 1. INTRODUCTION

• What does it mean to say that an AC quantity has a frequency?

• How do we express the magnitude an AC quantity?

• How does the magnitude an AC quantity relate to its instantaneous amplitude (i.e. its voltage
or current value at a particular instant in time)?

• From where does the shape of a sine wave or cosine wave originate?

• What means do we possess to express the magnitude of an angle?

• What practical benefit do complex numbers lend to the analysis of AC circuits?

• Why is the phase shift separating two waveforms necessary to know in order to compute their
sum?

• What do the “real” and “imaginary” portions of a rectangular-format complex number
represent for an AC quantity?

• What do the “magnitude” and “angle” portions of a polar-format complex number represent
for an AC quantity?

• How does the construction of an AC electrical generator relate to the real and imaginary
portions of an AC voltage?

• What trigonometric functions are used to convert a polar-form complex number into a
rectangular-form complex number?

• What trigonometric functions are used to convert a rectangular-form complex number into a
polar-form complex number?

• Which form of complex number relates most closely with the indication provided by an
electrical meter, rectangular or polar?
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1.2 Challenging concepts related to phasor mathematics

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• RMS versus Peak versus Average – the very idea of assigning a fixed number for AC
voltage or current that (by definition) constantly changes magnitude and direction seems
strange. Consequently, there is more than one way to do it. We may assign that value according
to the highest magnitude reached in a cycle, in which case we call it the peak measurement.
We may mathematically integrate the waveform over time to figure the mean magnitude, in
which case we call it the average measurement. Or we may figure out what level of DC (voltage
or current) causes the exact same amount of average power to be dissipated by a standard
resistive load, in which case we call it the RMS measurement. One common mistake here is
to think that the relationship between RMS, average, and peak measurements is a matter of
fixed ratios. The value “0.707” is memorized by every beginning electronics student as the
ratio between RMS and peak, but what is commonly overlooked is that this particular ratio
holds true for perfect sine-waves only! A wave with a different shape will have a different
mathematical relationship between peak and RMS values.

• Phase shift – like voltage, phase shift is a relative quantity. A single AC waveform, without
another waveform to compare to, cannot have a phase value at all. Only when two waves of
the same frequency are compared against one another may we intelligently state a phase shift,
or time displacement, between the two. Properly reading phase shifts from an oscillograph can
also be challenging for students, and requires reminding that time goes from left to right on
an oscillograph: i.e. the wave reaching its peak first (left) compared to the other is leading,
while the other is lagging. Another confusing aspect of phase shift is that it may be expressed
in multiple ways: e.g. +90o phase shift is equivalent to −270o phase shift, since waves repeat
their patterns every 360 degrees.

• Phasors representing AC amplitudes and phase shifts – a powerful tool used for
understanding the operation of AC circuits is the phasor diagram, consisting of arrows pointing
in different directions: the length of each arrow representing the amplitude of some AC
quantity (voltage, current, or impedance), and the angle of each arrow representing the shift
in phase relative to the other arrows. By representing each AC quantity thusly, we may
more easily calculate their relationships to one another, with the phasors showing us how to
apply trigonometry (Pythagorean Theorem, sine, cosine, and tangent functions) to the various
calculations. An analytical parallel to the graphic tool of phasor diagrams is complex numbers,
where we represent each phasor (arrow) by a pair of numbers: either a magnitude and angle
(polar notation), or by “real” and “imaginary” magnitudes (rectangular notation). Where
phasor diagrams are helpful is in applications where their respective AC quantities add : the
resultant of two or more phasors stacked tip-to-tail being the mathematical sum of the phasors.
Complex numbers, on the other hand, may be added, subtracted, multiplied, and divided; the
last two operations being difficult to graphically represent with arrows.

• Complex numbers in calculators – while the ability of certain scientific calculators to
perform complex-number arithmetic is an enormously helpful tool for students first learning to
analyze AC circuits, some of these calculators prove to be finicky in their handling and entry
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of these quantities. Advice proven to be sound for all complex-number calculators is to save
each and every complex-valued quantity into a memory location and then perform arithmetic
operations on those stored variables rather than enter the complex numbers directly into the
computation. For example, storing 3 - j4 into memory location A and 25 6 30o into memory
location B, then multiplying A × B rather than entering 3 - j4 × 25 6 30o. Storing values
into calculator memory and then retrieving them as needed for calculations is actually sound
advice for many reasons, but many students resist taking these “extra” steps and as a result
incur all the risks of hand-entering values (e.g. rounding errors due to truncating, keystroke
errors when the same value must be used more than once, crowded displays where you cannot
see the whole calculation, order-of-operations errors when complex numbers aren’t enclosed in
parentheses, etc.). Complex-number calculations reward good practices through consistently
good results!

• Complex numbers in measurement – complex numbers may be expressed in either
rectangular or polar form, either one of these being perfectly valid. However, measurement
instruments such as multimeters only provide the magnitude of the polar form of the voltage
or current in question. For example, if a component’s voltage is 4.8 Volts RMS 6 35o with
the circuit’s source voltage being the phase reference (0o), an voltmeter reading that voltage
will simply register 4.8 Volts RMS. An oscilloscope simultaneously measuring that component
voltage on one channel and the source voltage on another will show the 35o shift on the
horizontal axis between the two waveforms.
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

• Outcome – Apply the concept of phasor addition

Assessment – plot the waveform representing the sum of two sinusoidal waves that are not
in-phase with each other; e.g. pose problems in the form of the “Hand-plotting a sinusoidal
sum” Quantitative Reasoning question.

Assessment – interpret the phasor-diagram sums of two sinusoidal waves; e.g. pose
problems in the form of the “Phasor addition of two AC voltages” Quantitative Reasoning
question.

Assessment – calculate additive AC quantities (e.g. series voltages, parallel currents) using
complex-numbered values; e.g. pose problems in the form of the “Series AC voltages” and/or
“Parallel AC currents” Quantitative Reasoning questions.

• Outcome – Apply the concept of complex numbers to phasor diagrams

Assessment – write polar- and rectangular-form complex numbers for given vectors
sketched on a phasor diagram; e.g. pose problems in the form of the “Simple phasor diagrams”
Quantitative Reasoning question.

• Outcome – Independent research

Assessment – Read and summarize in your own words reliable historical documents on
the subject of applying complex numbers to AC circuit calculations. Recommended readings
include books written by Charles Proteus Steinmetz.
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Chapter 2

Simplified Tutorial

Spinning a magnetized rotor past sets of stationary “stator” coils (also called stator windings) will
produce alternating (AC) voltages resembling sine waves when displayed on an oscilloscope. This is
the basis of all electromagnetic generators :
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If multiple pairs of stator windings exist at different positions around the rotor’s circumference,
the AC voltages generated by each winding pair will be shifted in phase from one another because the
rotor’s poles can never align with all stator windings simultaneously: each stator winding reaches its
“peak” voltage at a different rotor position. For a simple two-pole generator such as the one shown,
the angle separating those winding positions will be the exact same phase-shift angle separating
their AC voltage waveforms. In this example, that shift is 90o.
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The sinusoidal1 shape of these voltage waveforms over time is no coincidence. Rather, it is a
geometric fact proven by plotting the horizontal and vertical projections of a point moving around
the circumference of a circle:
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defined by that point, which is why trigonometric
functions are associated with triangles, although
their true origins lie within a circle.
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This geometry gives us ways to fully represent quantities within AC circuits. DC circuits pose
little challenge in this way because the quantities are largely unchanging, but with AC circuits
we have voltages and currents that continually vary over time, as well as other quantities such
as impedance where the phase shift between voltage and current must be known. For example, a
battery in a DC circuit may output a constant voltage of 6 Volts, but an AC voltage source with
a 6 Volt “peak” rating continually cycles from zero Volts to +6 Volts to zero Volts to −6 Volts to
zero Volts repeatedly. The math we use must be capable of expressing this reality.

Numerical values such as “6 Volts” are called scalar numbers, but such plain and simple quantities
fail to capture the complexity of an AC waveform when that waveform is one of multiple waveforms
in a system that happen to be phase-shifted from one another. A type of mathematical quantity
called a complex number is better-suited for this purpose, and may be written in two different forms:
polar and rectangular. The “polar” form of a complex number relates to the circle portion in the
previous diagram, while the “rectangular” form relates to the projections of that circle (the sine and
cosine waves).

1The term “sinusoid” refers to a shape resembling a sine wave.
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The following example should make this clear. Here we have both the polar and rectangular
representations of our dual-winding AC generator’s output voltage at the instant in time where its
shaft position is 150o. One winding pair has been labeled “Real” and the other “Imaginary”:
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240 Volts

Real
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V = 240 V ∠  150o
Polar form:

Rectangular form:
V = -207.85 + j120 V

-207.85 Volts

+j240 V

-j240 V

+240 V-240 V

+j120 Volts

(Sine wave)

(Cosine wave)

This generator happens to output 240 Volts peak, which we can tell directly from the magnitude
portion of polar notation: 240 V 6 150o. At that particular moment in time when the shaft reaches
the 150o position, the two winding pairs are outputting −207.85 Volts and +120 Volts, respectively.
This is directly represented by the rectangular notation: −207.85 + j120 V. The lower-case letter
j signifies an “imaginary” mathematical quantity, to distinguish one winding’s voltage from the
other. Interestingly, mathematicians use i to denote imaginary numbers, while electrical engineers
and technicians use j so as to not be confused with I for current.

These two mathematical forms, 240 V 6 150o and −207.85 + j120 V, are just alternative ways
of expressing the same thing: the voltage output by this generator at a specific moment in time.
Even if our hypothetical generator only had one winding pair (making the other winding pair truly
imaginary), there would still be merit in rectangular notation because the combination of real and
imaginary terms completely define that point along the whole shape of the wave. Neither the real
(−207.85 V) nor the imaginary (+120 V) terms by themselves uniquely2 identify the coordinate at
150o, but the combination of the two terms does.

2Examining the projected sine and cosine waves, we see there are two different points in time where the “real”
voltage reaches −207.85 Volts and two different points in time where the “imaginary” voltage reaches +120 Volts,
but these two conditions only exist simultaneously at one point in time (corresponding to 150o).
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In fact, complex-number notation is useful for representing a great many quantities in AC circuits,
not just generator voltage. We may represent any current, any voltage, and any impedance (the AC
equivalent of resistance) in an AC circuit3 using complex numbers. If we do so, we find that nearly
all the laws and properties learned for the analysis of DC circuits applies to AC circuits as well! In
other words, the reason we learn how to use complex numbers is so we can make AC circuit analysis

as simple as DC circuit analysis.

This use of complex numbers to represent and compute AC circuit quantities is called phasor

mathematics. The name comes from the fact that the complex number represents not just the
magnitude of the quantity but also its phase relationship to other quantities in the same circuit.

Polar notation is by far the most common complex-number notational form for representing
real circuit quantities, because it directly relates to an oscilloscope’s view of an AC voltage or
current: the peak value of the whole wave in addition to the angle at some specific moment in time.
Rectangular notation exists as an aid to addition and subtraction, because these two arithmetic
operations happen to be easier to perform in rectangular form than polar form.

Thankfully, modern scientific calculators render these distinctions academic by providing
convenient entry, display, and computation of complex numbers. This functionality makes complex-
number arithmetic as easy as computing square roots, logarithms, trigonometric functions, or any
other mathematical function commonly taken for granted. There are still some applications where
you may need to switch from polar notation to rectangular in order to solve a particular problem,
but this is a rare requirement (and the calculator will even perform this conversion for you!).

For example, consider these two series-connected AC voltage sources. The lower source outputs
4 Volts between points B and C, and serves as our “phase reference” with its angle arbitrarily set
to 0o. The upper source outputs 3 Volts between points A and B, and has a phase shift that is
+90o ahead of (leading) the 4 Volt source. The “+” and “−” polarity symbols show instantaneous
polarity when each source is at its 0o point (i.e. the positive peak of its cosine wave):

A

B

C

VBC = 4 V ∠  0o

VAB = 3 V ∠  90o

VAC = 5 V ∠  36.87o

Kirchhoff’s Voltage Law (KVL) applies to AC circuits just as well as to DC circuits, and therefore
these two source voltages must add to create a total voltage between points A and C. The only
difference between AC and DC voltages is that we must use complex numbers (phasors) to do the
addition. The right-hand photograph shows the lower source’s voltage value of 4 Volts 6 0o added to
the upper source’s voltage value of 3 Volts 6 90o using a Texas Instruments model TI-36X Pro hand
calculator with its display mode set to complex-polar form. The calculator automatically performs
all the trigonometric operations necessary to execute this complex-number addition.

3A few caveats apply, including the assumption that all voltages and currents share the same frequency.
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If we only have access to a plain scientific calculator (i.e. lacking complex-number capability) we
may still apply phasors to the calculation of this series network’s total voltage. Complex-number
quantities happen to be most easily added and subtracted in rectangular form, and best multiplied
and divided in polar form. Since we know we need to add these two AC voltage phasors together,
we will begin by expressing VAB and VBC as rectangular numbers. Mapping the polar values for
VBC (4 Volts 6 0o) and VAB (3 Volts 6 90o) onto polar (circular) and rectangular (sine/cosine wave)
graphs helps us visualize their conversions to rectangular form:
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The sum of 4+ j0 and 0+ j3 is simply 4+ j3. As it so happens, a phasor with polar magnitude
of 5 and an angle of 36.87o will have these equivalent real and imaginary values:
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While it may be simple to plot horizontal and vertical phasors such as 4 6 0o and 3 6 90o onto
graphs, it is far from obvious how to plot just the right phasor to give us a result having both non-
zero real and imaginary values. Symbolic conversion from rectangular form into polar form requires
some right-triangle trigonometry, as shown below:

θ = tan−1

(

3

4

)

= 36.87o

A =
√

42 + 32 =
√
16 + 9 =

√
25 = 5 Volts

This is the symbolic method for converting rectangular form into polar: use arctangent of the
imaginary/real ratio to find the polar angle and use the Pythagorean theorem to find the polar
magnitude. Therefore, an AC voltage of 4 + j3 Volts is the same as an AC voltage of 5 Volts 6

36.87o.
Incidentally, converting polar-form complex numbers into rectangular form relies on

trigonometric functions as well. The real quantity of the rectangular number is the polar magnitude
multiplied by the cosine of the angle, and the imaginary quantity is the polar magnitude multiplied
by the sine of the angle. Applying these steps to our original VBC and VAB source voltages:

VBC = 46 0o = 4 cos 0o + j4 sin 0o = 4 + j0

VAB = 36 90o = 3 cos 90o + j3 sin 90o = 0 + j3

As you can see, these polar-rectangular-polar conversions are laborious compared to using a
calculator that has complex-number capability.
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Full Tutorial
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3.1 AC versus DC

Alternating current, or AC, is the designation for any electrical quantity varying periodically over
time. Even though “current” is part of this phrase, it is often used to describe voltage as well. The
tempo at which an AC quantity varies is called the frequency, mathematically symbolized by the
variable f and measured in the unit of cycles per second1 or Hertz (Hz). The magnitude of an
AC quantity may be expressed in terms of the oscillation’s peak value, its peak-to-peak value, or its
equivalent DC value based on its ability to perform physical work (called the Root-Mean-Square or
RMS value). The following illustration shows two complete “cycles” of a sine wave, with the vertical
axis representing the magnitude of the AC quantity and the horizontal axis representing time:

Period

Peak

Peak-to-peak

Time

(+)

(-)
Magnitude

An AC voltage, for example, would possess a certain peak, peak-to-peak, and/or RMS voltage
value as well as a period (measured in seconds) and a frequency (measured in cycles per second or
Hertz). A greater magnitude appears “taller” on the vertical axis of a graph and a greater frequency
appears “compressed” on the horizontal axis of a graph (i.e. more cycles within the same amount
of time, or a shorter period).

A great many AC quantities are sinusoidal in shape; that is to say, their plot over time resembles
that of a sine function or a cosine function over time. We must therefore begin our mathematical
exploration of AC by reviewing some fundamental principles of trigonometry.

1Since a “cycle” is technically not a unit of measurement like the second, frequency is sometimes expressed in units
of inverse seconds, or s−1.
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All trigonometric functions (e.g. sine, cosine, tangent) are based on the vertical and horizontal
projections of a radius swept around a circle of constant diameter2. For this reason, one cycle of a
sine-wave function represents one complete rotation around the circle.
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Sine wave

Cosine wave

(radians)

(radians)

The vertical position of a point on a circle’s
circumference with respect to the angle 
formed between that point, the circle’s center,
and the horizontal axis to the right is proportional
to the sine function of that angle.

The cosine function is just the horizontal 
projection of that same point at the same angle.

A right triangle is comprised of the radius,
the vertical distance, and the horizontal distance
defined by that point, which is why trigonometric
functions are associated with triangles, although
their true origins lie within a circle.

The angle of rotation is commonly expressed by mathematicians in radians : one radian being
that angle associated with a section of the circle’s circumference equal to the radius length. This
is why 2π radians comprise one full rotation as shown in the illustration: because a full circle’s
circumference is 2π times longer than its radius. In engineering, the angular unit of the degree is
more commonly used to express angles of rotation, there being 360 degrees in a full circle (and
therefore 360 degrees for one complete cycle of a sine or cosine wave).

The frequency of a wave is simply an expression of rotational speed, since each “cycle” of the
wave is one rotation around the defining circle. The unit of Hertz (cycles per second) therefore
is equivalent to revolutions per second. Alternatively, frequency is sometimes referred to in terms
of radians per second, with 1 Hertz being equivalent to 2π radians per second. When radians per
second are the units of measurement, frequency is sometimes called angular velocity and represented
by the lower-case Greek letter Omega (ω). Therefore, ω = 2πf .

2Trigonometry is commonly associated with right triangles, which seem at first to have no relation to a circle.
However, if one considers the radius of that circle drawn to a point on the circumference to be the hypotenuse of
a right triangle inscribed within the circle, that triangle’s opposite and adjacent side lengths represent the point’s
vertical and horizontal positions.
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The analysis of DC circuits is possible by application of fundamental principles, such as the
Conservation of Energy, the Conservation of Electric Charge, Ohm’s Law, Joule’s Law, and
Kirchhoff’s Voltage and Current Laws. AC circuits are no different in this respect because the
fundamental elements of electric charge, voltage, and charge motion (current) remain the same.
What is different, however, is the quantification of variables such as voltage and current existing
in a continual state of change, as well as the arithmetic necessary to add, subtract, multiply, and
divide these ever-changing quantities. Ohm’s and Joule’s Laws require multiplication and division;
Kirchhoff’s Laws require addition and subtraction. When quantities such as voltage, current,
and resistance are constant these arithmetic operations are simple; when those same quantities
continually vary these operations become considerably more complicated. Consider this graphical
comparison of two quantities: a “DC” quantity with a constant value of 3, and an “AC” quantity
being a sine wave with a peak value of 2:
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AC = 2 sin(x)

DC = 3

Since the majority of AC circuit variables are sinusoidal3 in nature, we will focus on the
mathematical treatment of sine waves, beginning with addition and subtraction. Although AC
circuits with non-sinusoidal voltages and currents exist, it is mathematically possible4 to express
any repetitive oscillation of any shape as a summation of multiple sine and cosine waves, which
means any mathematical techniques capable of handling sinusoidal functions may be extended to
handle non-sinusoidal functions as well.

3The AC electricity created by an electromechanical generator oscillates in a sinusoidal pattern due to the circular
motion of the generator’s magnetized rotor. Thus, the AC voltage produced by a spinning generator is an expression
of the same phenomenon of sine and cosine waves being projections of a spinning radius. In fact, if an AC generator
is equipped with two sets of stationary windings exposed to the spinning rotor’s magnetic field, each winding set 90
degrees apart from the other, one winding will output a sine wave while the other outputs a cosine wave.

4The mathematical technique for expressing a non-sinusoidal function as a series of sinusoidal functions is called
the Fourier Transform.
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3.2 Additive quantities

Let us consider a pair of DC voltage sources connected in series with each other, reviewing how we
should compute the “total” voltage of the source pair. In one scenario the two sources are aiding
each other, and in the other scenario they oppose each other:
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4 V

3 V
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−

4 V

3 V

A

B

C

In the left-hand network where the two sources aid each other, the total voltage measured at
point A with reference to point C (e.g. a voltmeter’s red test lead on A and black test lead on C),
or VAC

5, should be +7 Volts. In the right-hand network where the two sources oppose each other,
the total voltage measured at point A with reference to point C (e.g. a voltmeter’s red test lead on
A and black test lead on C), or VAC , should be +1 Volt. This is all in accordance with Kirchhoff’s
Voltage Law.

We may represent both scenarios graphically, showing how the two DC voltage quantities either
add or subtract to make the resultant voltage VAC :
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VAB = 3 Volts

VBC = 4 Volts

VBC + VAB = 7 Volts

VBC − VAB = 1 Volt

The sum of the 4 Volt line and the 3 Volt line is a 7 Volt line; the difference between the 4 Volt
line and the 3 Volt line is a 1 Volt line.

5It is worth noting that “AC” is used here to identify test points, and has nothing to do with AC as used to
abbreviate the phrase Alternating Current.
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Let us consider the same series-connected voltages, but this time with those sources both being
AC rather than DC. For the sake of illustration, we will consider source VBC to have a peak value
of 4 Volts, and source VAB to have a peak value of 3 Volts, both at the same frequency. These
sinusoidal plots were created using a computer program written in the C++ programming language,
the computer evaluating the formulae 3 sinx and 4 sinx for values of x ranging from 0 degrees to
360 degrees. The sum was similarly calculated via computer6, adding the two sine waves’ values
together for every calculated value of x (sum = 3 sinx+ 4 sinx):
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VAB = 3 Volts peak

VAB + VBC = 7 Volts peak

Here we clearly see a sine wave with a peak value of 3 (VAB) along with a sine wave with a peak
value of 4 (VBC), added together to make a third sine wave having a peak value of 7. This is rather
intuitive: if we imagine these two sine waves adding together at every point in time, the sum must
be zero at that exact angle when both waves cross zero, and the sum should peak at 7 Volts when
each source is at its respective peak. Algebraic factoring proves this as well:

VAB = 3 sinx VBC = 4 sinx

VAB + VBC = 3 sinx+ 4 sinx

VAB + VBC = (3 + 4) sinx

VAB + VBC = 7 sinx

6There is no reason why this sum could not have been calculated by hand, using trigonometric tables or an
electronic calculator to sum the respective values of two sine functions over a domain of 0 to 360 degrees. Computers
merely expedite this laborious task.
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If we were to program the computer to plot the sum of two AC voltages opposing each other (i.e.
the two waveforms 180 degrees out of phase with each other), the result is not surprising either:
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Again, the computer is simply plotting two sine waves, 4 sinx and 3 sin(x + 180o), and adding
their respective values together at every computed value of x from 0 to 360 degrees to plot the third
wave. The result is another sine wave with a peak value of 1. When x is equal to 0 degrees, 180
degrees, or 360 degrees, each of the two sine waves’ values is zero and therefore the summation of
those waves is also zero at those points. When x is equal to 90 degrees or 270 degrees, each of the
sine waves’ values reaches its peak (with opposite signs), resulting in a summation equal to −1 or
+1.

It should be clear from these two graphical examples that the sum of two in-phase sine waves is
analogous to the sum of two series-aiding DC voltages, while the sum of two sine waves precisely 180
degrees out of phase with each other is analogous to the sum of two series-opposing DC voltages.
This much is simple, and appears no more complicated than any DC calculation. What is not clear
yet, though, is what happens when we set the phase shift at some value other than 0 degrees or
180 degrees, because this condition has no DC analogue. In DC, voltage sources may (only) aid
or oppose each other. To consider an AC example with a phase shift other than 0 degrees or 180
degrees is to consider a case where two voltage sources neither directly aid nor directly oppose each
other.
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Let us explore the summation of two sine waves phase-shifted from each other by 90 degrees.
We will use the same peak amplitudes as before, 4 Volts peak and 3 Volts peak, programming the
computer to add each of those waves’ values together at every computed value of x:
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The result, according to the graph, is a sine wave with a peak value of 5 Volts and a phase shift
that is approximately 40 degrees ahead of the 4 Volt (blue) wave. This result is quite different from
the 7 Volt total we got when the voltage waves were in-phase with each other, and also different from
the 1 Volt total we got when the two AC voltages were perfectly out of phase with other. However,
those readers familiar with trigonometry should recognize the values 3, 4, and 5 as one of the unique
sets of integer values that work as side-lengths for a right triangle:

4

3
5

36.87o

This is how two phase-shifted quantities add together: represented as line-segments having length
(magnitude) and direction (angle), the resultant (sum) is another line-segment joining the starting-
point to the end-point.

An important lesson to be learned here is that when adding together two sine waves that are
either perfectly in-step with each other or perfectly inverted from each other, we may calculate the
resultant sum simply by using the scalar7 peak values of those waves. However, when we try adding
waves that are out-of-step with each other by some angle other than 180 degrees, simple scalar
measurements of peak values lack all the information necessary to compute that sum. A 4 Volt peak
sine wave added to a 3 Volt peak sine wave creates a 5 Volt peak sine wave only when the 4-Volt
and 3-Volt waves are shifted 90 degrees apart in phase.

7A scalar quantity is one having a single dimension.
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This similarity between a 3-4-5 right triangle and the sum of sine waves (peak of 3 plus peak
of 4 equaling peak of 5) is no coincidence. Recall that sine waves are really just the projection of
a point’s vertical position as it sweeps around the circumference of a circle. The sum of any two
sine waves at the same frequency, therefore, must be the sum of those height-projections at every
respective point around the circles.

The following illustrations show the two AC voltage sources’ sine waves as projections of circular
radii. Each of the radii are called phasors, having respective lengths of 3 and 4. At the bottom is a
summation of these phasors, forming a circle of radius 7 and a corresponding sine wave with a peak
value of 7:
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This graphically represents our first AC scenario, where a 3 Volt sine wave and a 4 Volt sine
wave at the same frequency and in-phase with each other add together to make a 7 Volt sine wave.
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Now let us analyze our second scenario by the same graphical method, projecting the sum of a
4 Volt sine wave and a 3 Volt sine wave that is 180 degrees out of phase:
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Note how the phasors of the 3 Volt sine wave begin at 180 degrees and end at 270 degrees because
that function is offset 180 degrees from the 4 Volt sine wave. The sum of these two sine waves, of
course, is a sine wave having a peak value of only 1, since for every value of x the two phasors are
pointing in opposite directions of each other and therefore subtract.
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Finally, we will analyze our third scenario by showing the graphical sum of a 4 Volt sine wave
and a 3 Volt sine wave that is 90 degrees out of phase:
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Pay close attention to lower illustration, where the circle’s radius is defined by the position of the
point at the end of two stacked phasors, one having a length of 4 and the other with a length of 3,
offset from each other by 90 degrees. This circle has an effective radius of 5, because its radius is the
hypotenuse of a 3-4-5 right triangle inscribed within the circle. Note also how the projected function
exhibits its own unique phase shift, starting neither at zero like the 4 sinx wave nor starting at the
positive peak like the 3 sin(x + 90o) wave. The phase offset of this summation function is equal to
the angle between the 4 and 5 sides of a 3-4-5 triangle (36.87 degrees), which means we may write
it symbolically as 5 sin(x+ 36.87o). Therefore, 3 sin(x+ 90o) + 4 sinx = 5 sin(x+ 36.87o).
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Now that we have seen the graphical relationships between added sinusoid functions and how
these apply to AC circuit quantities that add together (e.g. series-connected AC voltage sources),
we must find some way to perform these calculations for the purpose of AC circuit analysis.
Fortunately for us, many electronic calculators provide such functionality in the form of complex

number arithmetic. A sinusoidal function having a peak value and a phase angle may be expressed
in polar form as a complex number’s8 magnitude and angle. Consider the following two AC voltage
sources connected in series, one at 4 Volts peak and the other at 3 Volts peak (with a 90 degree
shift), the “+” and “−” polarity marks showing peak voltage at each source’s 0o moment in time.
We may compute total series voltage by simply adding the polar-form complex numbers 46 0o and
36 90o.

A

B

C

VBC = 4 V ∠  0o

VAB = 3 V ∠  90o

VAC = 5 V ∠  36.87o

The following photograph shows this calculation performed on a Texas Instruments model TI-
36X Pro hand calculator, with its display mode set to complex-polar form:

Calculations based on the treatment of electrical quantities as complex numbers are not limited
to addition and subtraction. Complex numbers may be multiplied, divided, squared, square-rooted,
etc. just like normal “real” numbers, which means we are able to perform calculations with AC circuit
quantities just the same as with DC circuit quantities, using all the same laws and principles9.

The fact that all these complex number operations are performed as easily as normal “real”
numbers using a suitable hand calculator means we have a powerful tool for AC circuit analysis. If
performing AC circuit calculations using Ohm’s Law and Kirchhoff’s Laws is your only goal, then
there is nothing more you need to learn about this topic than where to obtain a suitable hand
calculator capable of performing complex number arithmetic in polar form. The rest of this tutorial
is dedicated to a deeper exploration of complex numbers and their relation to sinusoidal functions.

8A “complex” number is a combination of a “real” quantity and an “imaginary” quantity. Complex numbers
may be expressed in rectangular form where the real and imaginary portions are separately shown, or they may be
expressed in polar form where the phasor’s length and angle are shown.

9A notable exception is the calculation of power by multiplying voltage and current, which doesn’t work quite the
same for AC as it does for DC. The calculation of power in AC circuits is a topic unto itself, covered in a different
module.
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3.3 Complex numbers and exponential functions

Complex numbers and sinusoidal functions are related by a famous mathematical formula called
Euler’s Relation, discovered by the Swiss mathematician Leonhard Euler (1707-1783):

ejθ = cos θ + j sin θ

Where,
e = Euler’s number (approximately equal to 2.718281828)
θ = Angle of phasor, in radians
cos θ = Horizontal projection of a unit phasor (along a real number line) at angle θ
j = Imaginary “operator” equal to

√
−1, alternatively represented as i

j sin θ = Vertical projection of a unit phasor (along an imaginary number line) at angle θ

To illustrate, we will apply Euler’s relation to a unit10 phasor having an angular displacement
of 3π

8 radians (67.5 degrees):
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ej3π/8 = 0.3827 + j0.9239
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The sine wave exists as the vertical projection of the rotating phasor on the “imaginary” (j or
i) axis, while the cosine wave exists as the horizontal projection of that same phasor on the “real”
axis. At the particular angle arbitrarily chosen for this example (3π/8 radians) the vertical quantity
happens to be j0.9239 while the horizontal quantity happens to be 0.3827.

10The term “unit phasor” simply refers to a phasor with a length of 1 (“unity”).
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For “unit” circles having a radius value of 1, Euler’s Relation perfectly describes the projected
cosine and sine functions for any angle θ. If our goal, though, is to represent voltage and current
quantities with peak values other than 1, we must append a multiplication factor to Euler’s Relation
accounting for the magnitude11 (M) of the sinusoidal function:

Mejθ = M cos θ + jM sin θ

Using this version of Euler’s Relation, we may perfectly describe the functions of a circle having
a radius length of M :
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For a circle with radius length M
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11The terms amplitude and magnitude are often used synonymously, but here we are using “amplitude” to describe
the intensity of the circuit quantity (e.g. voltage or current) at any given moment in time and “magnitude” to describe
only the peak value it reaches.
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An important extension of Euler’s Relation to real-world AC circuit applications is the inclusion
of time as one of the variables, since AC quantities oscillate over time. Recall that the angular

velocity of a rotating phasor (ω) is equivalent to its frequency measured in radians per second rather
than Hertz. The angle of a phasor at any point in time, therefore, is the product of its angular
velocity (radians/second) and the specific value of time (seconds):

θ = ωt [radians] = [radians/second][seconds]

Therefore, we may substitute ωt in place of θ in Euler’s Relation to now describe phasors and
their sinusoidal projections as functions of time:

Mejωt = M cos(ωt) + jM sin(ωt)

This too has a graphical representation, with the real, imaginary, and time axes all perpendicular
to each other, forming a three-dimensional graph:
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The phasor’s tip traces a spiral path as it rotates around the circle and progresses along the
time axis. When viewed from the end (with the time axis pointing away from us), all we see is the
phasor’s rotation. When viewed from the side, we see either a cosine wave or a sine wave depending
on whether we are looking at the phasor’s horizontal projection or its vertical projection. A physical
model of this is either a compression-style coil spring or a corkscrew: viewed from the end you see
a circle; viewed from the side you see a sinusoid.
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This three-dimensional graph has an electrical analogue as well: an AC generator with a spinning
magnetic rotor (representing the rotating phasor) and two sets of stationary coils (“windings”), one
winding generating a sine wave and the other generating a cosine wave:
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Mejθ = M cos θ + jM sin θ

voltage M and rotor shaft angle θ
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The angular offset between these two sets of stator windings accounts for the 90 degree (π2
radian) phase shift between the two sinusoidal output voltages. One winding pair experiences the
spinning rotor’s magnetic field one-quarter rotation before the other winding pair. The two sets of
windings essentially “view” the spinning rotor from different perspectives. Euler’s Relation predicts
the voltage developed at each winding based on the maximum (peak) voltage generated by either
winding (M) and the angular position of the rotor at that instant in time (θ).

A surprising amount of electrical engineering is founded on Euler’s Relation. The equivalence
between sinusoidal functions (cos θ + j sin θ) and exponential functions (ejθ) greatly simplifies a
number of different mathematical analyses, and forms the basis for the rules we will use to add,
subtract, multiply, and divide AC circuit quantities.



3.3. COMPLEX NUMBERS AND EXPONENTIAL FUNCTIONS 31

Although Euler’s Relation is the basis of AC circuit mathematics due to its ability to completely
represent a phasor at any point in time, the full form of Euler’s Relation is often omitted for
simplicity’s sake. In its place, electrical practitioners often use simplified mathematical notation
to describe phasors. The two sides of Euler’s Relation – the exponential (Mejθ) side and the
trigonometric (M cos θ+jM sin θ) side – are instead referred to as polar and rectangular, respectively.
“Polar” refers to the description of a phasor on a polar plot: an arrow pointing away from the plot’s
center (pole) with a specified length M and angle from horizontal θ. “Rectangular” refers to the
description of a phasor’s tip on a rectangular plot: the “real” term M cos θ describing its position
on the horizontal axis and the “imaginary” term jM sin θ describing its position on the vertical axis.
Shorthand phasor notation consists of the phasor’s magnitude followed by an angle symbol ( 6 ) and
the angle value for polar notation, and the real and imaginary coordinates for rectangular notation:

Full notation Mejθ M cos θ + jM sin θ

Shorthand notation M 6 θ x+ jy

For illustrative purposes we will consider all these phasor representations at an magnitude (M)
of one and at four different angle values, one for each axis: 0 radians, π

2 radians, π radians, and 3π
2

radians (corresponding to 0, 90, 180, and 270 degrees, respectively). All four examples are shown in
written form as well as graphical (i.e. a phasor diagram):

Angle (θ) Exponential Trigonometric Rectangular Polar

0 radians = 0o ej0 cos 0 + j sin 0 1 + j0 = 1 1 6 0o

π/2 radians = 90o ejπ/2 cos 90o + j sin 90o 0 + j1 = j 1 6 90o

π radians = 180o ejπ cos 180o + j sin 180o −1 + j0 = −1 1 6 180o

3π/2 radians = 270o ej3π/2 cos 270o + j sin 270o 0− j1 = −j 1 6 270o

+imaginary

-imaginary

+real-real

ejπ/2 = j

ej3π/2 = e-jπ/2 = -j

ejπ = -1 ej0 = 1

Phasor diagram

The third example – at an angle of π radians (180 degrees) – is uniquely elegant because it relates
several important mathematical constants (e, i, π, 1, and 0) in a single formula. Here we will use
the common mathematical symbol for an imaginary number (i) instead of the symbol typically used
by electrical practitioners (j):

eiπ = −1 or eiπ + 1 = 0
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The four basic arithmetic operations (addition, subtraction, multiplication, and division) are
shown here in general form using two phasors, one with magnitude M and angle x, and the other
with magnitude N and angle y:

Mejx +Nejy = (M cosx+N cos y) + j(M sinx+N sin y)

Mejx −Nejy = (M cosx−N cos y) + j(M sinx−N sin y)

Mejx ×Nejy = MNej(x+y)

Mejx ÷Nejy =
M

N

[

ej(x−y)
]

To give a more concrete example, we may perform all these arithmetic operations on the phasors
46 0o and 36 90o, using shorthand notation:

46 0o + 36 90o = 4 cos 0o + 3 cos 90o + j(4 sin 0o + 3 sin 90o) = 4 + j3

46 0o − 36 90o = 4 cos 0o − 3 cos 90o + j(4 sin 0o − 3 sin 90o) = 4− j3

46 0o × 36 90o = 126 90o

46 0o ÷ 36 90o =
4

3
6 − 90o

Addition and subtraction in polar form necessitates the use of sine and cosine functions. If,
however, the phasors in question are already cast in rectangular form, addition and subtraction is
seen to be nothing more than combining the real and imaginary terms. Repeating the first two lines
with 46 0o expressed as 4 + j0 and 36 90o expressed as 0 + j3:

(4 + j0) + (0 + j3) = (4 + 0) + (j0 + j3) = 4 + j3

(4 + j0)− (0 + j3) = (4− 0) + (j0− j3) = 4− j3

It should be clear from these examples that addition and subtraction are best performed in
rectangular form while multiplication and division lend themselves best to polar form.



3.4. TRIGONOMETRIC CONVERSIONS 33

3.4 Trigonometric conversions

If we ever find ourselves needing to convert from rectangular form into polar form, we may do so
using standard trigonometric methods. All we need to do is regard the real and imaginary portions
of the rectangular-form phasor as side-lengths of a right triangle inscribed within a circle of radius
M equal to the magnitude (i.e. the greatest amplitude value reached by the wave at any point) of
the phasor in question:

x
θ

(hypotenuse)

(opposite of θ)

(adjacent to θ)

jy

+imaginary

-imaginary

+real-real

M

The polar angle θ may be calculated three different ways, based on side y of the triangle being
opposite of 12 angle θ and side x being adjacent to angle θ, knowing that the tangent function is
the ratio between opposite and adjacent, the cosine function is the ratio between adjacent and
hypotenuse, and that the sine function is the ratio between opposite and hypotenuse:

θ = tan−1
(y

x

)

θ = cos−1
( x

M

)

θ = sin−1
( y

M

)

The polar magnitude M may be directly calculated from side lengths x and y using the
Pythagorean Theorem:

M =
√

x2 + y2

12A misconception I’ve often encountered with students of trigonometry is that they assume the vertical side of
a right triangle must always be the “opposite” and the horizontal side must always be the “adjacent”. This is not
necessarily true, and in fact is only true when the angle in question is the one between the horizontal side and the
hypotenuse. The terms “opposite” and “adjacent” refer to the particular angle being referenced. If we were to consider
the angle between the M and y sides of our triangle, for example, then x would be the side opposite that angle and
y would be the side adjacent to that angle.
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Now that we have explored the arithmetic of phasors, we may return to our problem of
calculating the total voltage from two series-connected AC voltage sources. The result has already
been determined by graphical solution (a computer summing all respective points of 4 sinx and
3 sin(x + 90o) to yield a sine wave having an magnitude of 5) as well as by hand calculator (the
TI-36X Pro adding 46 0 and 36 90 to arrive at 56 36.86989765), and so we show it again in the
illustration:

A

B

C

VBC = 4 V ∠  0o

VAB = 3 V ∠  90o

VAC = 5 V ∠  36.87o

Let us calculate this same sum without the benefit of a computer plotting hundreds of points on
a graph or a hand calculator capable of performing complex-number arithmetic. Since we know the
electrical principle at work here is Kirchhoff’s Voltage Law, we know the total voltage VAC must
be equal to the sum of the voltages VBC and VAB . We also know that phasor sums are most easily
computed in rectangular form, and so our first task is to convert the two voltage source values from
polar form into rectangular form using cosine and sine functions:

VBC = 46 0o = 4 cos 0o + j4 sin 0o = 4 + j0

VAB = 36 90o = 3 cos 90o + j3 sin 90o = 0 + j3

The total voltage of these two series-connected sources must therefore be:

VBC + VAB = (4 + j0) + (0 + j3) = 4 + j3

The result, 4+j3, while mathematically correct, does not relate directly to the indication given by
a voltmeter connected between points A and C. Polar form would be a more realistic representation,
giving us the magnitude (peak amplitude) value of the AC voltage as well as the phase shift angle.
Therefore, our final step is to convert rectangular form into polar form:

θ = tan−1

(

3

4

)

= 36.87o

Voltage magnitude =
√

42 + 32 =
√
16 + 9 =

√
25 = 5 Volts

An AC voltage having an magnitude of 5 Volts and a phase angle of 36.87o is our result, and
therefore VAC = 56 36.87o.
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3.5 Summary

The benefit of phasor mathematics is that it gives us a tool to apply fundamental laws and principles
of DC circuits to AC circuits. This is incredibly important, as without such a tool we would have to
approach AC circuits quite differently than DC circuits. As it is, all we need is a new way to perform
the basic arithmetic operations of addition, subtraction, multiplication, and division incorporating
magnitude and phase shift, and we are able to re-purpose all the concepts learned on DC circuits
to AC circuits. It is the goal of scientific exploration to unify knowledge by seeking commonalities
between seemingly disparate phenomena. Phasor mathematics is such a bridge, unifying DC and
AC circuit analysis.

All mathematical techniques have practical limitations, though, and so we must outline some
caveats of phasor arithmetic:

• The phasor arithmetic examples we’ve explored all assume a constant and equal frequency for
all quantities. A 4 Volt source at 0 degrees adds to 3 Volt source at 90 degrees to make 5 Volts
at 36.87 degrees, but only if those two voltage sources output precisely the same frequency. If
the two quantities in question have differing frequencies, it means their phasors rotate around
the circle at different speeds, and therefore their relative phase angles will not be constant.

• The phase angle specified for any AC waveform (i.e. voltage or current) is always relative to
some arbitrary reference, and not absolute. For the 4 Volt and 3 Volt sources we keep using as
an example, what we mean when we say the 4 Volt source has an angle of 0 degrees and the 3
Volt source has an angle of 90 degrees is that the 4 Volt source is our phase reference for the
circuit. The 3 Volt source’s 90 degree angle simply means that source is 90 degrees ahead of
the reference source at all times. We could have made the 3 Volt source our phase reference
at 0 degrees and specified the 4 Volt source as having a phase angle of −90 degrees, and the
sum would still be 5 Volts.

• Multiplication or division of two sinusoids yields a result with a different frequency. This is
what makes power calculations complicated in AC circuits. Joule’s Law (P = IV ) requires
multiplying current by voltage, which means the frequency of power in an AC circuit is actually
different than the frequency of the voltage or current! The magnitude of the calculated power
will be accurate, but the phase angle of that product of voltage and current will not refer to
a constant phase shift as it does between the voltage and current waveforms, and so will not
have the same meaning. We will explore this topic in greater detail in another module.

• In developing our mathematical definition of a phasor – showing the rotating radius project
as a sinusoidal waveform – the phasor’s length represents the magnitude of that quantity.
For example, a voltage specified as 36 90o according to this definition has a magnitude of 3
Volts peak. In practice this definition is not strictly adhered to. In fact, it is quite common
for electrical practitioners to specify the magnitude of all phasors in a circuit as Volts and
Amperes RMS rather than peak. So long as every single phasor in that circuit is specified the
same way, this is not a problem. Confusion results when some phasors are expressed in peak
Volts or Amperes while others are assumed to express RMS Volts or Amperes.
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Chapter 4

Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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4.1 Derivation of Euler’s Relation

Leonhard Euler was a Swiss mathematician who lived from 1707 to 1783, and was responsible for
discovering what we now call Euler’s Relation, a mathematical formula relating exponential functions
(ex) to trigonometric functions (sinx, cosx). This relation forms the basis for phasor arithmetic,
which is an incredibly useful tool for simplifying calculations in AC circuits where voltages and
currents take the form of sinusoidal functions.

To begin, we must introduce the concept of a mathematical series, which is a sum of successive
terms. The symbol used to denote a sum of many terms is the Greek capital letter “sigma” (Σ),
with labels below and above specifying the beginning and end of the series. The following example
is a form of “geometric” series of x to the n power, with n ranging from zero to infinity:

∞
∑

n=0

xn

Expanded, it is equivalent to the following expression:

∞
∑

n=0

xn = x0 + x1 + x2 + x3 + x4 + · · ·+ x∞

Infinite series may be approximated using digital computers to perform the term calculations
and summation, with the result approaching ever closer to the true value with every iteration.

Another important mathematical concept necessary to understand Euler’s Relation is that of
the factorial. Symbolized by an exclamation mark, a “factorial” is the product (multiplication) of
all whole numbers from the starting value down to one. Shown here are some factorial examples to
illustrate:

• 0! = 1 (by definition)

• 1! = 1× 1 = 1

• 2! = 2× 1 = 2

• 3! = 3× 2× 1 = 6

• 4! = 4× 3× 2× 1 = 24

• 5! = 5× 4× 3× 2× 1 = 120

• 6! = 6× 5× 4× 3× 2× 1 = 720
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Euler’s Constant, symbolized by the letter e, happens to be the result of an infinite series of
factorials:

e =

∞
∑

n=0

1

n!

The partial sum (up to n = 7) appears as follows:

1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!

1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+

1

720
+

1

5040

It should be clear to see how each successive term becomes dramatically smaller than the one
before it, which means the sum will asymptotically approach some final value. In this case, the final
value happens to be e. If we examine a table of figures showing the summation of these terms from
n = 0 to n = 7, the convergence becomes clear:

n n! 1
n! Σ 1

n!

0 1 1 1

1 1 1 2

2 2 0.5 2.5

3 6 0.16667 2.66667

4 24 0.04167 2.70833

5 120 0.00833 2.71667

6 720 0.00139 2.71806

7 5040 0.00020 2.71825

The value of e is approximately 2.718281828459045, as we can see here how closely the series
approaches this value after only seven iterations.

Exponential functions (i.e. powers of e) may also be calculated by infinite series, the basic
exponential function ex being equivalent to the following:

ex =

∞
∑

n=0

xn

n!

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+ · · ·+ x∞

∞!
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Certain trigonometric functions are also infinite series of factorials. For example, the cosine and
sine functions (with angle x expressed in units of radians rather than degrees) are equivalent to the
following series:

cosx =
∞
∑

n=0

(−1)n
x2n

(2n)!

sinx =
∞
∑

n=0

(−1)n
x2n+1

(2n+ 1)!

Shown here are partial sum expansions up to n = 5 for both cosine and sine functions:

cosx ≈ 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− x10

10!

sinx ≈ x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!

If we closely examine these two series and compare them with the exponential series (ex, shown
below), some similarities should become apparent. Pay particular attention to the denominators of
the fractional terms:

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+ · · ·+ x∞

∞!

Notice how the exponential series contains both odd- and even-numbered factorial terms, whereas
the cosine series contains only even-numbered factorials and the sine series only odd-numbered
factorials in their denominators. Note also how the cosine series begins with the term 1 while the
sine series begins with x, and how the exponential series contains both 1 and x. Euler noticed these
patterns too, and reasoned that the exponential series was some combination of the cosine and sine
series. The major incongruity between the cosine, sine, and exponential series is the signs of the
terms: the cosine and sine functions contain terms of alternating sign (i.e. positive, then negative,
then positive, etc.) whereas the exponential series contains only positive terms.

Euler’s stroke of genius was in recognizing that imaginary numbers could be used to harmonize
the signs of these terms, and create an equivalence between the exponential series and the cosine/sine
series. Recall that an “imaginary” number is found by taking the square root of a negative number,
with i or j used to express

√
−1. If j =

√
−1, then j2 = −1 and j3 = −j and j4 = 1, etc.
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Euler substituted jx for x in the exponential series, and made j a multiplying coefficient in the
sine series, to show that the exponential series could be made the sum of the cosine and sine series.
First, we will see what happens when we substitute jx for x in the exponential series:

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+ · · ·

ejx = 1 + jx+
(jx)2

2!
+

(jx)3

3!
+

(jx)4

4!
+

(jx)5

5!
+

(jx)6

6!
+

(jx)7

7!
+ · · ·

ejx = 1 + jx− x2

2!
− j

x3

3!
+

x4

4!
+ j

x5

5!
− x6

6!
− j

x7

7!
+ · · ·

Look closely at what happens to the j terms in the middle equation as they become raised to
powers of 2, 3, 4, 5, and beyond. Recall that j2 = −1 and that j3 = −j and that j4 = 1. Going
beyond this, we see how j5 = j and j6 = −1 and j7 = −j and j8 = 1, etc.

Next, we will see what happens when we apply j as a multiplying coefficient in the sine series.
This simply multiplies every term by j:

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

j sinx = jx− j
x3

3!
+ j

x5

5!
− j

x7

7!
+ · · ·

Finally, when we set these three equations beside each other, it is apparent how ejx is the sum of
cosx and j sinx. This fact may be clearly shown by using different colors (blue and red) to represent
the cosine and sine terms, respectively, and writing the exponential series as an alternating series of
those blue and red terms taken from the cosine and sine series:

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

j sinx = jx− j
x3

3!
+ j

x5

5!
− j

x7

7!
+ · · ·

ejx = 1 + jx−x2

2!
−j

x3

3!
+
x4

4!
+j

x5

5!
−x6

6!
−j

x7

7!
+ · · ·

And with that, we have Euler’s Relation:

ejx = cosx+ j sinx
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Euler’s Relation is incredibly important in many different branches of engineering and science
because it provides an equivalence between exponential functions which are relatively easy to
manipulate using calculus, and trigonometric functions which are relatively difficult manipulate using
calculus. Therefore, any application requiring the application of calculus to sinusoidal functions can
benefit from Euler’s Relation.
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4.2 Complex-number arithmetic

Complex numbers are very useful in AC circuit analysis because each one has the ability to represent
both a magnitude and a phase shift between that quantity and some other reference quantity. Despite
the existence of electronic calculators and computer software capable of performing arithmetic on
complex-number quantities, there are still times when we must perform some calculation on these
quantities “by hand”. This technical reference reviews the basic arithmetic operations on complex
numbers, complete with examples.

Recall that complex numbers may be represented in either rectangular or polar form, rectangular
being a quantity with both a “real” and an “imaginary” component, and polar being a quantity
with a magnitude and an angle. Graphically, these two forms relate to the sides of a right triangle:

x
θ

(hypotenuse)

(opposite of θ)

(adjacent to θ)

jy

+imaginary

-imaginary

+real-real

M

Rectangular form: x+ jy (where j =
√
−1)

Polar form: M 6 θ

To convert from rectangular form to polar form, M =
√

x2 + y2 and θ = arctan y
x

To convert from polar form to rectangular form, x = M cos θ and y = M sin θ

As we will see, addition and subtraction is easiest to do with rectangular-form notation while
multiplication and division is easiest to do with polar-form notation. Thus, circuit analysis
doing “long-hand” complex-number arithmetic often involves conversions back and forth between
rectangular and polar forms in order to set up the quantities before applying Ohm’s Law, Kirchhoff’s
Laws, etc. This can be tedious, and it is also prone to rounding errors. The reader is advised to store
all intermediate results in their calculator’s memory and recall when needed, rather than re-type
quantities and thereby incur rounding errors due to truncation.
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4.2.1 Negating complex numbers

The sign of a complex number may be reversed just as easily in rectangular form as in polar form.
Rectangular-form negation consists of multiplying −1 through to both the real and imaginary terms.
Polar-form negation consists solely of adding 180 degrees to the angle, or alternatively, by reversing
the sign of the magnitude and leaving the angle alone.

Example: reverse the sign of 5− j4

−(5− j4)

−5 + j4

Example: reverse the sign of 66 30o

−(66 30o)

66 210o = 66 − 150o = −66 30o

4.2.2 Adding complex numbers

Complex numbers are most easily added in rectangular form: simply add the real portions and then
add the imaginary portions.

Example: add 5− j4 to −1− j3

(5− j4) + (−1− j3)

(5 + (−1)) + (−j4 + (−j3))

4− j7

4.2.3 Subtracting complex numbers

Complex numbers are most easily subtracted in rectangular form: simply subtract the real portions
and then subtract the imaginary portions.

Example: subtract 5− j4 from −1− j3

(−1− j3)− (5− j4)

(−1− (5)) + (−j3− (−j4))

−6 + j1
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4.2.4 Multiplying complex numbers

Complex numbers are most easily multiplied in polar form: simply multiply the magnitudes and
add the angles.

Example: multiply 66 30o by 26 − 10o

(66 30o)× (26 − 10o)

(6× 2) 6 (30o + (−10o))

126 20o

Multiplication of rectangular-form complex numbers less straight-forward then with polar-form
numbers, and resembles multiplication of algebraic polynomials:

Example: multiply 5− j4 by −1− j3

(5− j4)× (−1− j3)

(5× (−1)) + (5× (−j3)) + (−j4× (−1)) + (−j4× (−j3))

(−5) + (−j15) + (j4) + (j212)

(−5) + (−j15) + (j4) + ((−1)12)

(−5) + (−j15) + (j4) + (−12)

−17− j11

4.2.5 Dividing complex numbers

Complex numbers are most easily divided in polar form: simply divide the magnitudes and subtract
the angles.

Example: divide 66 30o by 26 − 10o

66 30o

26 − 10o

6

2
6 (30o − (−10o))

36 40o



46 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.2.6 Reciprocating complex numbers

Reciprocation is division into one, and so complex numbers are reciprocated most easily in polar

form just as division is best performed in polar form: simply reciprocate the magnitude and negate
the angle.

Example: reciprocate 26 − 10o

1

26 − 10o

1

2
6 − (−10o)

0.56 10o

4.2.7 Calculator tips

Here is some advice when using calculators to do complex-number arithmetic:

• When manually entering a complex-number value, enclose that value in parentheses. Some
calculators struggle to properly perform order-of-operations with complex numbers. For
example, some calculators will interpret 456 30o×5 as 456 (30o×5) to give 456 150o when what
was really intended was (456 30o)× 5 = 2256 30o. Also, note that the practice of highlighting
previous results in a multi-line display and then “pasting” those results into a new calculation
may suffer similar problems.

• Never re-enter a non-round computed result, but instead save that to a memory location
and then recall from memory when needed for further calculations. You will find that
rounding errors compound aggressively in complex-number arithmetic, and so the general good
habit of using memory locations becomes a near-necessity with these calculations. Another
important benefit to using memory locations is the avoidance of the order-of-operations
problem mentioned previously: when recalling a complex-number value from memory and
then placing that variable name (e.g. x) into subsequent calculations, the calculator treats the
memory variable as a complete number rather than incorrectly operating on only one of its
parts.



Chapter 5

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.
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5.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.
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Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments

to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point

variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x
or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.
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After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.
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learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.
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5.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.
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More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.
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Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC 6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians ; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.
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assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.



56 CHAPTER 5. PROGRAMMING REFERENCES

If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.
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5.3 Simple plotting of sinusoidal waves using C++

Like the vast majority of computer programming languages, C and C++ offer an extensive library
of mathematical functions ready-made for use in programs of your own design. Here we will examine
a C++ program written to calculate the instantaneous values of a sine wave over one full period:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

C++ lacks a standard library of graphics functions for plotting curves and other mathematical
shapes to the computer’s screen, and so this program instead uses standard console characters to
do the same. In this particular case it plots blank space characters and star characters (*) to the
console in order to mimic a pixel-based graphical display.

This program is deceptively terse. From the small number of lines of code it doesn’t look very
complicated, but there is a lot going on here. We will explore the operation of this program in
stages, first by examining its console output (on the following page), and then analyzing its lines of
code.
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The result is a somewhat crude, but functional image of a sine wave plotted with amplitude on
the horizontal axis and angle on the vertical axis:
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Let’s analyze how this program works, exploring the following programming principles along the
way:

• Order of execution

• Preprocessor directives, namespaces

• The main function: return values, arguments

• Delimiter characters (e.g. { } ;)

• Whitespace ignored

• Variable types (float and int), names, and declarations

• Variable assignment/initialization (=)

• Comparison (==)

• Loops (for)

• Incrementing variables (++)

• Basic arithmetic (+, *)

• Arithmetic functions (sin)

• Printing text output (cout)

• Comments (//)

• Custom functions: prototyping, return values, arguments

Looking at the source code listing, we see the obligatory7 directive lines at the very beginning
(#include and namespace) telling the C++ compiler software how to interpret many of the
instructions that follow. Also obligatory for any C++ program is the main function enclosing
all of our simulation code. The line reading int main (void) tells us the main function takes in no
data (void) but returns an integer number value (int). The “left-curly-brace” symbol immediately
below that ({) marks the beginning of the page space where the main function’s code is found, while
the “right-curly-brace” symbol at the bottom (}) marks the end of the main function. All code
located between those brace symbols belongs to the main function. All indentation of lines is done
merely to make the source code easier for human eyes to read, and not for the sake of the C++
compiler software which ignores whitespace.

Within the main function we have two variables declared, two for instructions, and two cout

statements. Variable x is a floating-point variable, intended to store the angle values we will send to
the sine function. Variable n is an integer variable, capable only of counting in whole-number steps.
A for loop instructs the computer to repeat some operation multiple times, the number of repeats
determined by the value of some variable within the for instruction’s parentheses.

7The #include <iostream> directive is necessary for using standard input/output instructions such as cout. The
#include <cmath> directive is necessary for using advanced mathematical functions such as sine.
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Our first for instruction bases its repeats on the value of x, beginning by initializing it to a value
of zero and then incrementing it in steps of 0.2 so long as x is less than or equal to 2π. This for
loop has its own set of “curly-brace” symbols enclosing multiple lines of code, again with those lines
indented to make it visually clear they belong within the for loop.

Within this outer for loop lies another for instruction, with its repeats based on the value of
our integer variable n. Unlike the outer for loop which has brace symbols ({}) enclosing multiple
lines of code, the inner for loop has no braces of its own because only one line of code belongs
to it (a cout instruction printing blank spaces to the console, found immediately below the for

statement and indented to make its ownership visually clear). This inner for instruction’s repeats
continue so long as n remains less than the value of 40 sin(x) + 40, incrementing from 0 upwards in
whole-number steps (this is what ++n means in the C and C++ languages: to increment an integer
variable by a single-step). Below that is another cout instruction, this one printing a star character
to the console (*).

It may not be clear to the reader how these two for instructions work together to create a
sinusoidal pattern of characters on the computer’s console display, and so we will spend some more
time dissecting the code. A useful problem-solving strategy for understanding this program is to
simplify the system. In this case we will replace all lines of code within the outer for loop with a
single cout instruction printing values of x and sin(x). This will generate a listing of these variables’
values, which as we know governs the two for loops’ behavior. Once we see these numerical values,
it will become easier to grasp what the for loops and their associated cout instructions are trying
to achieve.
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Rather than delete the original lines of code, which would require re-typing them at some point
in the future, we will apply a common programming “trick” of commenting out those lines we don’t
want to be executed. In C and C++, and double-forward-slash (//) marks the beginning of an inline
comment, with all characters to the right of the double-slashes ignored by the compiler. They will
still be in the source code, readable to any human eyes, but will be absent from the program as far
as the computer is concerned. Then, when we’re ready to reinstate these code lines again, all we
need to do is delete the comment symbols:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

// for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

// cout << " ";

// cout << "*" << endl;

cout << x << " " << sin(x) << endl;

}

return 0;

}

Re-compiling the modified code and re-running it produces the following results:

0 0

0.2 0.198669

0.4 0.389418

0.6 0.564642

0.8 0.717356

1 0.841471

1.2 0.932039

1.4 0.98545

1.6 0.999574

1.8 0.973848

2 0.909297

2.2 0.808496

2.4 0.675463
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2.6 0.515501

2.8 0.334988

3 0.14112

3.2 -0.0583747

3.4 -0.255542

3.6 -0.442521

3.8 -0.611858

4 -0.756803

4.2 -0.871576

4.4 -0.951602

4.6 -0.993691

4.8 -0.996165

5 -0.958924

5.2 -0.883455

5.4 -0.772765

5.6 -0.631267

5.8 -0.464603

6 -0.279417

6.2 -0.083091

Not surprisingly, we see the variable x increment from zero to 6.2 (approximately 2π) in steps of
0.2. The sine of this angle value evolves from 0 to very nearly +1, back (almost) to zero as x goes
past π, very nearly equaling −1, and finally returning close to zero. This is what we would expect of
the trigonometric sine function with its angle expressed in radians rather than degrees (2π radians
being equal to 360 degrees, a full circle).

This experiment proves to us what x and sin(x) are doing in the program, but to more clearly
see how the inner for loop functions it would be helpful to print the value of 40 * sin(x) + 40

since this is the actual value checked by the inner for loop as it increments n from zero upward.
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Modifying the code once more for another experiment:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

// for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

// cout << " ";

// cout << "*" << endl;

cout << x << " " << 40 * sin(x) + 40 << endl;

}

return 0;

}

Re-compiling this new code and running it reveals much larger values in the second number
column:

0 40

0.2 47.9468

0.4 55.5767

0.6 62.5857

0.8 68.6942

1 73.6588

1.2 77.2816

1.4 79.418

1.6 79.9829

1.8 78.9539

2 76.3719

2.2 72.3399

2.4 67.0185

2.6 60.62

2.8 53.3995

3 45.6448

3.2 37.665

3.4 29.7783



64 CHAPTER 5. PROGRAMMING REFERENCES

3.6 22.2992

3.8 15.5257

4 9.72789

4.2 5.13696

4.4 1.93592

4.6 0.252361

4.8 0.153415

5 1.64302

5.2 4.6618

5.4 9.0894

5.6 14.7493

5.8 21.4159

6 28.8233

6.2 36.6764

Instead of progressing from zero to (nearly) +1 to (nearly) zero to (nearly) −1 and back again
to (nearly) zero, this time the right-hand column of numbers begins at 40, progresses to a value of
(nearly) 80, then back past 40 and (nearly) to zero, then finishes nearly at 40 again. What the 40

* sin(x) + 40 arithmetic8 does is “scale” and “shift” the basic sine function to have a peak value
of 40 and a center value of 40 as well.

8You may recognize this as the common slope-intercept form of a linear equation, y = mx+ b. In this case, 40 is
the slope (m) and 40 also happens to be the intercept (b).
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Now that we clearly recognize the range of 40 * sin(x) + 40, we may remove the comments
from our code and analyze the inner for loop:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

for (n = 0 ; n < (40 * sin(x) + 40) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

Each time the outer for loop increments the value of x, the inner for loop calculates the value
of 40 sin(x) + 40 and repeats the cout << " " instruction that many times9 to print that same
number of blank spaces on the console. After printing that string of blank spaces, the second cout

statement prints a star character (*) and finishes the line with an endl character (a carriage-return
marking the end of a line and the beginning of a new line on the console’s display). The outer for
loop then increments x again and the process repeats.

Therefore, the outer for loop produces one new line of text on the console per iteration, while the
inner for loop produces one new blank space on that line per iteration. This makes the placement
of each star character (*) proportional to the value of sin(x), the result being a “sideways” plot of
a sine wave on the console.

The scaling of the sine function to produce a range from 0 to +80 rather than −1 to +1 was
intentionally chosen to fit the standard 80-column width of traditional character-based computer
consoles. Modern computer operating systems usually provide terminal windows emulating
traditional consoles, but with font options for resizing characters to yield more or less than 80
columns spanning the console’s width.

9The value of 40 sin(x) + 40 will be a floating-point (i.e. non-round) value, while n is an integer variable and can
therefore only accept whole-numbered (and negative) values. This is not a problem in C++, as the compiler is smart
enough to cause the floating-point value to become truncated to an integer value before assigning it to n.
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Students more accustomed to applied trigonometry than pure mathematics may bristle at the
assumed unit of radians used by C++ when computing the sine function, but this is actually quite
common for computer-based calculations. Even most electronic hand calculators assume radians
unless and until the user sets the degree mode.

We can modify this code have the variable x in degrees rather than radians, simply by multiplying
x by the conversion factor π

180 .

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x;

int n;

for (x = 0 ; x <= 360 ; x = x + 12.0)

{

for (n = 0 ; n < (40 * sin(x * (M_PI / 180)) + 40) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

This is a good illustration of how mathematical operations may be “nested” within sets of
parentheses, in the same way we do so when writing regular formulae:

40 sin
[

x
( π

180

)]

+ 40

An extremely important computer programming concept we may apply at this juncture, though
by no means necessary for this simple program, is to include our own custom function to calculate
the scaled sine value with its degrees-to-radians conversion. The idea of a programming “function” is
a separate listing of code lying outside of the main function which may be invoked at any time within
the main function. Some legacy programming languages such as FORTRAN and Pascal referred to
these as subroutines.
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Consider the following version of the sine-plotting program with a custom function called
sinecalc:

#include <iostream>

#include <cmath>

using namespace std;

float sinecalc (float);

int main (void)

{

float x;

int n;

for (x = 0 ; x <= 360 ; x = x + 12.0)

{

for (n = 0 ; n < sinecalc(x) ; ++n)

cout << " ";

cout << "*" << endl;

}

return 0;

}

float sinecalc (float degrees)

{

float radians;

radians = degrees * M_PI / 180;

return 40 * sin (radians) + 40;

}

Note in particular these three alterations made to the code:

• The inclusion of a line before the main function prototyping our custom function, declaring it
will accept a single floating-point value and return a floating-point value.

• The inner for statement is much simpler than before without all the inline arithmetic. Now
it simply “calls” the sinecalc function every time it needs to compute the sine of x.

• Past the end of the main function is where our new sinecalc function resides. Like the main
function itself, it begins with a line stating it will accept a single floating-point variable (named
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degrees) and will return a floating-point value. Also like the main function, it has its own set
of curly-brace symbols ({ }) to enclose its lines of code.

Within the sinecalc function we see an declaration of another variable named radians, an
arithmetic statement performing the degrees-to-radians conversion, and finally a return statement
where the scaled sine value is computed. This returned value is what the for statement “sees” after
calling the sinecalc function.

The path of a program’s execution is no longer simply left-to-right and top-to-bottom once we
start using our own functions like this. Now the execution path jumps from one line to another and
then returns back where it left off. This new pattern of execution may seem strange and confusing,
but it actually makes larger programs easier to manage and design. By encapsulating a particular
algorithm (i.e. a set of instructions and procedures) in its own segment of code separate from the
main function, we make the main function’s code more compact and easier to understand. It is even
possible to save these functions’ code in separate source files so that different human programmers
can work on pieces of the whole program separately as a team10.

10For example, we could save all the main function’s code (including the directive lines) to a file named main.cpp,
then do the same with the sinecalc function’s code (also including the necessary directive lines) in a file named
sine.cpp. The command we would then use to compile and link these two code sets together into an executable
named plot.exe would be g++ -o plot.exe main.cpp sine.cpp.
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As previously mentioned, C++ lacks a standard library of graphics functions for plotting curves
and other mathematical shapes to the computer’s screen, which is why we opted to use standard

console characters to do the same. If a truly graphic output is desired for our waveform plot, there
are relatively simple alternatives. One is to write the C++ source code to output data as numerical
values displayed in columns, one column of numbers representing independent (x) values and the
other column representing dependent (y) values, with each column separated by a comma character
(,) as a delimiter. Here is the re-written program and its text output:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float x, y;

for (x = 0 ; x <= (2 * M_PI) ; x = x + 0.2)

{

y = sin(x);

cout << x << "," << y << endl;

}

return 0;

}

0,0

0.2,0.198669

0.4,0.389418

0.6,0.564642

0.8,0.717356

1,0.841471

1.2,0.932039

1.4,0.98545

1.6,0.999574

1.8,0.973848

2,0.909297

2.2,0.808496

2.4,0.675463

2.6,0.515501

2.8,0.334988

3,0.14112

3.2,-0.0583747

3.4,-0.255542

3.6,-0.442521
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3.8,-0.611858

4,-0.756803

4.2,-0.871576

4.4,-0.951602

4.6,-0.993691

4.8,-0.996165

5,-0.958924

5.2,-0.883455

5.4,-0.772765

5.6,-0.631267

5.8,-0.464603

6,-0.279417

6.2,-0.083091

We may save this text output to its own file (e.g. data.csv)11 and then import that file into
a graphing program such as a spreadsheet (e.g. Microsoft Excel). Spreadsheet software is designed
to accept comma-separated variable (csv) data and automatically organize the values into columns
and rows. Since spreadsheet software is so readily available, this is an easy option to visualize any
C++ program’s data without having to write C++ code directly generating graphic images.

11A relatively easy way to do this is to run the C++ program from a console, using the redirection symbol (>).
For example, if we saved our source code file under the name sinewave.cpp and then entered g++ -o sinewave.exe

sinewave.cpp at the command-line interface to compile it, the resulting executable file would be named sinewave.exe.
If we simply type ./sinewave.exe and press Enter, the program will run as usual. If, however we type ./sinewave.exe
> data.csv and press Enter, the program will run “silently” with all of its printed text output redirected into a file
named data.csv instead of to the console for us to see.
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Spreadsheets are not the only data-visualizing tools available, though. One such alternative is
the open-source software application called gnuplot. The following example shows how gnuplot

may be instructed12 to read a comma-separated variable file (data.csv) and plot that data to the
computer’s screen:

gnuplot script:

set datafile separator ","

set xrange [0:6.2]

set style line 1 lw 2 lc rgb "red"

plot ’data.csv’ using 1:2 with lines ls 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

’data.csv’ using 1:2

12These commands may be entered interactively at the gnuplot prompt or saved to a text file (e.g. format.txt,
called a script) and invoked at the operating system command line (e.g. gnuplot -p format.txt).
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5.4 Plotting two sinusoidal waves with phase angles using

C++

Here we will examine a C++ program written to take input from the user and generate comma-
separated value lists for two sinusoidal waveforms which may be plotted using graphical visualization
software such as a spreadsheet or gnuplot:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float va, vb, pa, pb, f, period, t;

cout << "Enter peak amplitude of voltage A" << endl;

cin >> va;

cout << "Enter phase angle of voltage A" << endl;

cin >> pa;

cout << "Enter peak amplitude of voltage B" << endl;

cin >> vb;

cout << "Enter phase angle of voltage B" << endl;

cin >> pb;

cout << "Enter frequency for both sources" << endl;

cin >> f;

period = 1/f;

for (t = 0 ; t <= (2 * period) ; t = t + (period/100))

{

cout << t << " , " ;

cout << va * sin((t * f + (pa/360)) * 2 * M_PI) << " , ";

cout << vb * sin((t * f + (pb/360)) * 2 * M_PI) << endl;

}

return 0;

}
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Let’s analyze how this program works, exploring the following programming principles along the
way:

• Order of execution

• Preprocessor directives, namespaces

• The main function: return values, arguments

• Delimiter characters (e.g. { } ;)

• Whitespace ignored

• Variable types (float), names, and declarations

• Variable assignment/initialization (cin)

• Loops (for)

• Incrementing variables (++)

• Basic arithmetic (+, *)

• Arithmetic functions (sin)

• Printing text output (cout)

Looking at the source code listing, we see the obligatory13 directive lines at the very beginning
(#include and namespace) telling the C++ compiler software how to interpret many of the
instructions that follow. Also obligatory for any C++ program is the main function enclosing
all of our simulation code. The line reading int main (void) tells us the main function takes in no
data (void) but returns an integer number value (int). The “left-curly-brace” symbol immediately
below that ({) marks the beginning of the page space where the main function’s code is found, while
the “right-curly-brace” symbol at the bottom (}) marks the end of the main function. All code
located between those brace symbols belongs to the main function. All indentation of lines is done
merely to make the source code easier for human eyes to read, and not for the sake of the C++
compiler software which ignores whitespace.

Within the main function we have seven variables declared, all of them floating-point (float)
variables. Several cout statements print text to the screen while cin statements receive typed input
from the user to initialize the values of five of those variables. Variable t represents time, and is
stepped in value from zero to two full periods of the waveforms within the for loop. Within the curly-
brace symbols of the for loop we have a set of cout instructions which print the comma-separated
value data to the computer’s console.

The sine functions are computed within these last cout instructions. The product of time and
frequency (seconds times cycles per second) yields a result in cycles. Phase shift was entered in
degrees, so division by 360 is necessary to case phase shift into cycles because there are 360 degrees
per cycle. The sine function, like all trigonometric functions in computer programming, requires an
input in units of radians which explains the purpose of the 2π multiplier, there being 2π radians per
cycle.

13The #include <iostream> directive is necessary for using standard input/output instructions such as cout. The
#include <cmath> directive is necessary for using the sine function.
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Here is a sample run of this program where waveform A is 10 Volts (peak) at an angle of 0 degrees
and waveform B is 5 Volts (peak) with a leading phase shift of 30 degrees, both at a frequency of
60 Hz:

Enter peak amplitude of voltage A 10

Enter phase angle of voltage A 0

Enter peak amplitude of voltage B 5

Enter phase angle of voltage B 30

Enter frequency for both sources 60

0 , 0 , 2.5

0.000166667 , 0.627905 , 2.76696

0.000333333 , 1.25333 , 3.023

0.0005 , 1.87381 , 3.2671

0.000666667 , 2.4869 , 3.49832

0.000833333 , 3.09017 , 3.71572

0.001 , 3.68125 , 3.91847

0.00116667 , 4.25779 , 4.10575

0.00133333 , 4.81754 , 4.27682

The comma-separated value list has been shortened for the sake of brevity (from approximately
200 lines of data). When copied to a plain-text file named data.csv and read by a data visualization
program (in this case, gnuplot), the two sinusoids with their differing amplitudes and 30 degree
phase shift are clear to see. Setting the visualization tool to show four minor divisions in between
every major division mimics the graticule of a traditional oscilloscope:

-10

-5

 0

 5

 10

 0  0.005  0.01  0.015  0.02  0.025  0.03

’data.csv’ using 1:2
’data.csv’ using 1:3
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Any data visualization tool capable of reading a comma-separated value data file is fine for this
purpose, and a spreadsheet such as Microsoft Excel is probably the simplest one to use. My favorite
happens to be gnuplot, and the script I used to make the previous plot is as follows:

set datafile separator ","

set xrange [0:0.034]

set style line 1 lw 2 lc rgb "red"

set style line 2 lw 2 lc rgb "green"

set style line 3 lw 0.25 lc rgb "grey"

set style line 4 lw 0.5 lc rgb "blue"

set mxtics 5

set mytics 5

set grid xtics mxtics ls 4, ls 3

set grid ytics mytics ls 4, ls 3

plot ’data.csv’ using 1:2 with lines ls 1, ’data.csv’ using 1:3 with lines ls 2

A simple way to copy the comma-separated value data into the data.csv file when running the
compiled C++ program is to use the tee operator available on the command-line interface of the
computer’s operating system. Assuming our compiled C++ program is named phaseplot.exe, the
command-line instruction would look something like the following:

phaseplot.exe | tee data.csv

This records all text – including the prompts for the user’s input as well as the entries – into the
data.csv which must be deleted prior to reading by the spreadsheet or other visualization software.
However, some may find the deletion of those few lines easier than the copying-and-pasting of 200+
lines of data to a file.
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5.5 Simple plotting of arbitrary waveforms using C++

The following C++ program accepts numerical values entered by the user, stores them in a set of
variables called an array, and then plots them to the console. This is known as an arbitrary waveform

algorithm because it allows the user to define a waveform of any shape simply by specifying its
amplitude point by point:

#include <iostream>

using namespace std;

#define MAX 10

int plot(float);

float wave[MAX];

int main (void)

{

int phase;

for (phase = 0 ; phase < MAX ; ++phase)

{

cout << "Enter instantaneous value for phase index " << phase << ":" ;

cin >> wave[phase];

}

while (1)

for (phase = 0 ; phase < MAX ; ++phase)

plot(wave[phase]);

return 0;

}

int plot(float x)

{

int n;

for (n = 0 ; n < (3 * x) ; ++n)

cout << " ";

cout << "*" << endl;

return 0;

}
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In the following example, we run this program and enter at the prompt values which will form a
crude square wave when plotted. After entering the tenth value the program proceeds to endlessly
plot this waveform (and in fact must be forcibly interrupted by the <Ctrl-C> key combination:

Enter instantaneous value for phase index 0:10

Enter instantaneous value for phase index 1:15

Enter instantaneous value for phase index 2:15

Enter instantaneous value for phase index 3:15

Enter instantaneous value for phase index 4:15

Enter instantaneous value for phase index 5:10

Enter instantaneous value for phase index 6:5

Enter instantaneous value for phase index 7:5

Enter instantaneous value for phase index 8:5

Enter instantaneous value for phase index 9:5

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

We will now explore the operation of this program, discussing the following programming
principles as we proceed:

• Preprocessor directives (#include, #define macros), namespaces

• Custom functions: prototyping, return values, arguments

• The main function: return values, arguments

• Delimiter characters (e.g. { } ;)

• Variable types (float, int, bool), names, and declarations
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• Arrays

• Accepting user input (cin, >>)

• Loops (while, for)

• Increment/decrement operators (++, --)

• Nested loops

• Printing text output (cout, <<, endl)

At the top of the source code listing are several lines of code instructing the compiler software
how to interpret what follows. The #include directive tells the compiler to read the contents of the
iostream file included in its library of files, and those contents define some of the instructions used
later in our program. namespace instructs the compiler to interpret commands according to their
standard (std) definitions.

The #define directive is known in computer programming as a macro, and it is substitutionary
in nature: in this case it instructs the compiler to substitute 10 for any instance of MAX found in
the rest of the code. In this program, the function of MAX is to establish the number of data points
constituting our arbitrary waveform. Such directives are useful when we wish to easily modify some
key value or word utilized multiple times in our code, simply by editing a single line defining that
key value or word.

Following the #define directive is the line of code int plot(float) which prototypes a custom
function we are calling plot. Functions in C and C++ are selected lines of code which may be
“called” to execute by other lines of code within the program, and in so doing the regular top-to-
bottom flow of execution “jumps” to the function, executes it, and then “returns” where it left off.
Some programming languages call these selected portions of code subroutines, but in C/C++ they
are called functions. The “prototype” line simply alerts the compiler that a function by the name
of plot will occur in this program, that it will accept a single floating-point (float) variable for an
“argument”, and that it will return an integer (int) variable when finished.

The actual code comprising the plot function appears at the very bottom of the listing. The
int plot(float x) labels this function and names its argument value x. The two brace symbols
({ }) surround the lines of code belonging to the plot function.

Looking back toward the top of the listing, we see another function called main. Like plot, it
has a pair of curly-brace characters preceding and following its collection of code lines, defining for
the compiler which lines of code belong to main. The main function accepts no input values, but
like the plot function it does return the integer value zero.

The next line down from the top is a declaration reserving space in the computer’s memory to
store variable data. In fact, there are multiple declarations in this program: int phase, int n, and
the one farthest toward the beginning, float array[MAX]. int refers to an integer number, while
float refers to a floating-point number. The most distinctive part of the float declaration, however,
is not the fact that it is for a floating-point variable, but rather that it is declaring an array of ten

floating-point variables, each one named wave and having a subscript value. This is analogous to
a mathematical expression using multiple variables of the same letter-name and differentiated only
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by subscript (e.g. R1, R2, R3, etc.). In this case, the ten floating-point variables in this array are
named wave[0], wave[1], wave[2], etc. through wave[9].

Arrays are very useful in C/C++ programming because they allow a set of variables to be
addressed by a subscript or index number. This program uses the ten-element wave array to store
amplitude values for ten points within the waveform’s period.

Next in the main function is a for loop, the purpose of which being to repeatedly execute some
line or lines of code according to the value of a variable. In this first for loop we prompt the user to
enter instantaneous values for the waveform at ten different points14 along its period, the variable
phase incrementing from a starting value of zero (phase = 0) in steps of one (++phase) so long as
its value is less than the maximum allowed (phase < MAX).

Here it is clear to see the utility of using an array of floating-point variables to store these
waveform values as opposed to, say, ten differently-named floating-point variables. The exact same
line of code accepting typed values from the user (cin >> wave[phase]) is re-used over and over
again, a feat made possible by the fact that the integer variable phase has a new value each time,
and therefore cin places the user’s entry into a new element of the array each time.

One more note regarding the for loop is its use of brace symbols to encapsulate multiple lines of
code to be repeatedly executed. Bear in mind that this is only necessary when multiple lines of code
are involved. If just a single line of code will be “looped” the brace symbols become unnecessary,
the single line merely has to immediately follow15 the for statement.

After the first for loop we have a set of nested loops consisting of another for loop inside of a
while loop. A for loop, as we know, repeats only as long as its variable remains within the specified
bounds. A while loop, by contrast, repeats so long as its argument (the statement within the
parentheses) is logically true. Since our while loop argument is one (which is by definition “true” in
Boolean logic), it loops forever. Within that while loop is a for loop with the exact same arguments
used in the previous for loop, serving a nearly identical purpose: incrementing the phase variable
from zero to one less than MAX to address each element of the wave array in sequential order.

The solitary line of code executed by these nested loops is a function call to our custom
plot function. With each iteration, plot(wave[phase]) sends the value stored in array element
wave[phase] to the plot function as an argument. Execution flow then jumps down to the plot

function where this argument is renamed x and used within a for loop there to print a proportionate
number of blank spaces to the computer’s console display using the cout statement. At the end
of the printed series of blank spaces, the last cout statement prints a star character (*). When
finished with the plot function, execution flow returns where it left off. As the plot function gets
repeatedly called, we end up with a repeated pattern of star characters on the console display forming
the outline of the waveform.

14Or phase angles, if we envision the waveform’s period as being a full circle, with each of the ten points being
increments of rotation about the circle’s center.

15Remember that C/C++ ignores whitespace, and due to the lack of a semicolon at the end of the for line the
compiler will “see” any immediately-following line of code as a continuation of the for line.
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The following examples show other arbitrary waveforms specified and plotted by this program.

First, a triangle wave:

Enter instantaneous value for phase index 0:10

Enter instantaneous value for phase index 1:11

Enter instantaneous value for phase index 2:12

Enter instantaneous value for phase index 3:13

Enter instantaneous value for phase index 4:14

Enter instantaneous value for phase index 5:15

Enter instantaneous value for phase index 6:14

Enter instantaneous value for phase index 7:13

Enter instantaneous value for phase index 8:12

Enter instantaneous value for phase index 9:11

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
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Next, a sawtooth wave:

Enter instantaneous value for phase index 0:10

Enter instantaneous value for phase index 1:11

Enter instantaneous value for phase index 2:12

Enter instantaneous value for phase index 3:13

Enter instantaneous value for phase index 4:14

Enter instantaneous value for phase index 5:15

Enter instantaneous value for phase index 6:16

Enter instantaneous value for phase index 7:17

Enter instantaneous value for phase index 8:18

Enter instantaneous value for phase index 9:19

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
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Next, an exponential-ramp wave:

Enter instantaneous value for phase index 0:0.0312

Enter instantaneous value for phase index 1:0.0625

Enter instantaneous value for phase index 2:0.125

Enter instantaneous value for phase index 3:0.25

Enter instantaneous value for phase index 4:0.5

Enter instantaneous value for phase index 5:1

Enter instantaneous value for phase index 6:2

Enter instantaneous value for phase index 7:4

Enter instantaneous value for phase index 8:8

Enter instantaneous value for phase index 9:16

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



Chapter 6

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

83
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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6.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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6.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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6.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Phasor

Phase angle

Complex numbers
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6.1.3 Radians

A radian is defined as that angle describing a sector of a circle, whose arc length is equal to the
radius of the circle:

1 radian

r

r

r

Based on this definition, how many radians comprise a full circle?

How many degrees are in one radian?

Radians are considered a “natural” measurement unit for angles, while degrees are “arbitrary”.
Explain why this is.

Challenges

• Calculate the angular velocity of a waveform having a frequency of 60 Hz (i.e. 60 cycles, or
revolutions, per second).
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6.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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6.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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6.2.2 Practice: complex number calculations

These complex-number arithmetic problems are presented to you, complete with answers (shown in
bold), for the purpose of practice, since nearly all AC circuit calculations will need to be performed
using complex numbers. Use these practice calculations to check your ability either to perform
these calculations “by hand” (using trigonometric functions) or your ability to use your calculator’s
complex-number functionality.

Note: electronic hand calculators and computer-based calculation programs use the proper
mathematical notation i to represent imaginary numbers rather than j. The letter j is used in
electrical engineering work in order to avoid confusion with i being misinterpreted as “current”.
Also note that calculators and software programs usually default to radians for angle measurement
rather than degrees, and will have to be configured (or converted) for degrees in order to handle the
polar-form complex quantities shown here. Check the “mode” options of your hand calculator to
ensure angles are in the correct unit and also that it will display in either rectangular or polar.

Addition and subtraction:

(5 + j6) + (2− j1) = 7+ j5

(10− j8) + (4− j3) = 14− j11

(−3 + j0) + (9− j12) = 6− j12

(3 + j5)− (0− j9) = 3+ j14

(25− j84)− (4− j3) = 21− j81

(−1500 + j40) + (299− j128) = −1201− j88

(256 15o) + (106 74o) = 31.356 30.87o

(10006 43o) + (12006 − 20o) = 1878.76 8.311o

(5226 71o)− (856 30o) = 461.236 77.94o

Multiplication and division:

(256 15o)× (126 10o) = 3006 25o

(16 25o)× (5006 − 30o) = 5006 − 5o

(5226 71o)× (336 9o) = 172266 80o

10 6 −80o

1 6 0o
= 106 − 80o

25 6 120o

3.5 6 −55o
= 7.1426 175o

−66 6 67o

8 6 −42o
= 8.256 − 71o

(3 + j5)× (2− j1) = 11+ j7

(10− j8)× (4− j3) = 16− j62

(3+j4)
(12−j2) = 0.1892+ j0.3649
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Reciprocation:

1
(15 6 60o)

= 0.06676 − 60o

1
(750 6 −38o)

= 0.001336 38o

1
(10+j3) = 0.0917− j0.0275

1
1

15 6 45o
+ 1

92 6 −25o

= 14.066 36.74o

1
1

1200 6 73o
+ 1

574 6 21o

= 425.76 37.23o

1
1

23k 6 −67o
+ 1

10k 6 −81o

= 7.013k 6 − 76.77o

1
1

110 6 −34o
+ 1

80 6 19o
+ 1

70 6 10

= 29.896 2.513o

1
1

89k 6 −5o
+ 1

15k 6 33o
+ 1

9.35k 6 45

= 5.531k 6 37.86o

1
1

512 6 34o
+ 1

1k 6 −25o
+ 1

942 6 −20

+ 1

2.2k 6 44o

= 256.46 9.181o
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Sign reversal:

−(456 70o) = 456 − 110o

−(906 − 20o) = 906 160o

−(5 + j8) = −5− j8

−(−3 + j9) = 3− j9

−(10− j15) = −10+ j15

Practical suggestions for using your calculator to perform these operations:

• Surround each complex-number quantity with parentheses when setting up arithmetic
operations; e.g., (3 + j5) * (4 - j2) instead of 3 + j5 * 4 - j2. This habit will
guarantee your calculator executes the desired order of operations rather than assert its own.
For instance, in the example given here the calculator may choose to multiply j5 by 4 and
then add on 3 and −j2 since multiplication typically precedes addition, if the two complex
numbers are not encapsulated in their own sets of parentheses.

• Store all calculated results in memory and then recall from memory when re-using those values,
rather than re-entering previously-calculated values by hand or sampling previously-calculated
values from the multi-line display. Manually re-entering values invites rounding errors and
keystroke errors in all cases, and I’ve found certain calculators (I’m looking at you, TI !) fail to
properly enter complex-number values when sampled from their multi-line displays. Getting
in the habit of using your calculator’s memory locations is an all-around good habit that will
serve you very well!

Some Texas Instruments brand calculators such as the TI-84 offer an exponential key and
imaginary (i) key which allows you to enter numbers in complex exponential form (i.e. eiθ). With
the TI-84, for example, the complex number 10 − j8 may be entered in either of the two following
forms:

(10 - i8) or (10 - 8i)

The result may be displayed in either rectangular or polar forms according to the complex-
number display mode the TI-84 calculator has been set to. In rectangular mode the displayed result
for 10 − j8 will be 10 - 8i, whereas in polar mode the displayed result will be 12.806 e−38.66i.
Note how the TI-84 uses exponential notation for polar display, where the angle (−38.66 degrees, in
this example) is an imaginary power of e.

If you wish to enter a complex number in polar form on a TI-84, you must unfortunately express
the angle in units of radians (even though the calculator is able to display the result in degrees). For
example, to enter the number 256 15o into a TI-84 calculator, you must type:

25 ei15π/180
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The fraction π/180 is the conversion factor from degrees to radians, since there are 2π radians to
a full circle, or π radians to every 180 degrees. Thus, writing 15π/180 multiplies the desired angle (15
degrees) by the conversion factor π/180 to yield a power in radians. The obligatory i simply makes
this power an imaginary quantity, which is mathematically necessary with exponential notation for
describing a complex number. It should be noted that the order of entry for the power matters little.
i15π/180 works just as well as 15iπ/180 or 15π/180i.

A time-saving step some students find useful is to save the imaginary quantity iπ/180 to a
memory location in the TI-84 such as Z. That way, they can recall that imaginary factor from
memory instead of typing the whole thing by hand every time they wish to enter a polar-form
complex number. Supposing the memory location Z contains iπ/180, entering the number 256 15o

becomes as simple as:

25 e15Z or 25 eZ15

It should be understood that any memory location in your calculator is suitable for storing
iπ/180, not just Z. The TI-84 calculator even provides a Θ memory location (<Alpha>-<3>) that
you may use and find easy to remember because of its common association with angles. It should
also be understood that this imaginary quantity is not the same as i or j, which the calculator
already provides a dedicated function for. The imaginary quantity we’re storing in memory for the
purpose of entering polar-notation angles contains not only i but also the π/180 conversion factor
necessary for translating your degree entry into radians.

Some calculators provide easier means of entering and displaying complex numbers in polar form.
Both the Texas Instruments TI-36X Pro and TI-89 offer an angle symbol ( 6 ) for this purpose, the
TI-36X Pro being a much less expensive and less complex calculator than the TI-89. Entering the
number 25 6 15o into one of these calculators is as easy as typing 25 6 15, and likewise the result
will be displayed in this same form when the calculator is set to “polar” complex mode.
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6.2.3 Adding sine waves

Using a computer or graphing calculator, plot the sum of these two sine waves:

�3

�1:5

0

1:5

3

What do you suppose the sum of these two sine waves will look like, seeing that they are perfectly
in-phase with each other? Hint: you will need to execute equations within a programming “loop”
that look something like this:

• y1 = sin(x)

• y2 = 2 * sin(x)

• y3 = y1 + y2
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Now do the same with these two sine waves:

�3

�1:5

0

1:5

3

What do you suppose the sum of these two sine waves will look like, seeing that they are out of
phase with each other? Hint: you will need to execute equations within a programming “loop” that
look something like this:

• y1 = sin(x)

• y2 = 2 * sin(x + 90o)

• y3 = y1 + y2

Challenges

• Many electronic calculators and computer programming languages assume trigonometric
functions require angle values in radians rather than degrees. Re-write each of the sine
calculation functions where a value of x in degrees gets converted into radians prior to executing
the sine function.
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6.2.4 Hand-plotting a sinusoidal sum

Shown here are two sine waves of equal frequency, superimposed on the same graph:

0

+1

+2

+3

+4

+5

-1

-2

-3

-4

-5

V

As accurately as possible, determine the amount of phase shift between the two waves, based on
the divisions shown on the graph.
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Also, plot a third sine wave that is the sum of the two sine waves shown based on points found
on each of the two sinusoidal curves. Again, do this as accurately as possible, based on the divisions
shown on the graph. To give an example of how you might do this, observe the following illustration:

0

+1

+2

+3

+4

+5

-1

-2

-3

-4

-5

V

e1 ≈ 1.5 V

e2 ≈ 3.5 V

e1 + e2 ≈ 5.0 V

e1 ≈ 2.6 V

e2 ≈ -2.1 V

e1 + e2 ≈ 0.5 V

Adding instantaneous
voltages here

Adding instantaneous
voltages here

Calculate the peak value of the resultant (sum) sine-wave, and compare this with the peak values
of the two original sine waves.

Challenges

• Sketch a right-triangle with side-lengths equal to the peak amplitudes of these three sine waves
(the two given voltage waveforms and their sum).
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6.2.5 Phasor addition of two AC voltages

Special types of vectors called phasors are often used to depict the magnitude and phase-shifts
of sinusoidal AC voltages and currents. Suppose that the following phasors represent the series
summation of two AC voltages, one with a magnitude of 3 Volts and the other with a magnitude of
4 Volts:

3 V

4 V (phasor)

(phasor)

Explain what each of the following phasor diagrams represents, in electrical terms:

3 4 3

4

4

3

7

1

5

Also explain the significance of these sums: that we may obtain three different values of total
voltage (7 Volts, 1 volt, or 5 Volts) from the same series-connected AC voltages. What does this
mean for us as we prepare to analyze AC circuits using the rules we learned for DC circuits?

Challenges

• In DC circuits, it is permissible to connect multiple voltage sources in parallel, so long as the
voltages (magnitudes) and polarities are the same. Is this also true for AC? Why or why not?
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6.2.6 Simple phasor diagrams

Write both the rectangular and polar expressions for all phasors shown in this diagram:

j10

-j10

j0

100-10

A

B

C

D

A =
B =
C =
D =

Next, explain how a phasor diagram might be a helpful method to check your work on certain
types of complex-number calculations.

Challenges

• How may we show the addition of two or more complex-number quantities on a phasor diagram?

• Which electrical quantities add in a series network?

• Which electrical quantities add in a parallel network?
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6.2.7 Series AC voltages

Determine the voltage between test points A and B in each of these example circuits. First, treat
all sources as DC instead of AC with DC voltage values equal to the AC (polar) magnitudes shown,
and calculate VAB as it would be registered by a DC voltmeter (with red lead on A and black lead
on B). Then, treat all sources as AC all with the same frequency with the phase angles shown and
calculate VAB , expressing that total voltage in either polar or rectangular notation:

10 V ∠  20o 15 V ∠  0o

AC voltmeter

AB

AC voltmeter

AB

120 V ∠  0o 50 V ∠  -300

AC voltmeter

A B4 + 3j V

8 - j2 V 7 V ∠  00

Challenges

• Suppose each of these sources was DC instead of AC (i.e. the polar magnitude of each became
the DC voltage value). Compute VAB given these new values
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• How would each of these answers differ, if at all, if test points A and B were reversed?
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6.2.8 Parallel AC currents

Determine the current registered by each ammeter in these example circuits. First, treat all sources
as DC instead of AC with DC current values equal to the AC (polar) magnitudes shown, and
calculate Imeter as it would be registered by a DC ammeter. Then, treat all sources as AC all with
the same frequency with the phase angles shown and calculate Imeter, expressing that total current
in either polar or rectangular notation:

AC ammeter

4 A ∠ 0 ο 5.8 A ∠  -50o

AC ammeter

17.4 A ∠  0o9.2 A ∠  -95o

AC ammeter

16 - j4 A

-6 + j11 A

18 A ∠  -5o

Challenges

• How would each of these answers differ, if at all, if the ammeter’s test leads were reversed?
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6.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.



6.3. DIAGNOSTIC REASONING 107

6.3.1 Incorrect voltage calculation

A student learning about AC circuits for the first time constructs the following resistor-capacitor
circuit in the lab:

R

C

V

Measuring 3.75 Volts AC across the resistor and 5.05 Volts across the capacitor, the student
concludes the source’s voltage must be 8.8 Volts AC. However, when they measure the source’s
voltage, their voltmeter only registers 6.29 Volts.

Identify the student’s error, and explain how they should have calculated total (source) voltage.

Challenges

• What fundamental principle of electric circuits did the student attempt to apply in adding VR

and VC? Is this principle still valid for AC circuits, or does it apply only to DC circuits?
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Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

109
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy
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B.1 First principles of learning

• Anyone can learn anything given appropriate time, effort, resources, challenges,
encouragement, and expectations. Dedicating time and investing effort are the student’s
responsibility; providing resources, challenges, and encouragement are the teacher’s
responsibility; high expectations are a responsibility shared by both student and teacher.

• Transfer is not automatic. The human mind has a natural tendency to compartmentalize
information, which means the process of taking knowledge learned in one context and applying
it to another usually does not come easy and therefore should never be taken for granted.

• Learning is iterative. The human mind rarely learns anything perfectly on the first attempt.
Anticipate mistakes and plan for multiple tries to achieve full understanding, using the lessons
of those mistakes as feedback to guide future attempts.

• Information is absorbed, but understanding is created. Facts and procedures may be
memorized easily enough by repeated exposure, but the ability to reliably apply principles
to novel scenarios only comes through intense personal effort. This effort is fundamentally
creative in nature: explaining new concepts in one’s own words, running experiments to test
understanding, building projects, and teaching others are just a few ways to creatively apply
new knowledge. These acts of making knowledge “one’s own” need not be perfect in order to
be effective, as the value lies in the activity and not necessarily the finished product.

• Education trumps training. There is no such thing as an entirely isolated subject, as all
fields of knowledge are connected. Training is narrowly-focused and task-oriented. Education
is broad-based and principle-oriented. When preparing for a life-long career, education beats
training every time.

• Character matters. Poor habits are more destructive than deficits of knowledge or skill.
This is especially true in collective endeavors, where a team’s ability to function depends on
trust between its members. Simply put, no one wants an untrustworthy person on their team.
An essential component of education then, is character development.

• People learn to be responsible by bearing responsibility. An irresponsible person is
someone who has never had to be responsible for anything that mattered enough to them.
Just as anyone can learn anything, anyone can become responsible if the personal cost of
irresponsibility becomes high enough.

• What gets measured, gets done. Accurate and relevant assessment of learning is key to
ensuring all students learn. Therefore, it is imperative to measure what matters.

• Failure is nothing to fear. Every human being fails, and fails in multiple ways at multiple
times. Eventual success only happens when we don’t stop trying.
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B.2 Proven strategies for instructors

• Assume every student is capable of learning anything they desire given the proper conditions.
Treat them as capable adults by granting real responsibility and avoiding artificial incentives
such as merit or demerit points.

• Create a consistent culture of high expectations across the entire program of study.
Demonstrate and encourage patience, persistence, and a healthy sense of self-skepticism.
Anticipate and de-stigmatize error. Teach respect for the capabilities of others as well as
respect for one’s own fallibility.

• Replace lecture with “inverted” instruction, where students first encounter new concepts
through reading and then spend class time in Socratic dialogue with the instructor exploring
those concepts and solving problems individually. There is a world of difference between
observing someone solve a problem versus actually solving a problem yourself, and so the
point of this form of instruction is to place students in a position where they cannot passively
observe.

• Require students to read extensively, write about what they learn, and dialogue with you and
their peers to sharpen their understanding. Apply Francis Bacon’s advice that “reading maketh
a full man; conference a ready man; and writing an exact man”. These are complementary
activities helping students expand their confidence and abilities.

• Use artificial intelligence (AI) to challenge student understanding rather than merely provide
information. Find productive ways for AI to critique students’ clarity of thought and of
expression, for example by employing AI as a Socratic-style interlocutor or as a reviewer of
students’ journals. Properly applied, AI has the ability to expand student access to critical
review well outside the bounds of their instructor’s reach.

• Build frequent and rapid feedback into the learning process so that students know at all times
how well they are learning, to identify problems early and fix them before they grow. Model the
intellectual habit of self-assessing and self-correcting your own understanding (i.e. a cognitive
feedback loop), encouraging students to do the same.

• Use “mastery” as the standard for every assessment, which means the exam or experiment or
project must be done with 100% competence in order to pass. Provide students with multiple
opportunity for re-tries (different versions of the assessment every time).

• Require students to devise their own hypotheses and procedures on all experiments, so that the
process is truly a scientific one. Have students assess their proposed experimental procedures
for risk and devise mitigations for those risks. Let nothing be pre-designed about students’
experiments other than a stated task (i.e. what principle the experiment shall test) at the
start and a set of demonstrable knowledge and skill objectives at the end.

• Have students build as much of their lab equipment as possible: building power sources,
building test assemblies1, and building complete working systems (no kits!). In order to provide

1In the program I teach, every student builds their own “Development Board” consisting of a metal chassis with
DIN rail, terminal blocks, and an AC-DC power supply of their own making which functions as a portable lab
environment they can use at school as well as take home.
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this same “ground-up” experience for every new student, this means either previous students
take their creations with them, or the systems get disassembled in preparation for the new
students, or the systems grow and evolve with each new student group.

• Incorporate external accountability for you and for your students, continuously improving the
curriculum and your instructional methods based on proven results. Have students regularly
network with active professionals through participation in advisory committee meetings,
service projects, tours, jobshadows, internships, etc. Practical suggestions include requiring
students to design and build projects for external clients (e.g. community groups, businesses,
different departments within the institution), and also requiring students attend all technical
advisory committee meetings and dialogue with the industry representatives attending.

• Repeatedly explore difficult-to-learn concepts across multiple courses, so that students have
multiple opportunities to build their understanding.

• Relate all new concepts, whenever possible, to previous concepts and to relevant physical laws.
Challenge each and every student, every day, to reason from concept to concept and to explain
the logical connections between. Challenge students to verify their conclusions by multiple
approaches (e.g. double-checking their work using different methods). Ask “Why?” often.

• Maintain detailed records on each student’s performance and share these records privately with
them. These records should include academic performance as well as professionally relevant
behavioral tendencies.

• Address problems while they are small, before they grow larger. This is equally true when
helping students overcome confusion as it is when helping students build professional habits.

• Build rigorous quality control into the curriculum to ensure every student masters every
important concept, and that the mastery is retained over time. This includes (1) review
questions added to every exam to re-assess knowledge taught in previous terms, (2) cumulative
exams at the end of every term to re-assess all important concepts back to the very beginning of
the program, and (3) review assessments in practical (hands-on) coursework to ensure critically-
important skills were indeed taught and are still retained. What you will find by doing this is
that it actually boosts retention of students by ensuring that important knowledge gets taught
and is retained over long spans of time. In the absence of such quality control, student learning
and retention tends to be spotty and this contributes to drop-out and failure rates later in
their education.

• Finally, never rush learning. Education is not a race. Give your students ample time to digest
complex ideas, as you continually remind yourself of just how long it took you to achieve
mastery! Long-term retention and the consistently correct application of concepts are always
the result of focused effort over long periods of time which means there are no shortcuts to
learning.
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B.3 Proven strategies for students

The single most important piece of advice I have for any student of any subject is to take
responsibility for your own development in all areas of life including mental development. Expecting
others in your life to entirely guide your own development is a recipe for disappointment. This is
just as true for students enrolled in formal learning institutions as it is for auto-didacts pursuing
learning entirely on their own. Learning to think in new ways is key to being able to gainfully use
information, to make informed decisions about your life, and to best serve those you care about.
With this in mind, I offer the following advice to students:

• Approach all learning as valuable. No matter what course you take, no matter who you
learn from, no matter the subject, there is something useful in every learning experience. If
you don’t see the value of every new experience, you are not looking closely enough!

• Continually challenge yourself. Let other people take shortcuts and find easy answers to
easy problems. The purpose of education is to stretch your mind, in order to shape it into a
more powerful tool. This doesn’t come by taking the path of least resistance. An excellent
analogy for an empowering education is productive physical exercise: becoming stronger, more
flexible, and more persistent only comes through intense personal effort.

• Master the use of language. This includes reading extensively, writing every day, listening
closely, and speaking articulately. To a great extent language channels and empowers thought,
so the better you are at wielding language the better you will be at grasping abstract concepts
and articulating them not only for your benefit but for others as well.

• Do not limit yourself to the resources given to you. Read books that are not on the
reading list. Run experiments that aren’t assigned to you. Form study groups outside of class.
Take an entrepreneurial approach to your own education, as though it were a business you
were building for your future benefit.

• Express and share what you learn. Take every opportunity to teach what you have learned
to others, as this will not only help them but will also strengthen your own understanding2.

• Realize that no one can give you understanding, just as no one can give you physical
fitness. These both must be built.

• Above all, recognize that learning is hard work, and that a certain level of

frustration is unavoidable. There are times when you will struggle to grasp some of these
concepts, and that struggle is a natural thing. Take heart that it will yield with persistent and
varied3 effort, and never give up! That concepts don’t immediately come to you is not a sign
of something wrong, but rather of something right: that you have found a worthy challenge!

2On a personal note, I was surprised to learn just how much my own understanding of electronics and related
subjects was strengthened by becoming a teacher. When you are tasked every day with helping other people grasp
complex topics, it catalyzes your own learning by giving you powerful incentives to study, to articulate your thoughts,
and to reflect deeply on the process of learning.

3As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.
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B.4 Design of these learning modules

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits. Every effort has been made to embed the following instructional and
assessment philosophies within:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment4 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic5 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity6 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

4In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

5Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

6This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

To high standards of education,

Tony R. Kuphaldt
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Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

119
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word

processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

26-28 August 2024 – divided the Introduction chapter into sections, one with recommendations for
students, one with a listing of challenging concepts, and one with recommendations for instructors.
Also edited image 3152 to show dashed projection lines.

25 January 2024 – added practical suggestions for calculator usage to the end of the “Practice:
complex number calculations” Quantitative Reasoning question.

13 September 2023 – added comments about scalar numbers into the Simplified and Full Tutorials.
Also corrected a grammatical error, replacing the nonexistent word “incongruency” with incongruity.

30 August 2023 – clarified j versus i in the Simplified Tutorial chapter.

3 February 2023 – clarified confusion with “amplitude” versus “magnitude” which included editing
graphics too (e.g. image 0412, image 0414, image 0416).

26 January 2023 – minor edits to the Full Tutorial, and some corrections to instructor notes.

28 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

18 May 2022 – placed the “Practice: complex number calculations” questions into its own file
(case complexpractice.latex) so it may be shared amongst multiple modules.

3 February 2022 – added another part to the “Simple phasor diagrams” Quantitative Reasoning
question. Also added a short amount of text to the Full Tutorial describing vector addition (for the
3-4-5 triangle).
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23 December 2021 – minor addition to the Tutorial commenting on the use of cosine and sine
functions to convert from polar into rectangular forms.

8 May 2021 – commented out or deleted empty chapters.

18 March 2021 – corrected multiple instances of “volts” that should have been capitalized “Volts”.

28 January 2021 – divided the Full Tutorial chapter into separate sections.

10 January 2021 – minor additions to both the Simplified and Full Tutorial chapters commenting
on + and − polarity marks applied to AC voltage sources.

29 October 2020 – added some Challenge questions.

5 October 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

6 May 2020 – added reference to Charles Steinmetz’s seminal paper on complex quantities in AC
circuits.

20 April 2020 – added a another Programming Reference section using C++ to plot two sinusoidal
waveforms with their own phase shifts.

26 March 2020 – added source voltage measurement to the “Incorrect voltage calculation”
Diagnostic Reasoning problem.

25 March 2020 – added tips on calculator usage for the Practice problem on complex number
calculations.

8 March 2020 – added some Quantitative Reasoning problems.

5 March 2020 – edited the Simplified Tutorial, adding the “longhand” voltage summation example
at the very end after showing how a suitable hand calculator can do it automatically.

10 January 2020 – started writing the reference awgplot section for the Programming References
chapter.

5 January 2020 – added bullet-list of relevant programming principles to the Programming
References section.

4 January 2020 – added Programming References chapter, with section on plotting simple sine
waves to the console.

23 May 2019 – added some clarifying comments to the Full Tutorial, and added more questions.

22 May 2019 – added questions.

21 May 2019 – added Derivation on Euler’s Relation, showing how ejx = cosx+ j sinx.
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August 2018 – added content to the Introduction.

June 2018 – edited oscilloscope image to show triggering slope.

May 2018 – added a Simplified Tutorial chapter.

September 2017 – document first created.
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