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Chapter 1

Introduction

1.1 Recommendations for students

A programmable logic controller or PLC is a specialized form of industrial computer, designed to
be programmed by the end user for many different types of discrete and continuous process control
applications. The word “programmable” in its name reveals just why PLCs are so useful: the end-
user is able to program, or instruct, the PLC to execute virtually any control function imaginable.

PLCs were introduced to industry as electronic replacements for electromechanical relay controls.
In applications where relays typically control the starting and stopping of electric motors and other
discrete output devices, the reliability of an electronic PLC meant fewer system failures and longer
operating life. The re-programmability of a PLC also meant changes could be implemented to the
control system strategy must easier than with relay circuits, where re-wiring was the only way to
alter the system’s function. Additionally, the computer-based nature of a PLC meant that process
control data could now be communicated by the PLC over networks, allowing process conditions to
be monitored in distant locations, and by multiple operator stations.

The legacy of PLCs as relay-replacements is probably most evident in their traditional
programming language: a graphical convention known as a Ladder Diagram. Ladder Diagram PLC
programs resemble ladder-style electrical schematics, where vertical power “rails” convey control
power to a set of parallel “rung” circuits containing switch contacts and relay coils. A human
being programming a PLC literally draws the diagram on the screen, using relay-contact symbols
to represent instructions to read data bits in the PLC’s memory, and relay-coil symbols to represent
instructions writing data bits to the PLC’s memory. When executing, these graphical elements
become colored when “conductive” to virtual electricity, thereby indicating their status to any human
observer of the program. This style of programming was developed to make it easier for industrial
electricians to adapt to the new technology of PLCs. While Ladder Diagram programming definitely
has limitations compared to other computer programming languages, it is relatively easy to learn
and diagnose, which is why it remains popular as a PLC programming language today.

While ladder diagram programming was designed to be simple by virtue of its resemblance to
relay ladder-logic schematic diagrams, this very same resemblance often creates problems for students
encountering it for the very first time. A very common misconception is to think that the contact and
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coil symbols shown on the editing screen of the PLC programming software are somehow identical
or at least directly representative of real-world contacts and coils wired to the PLC. This is not true.
Contacts and coils shown on the screen of PLC programming software applications are instructions
for the PLC to follow, and their logical states depend both on how they are drawn in the program
and upon their related bit states in the PLC’s memory.

The relationship between a discrete sensor (e.g. switch) and the colored state of a ladder diagram
element inside of a PLC follows a step-by-step chain of causation:

1. Physical closure of the discrete switch causes electricity to flow through the switch’s contact.

2. This electrical current flows through the PLC input terminal wired to that switch.

3. This energization causes a corresponding bit in the PLC’s memory to become “high” (1).

4. Any Ladder Diagram “contact” instruction associated with that bit will become “actuated”. If
the contact instruction is normally-open, the “1” bit state will “close” the contact instruction
and cause it to be colored. If the contact instruction is normally-closed, the “1” bit state will
“open” is and cause it to be un-colored.

5. If all elements in a rung of the Ladder Diagram program are colored, the final instruction (at
the far right end of the rung) will become activated and will cause it to fulfill its function.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to test whether a switch is normally-open
or normally-closed?

• How might an experiment be designed and conducted to test the “scan time” of a PLC
program?

• What are some practical applications of PLCs?

• What is the “normal” status of a switch?

• How does a “two-out-of-three” alarm or shutdown system function?

• What is a “nuisance trip”?

• Are there applications where a hard-wired relay control system might actually be better than
a system using a PLC?

• What purpose is served by the color highlighting feature of PLC program editing software?

• What is an HMI panel, and where would one be useful?

• How might you alter one of the example analyses shown in the text, and then determine the
behavior of that altered circuit?

• Devise your own question based on the text, suitable for posing to someone encountering this
subject for the first time
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1.2 Challenging concepts related to programmable logic
controllers (PLCs)

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Normal status of a switch – to say that a switch is “normally open” or “normally closed”
refers to its electrical state when at rest, and not necessarily the state you will typically find
the switch in. The root of the confusion here is the word normal, which most people take to
mean “typical” or “ordinary”. In the case of switches, though, it refers to the zero-stimulation
status of the switch as it has been manufactured. In the case of PLCs it refers to the status
of a “virtual switch” when its controlling bit is 0.

• Seal-in contacts – the simplest and most common way to make momentary-contact “Start”
and “Stop” switches latch a motor’s state on and off is to wire an auxiliary contact from the
contactor in parallel with the Start switch to “seal in” that circuit once the contactor energizes.
The same logical structure may be implemented in PLC ladder-diagram programming by
placement of a virtual contact in parallel with the initiating contact, that additional contact
being controlled by the coil of that same rung. This, however, complicates analysis of the circuit
by granting it states. State-based logic is more complex than combinational logic because the
status of state-based logic depends not only on input conditions but also on past history. This
means a person must analyze the PLC program before and after input condition changes to
determine how it will respond.

• Sourcing versus Sinking output currents – a common misconception is that since PLC
outputs are called “outputs” it must mean that current only ever exits those terminals. This is
untrue. All that “output” actually signifies is the fact that the PLC is outputting information
consisting of voltage values measured between that terminal and ground. Sometimes the
assertion of an “on” state requires that the PLC output channel actually draws current in
through its “output” terminal!
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment – Interpret elements of a real PLC ladder-logic program such as those shown
in the Simplified and Full Tutorial chapters, including identification of virtual coils, virtual
contacts (normally-open and normally-closed), color-highlighting, and associated statuses of
those elements based on color highlighting.

• Outcome – Apply the concept of “normal” contact status to real and virtual contacts in PLC
systems

Assessment – Predict the status of every PLC program virtual contact and PLC program
coil in a ladder-style diagram for various input switch state combinations. Good starting
points include the Case Tutorial section “Example: NAND function in a PLC” as well as the
two-out-of-three water flow alarm system shown in the Simplified Tutorial chapter.

• Outcome – Properly associate physical switch states with their associated PLC bit states,
PLC virtual contact states, PLC virtual coil states, and PLC output states in a PLC-controlled
system.

Assessment – Determine PLC bit states based on given physical switch stimuli in a
schematic diagram; e.g. pose problems in the form of the “Determining bit statuses from
switch conditions” Conceptual Reasoning question.

Assessment – Determine physical switch stimuli based on given PLC bit states in a
schematic diagram; e.g. pose problems in the form of the “Determining necessary switch
conditions for bit statuses” Conceptual Reasoning question.

Assessment – Determine PLC ladder-diagram program element coloring based on given
physical switch stimuli in a schematic diagram; e.g. pose problems in the form of the
“Determining color highlighting from switch conditions” Conceptual Reasoning question.

Assessment – Determine PLC bit states based on color-highlighting shown in a live view
of a PLC’s ladder-diagram program; e.g. pose problems in the form of the “Determining bit
statuses from color highlighting”.

Assessment – Determine physical switch stimuli based on color-highlighting shown in a live
view of a PLC’s ladder-diagram program; e.g. pose problems in the form of the “Determining
process switch stimuli from color highlighting” Conceptual Reasoning question.
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• Outcome – Sketch wire connections necessary to interface a PLC to a controlled process

Assessment – Sketch wire placement in a pictorial diagram showing how switches would
connect to the input channels of a PLC and how loads would connect to the output channels
of the same PLC; e.g. pose problems in the form of the “Sketching wires to PLC discrete I/O”
Conceptual Reasoning question.

• Outcome – Diagnose a fault within a PLC-controlled system

Assessment – Identify possible faults to account for a system’s improper function based on
an examination of the color highlighting in a live view of the PLC’s ladder-diagram program;
e.g. pose problems in the form of the “Troubleshooting motor control program” and “Motor
starter diagnosis from color highlighting” Diagnostic Reasoning questions.

Assessment – Identify possible faults to account for a system’s improper function based on
an examination of the I/O status indicators on the front of the PLC; e.g. pose problems in the
form of the “Troubleshooting motor control PLC from I/O indicators” Diagnostic Reasoning
question.

• Outcome – Independent research

Assessment – Locate PLC I/O module datasheets and properly interpret some of the
information contained in those documents including number of I/O channels, voltage and
current limitations, sourcing versus sinking capability, etc.
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Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?
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2.1 Example: NAND function in a PLC
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0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Programmable Logic Controller (PLC)

+
−VS

A

B

IN2 IN5

OUT3

C1

C1

OUT

RLL program display

"Virtual" contacts and coils
inside the PLC processor’s
memory

A

B
OUT

A B OUT

0

0

0

01

1

1 1

1

1

1

0

NAND function

Switch A pressed
Switch B pressed

PLC bit states:

OUT3 = 0
C1   = 1
IN5  = 1
IN2  = 1
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2.2 Example: simple PLC comparisons

The following illustration shows wiring and a sample relay ladder logic (RLL) program for an Allen-
Bradley MicroLogix 1000 PLC:

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

LED (with dropping resistor)

Toggle switch

Ladder-Diagram program written to PLC:

I:0

0 1

I:0 O:0

0

END

Allen-Bradley

MicroLogix
1000

Note how Allen-Bradley I/O is labeled in the program: input bits designated by the letter I and
output bits designated by the letter O.

In order to energize the LED, the switch connected to input terminal 0 must be off (open) and
the switch connected to input terminal 1 must be on (closed).
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The following illustration shows wiring and a sample relay ladder logic (RLL) program for a
Siemens Simatic S7-200 PLC:

LED (with dropping resistor)

Toggle switch

Ladder-Diagram program written to PLC:

END

Port 0Port 1

SIEMENS
SIMATIC
S7-200

RUN

STOP

SF/DIAG

Q0

I0

.0 .1 .2 .3 .4 .5 .6 .7

I1

.0 .1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 .6 .7

Q1

.0 .1

CPU 224XP

DC/DC/DC

M L+ DC1M 1L+ 0.0 0.1 0.2 0.3 0.4 0.5 0.62M 2L+ 0.7 1.0 1.1

M L+1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2M 1.0 1.1 1.2 1.3 1.4 1.5

24 VDC

I0.0

I0.1

Q0.0

Note how Siemens I/O is labeled in the program: input bits designated by the letter I and output
bits designated by the letter Q.

In order to energize the LED, either the switch connected to input terminal 0.0 must be on
(closed) or the switch connected to input terminal 0.1 must be off (open).
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The following illustration shows wiring and a sample relay ladder logic (RLL) program for a
Koyo CLICK PLC:

LED (with dropping resistor)

Toggle switch

Ladder-Diagram program written to PLC:

END

24 VDC

RS-485

LG

C1

X1

AD1V

AD1I

AD2V

AD2I

ACOM

DA1V

DA1I

DA2V

DA2I

CLICK

X2

X3

X4

C2

Y1

Y2

Y3

Y4

+V

C0-02DD1-D

Koyo

PWR

RUN

ERR

TX1

RX1

TX2

RX2

RUN

STOP

PORT 1

PORT 2

TX3

RX3

PORT 3

0 24V

X1 X2

X1X2

Y1

Note how Koyo I/O is labeled in the program: input bits designated by the letter X and output
bits designated by the letter Y.

In order to energize the LED, at least one of the following conditions must be met:

• X1 switch turned on (closed) and X2 switch turned off (open)

• X2 switch turned on (closed) and X1 switch turned off (open)

Either the switch connected to input terminal 0.0 must be on (closed) or the switch connected
to input terminal 0.1 must be off (open).
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2.3 Example: high-pressure PLC-based alarm

Step #1 – fluid pressure inside the process vessel is low, and the alarm lamp is de-energized:

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

Personal
computer
display

Com NC NO

Pressure switch

120 VAC "line" power

L1 L2

X4 X1 Y5

Y5

Impulse tube connects
to process vessel

Alarm reset pushbutton High pressure
alarm lamp

(NO contacts)

Trip point = 270 PSI

(Ladder Diagram program)

< 270 PSI
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Step #2 – the pressure switch detects a high fluid pressure condition, triggering the PLC to energize
the alarm lamp:

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

Personal
computer
display

Com NC NO

Pressure switch

120 VAC "line" power

L1 L2

X4 X1 Y5

Y5

Impulse tube connects
to process vessel

Alarm reset pushbutton High pressure
alarm lamp

(NO contacts)

Trip point = 270 PSI

(Ladder Diagram program)

> 270 PSI
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Step #3 – fluid pressure decreases below the pressure switch’s trip point, but the PLC maintains
power to the alarm lamp to signify that a high-pressure event happened:

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

Personal
computer
display

Com NC NO

Pressure switch

120 VAC "line" power

L1 L2

X4 X1 Y5

Y5

Impulse tube connects
to process vessel

Alarm reset pushbutton High pressure
alarm lamp

(NO contacts)

Trip point = 270 PSI

(Ladder Diagram program)

< 270 PSI
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Step #4 – a human operator presses the “Alarm reset” pushbutton to de-energize the alarm lamp:

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

Personal
computer
display

Com NC NO

Pressure switch

120 VAC "line" power

L1 L2

X4 X1 Y5

Y5

Impulse tube connects
to process vessel

Alarm reset pushbutton High pressure
alarm lamp

(NO contacts)

Trip point = 270 PSI

(Ladder Diagram program)

< 270 PSI

Press
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Step #5 – the lamp remains de-energized, awaiting another high-pressure event before energizing
again:

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

Personal
computer
display

Com NC NO

Pressure switch

120 VAC "line" power

L1 L2

X4 X1 Y5

Y5

Impulse tube connects
to process vessel

Alarm reset pushbutton High pressure
alarm lamp

(NO contacts)

Trip point = 270 PSI

(Ladder Diagram program)

< 270 PSI
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2.4 Example: PLC output statuses from process switch
stimuli

Suppose we have a Siemens S7-200 PLC connected to a pair of process switches and lamps as shown
in this illustration:

Port 0Port 1

SIEMENS
SIMATIC
S7-200

RUN

STOP

SF/DIAG

Q0

I0

.0 .1 .2 .3 .4 .5 .6 .7

I1

.0 .1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 .6 .7

Q1

.0 .1

CPU 224XP

DC/DC/DC

M L+ DC1M 1L+ 0.0 0.1 0.2 0.3 0.4 0.5 0.62M 2L+ 0.7 1.0 1.1

M L+1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2M 1.0 1.1 1.2 1.3 1.4 1.5

24 VDC

35 PSI

2.2 feet

Red

Green

We happen to know that the fluid pressure is 30 PSI and the fluid level is 4 feet. The PLC’s
program is as follows:

I0.7 I1.2

Q0.1

Q0.3

Q0.3

With pressure being below the switch’s trip point, we know that pressure switch will be in its
“normal” (resting) state which happens to be closed. This closed status energizes input I1.2, setting
that bit inside the PLC’s memory to a value of one (1). This 1 bit status actuates the normally-open
I:1.2 contact instruction, causing it to close (i.e. become colored).

With level being above the switch’s trip point, we know that level switch will be in its “actuated”
(non-resting) state which happens to be closed. This closed status energizes input I0.7, setting that
bit inside the PLC’s memory to a value of one (1). This 1 bit status actuates the normally-open
I:0.7 contact instruction, causing it to close (i.e. become colored).

With both of those PLC contact instructions in the top rung being colored, color makes it to
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coil Q0.3, setting that bit to a 1 state. Discrete output Q0.3 becomes energized, causing the Green
lamp to energize as well. The same 1 bit status of Q0.3 prompts the normally-closed Q0.3 contact
instruction to open (i.e. become un-colored), thereby preventing color from reaching coil Q0.1. This
de-energizes output Q0.1 and makes the Red lamp de-energized.
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2.5 Example: PLC process switch statuses from contact
status coloring

The following illustration shows a Koyo “CLICK” PLC connected to three process switches and one
lamp, with the live status of each PLC instruction shown as well:

RS-485

LG

C1

X1

AD1V

AD1I

AD2V

AD2I

ACOM

DA1V

DA1I

DA2V

DA2I

CLICK

X2

X3

X4

C2

Y1

Y2

Y3

Y4

+V

C0-02DD1-D

Koyo

PWR

RUN

ERR

TX1

RX1

TX2

RX2

RUN

STOP

PORT 1

PORT 2

TX3

RX3

PORT 3

0 24V

24 VDC

Pressure

Flow

Temperature

X1 X2 X3 Y1

Based on the displayed color highlighting of the PLC program’s virtual contacts, we may conclude
the following:

• The X1 contact instruction is colored which means it is closed. It is also drawn as normally-
closed, and for a normally-closed PLC contact instruction to be closed the bit controlling it
must be a zero (0). This means the X1 input must be de-energized, which in turn means the
pressure switch contact must be open. Since the pressure switch is normally-closed, in order
to be in the open state we must have a high pressure condition.

• The X2 contact instruction is colored which means it is closed. It is drawn as normally-open,
and for a normally-open PLC contact instruction to be closed the bit controlling it must be
a one (1). This means the X2 input must be energized, which in turn means the flow switch
contact must be closed. Since the flow switch is normally-open, in order to be in the closed
state we must have a high flow condition.

• The X3 contact instruction is un-colored which means it is open. It is drawn as normally-closed,
and for a normally-closed PLC contact instruction to be open the bit controlling it must be
a one (1). This means the X3 input must be energized, which in turn means the temperature
switch contact must be closed. Since the temperature switch is normally-open, in order to be
in the closed state we must have a high temperature condition.

• No color reaches the Y1 coil instruction which means its bit state will be a zero (0). This makes
the Y1 output de-energized, ensuring the lamp will be de-energized as well.
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The following illustration shows a Siemens S7-200 PLC connected to two process switches and
two lamps, with the live status of each PLC instruction shown as well:

Port 0Port 1

SIEMENS
SIMATIC
S7-200

RUN

STOP

SF/DIAG

Q0

I0

.0 .1 .2 .3 .4 .5 .6 .7

I1

.0 .1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 .6 .7

Q1

.0 .1

CPU 224XP

DC/DC/DC

M L+ DC1M 1L+ 0.0 0.1 0.2 0.3 0.4 0.5 0.62M 2L+ 0.7 1.0 1.1

M L+1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2M 1.0 1.1 1.2 1.3 1.4 1.5

24 VDC

Red

Green

110 oF

3.5 GPM Q0.1

Q0.3

Q0.3

I1.0I0.2

Based on the displayed color highlighting of the PLC program’s virtual contacts, we may conclude
the following:

• The I0.2 contact instruction is un-colored which means it is open. It is also drawn as normally-
open, and for a normally-open PLC contact instruction to be open the bit controlling it must
be a zero (0). This means the I0.2 input must be de-energized, which in turn means the flow
switch contact must be open. Since the flow switch is normally-closed, in order to be in the
open state we must have a high flow condition.

• The I1.0 contact instruction is colored which means it is closed. It is also drawn as normally-
closed, and for a normally-closed PLC contact instruction to be closed the bit controlling it
must be a zero (0). This means the I1.0 input must be de-energized, which in turn means the
temperature switch contact must be open. Since the temperature switch is normally-open, in
order to be in the open state we must have a low temperature condition.

• No color reaches the Q0.3 coil instruction which means its bit state will be a zero (0). This
makes the Q0.3 output de-energized, ensuring the Green lamp will be de-energized as well.

• Color does reach the Q0.1 coil instruction which means its bit state will be a one (1). This
makes the Q0.1 output energized, ensuring the Red lamp will be energized as well.
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The following illustration shows an Allen-Bradley MicroLogix PLC connected to three process
switches and a lamp, with the live status of each PLC instruction shown as well:

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

Level

Temperature

Flow

I:0 O:0

30

I:0 I:0

2 1

Based on the displayed color highlighting of the PLC program’s virtual contacts, we may conclude
the following:

• The I:0/0 contact instruction is un-colored which means it is open. It is drawn as normally-
closed, and for a normally-closed PLC contact instruction to be open the bit controlling it
must be a one (1). This means the I:0/0 input must be energized, which in turn means the
level switch contact must be closed. Since the level switch is normally-closed, in order to be
in the closed state we must have a low level condition.

• The I:0/2 contact instruction is colored which means it is closed. It is drawn as normally-open,
and for a normally-open PLC contact instruction to be closed the bit controlling it must be a
one (1). This means the I:0/2 input must be energized, which in turn means the temperature
switch contact must be closed. Since the temperature switch is normally-open, in order to be
in the closed state we must have a high temperature condition.

• The I:0/3 contact instruction is colored which means it is closed. It is also drawn as normally-
closed, and for a normally-closed PLC contact instruction to be closed the bit controlling it
must be a zero (0). This means the I:0/3 input must be de-energized, which in turn means
the flow switch contact must be open. Since the flow switch is normally-open, in order to be
in the open state we must have a low level condition.

• No color reaches the O:0/1 coil instruction which means its bit state will be a zero (0). This
makes the O:0/1 output de-energized, ensuring the lamp will be de-energized as well.



2.6. EXAMPLE: ARDUINO VERSUS PLC DUAL-LED CONTROL 25

2.6 Example: Arduino versus PLC dual-LED control

An Arduino is a popular model of microcontroller designed for student and hobbyist use, where
text-based code stored in the microcontroller’s memory dictates how it will respond to input signals
to control devices connected to its outputs.

Here we see a partial wiring diagram and Sketch-language code causing an Arduino Nano
microcontroller to control the states of two light-emitting diodes (LEDs) when a pushbutton switch
is pressed and released:

Pushbutton switch wire

wire

Programming
port

Light-emitting diodes
(LEDs)

wire

Personal
computer
display

T
X

R
X

R
S

T

G
N

D

G
N

D

V
IN

R
S

T

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

5V A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

R
E

F

3.3V

D
13

A
rduino
N

ano

T
X

R
X

O
N

L

int button = 0;         // variable to store the read value

void setup() {
  pinMode(12, OUTPUT);  // sets digital pin 12 as an output
  pinMode(13, OUTPUT);  // sets digital pin 13 as an output
  pinMode(5, INPUT);    // sets digital pin 5 as an input
}

void loop() {
  button = digitalRead(5);   // read the input pin
  digitalWrite(13, button);  // writes pin 13 LED state same
  digitalWrite(12, !button); // writes pin 12 LED state opposite
}

(Sketch code)

Pressing the pushbutton switch energizes pin D5, and that electrically-energized state is read
as a “1” value and stored in the button variable. This same “1” value gets written to pin D13 to
energize that LED, while pin D12 gets the opposite value (“0”) written to it to de-energize its LED.

Releasing the pushbutton switch de-energizes pin D5, causing a “0” value to be stored in the
button variable. This same “0” value gets written to pin D13 to de-energize that LED, while pin
D12 gets the opposite value (“1”) written to it to energize its LED.
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A Programmable Logic Controller or PLC is a special-purpose industrial computer where code
stored in the PLC’s memory dictates how it will respond to input signals to control devices connected
to its outputs. The most common programming language for PLCs is ladder diagram which resembles
a certain type of electrical wiring diagram, designed that way to make it familiar to electricians.

Here we see a partial wiring diagram and ladder-diagram code causing a PLC to control the
states of two light-emitting diodes (LEDs) when a pushbutton switch is pressed and released:

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

Personal
computer
display

(Ladder Diagram program)

Y1X1

Pushbutton switch

wire wire

Light-emitting diodes
(LEDs)

X1 Y4

wire

Pressing the pushbutton switch energizes input X1, and that electrically-energized state is read
as a “1” value and stored in the PLC’s X1 variable. This “1” value causes the normally-open
virtual switch contact to close and activate output Y1 to turn on that LED, and also causes the
normally-closed virtual switch contact to open and de-activate output Y4 to turn off that LED.

Releasing the pushbutton switch de-energizes input X1 and clears the X1 variable to a “0” value,
causing both of the virtual switch contacts to return to their resting states, de-activating output Y1
and re-activating output Y4.
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2.7 Example: Arduino versus PLC logic functions

An AND function is where multiple conditions all must be “true” in order to generate a response.
An OR function is where just one of those multiple conditions need be “true” to make the same
response. The following Arduino program implements both of these logical functions, with one LED
designated for each and with three pushbutton switches providing the multiple conditions (inputs):

wire

wire

Programming
port

Light-emitting diodes
(LEDs)

wire

Personal
computer
display
(Sketch code)

wire

wire

Pushbutton switches

int A, B, C;            // variables to store the read values

void setup() {
  pinMode(12, OUTPUT);  // sets digital pin 12 as an output
  pinMode(13, OUTPUT);  // sets digital pin 13 as an output
  pinMode(5, INPUT);    // sets digital pin 5 as an input
  pinMode(6, INPUT);    // sets digital pin 6 as an input
  pinMode(7, INPUT);    // sets digital pin 7 as an input
}

void loop() {
  A = digitalRead(5);        // reads input pin 5 as ’A’
  B = digitalRead(6);        // reads input pin 6 as ’B’
  C = digitalRead(7);        // reads input pin 7 as ’C’

  if (A && B && C)
    digitalWrite(13, 1);     // turns on pin 13 LED

  else 
    digitalWrite(13, 0);     // turns off pin 13 LED

  if (A || B || C)
    digitalWrite(12, 1);     // turns on pin 12 LED

  else 
    digitalWrite(12, 0);     // turns off pin 12 LED
}

T
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R
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R
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In this program the LED connected to Arduino pin 13 represents the result of an AND function
for the three inputs, while the LED connected to pin 12 represents the result of an OR function.
Pressing any switch causes pin 12 LED to energize, but all three must be pressed simultaneously to
energize pin 13.
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PLCs also implement AND and OR functions, but do so by connecting their virtual switches
either in “series” (all in a row) or in “parallel”, respectively:

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

Personal
computer
display

(Ladder Diagram program)

wire wire

Light-emitting diodes
(LEDs)wire

Pushbutton switches

wire

wire

Y1X1

X1 Y4

X2 X3

X2

X3

In this program the LED connected to PLC output Y1 represents the output of an AND function
for the three inputs, while the LED connected to output Y4 represents the output of an OR function.
Pressing any switch causes the Y4 LED to energize, but all three must be pressed simultaneously to
energize Y1.
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2.8 Example: Arduino versus PLC on-delay timer

An “on-delay” timer is one where you electrically activate the timer, but instead of turning on an
LED or other device immediately, it delays for a set time before turning it on. Here we see a partial
wiring diagram and Sketch-language code causing an Arduino Nano microcontroller to delay the
turn-on of a light-emitting diode (LED) when a pushbutton switch is pressed:

Pushbutton switch wire

wire

Programming
port

Personal
computer
display

T
X
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N
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R
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(Sketch code)

Light-emitting diode
(LED)

int LastIN, IN = 0;       // variables to store switch states
unsigned long timestart;  // variable to store starting time value

void setup() {
 pinMode(13, OUTPUT);     // sets digital pin 13 as an output
 pinMode(5, INPUT);       // sets digital pin 5 as an input
}

void loop() {
 LastIN = IN;                     // update old switch status
 IN = digitalRead(5);             // read new switch status
 
 if (IN == 1 && LastIN == 0)      // checks for switch press
   timestart = millis();          // initializes start time
   
 if (IN == 1 && millis() > (timestart + 3000)) // waits 3 seconds
   digitalWrite(13, 1);           // ...to turn on D13 output pin
 
 else
   digitalWrite(13, 0);           // turns off D13 output pin
}



30 CHAPTER 2. CASE TUTORIAL

Here we see a partial wiring diagram and ladder-diagram code causing a PLC to implement an
on-delay timing function:

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

Personal
computer
display

(Ladder Diagram program)

X1

Pushbutton switch

wire wire

Y1

Timer (on delay)

Setpoint = 3 sec

T1

T1



Chapter 3

Simplified Tutorial

3.1 The purpose of PLCs

To understand what a Programmable Logic Controller or PLC does, it is helpful to study industrial
control technology pre-dating PLCs. Like many technologies, PLCs were invented as a solution
to a problem, that problem being how to easily configure electrical control systems for industrial
machines and processes. An example of a PLC being used to control a portion of a municipal
wastewater treatment facility is shown below:

The three grey-colored PLCs shown above each contain a power supply module, a processor
module, and multiple input/output (“I/O”) modules where a multitude of signal wires connect.
Each one is a rugged computer designed to run all day for decades on end, faithfully controlling the
starting and stopping of pumps, conveyors, mixers, electrically-operated water valves, and alarm
units. At its essence, a PLC implements fundamental logic functions such as AND, OR, and NOT,
and are configured for any particular application by a program containing instructions on how to
behave.

Prior to the advent of PLCs, most industrial control circuits used hard-wired switches and
electromechanical relays to implement the necessary AND, OR, and NOT logical functions. The
PLC was invented as a means to implement the same logical functionality but in such a way that
the circuitry did not have to be re-wired whenever a change was necessary. Being a programmable
digital device like any digital computer, a PLC could be re-configured for a different control logic
scheme simply by altering bit-states in its digital memory.

31
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3.2 Simple relay control of a cooling system

Let’s begin with a practical example. Suppose we have a water cooling system for a large and
expensive machine such as an industrial engine, and need an alarm system to monitor the flow of
cooling water because a loss of cooling water would mean destruction for this machine. Coolant is
so critically important that three different pumps provide cooling water through separate pipes to
this same machine, the redundancy of pumps and pipes ensuring a greater level of cooling reliability.
However, if water flow to this machine ceases for any reason, we want our electrical alarm system
to activate a solenoid valve that will shut down the machine, as well as an indicator light to alert
people what happened.

If we install three flow-sensing switches with normally-closed1 contacts, one switch per water
pipe, and connect them in series with each other to feed electrical power to the solenoid valve and
to the alarm light, we will have a practical alarm-and-shutdown system for this expensive machine.
The necessary connections between these components are shown in the following “ladder diagram”
which is a common form of documentation for electrical control systems:

Water flow
switch A

Water flow Water flow
switch B switch C

Shutdown
solenoid

Alarm lamp

AC voltage source
L1 L2

All three switches will need to close in order to energize the shutdown solenoid and the alarm
lamp. This means all three water pipes’ flows would have to cease in order to have all three of these
flow switches return to their resting (“normal”) states. Thus, this system will not take action unless
and until cooling water flow stops through all three pipes. If we happen to lose cooling water flow
through any one or any two pipes at a time, the machine will still be allowed to operate and the
alarm lamp will not energize.

Such a system seems perfectly appropriate if the flow of water through just one pipe will be
enough to sufficiently cool the machine, since the only real emergency would be a loss of cooling
water flow for all three pipes.

1Recall that the “normal” status of an electrical switch is its electrical status in a condition of no physical stimulus.
That is, a “normally-closed” (NC) switch will exhibit closed contacts when it is at rest. For a water flow switch, “rest”
means a condition of no water flow. Since we want our flow switches to conduct electricity to the shutdown solenoid
when water flow stops, we need switches that close with no water flow – i.e. normally-closed flow switch contacts.
These NC contacts will be held in their “open” states by the presence of adequate water flow, which means under
regular operating conditions they will actually be open. This is what is so confusing about the “normal” status of
switches: a switch’s “normal” status may or may not happen to match its typical status when everything is operating
as it should!
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However, suppose one of these three flow switches happens to fail in an open state, remaining
open even when water flow stops. If water flow through all three pipes happens to cease while the
switch is faulted like this, the system will neither shut down the machine nor turn on the alarm
lamp as intended! By designing the circuit such that all three switches must indicate low flow before
initiating a shutdown of the machine, we have left that machine vulnerable to any of the water flow
switches failing open.

One solution to this problem is to re-configure the circuit so that the three switch contacts are
wired in parallel with each other rather than in series. This way, the machine will shut down and
the alarm lamp will energize if any one or more of the switches indicate low cooling water flow:

Water flow
switch A

Water flow

Water flow

switch B

switch C

Shutdown
solenoid

Alarm lamp

AC voltage source
L1 L2

No longer is the machine vulnerable to a single water flow switch failing open – now, all three
switches would have to fail open to leave the machine unprotected in the event of a total cooling
water outage. However, the trade-off with the parallel-wired design is that now the circuit will shut
down the machine and activate the alarm lamp even if just a single water pipe’s flow is too low, even
if there is still sufficient water flow through the other two to cool it. In other words, this newly-wired
system errs on the side of paranoia, and therefore is prone to nuisance trip events where the machine
shuts down unnecessarily.

A compromise solution to this new problem is to design the circuit in such a way that it takes two
out of three water flow switches agreeing to either let the machine run or to shut it down. This way,
a single failed-open flow switch will not jeopardize the machine, and neither will a loss of cooling
water through just one pipe result in a “nuisance trip”. However, it is electrically impossible to wire
just three switch contacts to fulfill this two-out-of-three logic function.
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3.3 2oo3 relay control of a cooling system

We can implement a two-out-of-three shutdown/alarm system by using three electromechanical
relays, letting each flow switch activate one relay coil and then using multiple switches in each relay
wired in a series-parallel configuration to form the two-out-of-three logic:

Water flow
switch A

Water flow

Water flow

switch B

switch C

Shutdown
solenoid

Alarm lamp

AC voltage source
L1 L2

CR1

CR2

CR3

CR1 CR2

CR2 CR3

CR3CR1

Each of these control relays (CR1, CR2, and CR3) has one coil (symbolized by a circle) and two
normally-open contacts (symbolized by parallel vertical line segments), the association between coil
and contact(s) indicated by label as is standard in “ladder logic” diagrams. In the configuration
shown, the shutdown solenoid and alarm lamp energize if any two or more flow switches close, and
conversely the machine will still run if any two or more flow switches remain open. This is the
desired two-out-of-three shutdown logic.

Although this is a practical solution, it involves a fair amount of wiring between relay coils
and switch contacts, and the addition of those relays constitute more points of failure because
electromechanical relays have moving parts and therefore wear out over time. Furthermore, if we
wanted to add more features such as making the alarm lamp energize on a one-out-of-three basis
while keeping the shutdown solenoid on two-out-of-three logic, we would likely have to install relays
containing more switch contacts and of course spend significant time re-wiring everything. The
circuit as shown does indeed work, but it offers no flexibility for future changes.
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3.4 2oo3 PLC control of a cooling system

A Programmable Logic Controller is a solid-state digital computer designed to replicate the
functionality of those control relays without the inherent limitations. Each of the three water flow
switches energizes its own input terminal on the PLC (labeled with X designators). The solenoid coil
and alarm lamp connect to individual output terminals on the PLC (labeled with Y designators).
Inside the PLC is a microprocessor executing a program written in a graphical programming language
resembling relay contacts and coils, instructing it as to how and when it should activate each Y output
based on the states of the X inputs:
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Each “relay contact” inside the PLC program is actually a read instruction examining the
electrical state of its respective X input (as controlled by each flow switch), and based on that
state will either “open” or “close” its portion of the virtual circuit. Each “coil” in the PLC program
is a write instruction commanding its respective Y output to either turn on or turn off real electrical
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power to the external load. In essence, the PLC program acts like a virtual circuit passing or blocking
virtual electricity through virtual contacts to virtual coils.

A helpful feature of modern PLCs is color highlighting to show the status of these virtual switches
and virtual coils as they block or conduct imaginary electricity. For example, in a case where water
flow switches A and C are closed but switch B is open, the PLC would respond as shown below:

Water flow
switch A

Water flow

Water flow

switch B

switch C

Shutdown
solenoid

Alarm lamp

AC voltage source
L1 L2

P
L

C

X
1

X
2

X
3

X
4

X
5

X
6

L1
L2

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

P
rogram

m
ing

port
C
o
m
m
o
n

S
o
u
r
c
e

X1 X2

X2 X3

X1 X3
Personal
computer

Y1

Y5

display

In this example only the bottom “rung” of this “ladder” program has virtual continuity all the
way through to provide virtual electricity to virtual coils Y1 and Y5. On the other two rungs we see
both X1 and X3 “contacts” in closed states, but because of the non-colored X2 “contact” in each of
those two paths no virtual electricity may “flow” there.

Color highlighting is extremely useful when troubleshooting PLC-controlled systems to determine
the internal state of the PLC’s program at any time2.

2Readers familiar with text-based computer programming languages know this as the debugging feature of their



3.5. PLC FLEXIBILITY 37

3.5 PLC flexibility

Adding capabilities to a PLC-controlled system is as simple as editing its programming:
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In this modification we maintained the existing two-out-of-three logic for the shutdown function
but changed the alarm function to one-out-of-three. Had this system been controlled by physical
relays rather than a PLC, these same changes would have required new wiring, new or different

development environment, where the software will show you bit states, register values, program step, and many other
important parameters to show you what state the program is in at any given step of its execution. This is a standard
feature for PLC programming due to its diagnostic value.
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relays3, and of course time to perform all the physical work. Modifying a PLC’s program, by
contrast, requires only a few minutes to complete.

Now consider another feature change in this system, this time turning the “Alarm” lamp into an
“All-Good” lamp – illuminating when all three flow switches detect adequate water flow. As before,
all we need to change is the PLC’s programming:
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Note the use of normally-closed virtual contacts in the rung driving coil Y5. Being normally-
closed, these contacts will become colored (i.e. virtually conductive) whenever their associated input
is de-energized, and will un-color (i.e. virtually “open”) whenever their associated input is energized.
Thus, the only way coil Y5 can receive virtual electricity necessary to turn on the “All-Good” lamp
is if all three inputs (X1, X2, and X3) are de-energized, which in turn means all three water flow
switches must be held in their open states by healthy amounts of water flow.

3If the original three relays CR1, CR2, and CR2 only offered two normally-open contacts each, we would either
have to replace them with triple-pole-contact relays or added three more relays with coils paralleled to provide the
new contacts necessary for the new 1oo3 alarm function.
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To illustrate, here is the same diagram annotated to show electrical currents, PLC indicator
LEDs, and color highlighting of the PLC “contact” and “coil” instructions when all three flow
switches are held in their open states due to healthy water flow through all three pipes:
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If water flow ceases through pipe A, that flow switch will return to its “normal” closed state,
resulting in the following response from the PLC:
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If water flow ceases through both pipes A and B, those flow switches will return to their “normal”
closed states, resulting in the following response from the PLC:
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It is highly recommended as an active reading exercise to analyze all of these annotated diagrams
to fully understand the relationship between real-world switch status (open or closed), PLC input
status (energized or not), PLC virtual contact status (colored or not), PLC virtual coil status (colored
or not), PLC output status (energized or not), and finally real-world load status (energized or not).
A proper understanding of this cause-and-effect chain is the first and most important principle of
PLCs, as mastering it is key to understanding all other ladder-diagram PLC programming.
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This exploration of how a PLC may be used to replace electromechanical relays in a
shutdown/alarm control circuit describes just a small portion of a modern PLC’s capabilities. In
addition to virtual contacts and virtual coils, PLCs offer virtual timers, virtual counters, digital
communication capability, and a host of other features.

A modern trend in PLC technology is the ability to program in languages other than “ladder
diagram”. The ladder diagram language was invented for the sake of making PLC programming
easy to understand for technicians familiar with electrical wiring, but compared to many other
programming languages ladder diagram is extremely limited. So, some PLCs may be programmed
in text-based languages and/or in function blocks for increased versatility.
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3.6 Human-Machine PLC interfaces

One of the more impressive features of a PLC is its ability to communicate data over digital networks
to other PLCs, other computers, and/or to display screens so that operations personnel can visually
perceive the states of digital bits and words within the PLC. The common term to describe visual
display screens intended for use with PLCs is Human-Machine Interface or HMI. HMIs are really
nothing more than “hardened” personal computers built ruggedly and in a compact format to
facilitate their use in industrial environments. Most industrial HMI panels come equipped with
touch-sensitive screens, allowing operators to press their fingertips on displayed objects to change
screens, view details on portions of the process, etc. An example illustration of an HMI working in
conjunction with a PLC is shown here:
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A photograph of a real HMI appears next:
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Chapter 4

Full Tutorial

Programmable logic controllers are essentially nothing more than special-purpose, industrial
computers. As such, they are built far more ruggedly than an ordinary personal computer (PC),
and designed to run extremely reliable operating system software1. PLCs as a rule do not contain
disk drives, cooling fans, or any other moving parts. This is an intentional design decision, intended
to maximize the reliability of the hardware in harsh industrial environments where the PLC chassis
may be subjected to temperature extremes, vibration, humidity, and airborne particulates (dust,
fibers, and/or fumes).

1There are such things as soft PLCs, which consist of special-purpose software running on an ordinary personal
computer (PC) with some common operating system. Soft PLCs enjoy the high speed and immense memory capacity
of modern personal computers, but do not possess the same ruggedness either in hardware construction or in operating
system design. Their applications should be limited to non-critical controls where neither main process production
nor safety would be jeopardized by a control system failure.

45
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4.1 What does a PLC do?

A Programmable Logic Controller, or PLC, is a general-purpose industrial computer designed to be
easily programmed by end-user maintenance and engineering personnel for specific control functions.
PLCs have input and output channels (often hosted on removable “I/O cards”) intended to connect
to field sensor and control devices such as proximity switches, pushbuttons, solenoids, lamps, sirens,
etc. The user-written program instructs the PLC how to energize its outputs in accordance with
input conditions.

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

ProcessorPower
supply

L1

Gnd

L2/N

IN 0+
IN 0-

IN 1+
IN 1-

IN 2+
IN 2-

IN 3+
IN 3-

Input

Analog

ANL COM

ANL COM

ANL COM

ANL COM

Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Monolithic PLC

VAC 1

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

VAC 2

OUT0

Output
0
1
2
3

6
7

4
5

Individual cards may be
removed and replaced

All I/O is fixed in one PLC unit

Modular ("rack-based") PLC

PLCs were originally invented as a replacement for hard-wired relay control systems, and a
popular PLC programming language called Ladder Diagram was invented to allow personnel familiar
with relay ladder logic diagrams to write PLC programs performing the same discrete (on/off)
functions as control relays. With a PLC, the discrete functionality for any system could be altered
merely by editing the Ladder Diagram program rather than by re-wiring connections between
physical relays.

Here we will explore some of the basic functionality common to all PLCs programmed in a Ladder
Diagram language, and will do so by example. Although details of programming convention, syntax,
and symbology vary somewhat from one model of PLC to another, the basic concepts explored in
this tutorial are largely the same.
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The following diagram shows a PLC separated into three sections: (1) a discrete input card, (2)
the program space in the processor’s memory, and (3) a discrete output card :

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

Inputs IN0 through IN3 are connected to a pushbutton switch, temperature switch, pressure
switch, and limit switch, respectively. Outputs OUT0 through OUT3 connect to an indicator lamp,
electric heater, solenoid coil, and electromechanical relay coil, respectively. The input card triggers2

bits in the PLC’s memory to switch from 0 to 1 when each respective input is electrically energized,
and another set of bits in the PLC’s memory control TRIACs inside the output card to turn on when
1 and off when 0. However, with no program installed in the processor, this PLC will not actually
do anything. As the switch contacts open and close, the only thing the PLC will do is represent
their discrete states by the bits IN0 through IN3 (0 = de-energized and 1 = energized).

2Not shown in this simplified diagram are the optotransistors coupled to the LEDs inside the input card, translating
each LED’s state to a discrete logic level at the transistor to be interpreted by the PLC’s digital processor. Likewise,
another set of LEDs driven by the processor’s outputs couple to the opto-TRIACs in the output card. Optical isolation
of all I/O points is standard design practice for industrial PLCs.
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This next diagram shows the same PLC, but this time with a very simple Ladder Diagram
program running in the processor, and with stimuli applied to some of the switches:
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Inputs IN0 and IN1 are energized by their closed switches (pushbutton and temperature),
triggering those bits to “1” states in the PLC’s memory. The Ladder Diagram program consists
of two virtual “contact” instructions and two virtual “coil” instructions, the contact instructions
controlled by input bits IN1 and IN2 and the coil instructions controlling output bits OUT3 and OUT0.
Contact instruction IN1 “connects” (virtually) to coil instruction OUT3, contact IN2 connecting to
coil OUT0 similarly. Colored highlighting shows the “virtual electricity” status of these instructions,
as though they were relays being energized with real electricity. Contact instruction IN1 is colored
because it is a “normally-open” that is being stimulated into its closed state by its “1” bit status.
Contact instruction IN2 is also normally-open, but since its bit is “0” it remains uncolored, and
so is the coil it’s connected to. The end-result of this program is that the relay’s state follows the
temperature switch, and the lamp’s state follows the pressure switch.
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Things get more complex when we begin adding normally-closed contact instructions to the
program. Consider this next diagram, with updated stimuli and an expanded Ladder Diagram
program for the PLC to follow:
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The first two rungs of the program are unchanged, as are the temperature and pressure switch
statuses, and so outputs OUT3 and OUT0 do precisely what they did before. A new rung has been
added to the program, with contact instructions linked to bits IN2 and IN0, and the pushbutton
switch is no longer being pressed. Both bits IN0 and IN2 are currently “0” and so their respective
contact instructions are both in their “normal” (i.e. resting) states. The normally-closed contact
instruction IN2 is colored because it is “closed” but the OUT1 coil in that rung is uncolored because
the normally-open contact instruction IN0 is uncolored and therefore blocks virtual electricity from
reaching that coil.

Practically any logic function may be made simply by drawing virtual contact and coil
instructions controlling the flow of “virtual electricity”. We could describe the above program
in Boolean terms: OUT0 = IN2; OUT1 = (IN2)(IN0) ; OUT2 = 0 ; OUT3 = IN1.
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This next diagram shows the same PLC with a completely re-written program. The program
is now written so that the solenoid coil will energize if the limit switch makes contact, or if the
temperature is below 110o and the pushbutton is pressed, or if the pressure rises above 30 kPa and
the pushbutton is unpressed:
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All switch stimuli are the same as before, resulting in a “0” state for bit OUT2 and a
correspondingly de-energized solenoid. It should be clear to see how this program implements the
intended AND and OR functionality by means of series-connected and parallel-connected contact
instructions, respectively, with inversion (i.e. the NOT function) implemented by normally-closed
rather than normally-open contact instructions.
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The logical chain of causality from input to output on a PLC is very important to understand,
and will be represented here by a sequence of numbered statements:

1. Energization of input channels controls input bit states (no current = 0 and current = 1)

2. Bit states control the resting/actuated status of contact instructions (0 = resting and 1 =
actuated)

3. The resting/actuated status of a contact instruction, combined with its “normal” type
determines virtual conductivity (open = uncolored and closed = colored)

4. Continuous color on a rung activates that rung’s coil instruction

5. The coil’s status controls output bits (uncolored = 0 and colored = 1)

6. Output bits control energization of output channels (0 = off and 1 = on)

All PLCs follow this chain of logic precisely, and this same causality must be mentally tracked in
order to successfully analyze a Ladder Diagram program in a PLC. The most confusing part of this
for new students seems to be the relationship of contact instructions to real-world switch inputs.
Many students have an unfortunate tendency to want to directly3 associate real-world switch status
with Ladder Diagram color, and/or to believe that the “normal” status of a Ladder Diagram contact
instruction must always match the “normal” status of the real-world switch. These and other such
misconceptions are rooted in the same error, namely not deliberately following the chain of causation
from beginning to end (i.e. input energization → input bit state → contact instruction actuation →
color based on normal type and bit state → coil color → output bit state → output energization).

3For a normally-open contact instruction, this association is direct. However, for a normally-closed contact
instruction it is inverted!
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Being fully-fledged digital computers in their own right, PLCs are not limited to executing simple
Boolean functions represented by “virtual relay” contacts and coils. Other digital functions include
counters and timers. An example of a counter program is shown here:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

IN2

IN0

IN3

CTUDUp
Count

up/down

Down

Reset

OUT1

Preset =
14

The CTUD instruction is an up/down counter receiving three discrete inputs and generating one
discrete output. The program is written so that this counter instruction’s count value will increment
(i.e. count up) once for every closure of the limit switch, decrement (i.e. count down) once for every
closure of the pushbutton switch, and reset to zero if the pressure falls below 30 kPa. The output
signal (“wired” to coil OUT1) energizes the heating element if this count value reaches or exceeds the
“preset” value of 14.
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Next we see an example PLC program showcasing two timing instructions, an on-delay timer
and an off-delay timer:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

OUT1

Preset =

TON
On-delay

EN

Preset =

EN TOF
Off-delay

9 sec

5 sec

OUT0IN1

IN2

When the pressure exceeds 30 kPa and closes the pressure switch connected to input IN2, the TON
timer instruction begins counting. After 5 seconds of continuous activation, output OUT1 activates to
energize the heating element. When the pressure falls below 30 kPa, the heating element immediately
de-energizes.

When the temperature exceeds 110o and closes the temperature switch connected to input IN1,
the TOF timer instruction immediately activates its output (OUT0) to energize the indicator lamp.
When the temperature cools down below 110o, the off-delay timer begins timing and does not de-
energize the indicator lamp until 9 seconds after the temperature switch has opened.
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Both the utility and versatility of programmable logic controllers should be evident in this brief
tutorial. These are digital computers, fully programmable by the end-user in a simple instructional
language, designed to implement discrete logic functions, counting functions, timing functions, and
a whole host of other useful operations for the purpose of controlling electrically-based systems.
Originally designed to replace hard-wired electromechanical relay control circuits, PLCs are designed
to mimic the functionality of relays while providing superior reliability and reconfigurability.

PLCs are not limited to contact, coil, counter, and timer instructions, either. A typical PLC
literally offers dozens of instruction types in its set, which may be applied and combined in
nearly limitless fashion. Other types of PLC programming instructions include latch instructions
(offering bistable “set” and “reset” capability), one-shot instructions (outputting an active state
for exactly one “scan” of the PLC’s program every time the input transitions from inactive to
active), sequencers (controlling a pre-determined sequence of discrete states based on a count
value), arithmetic instructions (e.g. addition, subtraction, multiplication, division, etc.), comparison
instructions (comparing two numerical values and generating a discrete signal indicating equality,
inequality, etc.), data communication instructions (sending and receiving digital messages over a
communications network), and clock/calendar functions (tracking time and date).

One advantage of PLCs over relay circuitry which may not be evident at first inspection is the
fact that the number of virtual “contacts” and “coils” and other instructions is limited only by
how much memory the PLC’s processor has. The example programs shown on the previous pages
were extremely short, but a real PLC program may be dozens of pages long! Electromechanical
control and timing relays are, of course, limited in the number of physical switch contacts each one
offers, which in turn limits how elaborate the control system may be. For the sake of illustration,
a PLC with a single discrete input (say, IN0 wired to a pushbutton switch) may contain a program
with hundreds of virtual contacts labeled IN0 triggering all kinds of logical, counting, and timing
functions.

4.2 Types and sizes of PLCs

Large PLC systems consist of a rack into which circuit “cards” are plugged. These cards include
processors, input and output (I/O) points, communications ports, and other functions necessary
to the operation of a complete PLC system. Such “modular” PLCs may be configured differently
according to the specific needs of the application. Individual card failures are also easier to repair
in a modular system, since only the failed card need be replaced, not all the cards or the whole card
rack.

Small PLC systems consist of a monolithic “brick” containing all processor, I/O, and
communication functions. These PLCs are typically far less expensive than their modular cousins,
but are also more limited in I/O capability and must be replaced as a whole in the event of failure.

The following photographs show several examples of real PLC systems, some modular and
some monolithic. These selections are not comprehensive by any means, as there are many more
manufacturers and models of PLC than those I have photographed. They do, however, represent
some of the more common brands and models in current (2019) industrial use.
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The first photograph is of a Siemens (Texas Instruments) 505 series PLC, installed in a control
panel of a municipal wastewater treatment plant. This is an example of a modular PLC, with
individual processor, I/O, and communication cards plugged into a rack. Three racks appear in this
photograph (two completely filled with cards, and the third only partially filled):

The power supply and processor card for each rack is located on the left-hand end, with I/O
cards plugged into slots in the rest of the rack. Input devices such as switches and sensors connect by
wire to terminals on input cards, while output devices such as lamps, solenoids, and motor contactor
coils connect by wire to terminals on output cards.

One of the benefits of modular PLC construction is that I/O cards may be changed out as
desired, altering the I/O configuration of the PLC as needed. If, for example, the PLC needs to be
configured to monitor a greater number of sensors, more input cards may be plugged into the rack
and subsequently wired to those sensors. Or, if the type of sensor needs to be changed – perhaps
from a 24 volt DC sensor to one operating on 120 Volts AC – a different type of input card may be
substituted to match the new sensor(s).

In this particular application, the PLC is used to sequence the operation of self-cleaning “trash
racks” used to screen large debris such as rags, sticks, and other non-degradable items from municipal
wastewater prior to treatment. These trash racks are actuated by electric motors, the captured debris
scraped off and transported to a solid waste handling system. The motion of the trash racks, the
sensing of wastewater levels and pressures, and the monitoring of any human-operated override
controls are all managed by these PLCs. The programming of these PLCs involves timers, counters,
sequencers, and other functions to properly manage the continuous operation of the trash racks.
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The next photograph shows an Allen-Bradley (Rockwell) PLC-5 system, used to monitor and
control the operation of a large natural gas compressor. Two racks appear in this first photograph,
with different types of I/O cards plugged into each rack:

Like the Siemens 505 PLC seen previously, this Allen-Bradley PLC-5 system is fully modular
and configurable. The types and locations of the I/O cards inserted into the rack may be altered
by appropriately skilled technicians to suit any desired application. The programming of the PLC’s
processor card may also be altered if a change in the control strategy is desired for any reason.

In this particular application, the PLC is tasked with monitoring certain variables on the gas
compressor unit, and taking corrective action if needed to keep the machine productive and safe.
The automatic control afforded by the PLC ensures safe and efficient start-ups, shut-downs, and
handling of emergency events. The networking and data-logging capability of the PLC ensures that
critical data on the compressor unit may be viewed by the appropriate personnel. For this particular
compressor station, the data gets communicated from Washington state where the compressor is
located all the way to Utah state where the main operations center is located. Human operators
in Utah are able to monitor the compressor’s operating conditions and issue commands to the
compressor over digital networks.

Both the Siemens (formerly Texas Instruments) 505 and Allen-Bradley (Rockwell) PLC-5 systems
are considered “legacy” PLC systems by modern standards, the two systems in the previous
photographs being over 20 years old each. It is not uncommon to find “obsolete” PLCs still in
operation, though. Given their extremely rugged construction and reliable design, these control
systems may continue to operate without significant trouble for decades.
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A later model of PLC manufactured by Allen-Bradley was the SLC 500 series (often verbally
referred to as the “Slick 500”), also modular in design like the older PLC-5 system, although the
racks and modules of the SLC 500 design were more compact than the PLC-5. The SLC 500 rack
shown in the next photograph has 7 “slots” for processor and I/O cards to plug in to, numbered 0
through 6 (left to right):

The first three slots of this particular SLC 500 rack (0, 1, and 2) are occupied by the processor
card, an analog input card, and a discrete input card, respectively. The slots 3 and 4 are empty
(revealing the backplane circuit board and connectors for accepting new cards). The slots 5 and 6
hold discrete output and analog output cards, respectively.

A feature visible on all cards in this system are numerous LED indicators, designed to show the
status of each card. The processor card has LED indicators for “Run” mode, “Fault” conditions,
“Force” conditions (when either input or output bits have been forced into certain states by the
human programmer for testing purposes), and communication network indicators. Each discrete
I/O card has indicator LEDs showing the on/off status of each I/O bit, and the analog card has a
single LED showing that the card is powered.
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A nine-slot SLC 500 system is shown in the next photograph, controlling a high-purity water
treatment system for a biopharmaceuticals manufacturing facility. As you can see in this photograph,
not all slots in this particular rack are occupied by I/O cards either:

Some of the inputs to this PLC include water level switches, pressure switches, water flow meters,
and conductivity meters (to measure the purity of the water, greater electrical conductivity indicating
the presence of more dissolved minerals, which is undesirable in this particular process application).
In turn, the PLC controls the starting and stopping of water pumps and the switching of water
valves to manage the water purification and storage processes.
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A modern PLC manufactured by Siemens appears in this next photograph, an S7-300, which is
a different design of modular PLC. Instead of individual cards plugging into a rack, this modular
PLC design uses individual modules plugging into each other on their sides to form a wider unit:

A modern PLC manufactured by Allen-Bradley (Rockwell) is this ControlLogix 5000 system,
shown in this photograph used to control a cereal manufacturing process. The modular design of
the ControlLogix 5000 system follows the more traditional scheme of individual cards plugged into
a rack of fixed size:
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While the Siemens S7 and Rockwell ControlLogix PLC platforms represent large-scale, modular
PLC systems, there exist much smaller PLCs available for a fraction of the cost. Perhaps the least
expensive PLC on the market at this time of writing is the Koyo “CLICK” PLC series, the processor
module (with eight discrete input and six discrete output channels built in) shown in my hand (sold
for 69 US dollars in the year 2010, and with free programming software!):

This is a semi-modular PLC design, with a minimum of input/output (I/O) channels built into
the processor module, but having the capacity to accept multiple I/O modules plugged in to the
side, much like the Siemens S7-300 PLC.
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Other semi-modular PLCs expand using I/O cards that plug in to the base unit not unlike
traditional rack-based PLC systems. The Koyo DirectLogic DL06 is a good example of this type
of semi-modular PLC, the following photograph showing a model DL06 accepting a thermocouple
input card in one of its four available card slots:

This photograph shows the PLC base unit with 20 discrete input channels and 16 discrete output
channels, accepting an analog input card (this particular card is designed to input signals from
thermocouples to measure up to four channels of temperature).
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Some low-end PLCs are strictly monolithic, with no ability to accept additional I/O modules.
This General Electric Series One PLC (used to monitor a small-scale hydroelectric power generating
station) is an example of a purely monolithic design, having no “expansion” slots to accept I/O
cards:

A disadvantage of monolithic PLC construction is that damaged I/O cannot be independently
replaced. If an I/O channel on one of these PLCs becomes damaged, the entire PLC must be
replaced to fix the problem. In a modular system, the damaged I/O card may simply be unplugged
from the rack and replaced with a new I/O card. Another disadvantage of monolithic PLCs is the
inherently fixed nature of the I/O: the end-user cannot customize the I/O configuration to match
the application. For these reasons, monolithic PLCs are usually found on small-scale processes with
few I/O channels and limited potential for expansion.
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4.3 PLC hardware inputs and outputs (I/O)

Every programmable logic controller must have some means of receiving and interpreting signals from
real-world sensors such as switches, and encoders, and also be able to effect control over real-world
control elements such as solenoids, valves, and motors. This is generally known as input/output,
or I/O, capability. Monolithic (“brick”) PLCs have a fixed amount of I/O capability built into the
unit, while modular (“rack”) PLCs use individual circuit board “cards” to provide customized I/O
capability.
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The advantages of using replaceable I/O cards instead of a monolithic PLC design are numerous.
First, and most obvious, is the fact that individual I/O cards may be easily replaced in the event
of failure without having to replace the entire PLC. Specific I/O cards may be chosen for custom
applications, biasing toward discrete cards for applications using many on/off inputs and outputs,
or biasing toward analog cards for applications using many 4-20 mA and similar signals. Some PLCs
even offer the feature of hot-swappable cards, meaning each card may be removed and a new one
inserted without de-energizing power to the PLC processor and rack. Please note that one should
not assume any system has hot-swappable cards, because if you attempt to change out a card “live”
in a system without this feature, you run the risk of damaging the card and/or the rest of the unit
it is plugged in to!
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Some PLCs have the ability to connect to processor-less remote racks filled with additional I/O
cards or modules, thus providing a way to increase the number of I/O channels beyond the capacity
of the base unit. The connection from host PLC to remote I/O racks usually takes the form of a
special digital network, which may span a great physical distance:
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Remote I/O rack

Network
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An alternative scheme for system expansion is to network multiple PLCs together, where each
PLC has its own dedicated rack and processor. Through the use of communication instructions,
one PLC may be programmed to read data from and/or write data to another PLC, effectively
using the other PLC as an extension of its own I/O. Although this method is more expensive than
remote I/O (where the remote racks lack their own dedicated processors), it provides the capability
of stand-alone control in the event the network connection between PLC processors becomes severed.

Input/output capability for programmable logic controllers comes in three basic varieties:
discrete, analog, and network ; each type discussed in a following subsection.
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4.3.1 Discrete I/O

A “discrete” data point is one with only two states on and off. Process switches, pushbutton switches,
limit switches, and proximity switches are all examples of discrete sensing devices. In order for a PLC
to be aware of a discrete sensor’s state, it must receive a signal from the sensor through a discrete
input channel. Inside each discrete input module is (typically) a set of light-emitting diodes (LEDs)
which will be energized when the corresponding sensing device turns on. Light from each LED shines
on a photo-sensitive device such as a phototransistor inside the module, which in turn activates a bit
(a single element of digital data) inside the PLC’s memory. This opto-coupled arrangement makes
each input channel of a PLC rather rugged, capable of isolating the sensitive computer circuitry of
the PLC from transient voltage “spikes” and other electrical phenomena capable of causing damage:

Power
supply

L1

Gnd

Processor

L2/N

Ch1

Com

Ch3

Ch2...

...
ComNCNO

Hand switch

Pressure switch
+
−

DC power
supply

PLC

Discrete input card (DC sinking)

Energizing an input channel lights the LED inside the optocoupler,
turning on the phototransistor, sending a "high" signal to the PLC’s
microprocessor, setting (1) that bit in the PLC’s input register.

Optocoupler

The internal schematic diagram for a discrete input module (“card”) shown above reveals the
componentry typical for a single input channel on that card. Each input channel has its own
optocoupler, writing to its own unique memory register bit inside the PLC’s memory. Discrete
input cards for PLCs typically have 4, 8, 16, or 32 channels.
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Indicator lamps, solenoid valves, and motor starters (assemblies consisting of contactors and
overload protection devices) are all examples of discrete control devices. In a manner similar to
discrete inputs, a PLC connects to any number of different discrete final control devices through
a discrete output channel4. Discrete output modules typically use the same form of opto-isolation
to allow the PLC’s computer circuitry to send electrical power to loads: the internal PLC circuitry
driving an LED which then activates some form of photosensitive switching device.
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Setting a bit (1) in the PLC’s output register sends a "high" signal
to the LED inside the optocoupler, turning on the photo-TRIAC,
sending AC power to the output channel to energize the load.

Optocoupler

As with the schematic diagram for a discrete input module shown previously, the schematic
diagram shown here for a discrete output module reveals the componentry typical for a single
channel on that card. Each output channel has its own optocoupler, driven by its own unique
memory register bit inside the PLC’s memory. Discrete output cards for PLCs also typically have
4, 8, 16, or 32 channels.

4I/O “channels” are often referred to as “points” in industry lingo. Thus, a “32-point input card” refers to an
input circuit with 32 separate channels through which to receive signals from on/off switches and sensors.
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A common alternative to opto-isolated semiconductor switching elements such as transistors (DC)
or TRIACs (AC) are miniature electromechanical relays. Mechanical relay contacts are capable of
switching DC or AC, and provide similar levels of electrical isolation between the PLC’s internal
logic circuitry and external control circuits compared with opto-isolated transistors and TRIACs:
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The relay-based discrete PLC output shown here happens to share a “Common” terminal with
the other discrete output channels of the PLC. Isolated relay outputs, however, are a popular option.
In an isolated relay output array, each relay contact has its own pair of dedicated screw terminals.
This is useful when multiple loads requiring separate power supplies must be controlled by the same
PLC.

Just like transistor and TRIAC discrete outputs, relay outputs typically allow the end-user to
connect their power supply of choice to the switching element. Given that relay contacts are capable
of DC and AC current switching, this provides a greater level of versatility than semiconductor
elements such as transistors and TRIACs. Relays, of course, have their disadvantages as well. Relay
contacts are much slower-responding than semiconductors which have no moving parts. The moving
components of relays are subject to wear and failure in ways that semiconductor devices cannot fail.
Relay contacts also “bounce” as they move, which may be problematic if the PLC output needs
to drive the input of a high-speed counting device because each “bounce” will count as a separate
contact closure event.

A term you will frequently encounter regarding PLC output relay contacts is dry contact. This
simply means the relay contact inside the PLC’s output channel has no pre-connected power source,
and that the end-user must wire in their own (external) power source in order for the contact to
send electrical power to any load. Most semiconductor-based discrete I/O channels are the same
way, but interestingly the term “dry” is rarely used to describe semiconductor switching elements,
only electromechanical relay contacts. By contrast, a wetted contact is internally connected to an
electrical source, with terminals provided to directly connect to a load with no external power supply
required.
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An important concept to master when working with DC discrete I/O is the distinction between
current-sourcing and current-sinking devices. The terms “sourcing” and “sinking” refer to the
direction of current (as denoted by conventional flow notation) into or out of a device’s control wire5.
A device sending (conventional flow) current out of its control terminal to some other device(s) is
said to be sourcing current, while a device accepting (conventional flow) current into its control
terminal is said to be sinking current.

To illustrate, the following illustration shows a PLC output channel is sourcing current to an
indicator lamp, which is sinking current to ground:

PLC discrete
output channel

+V

Sourcing current

Sinking current

Indicator lamp

This is a "sourcing" or "PNP"
discrete output channel

These terms really only make sense when electric current is viewed from the perspective of
conventional flow, where the positive terminal of the DC power supply is envisioned to be the
“source” of the current, with current finding its way “down” to ground (the negative terminal of
the DC power supply). In every circuit formed by the output channel of a PLC driving a discrete
control device, or by a discrete sensing device driving an input channel on a PLC, one element in
the circuit must be sourcing current while the other is sinking current.

An engineering colleague of mine has a charming way to describe sourcing and sinking: blowing
and sucking. A device that sources current to another “blows” current toward the other device. A
device that sinks current “sucks” current from the other device. Many students seem to find these
terms helpful in first mastering the distinction between sourcing and sinking despite (or perhaps
because of!) their informal nature.

5By “control wire,” I mean the single conductor connecting the I/O card channel to the field device, as opposed to
conductors directly common with either the positive or negative lead of the voltage source. If you focus your attention
on this one wire, noting the direction of conventional-flow current through it, the task of determining whether a device
is sourcing or sinking current becomes much simpler.
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If the discrete device connecting to the PLC is not polarity-sensitive, either type of PLC I/O
module will suffice. For example, the following diagrams show a mechanical limit switch connecting
to a sinking PLC input and to a sourcing PLC input:
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Note the differences in polarity and labeling between the sinking card’s common terminal and
the sourcing card’s common terminal. On the “sinking” card, the input channel terminal is positive
while the common (“Com”) terminal is negative. On the “sourcing” card, the input channel terminal
is negative while the common (“VDC”) terminal is positive.
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Some discrete sensing devices are polarity-sensitive, such as electronic proximity sensors
containing transistor outputs. A “sourcing” proximity switch can only interface with a “sinking”
PLC input channel, and vice-versa:
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In all cases, the “sourcing” device sends current out of its signal terminal while the “sinking”
device takes current into its signal terminal.
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Two photographs of a DC (sinking) discrete input module for an Allen-Bradley model SLC 500
PLC are shown here: one with the plastic cover closed over the connection terminals, and the other
with the plastic cover opened up for viewing the terminals. A legend on the inside of the cover
shows the purpose of each screw terminal: eight input channels (numbered 0 through 7) and two
redundant “DC Com” terminals for the negative pole of the DC power supply to connect:

A standard feature found on practically every PLC discrete I/O module is a set of LED indicators
visually indicating the status of each bit (discrete channel). On the SLC 500 module, the LEDs
appear as a cluster of eight numbered squares near the top of the module.

A photograph of discrete output terminals on another brand of PLC (a Koyo model DL06) shows
somewhat different labeling:
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Here, each output channel terminal is designated with a letter/number code beginning with the
letter “Y”. Several “common” terminals labeled with “C” codes service clusters of output channels.
In this particular case, each “common” terminal is common only to four output channels. With
sixteen total output channels on this PLC, this means there are four different “common” terminals.
While this may seem somewhat strange (why not just have one “common” terminal for all sixteen
output channels?), it more readily permits different DC power supplies to service different sets of
output channels.

Electrical polarity is not an issue with AC discrete I/O, since the polarity of AC reverses
periodically anyway. However, there is still the matter of whether the “common” terminal on
a discrete PLC module will connect to the neutral (grounded) or hot (ungrounded) AC power
conductor.

The next photograph shows a discrete AC output module for an Allen-Bradley SLC 500 PLC,
using TRIACs as power switching devices rather than transistors as is customary with DC discrete
output modules:

This particular eight-channel module provides two sets of TRIACs for switching power to AC
loads, each set of four TRIACs receiving AC power from a “hot” terminal (VAC 1 or VAC 2), the
other side of the load device being connected to the “neutral” (grounded) conductor of the AC power
source.
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Fortunately, the hardware reference manual supplied by the manufacturer of every PLC shows
diagrams illustrating how to connect discrete input and output channels to field devices. One should
always consult these diagrams before connecting devices to the I/O points of a PLC!

4.3.2 Analog I/O

In the early days of programmable logic controllers, processor speed and memory were too limited
to support anything but discrete (on/off) control functions. Consequently, the only I/O capability
found on early PLCs were discrete in nature6. Modern PLC technology, though, is powerful enough
to support the measurement, processing, and output of analog (continuously variable) signals.

All PLCs are digital devices at heart. Thus, in order to interface with an analog sensor or control
device, some “translation” is necessary between the analog and digital worlds. Inside every analog
input module is an ADC, or Analog-to-Digital Converter, circuit designed to convert an analog
electrical signal into a multi-bit binary word. Conversely, every analog output module contains
a DAC, or Digital-to-Analog Converter, circuit to convert the PLC’s digital command words into
analog electrical quantities.

Analog I/O is commonly available for modular PLCs for many different analog signal types,
including:

• Voltage (0 to 10 volt, 0 to 5 volt)

• Current (0 to 20 mA, 4 to 20 mA)

• Thermocouple (millivoltage)

• RTD (millivoltage)

• Strain gauge (millivoltage)

6Some modern PLCs such as the Koyo “CLICK” are also discrete-only. Analog I/O and processing is significantly
more complex to engineer and more expensive to manufacture than discrete control, and so low-end PLCs are more
likely to lack analog capability.
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The following photographs show two analog I/O cards for an Allen-Bradley SLC 500 modular
PLC system, an analog input card and an analog output card. Labels on the terminal cover doors
indicate screw terminal assignments:

4.3.3 Network I/O

Many different digital network standards exist for PLCs to communicate with, from PLC to PLC
and between PLCs and field devices. One of the earliest digital protocols developed for PLC
communication was Modbus, originally for the Modicon brand of PLC. Modbus was adopted by
other PLC and industrial device manufacturers as a de facto standard7, and remains perhaps the
most universal digital protocol available for industrial digital devices today.

Another digital network standard developed by a particular manufacturer and later adopted as
a de facto standard is Profibus, originally developed by Siemens.

7A “de facto” standard is one arising naturally out of legacy rather than by an premeditated agreement between
parties. Modbus and Profibus networks are considered “de facto” standards because those networks were designed,
built, and marketed by pioneering firms prior to their acceptance as standards for others to conform to. In Latin, de
facto means “from the fact,” which in this case refers to the fact of pre-existence: a standard agreed upon to conform
to something already in popular use. By contrast, a standard intentionally agreed upon before its physical realization
is a de jure standard (Latin for “from the law”). FOUNDATION Fieldbus is an example of a de jure standard, where
a committee arrives at a consensus for a network design and specifications prior to that network being built and
marketed by any firm.
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4.4 IEC 61131-3 programming languages

Although it seems each model of PLC has its own idiosyncratic standard for programming, there
does exist an international standard for controller programming that most PLC manufacturers at
least attempt to conform to. This is the IEC 61131-3 standard, which will be the standard presented
in this module.

One should take solace in the fact that despite differences in the details of PLC programming from
one manufacturer to another and from one model to another, the basic principles are largely the same.
There exist much greater disparities between different general-purpose programming languages (e.g.
C/C++, BASIC, FORTRAN, Pascal, Java, Ada, etc.) than between the programming languages
supported by different PLCs, and this fact does not prevent computer programmers from being
“multilingual.” I have personally written and/or analyzed programs for over a half-dozen different
manufacturers of PLCs (Allen-Bradley, Siemens, Square D, Koyo, Fanuc, Moore Products APACS
and QUADLOG, and Modicon), with multiple PLC models within most of those brands, and I can
tell you the differences in programming conventions are largely insignificant. After learning how to
program one model of PLC, it is quite easy to adapt to programming other makes and models of
PLC. If you are learning to program a particular PLC that does not exactly conform to the IEC
61131-3 standard, you will still be able to apply every single principle discussed in this tutorial –
the fundamental concepts are truly that universal.

The IEC 61131-3 standard specifies five distinct forms of programming language for industrial
controllers:

• Ladder Diagram (LD)

• Structured Text (ST)

• Instruction List (IL)

• Function Block Diagram (FBD)

• Sequential Function Chart (SFC)

Not all programmable logic controllers support all five language types, but nearly all of them
support Ladder Diagram (LD), which will be the primary focus of this book.

Programming languages for many industrial devices are limited by design. One reason for
this is simplicity : any programming language simple enough in structure for someone with
no formal computer programming knowledge to understand is necessarily going to be limited
in its capabilities. Another reason for programming limitations is safety : the more flexible
and unbounded a programming language is, the more potential there will be to unintentionally
create complicated “run-time” errors when programming. The ISA8 safety standard number 84
classifies industrial programming languages as either Fixed Programming Languages (FPL), Limited
Variability Languages (LVL), or Full Variability Languages (FVL). Ladder Diagram and Function
Block Diagram programming are both considered to be “limited variability” languages, whereas
Instruction List (and traditional computer programming languages such as C/C++, FORTRAN,
BASIC, etc.) are considered “full variability” languages with all the attendant potential for complex
errors.

8The ISA is the International Society of Automation, concerned mostly with establishing standards for industrial

automation systems.
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4.5 Intro to Ladder Diagram (LD) programming

In the United States, the most common language used to program PLCs is Ladder Diagram
(LD), also known as Relay Ladder Logic (RLL). This is a graphical language showing the logical
relationships between inputs and outputs as though they were contacts and coils in a hard-wired
electromechanical relay circuit. This language was invented for the express purpose of making PLC
programming feel “natural” to electricians familiar with relay-based logic and control circuits. While
Ladder Diagram programming has many shortcomings, it remains extremely popular and so will be
the primary focus of this tutorial.
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Every Ladder Diagram program is arranged to resemble an electrical diagram, making this a
graphical (rather than text-based) programming language. Ladder diagrams are to be thought of
as virtual circuits, where virtual “power” flows through virtual “contacts” (when closed) to energize
virtual “relay coils” to perform logical functions. None of the contacts or coils seen in a Ladder
Diagram PLC program are real; rather, they act on bits in the PLC’s memory, the logical inter-
relationships between those bits expressed in the form of a diagram resembling a circuit.

The following computer screenshot shows a typical Ladder Diagram program9 being edited on a
personal computer:

Contacts appear just as they would in an electrical relay logic diagram – as short vertical line
segments separated by a horizontal space. Normally-open contacts are empty within the space
between the line segments, while normally-closed contacts have a diagonal line crossing through
that space. Coils are somewhat different, appearing as either circles or pairs of parentheses. Other
instructions appear as rectangular boxes.

Each horizontal line is referred to as a rung, just as each horizontal step on a stepladder is called
a “rung.” A common feature among Ladder Diagram program editors, as seen on this screenshot, is

9This particular program and editor is for the Koyo “CLICK” series of micro-PLCs.
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the ability to color-highlight those virtual “components” in the virtual “circuit” ready to “conduct”
virtual “power.” In this particular editor, the color used to indicate “conduction” is light blue.
Another form of status indication seen in this PLC program is the values of certain variables in the
PLC’s memory, shown in red text.

For example, you can see coil T2 energized at the upper-right corner of the screen (filled with light
blue coloring), while coil T3 is not. Correspondingly, each normally-open T2 contact appears colored,
indicating its “closed” status, while each normally-closed T2 contact is uncolored. By contrast, each
normally-open T3 contact is uncolored (since coil T3 is unpowered) while each normally-closed T3

contact is shown colored to indicate its conductive status. Likewise, the current count values of
timers T2 and T3 are shown as 193 and 0, respectively. The output value of the math instruction
box happens to be 2400, also shown in red text.

Color-highlighting of Ladder Diagram components only works, of course, when the computer
running the program editing software is connected to the PLC and the PLC is in the “run” mode
(and the “show status” feature of the editing software is enabled). Otherwise, the Ladder Diagram is
nothing more than black symbols on a white background. Not only is status highlighting very useful
in de-bugging PLC programs, but it also serves an invaluable diagnostic purpose when a technician
analyzes a PLC program to check the status of real-world input and output devices connected to the
PLC. This is especially true when the program’s status is viewed remotely over a computer network,
allowing maintenance staff to investigate system problems without even being near the PLC!



4.6. LADDER DIAGRAM VIRTUAL ELEMENTS AND I/O STATUS 79

4.6 Ladder diagram virtual elements and I/O status

Perhaps the most important yet elusive concept to grasp when learning to program PLCs is the
relationship between the electrical status of the PLC’s I/O points and the status of variables and
other “elements” in its programming. This is especially true for Ladder Diagram (LD) programming,
where the program itself resembles an electrical diagram. Making the mental connection between
the “real” world of the switches, contactors, and other electrical devices connected to the PLC and
the “imaginary” world of the PLC’s program consisting of virtual contacts and relay “coils” is most
fundamental.

The first fundamental rule one should keep in mind when examining a Ladder Diagram PLC
program is that each virtual contact shown in the program actuates whenever it reads
a “1” state in its respective bit and will be at rest whenever it reads a “0” state in
its respective bit (in the PLC’s memory). If the contact is a normally-open (NO) type, it will
open when its bit is 0 and close when its bit is 1. If the contact is a normally-closed (NC) type, it
will close when its bit is 0 and open when its bit is 1. A 0 bit state causes the contact to be in its
“normal” (resting) condition, while a 1 bit state actuates the contact, forcing it into its non-normal
(actuated) state.

Another rule to remember when examining a Ladder Diagram PLC program is that the
programming software offers color highlighting10 to display the virtual status of each program
element: a colored contact is closed, while an un-colored contact is open . While the presence
or absence of a “slash” symbol marks the normal status of a contact, its live color highlighting shown
by PLC programming software reveals the “conductive” status of the elements in real time.

The following table shows how the two types of contacts in a PLC’s Ladder Diagram program
respond to bit states, using red coloring to signify each contact’s virtual conductivity:

0

1

Bit state

Contact type

(closed) (open)

(closed)(open)

(Actuated)

(Normal)

Normally-open Normally-closed

Just as a pressure switch’s contacts are actuated by a high pressure condition, and a level switch’s
contacts are actuated by a high level condition, and a temperature switch’s contacts are actuated
by a high temperature condition, so a PLC’s virtual contact is actuated by a high bit condition (1).
In the context of any switch, an actuated condition is the opposite of its normal (resting) condition.

10It should be noted that in some situations the programming software will fail to color the contacts properly,
especially if their status changes too quickly for the software communication link to keep up, and/or if the bit(s)
change state multiple times within one scan of the program. However, for simple programs and situations, this rule
holds true and is a great help to beginning programmers as they learn the relationship between real-world conditions
and conditions within the PLC’s “virtual” world.
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The following simplified11 illustration shows a small PLC with two of its discrete input channels
electrically energized, causing those two bits to have “1” statuses. The color-highlighted contacts in
the programming editor software’s display shows a collection of contacts addressed to those input
bits in various states (colored = closed ; un-colored = open). As you can see, every contact addressed
to a “set” bit (1) is in its actuated state, while every contact addressed to a “cleared” bit (0) is in
its normal state:

10 0 0 0

Input register

1

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
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port
Common Source
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X
1

X
2

X
3

X
4

X
5

X
6

(Inside the PLC’s memory)

(Displayed on the editing software)

X1

X2 X3

X4

X5

X6

X2

Remember that a colored contact is a closed contact. The contacts appearing as colored are either
normally-closed contacts with “0” bit states, or normally-open contacts with “1” bit states. It is the
combination of bit state and contact type (NO vs. NC) that determines whether the virtual contact
will be open (un-colored) or closed (colored) at any given time. Correspondingly, it is a combination
of colored highlighting and virtual contact type that indicates the real-world energization status of
a particular PLC input at any given time.

11The electrical wiring shown in this diagram is incomplete, with the “Common” terminal shown unconnected for
simplicity’s sake.



4.6. LADDER DIAGRAM VIRTUAL ELEMENTS AND I/O STATUS 81

In my teaching experience, the main problem students have comprehending PLC Ladder Diagram
programs is that they over-simplify and try to directly associate real-world switches connected to the
PLC with their respective contact instructions inside the PLC program. Students mistakenly think
the real-world switch connecting to the PLC and the respective virtual switch contact inside the
PLC program are one and the same, when this is not the case at all. Rather, the real-world switch
sends power to the PLC input, which in turn controls the state of the virtual contact(s) programmed
into the PLC. Specifically, I see students routinely fall into the following misconceptions:

• Students mistakenly think the contact instruction type (NO vs. NC) needs to match that of
its associated real-world switch

• Students mistakenly think color highlighting of a contact instruction is equivalent to the
electrical status of its associated real-world PLC input

• Students mistakenly think a closed real-world switch must result in a closed contact instruction
in the live PLC program

To clarify, here are the fundamental rules one should keep in mind when interpreting contact
instructions in Ladder Diagram PLC programs:

• Each input bit in the PLC’s memory will be a “1” when its input channel is
powered, and will be a “0” when its input channel is unpowered

• Each virtual contact shown in the program actuates whenever it reads a “1” state
in its respective bit, and will be at rest whenever it reads a “0” state in its
respective bit

• A colored contact is closed (passes virtual power in the PLC program), while an
un-colored contact is open (blocks virtual power in the PLC program)

In trying to understand PLC Ladder Diagram programs, the importance of these rules cannot
be overemphasized. The truth of the matter is a causal chain – rather than a direct equivalence
– between the real-world switch and the contact instruction status. The real-world switch controls
whether or not electrical power reaches the PLC input channel, which in turn controls whether the
input register bit will be a “1” or a “0”, which in turn controls whether the contact instruction
will actuated or at rest. Virtual contacts inside the PLC program are thus controlled by their
corresponding real-world switches, rather than simply being identical to their real-world counterparts
as novices tend to assume. Following these rules, we see that normally-open (NO) contact
instructions will mimic what their real-world switches are doing, while normally-closed (NC) contact
instructions will act opposite of their real-world counterparts.

The color highlighting of coil instructions in a Ladder Diagram PLC program follows similar
rules. A coil will be “on” (colored) when all contact instructions prior to it are closed (colored). A
colored coil writes a “1” to its respective bit in memory, while an un-colored coil instruction writes
a “0” to its respective bit in memory. If these bits are associated with real-world discrete output
channels on the PLC, their states will control the real-world energization of devices electrically
connected to those channels.
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To further illuminate these fundamental concepts, we will examine the operation of a simple
PLC system designed to energize a warning lamp in the event that a process vessel experiences a
high fluid pressure. The PLC’s task is to energize a warning lamp if the process vessel pressure ever
exceeds 270 PSI, and keep that warning lamp energized even if the pressure falls below the trip point
of 270 PSI. This way, operators will be alerted to both past and present process vessel overpressure
events.

120 volt AC “line” power (L1 and L2) provides electrical energy for the PLC to operate, as well
as signal potential for the input switches and power for the warning lamp. Two switches connect to
the input of this PLC: one normally-open pushbutton switch acting as the alarm reset (pressing this
switch “unlatches” the alarm lamp) and one normally-open pressure switch acting as the sensing
element for high process vessel pressure:
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Alarm reset pushbutton High pressure
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(Ladder Diagram program)
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The reset pushbutton connects to discrete input X1 of the PLC, while the pressure switch connects
to discrete input X4. The warning lamp connects to discrete output Y5. Red indicator LEDs next
to each I/O terminal visually indicate the electrical status of the I/O points, while red-shaded
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highlighting shows the virtual power12 status of the “contacts” and “coils” in the PLC’s program,
displayed on the screen of a personal computer connected to the PLC through a programming cable.

With no one pressing the reset pushbutton, that switch will be in its normal status, which for
a “normally-open” switch is open. Likewise with the pressure switch: with process pressure less
than the trip point of 270 PSI, the pressure switch will also be in its normal status, which for a
“normally-open” switch is open. Since neither switch is conducting electricity right now, neither
discrete input X1 nor X4 will be energized. This means the “virtual” contacts inside the PLC program
will likewise be in their own normal states. Thus, any virtual contact drawn as a normally-open
will be open (not passing virtual power), and any virtual contact drawn as a normally-closed (a
diagonal slash mark through the contact symbol) will be closed. This is why the two normally-open
virtual contacts X4 and Y5 have no highlighting, but the normally-closed virtual contact X1 does –
the colored highlighting representing the ability to pass virtual power.

12For a PLC program contact, the shading represents virtual “conductivity.” For a PLC program coil, the shading
represents a set (1) bit.
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If the process vessel experiences a high pressure (> 270 PSI), the pressure switch will actuate,
closing its normally-open contact. This will energize input X4 on the PLC, which will “close” the
virtual contact X4 in the ladder program. This sends virtual power to the virtual “coil” Y5, which
in turn latches itself on through virtual contact Y513 and also energizes the real discrete output Y5
to energize the warning lamp:
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13It is worth noting the legitimacy of referencing virtual contacts to output bits (e.g. contact Y5), and not just to
input bits. A “virtual contact” inside a PLC program is nothing more than an instruction to the PLC’s processor
to read the status of a bit in memory. It matters not whether that bit is associated with a physical input channel,
a physical output channel, or some abstract bit in the PLC’s memory. It would, however, be wrong to associate
a virtual coil with an input bit, as coil instructions write bit values to memory, and input bits are supposed to be
controlled solely by the energization states of their physical input channels.
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If now the process pressure falls below 270 PSI, the pressure switch will return to its normal
state (open), thus de-energizing discrete input X4 on the PLC. Because of the latching contact Y5 in
the PLC’s program, however, output Y5 remains on to keep the warning lamp in its energized state:
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Thus, the Y5 contact performs a seal-in function to keep the Y5 bit set (1) even after the high-
pressure condition clears. This is precisely the same concept as the “seal-in” auxiliary contact on a
hard-wired motor starter circuit, where the electromechanical contactor keeps itself energized after
the “Start” pushbutton switch has been released.
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The only way for a human operator to re-set the warning lamp is to press the pushbutton. This
will have the effect of energizing input X1 on the PLC, thus opening virtual contact X1 (normally-
closed) in the program, thus interrupting virtual power to the virtual coil Y5, thus powering down
the warning lamp and un-latching virtual power in the program:
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4.7 Ladder diagram contacts and coils

The most elementary objects in Ladder Diagram programming are contacts and coils, intended
to mimic the contacts and coils of electromechanical relays. Contacts and coils are discrete
programming elements, dealing with Boolean (1 and 0; on and off; true and false) variable states.
Each contact in a Ladder Diagram PLC program represents the reading of a single bit in memory,
while each coil represents the writing of a single bit in memory.

Discrete input signals to the PLC from real-world switches are read by a Ladder Diagram program
by contacts referenced to those input channels. In legacy PLC systems, each discrete input channel
has a specific address which must be applied to the contact(s) within that program. In modern PLC
systems, each discrete input channel has a tag name created by the programmer which is applied to
the contact(s) within the program. Similarly, discrete output channels – referenced by coil symbols
in the Ladder Diagram – must also bear some form of address or tag name label.

To illustrate, we will imagine the construction and programming of a redundant flame-sensing
system to monitor the status of a burner flame using three sensors. The purpose of this system will
be to indicate a “lit” burner if at least two out of the three sensors indicate flame. If only one sensor
indicates flame (or if no sensors indicate flame), the system will declare the burner to be un-lit. The
burner’s status will be visibly indicated by a lamp that human operators can readily see inside the
control room area.
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Our system’s wiring is shown in the following diagram:
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Each flame sensor outputs a DC voltage signal indicating the detection of flame at the burner,
either on (24 Volts DC) or off (0 Volts DC). These three discrete DC voltage signals are sensed by
the first three channels of the PLC’s discrete input card. The indicator lamp is a 120 Volt lamp,
and so must be powered by an AC discrete output card, shown here in the PLC’s last slot.

To make the ladder program more readable, we will assign tag names (symbolic addresses) to each
input and output bit in the PLC, describing its real-world device in an easily-interpreted format14.
We will tag the first three discrete input channels as IN sensor A, IN sensor B, and IN sensor C,
and the output as OUT burner lit.

14If this were a legacy Allen-Bradley PLC system using absolute addressing, we would be forced to address the three
sensor inputs as I:1/0, I:1/1, and I:1/2 (slot 1, channels 0 through 2), and the indicator lamp output as O:2/0 (slot
2, channel 0). If this were a newer Logix5000 Allen-Bradley PLC, the default tag names would be Local:1:I.Data.0,
Local:1:I.Data.1, and Local:1:I.Data.2 for the three inputs, and Local:2:O.Data.0 for the output. However, in
either system we have the ability to assign symbolic addresses so we have a way to reference the I/O channels without
having to rely on these cumbersome labels. The programs showing in this book exclusively use tag names rather than
absolute addresses, since this is the more modern programming convention.
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A ladder program to determine if at least two out of the three sensors detect flame is shown here,
with the tag names referencing each contact and coil:

IN_sensor_A IN_sensor_B OUT_burner_lit

IN_sensor_A IN_sensor_C

IN_sensor_B IN_sensor_C

Series-connected contacts in a Ladder Diagram perform the logical AND function, while parallel
contacts perform the logical OR function. Thus, this two-out-of-three flame-sensing program could
be verbally described as:

“Burner is lit if either A and B, or either B and C, or either A and C”

An alternate way to express this is to use the notation of Boolean algebra, where multiplication
represents the AND function and addition represents the OR function:

Burner lit = AB +BC +AC

Yet another way to represent this logical relationship is to use logic gate symbols:

B

A

C
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To illustrate how this program would work, we will consider a case where flame sensors B and
C detect flame, but sensor A does not15. This represents a two-out-of-three-good condition, and
so we would expect the PLC to turn on the “Burner lit” indicator light as programmed. From the
perspective of the PLC’s rack, we would see the indicator LEDs for sensors B and C lit up on the
discrete input card, as well as the indicator LED for the lamp’s output channel:
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Those two energized input channels “set” bits (1 status) in the PLC’s memory representing
the status of flame sensors B and C. Flame sensor A’s bit will be “clear” (0 status) because its
corresponding input channel is de-energized. The fact that the output channel LED is energized (and
the “Burner lit” indicator lamp is energized) tells us the PLC program has “set” that corresponding
bit in the PLC’s output memory register to a “1” state.

15The most likely reason why one out of two flame sensors might not detect the presence of a flame is some form
of misalignment or fouling of the flame sensor. In fact, this is a good reason for using a 2-out-of-3 flame detection
system rather than a simplex (1-out-of-1) detector scheme: to make the system more tolerant of occasional sensor
problems without compromising burner safety.
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A display of input and output register bits shows the “set” and “reset” states for the PLC at
this moment in time:
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Examining the Ladder Diagram program with status indication enabled, we see how only the
middle contact pair is passing “virtual power” to the output coil:

IN_sensor_A IN_sensor_B OUT_burner_lit

IN_sensor_A IN_sensor_C

IN_sensor_B IN_sensor_C
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status
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status

Contacts read bit status
in the PLC’s memory

Coils write bit status
in the PLC’s memory

Recall that the purpose of a contact in a PLC program is to read the status of a bit in the
PLC’s memory. These six “virtual contacts” read the three input bits corresponding to the three
flame sensors. Each normally-open “contact” will “close” when its corresponding bit has a value of
1, and will “open” (go to its normal state) when its corresponding bit has a value of 0. Thus, we
see here that the two contacts corresponding to sensor A appear without highlighting (representing
no “conductivity” in the virtual relay circuit) because the bit for that input is reset (0). The
two contacts corresponding to sensor B and the two contacts corresponding to sensor C all appear
highlighted (representing “conductivity” in the virtual circuit) because their bits are both set (1).

Recall also that the purpose of a coil in a PLC program is to write the status of a bit in the
PLC’s memory. Here, the “energized” coil sets the bit for the PLC output 0 to a “1” state, thus
activating the real-world output and sending electrical power to the “Burner lit” lamp.

Note that the color highlighting does not indicate a virtual contact is conducting virtual power,
but merely that it is able to conduct power. Color highlighting around a virtual coil, however, does
indicate the presence of virtual “power” at that coil.
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Contacts and relays are not just useful for implementing simple logic functions, but they may also
perform latching functions as well. A very common application of this in industrial PLC systems
is a latching start/stop program for controlling electric motors by means of momentary-contact
pushbutton switches. As before, this functionality will be illustrated by means of an hypothetical
example circuit and program:
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7

4
5

To 120 VAC
power source

"Start"

"Stop"

Three-phase 
motor contactor

Reset

In this system, two pushbutton switches are connected to discrete inputs on a PLC, and the
PLC in turn energizes the coil of a motor contactor relay by means of one of its discrete outputs16.

16The particular input and output channels chosen for this example are completely arbitrary. There is no particular
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An overload contact is wired directly in series with the contactor coil to provide motor overcurrent
protection, even in the event of a PLC failure where the discrete output channel remains energized17.

The ladder program for this motor control system would look like this:

IN_switch_Start IN_switch_Stop OUT_contactor

OUT_contactor

Pressing the “Start” pushbutton energizes discrete input channel 6 on the PLC, which “closes”
the virtual contact in the PLC program labeled IN switch Start. The normally-closed virtual
contact for input channel 7 (the “Stop” pushbutton) is already closed by default when the “Stop”
button is not being pressed, and so the virtual coil will receive “power” when the “Start” pushbutton
is pressed and the “Stop” pushbutton is not.

Note the seal-in contact bearing the exact same label as the coil: OUT contactor. At first it
may seem strange to have both a contact and a coil in a PLC program labeled identically18, since
contacts are most commonly associated with inputs and coils with outputs, but this makes perfect
sense if you realize the true meaning of contacts and coils in a PLC program: as read and write
operations on bits in the PLC’s memory. The coil labeled OUT contactor writes the status of that
bit, while the contact labeled OUT contactor reads the status of that same bit. The purpose of this
contact, of course, is to latch the motor in the “on” state after a human operator has released his
or her finger from the “Start” pushbutton.

This programming technique is known as feedback, where an output variable of a function (in this
case, the feedback variable is OUT contactor) is also an input to that same function. The path of
feedback is implicit rather than explicit in Ladder Diagram programming, with the only indication
of feedback being the common name shared by coil and contact. Other graphical programming
languages (such as Function Block) have the ability to show feedback paths as connecting lines
between function outputs and inputs, but this capacity does not exist in Ladder Diagram.

reason to choose input channels 6 and 7, or output channel 2, as I have shown in the wiring diagram. Any available
I/O channels will suffice.

17While it is possible to wire the overload contact to one of the PLC’s discrete input channels and then program a
virtual overload contact in series with the output coil to stop the motor in the event of a thermal overload, this strategy
would rely on the PLC to perform a safety function which is probably better performed by hard-wired circuitry.

18A very common misconception among students first learning PLC Ladder Diagram programming is to always
associate contacts with PLC inputs and coils with PLC outputs, thus it seems weird to have a contact bear the same
label as an output. However, this is a false association. In reality, contacts and coils are read and write instructions,
and thus it is possible to have the PLC read one of its own output bits as a part of some logic function. What would

be truly strange is to label a coil with an input bit address or tag name, since the PLC is not electrically capable of
setting the real-world energization status of any input channels.



94 CHAPTER 4. FULL TUTORIAL

A step-by-step sequence showing the operation and status of this simple program illustrates how
the seal-in contact functions, through a start-up and shut-down cycle of the motor:

IN_switch_Start IN_switch_Stop OUT_contactor

OUT_contactor

IN_switch_Start IN_switch_Stop OUT_contactor

OUT_contactor

Operator pushes "Start" switch

Coil immediately activates

Status of program before "Start" switch pressed

IN_switch_Start IN_switch_Stop OUT_contactor

OUT_contactor

Seal-in contact closes on next scan

IN_switch_Start IN_switch_Stop OUT_contactor

OUT_contactor

Operator releases "Start" switch

Motor continues to run

IN_switch_Start IN_switch_Stop OUT_contactor

OUT_contactor

Operator presses "Stop" switch

Coil immediately de-activates

IN_switch_Start IN_switch_Stop OUT_contactor

OUT_contactor

Seal-in contact releases on next scan

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

This sequence helps illustrate the order of evaluation or scan order of a Ladder Diagram program.
The PLC reads a Ladder Diagram from left to right, top to bottom, in the same general order as
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a human being reads sentences and paragraphs written in English. However, according to the IEC
61131-3 standard, a PLC program must evaluate (read) all inputs (contacts) to a function before
determining the status of a function’s output (coil or coils). In other words, the PLC does not make
any decision on how to set the state of a coil until all contacts providing power to that coil have been
read. Once a coil’s status has been written to memory, any contacts bearing the same tag name will
update with that status on subsequent rungs in the program.

Step 5 in the previous sequence is particularly illustrative. When the human operator presses
the “Stop” pushbutton, the input channel for IN switch Stop becomes activated, which “opens”
the normally-closed virtual contact IN switch Stop. Upon the next scan of this program rung,
the PLC evaluates all input contacts (IN switch Start, IN switch Stop, and OUT contactor)
to check their status before deciding what status to write to the OUT contactor coil. Seeing
that the IN switch Stop contact has been forced open by the activation of its respective discrete
input channel, the PLC writes a “0” (or “False”) state to the OUT contactor coil. However, the
OUT contactor feedback contact does not update until the next scan, which is why you still see it
color-highlighted during step 5.

A potential problem with this system as it is designed is that the human operator loses control of
the motor in the event of an “open” wiring failure in either pushbutton switch circuit. For instance,
if a wire fell off a screw contact for the “Start” pushbutton switch circuit, the motor could not
be started if it was already stopped. Similarly, if a wire fell off a screw contact for the “Stop”
pushbutton switch circuit, the motor could not be stopped if it was already running. In either case,
a broken wire connection acts the same as the pushbutton switch’s “normal” status, which is to
keep the motor in its present state. In some applications, this failure mode would not be a severe
problem. In many applications, though, it is quite dangerous to have a running motor that cannot
be stopped. For this reason, it is customary to design motor start/stop systems a bit differently
from what has been shown here.
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In order to build a “fail-stop” motor control system with our PLC, we must first re-wire the
pushbutton switch to use its normally-closed (NC) contact:
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Using the NC contact!

This keeps discrete input channel 7 activated when the pushbutton is unpressed. When the
operator presses the “Stop” pushbutton, the switch’s contact will be forced open, and input channel
7 will de-energize. If a wire happens to fall off a screw terminal in the “Stop” switch circuit, input
channel 7 will de-energize just the same as if someone pressed the “Stop” pushbutton, which will
automatically shut off the motor.
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In order for the PLC program to work properly with this new switch wiring, the virtual contact
for IN switch Stop must be changed from a normally-closed (NC) to a normally-open (NO):

IN_switch_Start IN_switch_Stop OUT_contactor

OUT_contactor
This virtual contact maintained in
its "closed" state because the real
switch contacts are closed and the
real input channel is energized with
no one pushing the "Stop" button

As before, the IN switch Stop virtual contact is in the “closed” state when no one presses the
“Stop” switch, enabling the motor to start any time the “Start” switch is pressed. Similarly, the
IN switch Stop virtual contact will open any time someone presses the “Stop” switch, thus stopping
virtual “power” from flowing to the OUT contactor coil.

Although this is a very common way to build PLC-controlled motor start/stop systems – with
an NC pushbutton switch and an NO “Stop” virtual contact – students new to PLC programming
often find this logical reversal confusing19. Perhaps the most common reason for this confusion
is a mis-understanding of the “normal” concept for switch contacts, be they real or virtual. The
IN switch Stop virtual contact is programmed to be normally-open (NO), but yet it is typically
found in the closed state. Recall that the “normal” status of any switch is its status while in a resting
condition of no stimulation, not necessarily its status while the process is in a “normal” operating
mode. The “normally-open” virtual contact IN switch Stop is typically found in the closed state
because its corresponding input channel is typically found energized, owing to the normally-closed
pushbutton switch contact, which passes real electrical power to the input channel while no one
presses the switch. Just because a switch is configured as normally-open does not necessarily mean
it will be typically found in the open state! The status of any switch contact, whether real or virtual,
is a function of its configuration (NO versus NC) and the stimulus applied to it.

Another concern surrounding real-world wiring problems is what this system will do if the motor
contactor coil circuit opens for any reason. An open circuit may develop as a result of a wire falling
off a screw terminal, or it may occur because the thermal overload contact tripped open due to an
over-temperature event. The problem with our motor start/stop system as designed is that it is
not “aware” of the contactor’s real status. In other words, the PLC “thinks” the contactor will be

19In an effort to alleviate this confusion, the Allen-Bradley corporation (Rockwell) uses the terms examine if closed

(XIC) and examine if open (XIO) to describe “normally open” and “normally closed” virtual contacts, respectively,
in their Ladder Diagram programming. The idea here is that a virtual contact drawn as a normally-open symbol
will be “examined” (declared “true”) by the PLC’s processor if its corresponding input channel is energized (powered
by a real-life contact in the closed state). Conversely, a virtual contact drawn as a normally-closed symbol (with
a slash mark through the middle) will be “examined” by the PLC’s processor if its corresponding input channel is
de-energized (if the real-life contact sending power to that terminal is in the open state). In my experience, I have
found this nomenclature to be even more confusing to students than simply calling these virtual contacts “normally
open” and “normally closed” like other PLC manufacturers do. The foundational concept for students to grasp here
is that the virtual contact is not a direct representation of the real-life electrical switch contact – rather, it is a

read instruction for the bit set by power coming from the real-life electrical switch contact.
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energized any time discrete output channel 2 is energized, but that may not actually be the case if
there is an open fault in the contactor’s coil circuit.

This may lead to a dangerous condition if the open fault in the contactor’s coil circuit is later
cleared. Imagine an operator pressing the “Start” switch but noticing the motor does not actually
start. Wondering why this may be, he or she goes to look at the overload relay to see if it is tripped.
If it is tripped, and the operator presses the “Reset” button on the overload assembly, the motor will
immediately start because the PLC’s discrete output has remained energized all the time following
the pressing of the “Start” switch. Having the motor start up as soon as the thermal overload is
reset may come as a surprise to operations personnel, and this could be quite dangerous if anyone
happens to be near the motor-powered machinery when it starts.

What would be safer is a motor control system that refuses to “latch” on unless the contactor
actually energizes when the “Start” switch is pressed. For this to be possible, the PLC must have
some way of sensing the contactor’s status.
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In order to make the PLC “aware” of the contactor’s real status, we may connect the auxiliary
switch contact to one of the unused discrete input channels on the PLC, like this:
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Now, the PLC is able to sense the real-time status of the contactor via input channel 5.
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We may modify the PLC program to recognize this status by assigning a new tag name to this
input (IN contactor aux) and using a normally-open virtual contact of this name as the seal-in
contact instead of the OUT contactor bit:

IN_switch_Start IN_switch_Stop OUT_contactor

IN_contactor_aux

Now, if the contactor fails to energize for any reason when the operator presses the “Start”
switch, the PLC’s output will fail to latch when the “Start” switch is released. When the open fault
in the contactor’s coil circuit is cleared, the motor will not immediately start up, but rather wait
until the operator presses the “Start” switch again, which is a much safer operating characteristic
than before.
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A special class of virtual “coil” used in PLC ladder programming that bears mentioning is the
“latching” coil. These usually come in two forms: a set coil and a reset coil. Unlike a regular
“output” coil that positively writes to a bit in the PLC’s memory with every scan of the program,
“set” and “reset” coils only write to a bit in memory when energized by virtual power. Otherwise,
the bit is allowed to retain its last value.

A very simple motor start/stop program could be written with just two input contacts and two
of these latching coils (both bearing the same tag name, writing to the same bit in memory):

IN_switch_Start

IN_switch_Stop

OUT_contactor

OUT_contactor

"Start" pushbutton

"Stop" pushbutton

Discrete input
card

IN_switch_Start

IN_switch_Stop

Discrete output
card

OUT_contactor

Real-world I/O wiring

PLC program

Contactor coil

S

R

Note the use of a normally-open (NO) pushbutton switch contact (again!), with no auxiliary
contact providing status indication of the contactor to the PLC. This is a very minimal program,
shown for the strict purpose of illustrating the use of “set” and “reset” latching coils in Ladder
Diagram PLC programming.

“Set” and “Reset” coils20 are examples of what is known in the world of PLC programming as
retentive instructions. A “retentive” instruction retains its value after being virtually “de-energized”
in the Ladder Diagram “circuit.” A standard output coil is non-retentive, which means it does not
“latch” when de-energized. The concept of retentive and non-retentive instructions will appear again
as we explore PLC programming, especially in the area of timers.

Ordinarily, we try to avoid multiple coils bearing the same label in a PLC Ladder Diagram
program. With each coil representing a “write” instruction, multiple coils bearing the same name
represents multiple “write” operations to the same bit in the PLC’s memory. Here, with latching
coils, there is no conflict because each of the coils only writes to the OUT contactor bit when its

20Referred to as “Latch” and “Unlatch” coils by Allen-Bradley.
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respective contact is energized. So long as only one of the pushbutton switches is actuated at a time,
there is no conflict between the identically-named coils.

This raises the question: what would happen if both pushbutton switches were simultaneously
pressed? What would happen if both “Set” and “Reset” coils were “energized” at the same time?
The result is that the OUT contactor bit would first be “set” (written to a value of 1) then “reset”
(written to a value of 0) in that order as the two rungs of the program were scanned from top
to bottom. PLCs typically do not typically update their discrete I/O registers while scanning the
Ladder Diagram program (this operation takes place either before or after each program scan), so
the real discrete output channel status will be whatever the last write operation told it to be, in this
case “reset” (0, or off).

Even if the discrete output is not “confused” due to the conflicting write operations of the “Set”
and “Reset” coils, other rungs of the program written between the “Set” and “Reset” rungs might
be. Consider for example a case where there were other program rungs following the “Set” and
“Reset” rungs reading the status of the OUT contactor bit for some purpose. Those other rungs
would indeed become “confused” because they would see the OUT contactor bit in the “set” state
while the actual discrete output of the PLC (and any rungs following the “Reset” rung) would see
the OUT contactor bit in the “reset” state:

IN_switch_Start OUT_contactor

"Start" and "Stop" pushbuttons simultaneously pressed!

IN_switch_Stop OUT_contactor

OUT_contactor

OUT_contactor

...this rung sees OUT_contactor set!

...this rung sees OUT_contactor reset!

S

R

Multiple (non-retentive) output coils with the same memory address are almost always a
programming faux pax for this reason, but even retentive coils which are designed to be used in
matched pairs can cause trouble if the implications of simultaneous energization are not anticipated.
Multiple contacts with identical addresses are no problem whatsoever, because multiple “read”
operations to the same bit in memory will never cause a conflict.

The IEC 61131-3 PLC programming standard specifies transition-sensing contacts as well as the
more customary “static” contacts. A transition-sensing contact will “actuate” only for a duration
of one program scan, even if its corresponding bit remains active. Two types of transition-sensing
Ladder Diagram contacts are defined in the IEC standard: one for positive transitions and another
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for negative transitions. The following example shows a wiring diagram, Ladder Diagram program,
and a timing diagram demonstrating how each type of transition-sensing contact functions when
stimulated by a real (electrical) input signal to a discrete channel:

P

IN_test

N

IN_test

OUT_test1

OUT_test2

Discrete input
card

Discrete output
card

Real-world I/O wiring

PLC program

"Test" pushbutton

IN_test

Test lamp 1

Test lamp 2

OUT_test1

OUT_test2

IN_test

OUT_test1

OUT_test2

Duration of one program scan

Duration of one program scan

Timing diagram

When the pushbutton switch is pressed and the discrete input energized, the first test lamp will
blink “on” for exactly one scan of the PLC’s program, then return to its off state. The positive-
transition contact (with the letter “P” inside) activates the coil OUT test1 only during the scan it
sees the status of IN test transition from “false” to “true,” even though the input remains energized
for many scans after that transition. Conversely, when the pushbutton switch is released and the
discrete input de-energizes, the second test lamp will blink “on” for exactly one scan of the PLC’s
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program then return to its off state. The negative-transition contact (with the letter “N” inside)
activates the coil OUT test2 only during the scan it sees the status of IN test transition from “true”
to “false,” even though the input remains de-energized for many scans after that transition:

It should be noted that the duration of a single PLC program scan is typically very short:
measured in milliseconds. If this program were actually tested in a real PLC, you would probably
not be able to see either test lamp light up, since each pulse is so short-lived. Transitional contacts are
typically used any time it is desired to execute an instruction just one time following a “triggering”
event, as opposed to executing that instruction over and over again so long as the event status is
maintained “true.”

Contacts and coils represent only the most basic of instructions in the Ladder Diagram PLC
programming language. Many other instructions exist, which will be discussed in the following
sections.
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4.8 Ladder diagram counters

A counter is a PLC instruction that either increments (counts up) or decrements (counts down)
an integer number value when prompted by the transition of a bit from 0 to 1 (“false” to “true”).
Counter instructions come in three basic types: up counters, down counters, and up/down counters.
Both “up” and “down” counter instructions have single inputs for triggering counts, whereas
“up/down” counters have two trigger inputs: one to make the counter increment and one to make
the counter decrement.

To illustrate the use of a counter instruction, we will analyze a PLC-based system designed to
count objects as they pass down a conveyor belt:
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In this system, a continuous (unbroken) light beam causes the light sensor to close its output
contact, energizing discrete channel IN4. When an object on the conveyor belt interrupts the
light beam from source to sensor, the sensor’s contact opens, interrupting power to input IN4. A
pushbutton switch connected to activate discrete input IN5 when pressed will serve as a manual
“reset” of the count value. An indicator lamp connected to one of the discrete output channels will
serve as an indicator of when the object count value has exceeded some pre-set limit.
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We will now analyze a simple Ladder Diagram program designed to increment a counter
instruction each time the light beam breaks:

CTU
CU

R

PV CV

Q

OUT_counts_reachedIN_switch_reset

IN_sensor_object

025 parts_counted

This particular counter instruction (CTU) is an incrementing counter, which means it counts
“up” with each off-to-on transition input to its “CU” input. The normally-closed virtual contact
(IN sensor object) is typically held in the “open” state when the light beam is continuous, by virtue
of the fact the sensor holds that discrete input channel energized while the beam is continuous. When
the beam is broken by a passing object on the conveyor belt, the input channel de-energizes, causing
the virtual contact IN sensor object to “close” and send virtual power to the “CU” input of the
counter instruction. This increments the counter just as the leading edge of the object breaks the
beam. The second input of the counter instruction box (“R”) is the reset input, receiving virtual
power from the contact IN switch reset whenever the reset pushbutton is pressed. If this input is
activated, the counter immediately resets its current value (CV) to zero.

Status indication is shown in this Ladder Diagram program, with the counter’s preset value
(PV) of 25 and the counter’s current value (CV) of 0 shown highlighted in blue. The preset value is
something programmed into the counter instruction before the system put into service, and it serves
as a threshold for activating the counter’s output (Q), which in this case turns on the count indicator
lamp (the OUT counts reached coil). According to the IEC 61131-3 programming standard, this
counter output should activate whenever the current value is equal to or greater than the preset
value (Q is active if CV ≥ PV).
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This is the status of the same program after thirty objects have passed by the sensor on the
conveyor belt. As you can see, the current value of the counter has increased to 30, exceeding the
preset value and activating the discrete output:

CTU
CU

R

PV CV

Q

OUT_counts_reachedIN_switch_reset

IN_sensor_object

3025 parts_counted

If all we did not care about maintaining an accurate total count of objects past 25 – but merely
wished the program to indicate when 25 objects had passed by – we could also use a down counter
instruction preset to a value of 25, which turns on an output coil when the count reaches zero:

OUT_counts_reached

IN_sensor_object

25 parts_counted

CU

PV CV

CTD

LD Q

0

IN_switch_load

Here, a “load” input causes the counter’s current value to equal the preset value (25) when
activated. With each sensor pulse received, the counter instruction decrements. When it reaches
zero, the Q output activates.

A potential problem in either version of this object-counting system is that the PLC cannot
discriminate between forward and reverse motion on the conveyor belt. If, for instance, the conveyor
belt were ever reversed in direction, the sensor would continue to count objects that had already
passed by before (in the forward direction) as those objects retreated on the belt. This would be
a problem because the system would “think” more objects had passed along the belt (indicating
greater production) than actually did.
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One solution to this problem is to use an up/down counter, capable of both incrementing
(counting up) and decrementing (counting down), and equip this counter with two light-beam sensors
capable of determining direction of travel. If two light beams are oriented parallel to each other,
closer than the width of the narrowest object passing along the conveyor belt, we will have enough
information to determine direction of object travel:

A

B

SensorsSources

Forward
travel

Reverse
travel

(A breaks before B)

(B breaks before A)

Time

A

B

Forward travel timing 

Time

A

B

Reverse travel timing

This is called quadrature signal timing, because the two pulse waveforms are approximately 90o

(one-quarter of a period) apart in phase. We can use these two phase-shifted signals to increment or
decrement an up/down counter instruction, depending on which pulse leads and which pulse lags.
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A Ladder Diagram PLC program designed to interpret the quadrature pulse signals is shown
here, making use of negative-transition contacts as well as standard contacts:

OUT_counts_reached

IN_switch_reset

25

CU

R

PV CV

CTUD

CD

LD

QU

QD

0

IN_sensor_A

IN_sensor_B

N

IN_sensor_B

N

IN_sensor_A

parts_counted

The counter will increment (count up) when sensor B de-energizes only if sensor A is already in
the de-energized state (i.e. light beam A breaks before B). The counter will decrement (count down)
when sensor A de-energizes only if sensor B is already in the de-energized state (i.e. light beam B
breaks before A).

Note that the up/down counter has both a “reset” (R) input and a “load” input (“LD”) to force
the current value. Activating the reset input forces the counter’s current value (CV) to zero, just
as we saw with the “up” counter instruction. Activating the load input forces the counter’s current
value to the preset value (PV), just as we saw with the “down” counter instruction. In the case of
an up/down counter, there are two Q outputs: a QU (output up) to indicate when the current value
is equal to or greater than the preset value, and a QD (output down) to indicate when the current
value is equal to or less than zero.

Note how the current value (CV) of each counter shown is associated with a tag name of its own,
in this case parts counted. The integer number of a counter’s current value (CV) is a variable in
the PLC’s memory just like boolean values such as IN sensor A and IN switch reset, and may be
associated with a tag name or symbolic address just the same21. This allows other instructions in a
PLC program to read (and sometimes write!) values from and to that memory location.

21This represents the IEC 61131-3 standard, where each variable within an instruction may be “connected” to
its own arbitrary tag name. Other programming conventions may differ somewhat. The Allen-Bradley Logix5000
series of controllers is one of those that differs, following a convention reminiscent of structure element addressing
in the C programming language: each counter is given a tag name, and variables in each counter are addressed as
elements within that structure. For example, a Logix5000 counter instruction might be named parts count, with
the accumulated count value (equivalent to the IEC’s “current value”) addressed as parts count.ACC (each element
within the counter specified as a suffix to the counter’s tag name).
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4.9 Ladder diagram timers

A timer is a PLC instruction measuring the amount of time elapsed following an event. Timer
instructions come in two basic types: on-delay timers and off-delay timers. Both “on-delay” and
“off-delay” timer instructions have single inputs triggering the timed function.

An “on-delay” timer activates an output only when the input has been active for a minimum
amount of time. Take for instance this PLC program, designed to sound an audio alarm siren prior
to starting a conveyor belt. To start the conveyor belt motor, the operator must press and hold
the “Start” pushbutton for 10 seconds, during which time the siren sounds, warning people to clear
away from the conveyor belt that is about to start. Only after this 10-second start delay does the
motor actually start (and latch “on”):

Discrete input
card

Discrete output
card

Real-world I/O wiring

PLC program

"Start" pushbutton

"Stop" pushbutton

IN_switch_Start

IN_switch_Stop

OUT_contactor

OUT_siren

Contactor coil

Alarm siren

IN_switch_Start Time_elapsed

OUT_siren

10 0

IN_switch_StopTime_elapsed OUT_contactor

OUT_contactor

TON
IN Q

PT ET
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Similar to an “up” counter, the on-delay timer’s elapsed time (ET) value increments once per
second until the preset time (PT) is reached, at which time its output (Q) activates. In this program,
the preset time value is 10 seconds, which means the Q output will not activate until the “Start”
switch has been depressed for 10 seconds. The alarm siren output, which is not activated by the
timer, energizes immediately when the “Start” pushbutton is pressed.

An important detail regarding this particular timer’s operation is that it be non-retentive. This
means the timer instruction should not retain its elapsed time value when the input is de-activated.
Instead, the elapsed time value should reset back to zero every time the input de-activates. This
ensures the timer resets itself when the operator releases the “Start” pushbutton. A retentive on-
delay timer, by contrast, maintains its elapsed time value even when the input is de-activated. This
makes it useful for keeping “running total” times for some event.

Most PLCs provide retentive and non-retentive versions of on-delay timer instructions, such
that the programmer may choose the proper form of on-delay timer for any particular application.
The IEC 61131-3 programming standard, however, addresses the issue of retentive versus non-
retentive timers a bit differently. According to the IEC 61131-3 standard, a timer instruction may
be specified with an additional enable input (EN) that causes the timer instruction to behave non-
retentively when activated, and retentively when de-activated. The general concept of the enable
(EN) input is that the instruction behaves “normally” so long as the enable input is active (in this
case, non-retentive timing action is considered “normal” according to the IEC 61131-3 standard),
but the instruction “freezes” all execution whenever the enable input de-activates. This “freezing” of
operation has the effect of retaining the current time (CT) value even if the input signal de-activates.
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For example, if we wished to add a retentive timer to our conveyor control system to record total
run time for the conveyor motor, we could do so using an “enabled” IEC 61131-3 timer instruction
like this:

OUT_contactor

TON
IN Q

PT ET

EN ENO

OUT_contactor

run_time

timer_enabled

When the motor’s contactor bit (OUT contactor) is active, the timer is enabled and allowed to
time. However, when that bit de-activates (becomes “false”), the timer instruction as a whole is
disabled, causing it to “freeze” and retain its current time (CT) value22. This allows the motor to
be started and stopped, with the timer maintaining a tally of total motor run time.

If we wished to give the operator the ability to manually reset the total run time value to zero,
we could hard-wire an additional switch to the PLC’s discrete input card and add “reset” contacts
to the program like this:

OUT_contactor

TON
IN Q

PT ET

EN ENO

IN_switch_ResetOUT_contactor

IN_switch_Reset

run_time

timer_enabled

Whenever the “Reset” switch is pressed, the timer is enabled (EN) but the timing input (IN) is
disabled, forcing the timer to (non-retentively) reset its current time (CT) value to zero.

22The “enable out” (ENO) signal on the timer instruction serves to indicate the instruction’s status: it activates
when the enable input (EN) activates and de-activates when either the enable input de-activates or the instruction
generates an error condition (as determined by the PLC manufacturer’s internal programming). The ENO output
signal serves no useful purpose in this particular program, but it is available if there were any need for other rungs of
the program to be “aware” of the run-time timer’s status.
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The other major type of PLC timer instruction is the off-delay timer. This timer instruction
differs from the on-delay type in that the timing function begins as soon as the instruction is de-
activated, not when it is activated. An application for an off-delay timer is a cooling fan motor
control for a large industrial engine. In this system, the PLC starts an electric cooling fan as soon as
the engine is detected as rotating, and keeps that fan running for two minutes following the engine’s
shut-down to dissipate residual heat:

Discrete input
card

Discrete output
card

Real-world I/O wiring

PLC program

0

Engine speed switch

IN_switch_enginespeed

Cooling fan
contactor coil

IN_switch_enginespeed

IN Q

PT ET

TOF

OUT_contactor_fan

OUT_contactor_fan

120
(120 seconds = 2 minutes)

When the input (IN) to this timer instruction is activated, the output (Q) immediately activates
(with no time delay at all) to turn on the cooling fan motor contactor. This provides the engine
with cooling as soon as it begins to rotate (as detected by the speed switch connected to the PLC’s
discrete input). When the engine stops rotating, the speed switch returns to its normally-open
position, de-activating the timer’s input signal which starts the timing sequence. The Q output
remains active while the timer counts from 0 seconds to 120 seconds. As soon as it reaches 120
seconds, the output de-activates (shutting off the cooling fan motor) and the elapsed time value
remains at 120 seconds until the input re-activates, at which time it resets back to zero.
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The following timing diagrams compare and contrast on-delay with off-delay timers:

IN

Q
on-delay

time

On-delay timer (TON)

IN

Q time

Off-delay timer (TOF)

off-delay

While it is common to find on-delay PLC instructions offered in both retentive and non-retentive
forms within the instruction sets of nearly every PLC manufacturer and model, it is almost unheard
of to find retentive off-delay timer instructions. Typically, off-delay timers are non-retentive only23.

23The enable (EN) input signals specified in the IEC 61131-3 programming standard make retentive off-delay timers
possible (by de-activating the enable input while maintaining the “IN” input in an inactive state), but bear in mind
that most PLC implementations of timers do not have separate EN and IN inputs. This means (for most PLC timer
instructions) the only input available to activate the timer is the “IN” input, in which case it is impossible to create
a retentive off-delay timer (since such a timer’s elapsed time value would be immediately re-set to zero each time the
input re-activates).
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4.10 Ladder diagram comparison instructions

As we have seen with counter and timers, some PLC instructions generate digital values other than
simple Boolean (on/off) signals. Counters have current value (CV) registers and timers have elapsed
time (ET) registers, both of which are typically integer number values. Many other PLC instructions
are designed to receive and manipulate non-Boolean values such as these to perform useful control
functions.

The IEC 61131-3 standard specifies a variety of data comparison instructions for comparing two
non-Boolean values, and generating Boolean outputs. The basic comparative operations of “less
than” (<), “greater than” (>), “less than or equal to” (≤), “greater than or equal to” (≥), “equal
to” (=), and “not equal to” ( 6=) may be found as a series of “box” instructions in the IEC standard:

EN

EQ
Q

ENO

IN1

IN2

IN1 = IN2

EN

Q

ENO

IN1

IN2

NE

IN1 ≠ IN2

EN

Q

ENO

IN1

IN2

GT

IN1 > IN2

EN

Q

ENO

IN1

IN2

LT

IN1 < IN2

EN

Q

ENO

IN1

IN2

GE

IN1 ≥ IN2

EN

Q

ENO

IN1

IN2

LE

IN1 ≤ IN2

The Q output for each instruction “box” activates whenever the evaluated comparison function
is “true” and the enable input (EN) is active. If the enable input remains active but the comparison
function is false, the Q output de-activates. If the enable input de-de-activates, the Q output retains
its last state.
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A practical application for a comparative function is something called alternating motor control,
where the run-times of two redundant electric motors24 are monitored, with the PLC determining
which motor to turn on next based on which motor has run the least:

Discrete input
card

Discrete output
card

Real-world I/O wiring

PLC program

"Start" pushbutton

"Stop" pushbutton

IN_switch_Start

IN_switch_Stop

IN_switch_Stop

Motor "A"

Motor "B"

contactor coil

contactor coil

OUT_motor_A

OUT_motor_B

OUT_motor_A

OUT_motor_A

TON
IN Q

PT ET

EN ENO

IN_switch_Start

Motor_A_runtime

IN_switch_Stop

TON
IN Q

PT ET

EN ENO

IN_switch_Start OUT_motor_B

OUT_motor_B

Motor_B_runtime

EN

Q

ENO

IN1

IN2

GT

IN1 > IN2

Motor_A_runtime

Motor_B_runtime

A_morethan_B

A_morethan_B

A_morethan_B

0

0
OUT_motor_A OUT_motor_B

0

0

In this program, two retentive on-delay timers keep track of each electric motor’s total run
time, storing the run time values in two registers in the PLC’s memory: Motor A runtime and

24Perhaps two pumps performing the same pumping function, one serving as a backup to the other. Alternating
motor control ensures the two motors’ run times are matched as closely as possible.



4.10. LADDER DIAGRAM COMPARISON INSTRUCTIONS 117

Motor B runtime. These two integer values are input to the “greater than” instruction box for
comparison. If motor A has run longer than motor B, motor B will be the one enabled to start
up next time the “start” switch is pressed. If motor A has run less time or the same amount of
time as motor B (the scenario shown by the blue-highlighted status indications), motor A will be
the one enabled to start. The two series-connected virtual contacts OUT motor A and OUT motor B

ensure the comparison between motor run times is not made until both motors are stopped. If the
comparison were continually made, a situation might arise where both motors would start if someone
happened to press the Start pushbutton with one motor is already running.
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4.11 Ladder diagram arithmetic instructions

The IEC 61131-3 standard specifies several dedicated ladder instructions for performing arithmetic
calculations. Some of them are shown here:

ADD
EN

IN1

IN2

ENO

OUT

IN1 + IN2

EN

IN1

IN2

ENO

OUT

SUB

IN1 - IN2

EN

IN1

IN2

ENO

OUT

MUL

IN1 * IN2

EN

IN1

IN2

ENO

OUT

DIV

IN1 ÷ IN2

EN

IN1

IN2

ENO

OUT

EXPT

IN1IN2

EN

IN1

IN2

ENO

OUT

MOD

IN1 % IN2

ENO

OUTIN

EN

SIN
sin (IN)

ENO

OUTIN

EN

COS
cos (IN)

ENO

OUTIN

EN

TAN
tan (IN)

ENO

OUTIN

EN

LN
ln (IN)

ENO

OUTIN

EN

LOG
log (IN)

ENO

OUTIN

EN

EXP
eIN

ENO

OUTIN

EN

SQRT
IN

ENO

OUTIN

EN

ABS
|IN|

As with the data comparison instructions, each of these math instructions must be enabled by
an “energized” signal to the enable (EN) input. Input and output values are linked to each math
instruction by tag name.



4.11. LADDER DIAGRAM ARITHMETIC INSTRUCTIONS 119

An example showing the use of such instructions is shown here, converting a temperature
measurement in units of degrees Fahrenheit to units of degrees Celsius. In this particular case, the
program inputs a temperature measurement of 138 oF and calculates the equivalent temperature of
58.89 oC:

PLC program

Always_ON

Always_ON

Always_ON

EN

IN1

IN2

ENO

OUT

SUB

IN1 - IN2

IN_deg_F

32

138
X

106

EN

IN1

IN2

ENO

OUT

DIV

IN1 ÷ IN2

Always_ON

Always_ON

X

106

1.8

OUT_deg_C

58.89

Note how two separate math instructions were required to perform this simple calculation, as
well as a dedicated variable (X) used to store the intermediate calculation between the subtraction
and the division “boxes.”

Although not specified in the IEC 61131-3 standard, many programmable logic controllers
support Ladder Diagram math instructions allowing the direct entry of arbitrary equations. Rockwell
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(Allen-Bradley) Logix5000 programming, for example, has the “Compute” (CPT) function, which
allows any typed expression to be computed in a single instruction as opposed to using several
dedicated math instructions such as “Add,” “Subtract,” etc. General-purpose math instructions
dramatically shorten the length of a ladder program compared to the use of dedicated math
instructions for any applications requiring non-trivial calculations.

For example, the same Fahrenheit-to-Celsius temperature conversion program implemented in
Logix5000 programming only requires a single math instruction and no declarations of intermediate
variables:

Always_ON

Always_ON

Always_ON

Always_ON

OUT_deg_C

58.89

Compute

Dest

Expression (IN_deg_F - 32)/1.8

Rockwell Logix5000 PLC program
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4.12 Ladder diagram sequencer instructions

Many industrial processes require control actions to take place in certain, predefined sequences.
Batch processes are perhaps the most striking example of this, where materials for making a batch
must be loaded into the process vessels, parameters such as temperature and pressure controlled
during the batch processing, and then discharge of the product monitored and controlled. Before the
advent of reliable programmable logic devices, this form of sequenced control was usually managed
by an electromechanical device known as a drum sequencer. This device worked on the principle of
a rotating cylinder (drum) equipped with tabs to actuate switches as the drum rotated into certain
positions. If the drum rotated at a constant speed (turned by a clock motor), those switches would
actuate according to a timed schedule25.

The following photograph shows a drum sequencer with 30 switches. Numbered tabs on the
circumference of the drum mark the drum’s rotary position in one of 24 increments. With this
number of switches and tabs, the drum can control up to thirty discrete (on/off) devices over a
series of twenty-four sequenced steps:

25The operation of the drum is not unlike that of an old player piano, where a strip of paper punched with holes
caused hammers in the piano to automatically strike their respective strings as the strip was moved along at a set
speed, thus playing a pre-programmed song.
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A typical application for a sequencer is to control a Clean In Place (CIP) system for a food
processing vessel, where a process vessel must undergo a cleaning cycle to purge it of any biological
matter between food processing cycles. The steps required to clean the vessel are well-defined and
must always occur in the same sequence in order to ensure hygienic conditions. An example timing
chart is shown here:
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Pre-rinse supply valve

Rinse supply valve

Caustic supply valve
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In this example, there are nine discrete outputs – one for each of the nine final control elements
(pumps and valves) – and seventeen steps to the sequence, each one of them timed. In this particular
sequence, the only input is the discrete signal to commence the CIP cycle. From the initiation of the
CIP to its conclusion two and a half hours (150 minutes) later, the sequencer simply steps through
the programmed routine.
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Another practical application for a sequencer is to implement a Burner Management System
(BMS), also called a flame safety system. Here, the sequencer manages the safe start-up of a
combustion burner: beginning by “purging” the combustion chamber with fresh air to sweep out
any residual fuel vapors, waiting for the command to light the fire, energizing a spark ignition system
on command, and then continuously monitoring for presence of good flame and proper fuel supply
pressure once the burner is lit.

In a general sense, the operation of a drum sequencer is that of a state machine: the output
of the system depends on the condition of the machine’s internal state (the drum position), not
just the conditions of the input signals. Digital computers are very adept at implementing state
functions, and so the general function of a drum sequencer should be (and is) easy to implement in
a PLC. Other PLC functions we have seen (“latches” and timers in particular) are similar, in that
the PLC’s output at any given time is a function of both its present input condition(s) and its past
input condition(s). Sequencing functions expand upon this concept to define a much larger number
of possible states (“positions” of a “drum”), some of which may even be timed.

Unfortunately, despite the utility of drum sequence functions and their ease of implementation
in digital form, there seems to be very little standardization between PLC manufacturers regarding
sequencing instructions. Sadly, the IEC 61131-3 standard (at least at the time of this writing, in
2009) does not specifically define a sequencing function suitable for Ladder Diagram programming.
PLC manufacturers are left to invent sequencing instructions of their own design. What follows here
is an exploration of some different sequencer instructions offered by PLC manufacturers.
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4.13 Human-Machine Interfaces (HMIs)

Programmable logic controllers are built to input various signal types (discrete, analog), execute
control algorithms on those signals, and then output signals in response to control processes. By
itself, a PLC generally lacks the capability of displaying those signal values and algorithm variables
to human operators. A technician or engineer with access to a personal computer and the requisite
software for editing the PLC’s program may connect to the PLC and view the program’s status
“online” to monitor signal values and variable states, but this is not a practical way for operations
personnel to monitor what the PLC is doing on a regular basis. In order for operators to monitor and
adjust parameters inside the PLC’s memory, we need a different sort of interface allowing certain
variables to be read and written without compromising the integrity of the PLC by exposing too
much information or allowing any unqualified person to alter the program itself.

One solution to this problem is a dedicated computer display programmed to provide selective
access to certain variable’s in the PLC’s memory, generally referred to as Human26-Machine
Interface, or HMI.

HMIs may take the form of general-purpose (“personal”) computers running special graphic
software to interface with a PLC, or as special-purpose computers designed to be mounted in sheet
metal panel fronts to perform no task but the operator-PLC interface. This first photograph shows
an example of an ordinary personal computer (PC) with HMI software running on it:

The display shown here happens to be for monitoring a vacuum swing adsorption (VSA) process
for purifying oxygen extracted from ambient air. Somewhere, a PLC (or collection of PLCs) is
monitoring and controlling this VSA process, with the HMI software acting as a “window” into the
PLC’s memory to display pertinent variables in an easy-to-interpret form for operations personnel.
The personal computer running this HMI software connects to the PLC(s) via digital network cables
such as Ethernet.

26An older term for an operator interface panel was the “Man-Machine Interface” or “MMI.” However, this fell out
of favor due to its sexist tone.
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This next photograph shows an example of a special-purpose HMI panel designed and built
expressly to be used in industrial operating environments:

These HMI panels are really nothing more than “hardened” personal computers built ruggedly
and in a compact format to facilitate their use in industrial environments. Most industrial HMI
panels come equipped with touch-sensitive screens, allowing operators to press their fingertips on
displayed objects to change screens, view details on portions of the process, etc.
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Technicians and/or engineers program HMI displays to read and write data via a digital network
to one or more PLCs. Graphical objects arrayed on the display screen of an HMI often mimic
real-world indicators and switches, in order to provide a familiar interface for operations personnel.
A “pushbutton” object on the face of an HMI panel, for example, would be configured to write one
bit of data to the PLC, in a manner similar to a real-world switch writing one bit of data to the
PLC’s input register.
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Modern HMI panels and software are almost exclusively tag-based, with each graphic object on
the screen associated with at least one data tag name, which in turn is associated to data points
(bits, or words) in the PLC by way of a tag name database file resident in the HMI. Graphic objects
on the HMI screen either accept (read) data from the PLC to present useful information to the
operator, send (write) data to the PLC from operator input, or both. The task of programming
an HMI unit consists of building a tag name database and then drawing screens to illustrate the
process to as good a level of detail as operators will need to run it.

An example screenshot of a tag name database table for a modern HMI is shown here:

The tag name database is accessed and edited using the same software to create graphic images
in the HMI. In this particular example you can see several tag names (e.g. START PUSHBUTTON,
MOTOR RUN TIMER, ERROR MESSAGE, MOTOR SPEED) associated with data points within the PLC’s
memory (in this example, the PLC addresses are shown in Modbus register format). In many
cases the tag name editor will be able to display corresponding PLC memory points in the same
manner as they appear in the PLC programming editor software (e.g. I:5/10, SM0.4, C11, etc.).

An important detail to note in this tag name database display is the read/write attributes of
each tag. Note in particular how four of the tags shown are read-only : this means the HMI only has
permission to read the values of those four tags from the PLC’s memory, and not to write (alter)
those values. The reason for this in the case of these four tags is that those tags refer to PLC
input data points. The START PUSHBUTTON tag, for instance, refers to a discrete input in the PLC
energized by a real pushbutton switch. As such, this data point gets its state from the energization
of the discrete input terminal. If the HMI were to be given write permission for this data point,
there would likely be a conflict. Suppose input terminal on the PLC were energized (setting the
START PUSHBUTTON bit to a “1” state) and the HMI simultaneously attempted to write a “0” state
to the same tag. One of these two data sources would win, and other would lose, possibly resulting
in unexpected behavior from the PLC program. For this reason, data points in the PLC linked to
real-world inputs should always be limited as “read-only” permission in the HMI’s database, so the
HMI cannot possibly generate a conflict.
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The potential for data conflict also exists for some of the other points in the database, however.
A good example of this is the MOTOR RUN bit, which is the bit within the PLC program telling
the real-world motor to run. Presumably, this bit gets its data from a coil in the PLC’s Ladder
Diagram program. However, since it also appears in the HMI database with read/write permission,
the potential exists for the HMI to over-write (i.e. conflict) that same bit in the PLC’s memory.
Suppose someone programmed a toggling “pushbutton” screen object in the HMI linked to this tag:
pushing this virtual “button” on the HMI screen would attempt to set the bit (1), and pushing it
again would attempt to reset the bit (0). If this same bit is being written to by a coil in the PLC’s
program, however, there exists the distinct possibility that the HMI’s “pushbutton” object and the
PLC’s coil will conflict, one trying to tell the bit to be a “0” while the other tries to tell that bit to
be a “1”. This situation is quite similar to the problem experienced when multiple coils in a Ladder
Diagram program are addressed to the same bit.

The general rule to follow here is never allow more than one element to write to any data point.
In my experience teaching PLC and HMI programming, this is one of the more common errors
students make when first learning to program HMIs: they will try to have both the HMI and the
PLC writing to the same memory locations, with weird results.

One of the lessons you will learn when programming large, complex systems is that it is very
beneficial to define all the necessary tag names before beginning to lay out graphics in an HMI.
The same goes for PLC programming: it makes the whole project go faster with less confusion if
you take the time to define all the necessary I/O points (and tag names, if the PLC programming
software supports tag names in the programming environment) before you begin to create any code
specifying how those inputs and outputs will relate to each other.

Maintaining a consistent convention for tag names is important, too. For example, you may
wish to begin the tag name of every hard-wired I/O point as either INPUT or OUTPUT (e.g.
INPUT PRESSURE SWITCH HIGH, OUTPUT SHAKER MOTOR RUN, etc.). The reason for maintaining a
strict naming convention is not obvious at first, since the whole point of tag names is to give
the programmer the freedom to assign arbitrary names to data points in the system. However,
you will find that most tag name editors list the tags in alphabetical order, which means a naming
convention organized in this way will present all the input tags contiguously (adjacent) in the list,
all the output tags contiguously in the list, and so on.
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Another way to leverage the alphabetical listing of tag names to your advantage is to begin each
tag name with a word describing its association to a major piece of equipment. Take for instance this
example of a chemical fluid processing system with several data points27 defined in a PLC control
system and displayed in an HMI:

TT

TT

TT

TT

FT

Reactor

Heat
exchanger

Reactor_feed_flow

Reactor_feed_temp

Reactor_jacket_valve

Reactor_bed_temp

Exchanger_preheat_valve

Exchanger_effluent_temp_out

Exchanger_preheat_temp_in

Exchanger_effluent_pump

Exchanger_preheat_pump

27Each circle with “TT” written inside is a temperature transmitter, which is the industrial instrumentation term
for a temperature sensor. The “FT” circle is a flow transmitter, reporting the rate of flow of fluid through that pipe.
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If we list all these tags in alphabetical order, the association is immediately obvious:

• Exchanger effluent pump

• Exchanger effluent temp out

• Exchanger preheat pump

• Exchanger preheat temp in

• Exchanger preheat valve

• Reactor bed temp

• Reactor feed flow

• Reactor feed temp

• Reactor jacket valve

As you can see from this tag name list, all the tags directly associated with the heat exchanger are
located in one contiguous group, and all the tags directly associated with the reactor are located in
the next contiguous group. In this way, judicious naming of tags serves to group them in hierarchical
fashion, making them easy for the programmer to locate at any future time in the tag name database.

You will note that all the tag names shown here lack space characters between words (e.g. instead
of “Reactor bed temp”, a tag name should use hyphens or underscore marks as spacing characters:
“Reactor bed temp”), since spaces are generally assumed by computer programming languages to
be delimiters (separators between different variable names).

Like programmable logic controllers themselves, the capabilities of HMIs have been steadily
increasing while their price decreases. Modern HMIs support graphic trending, data archival,
advanced alarming, and even web server ability allowing other computers to easily access certain
data over wide-area networks. The ability of HMIs to log data over long periods of time relieves the
PLC of having to do this task, which is very memory-intensive. This way, the PLC merely “serves”
current data to the HMI, and the HMI is able to keep a record of current and past data using its
vastly larger memory reserves28.

Some modern HMI panels even have a PLC built inside the unit, providing control and monitoring
in the same device. Such panels provide terminal strip connection points for discrete and even analog
I/O, allowing all control and interface functions to be located in a single panel-mount unit.

28If the HMI is based on a personal computer platform (e.g. Rockwell RSView, Wonderware, FIX/Intellution
software), it may even be equipped with a hard disk drive for enormous amounts of historical data storage.
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Chapter 5

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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5.1 Feature comparisons between PLC models

In most cases, similarities are far greater for different models of PLC than differences. However,
differences do exist, and it is worth exploring the differences in basic features offered by an array of
PLC models.

5.1.1 Viewing live values

• Allen-Bradley Logix 5000: the Controller Tags folder (typically on the left-hand pane of the
programming window set) lists all the tag names defined for the PLC project, allowing you to
view the real-time status of them all. Discrete inputs do not have specific input channel tag
names, as tag names are user-defined in the Logix5000 PLC series.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Data Files listing (typically on the left-
hand pane of the programming window set) lists all the data files within that PLC’s memory.
Opening a data file window allows you to view the real-time status of these data points.
Discrete inputs are the I file addresses (e.g. I:0/2, I:3/5, etc.). The letter “I” represents
“input,” the first number represents the slot in which the input card is plugged, and the last
number represents the bit within that data element (a 16-bit word) corresponding to the input
card.

• Siemens S7-200: the Status Chart window allows the user to custom-configure a table showing
the real-time values of multiple addresses within the PLC’s memory. Discrete inputs are the
I memory addresses (e.g. I0.1, I1.5, etc.).

• Koyo (Automation Direct) DirectLogic and CLICK: the Data View window allows the user to
custom-configure a table showing the real-time values of multiple addresses within the PLC’s
memory. Discrete inputs are the X memory addresses (e.g. X1, X2, etc.).
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5.1.2 Forcing live values

• Allen-Bradley Logix 5000: forces may be applied to specific tag names by right-clicking on the
tag (in the program listing) and selecting the “Monitor” option. Discrete outputs do not have
specific output channel tag names, as tag names are user-defined in the Logix5000 PLC series.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Force Files listing (typically on the left-
hand pane of the programming window set) lists those data files within the PLC’s memory
liable to forcing by the user. Opening a force file window allows you to view and set the
real-time status of these bits. Discrete outputs are the O file addresses (e.g. O:0/7, O:6/2,
etc.). The letter “O” represents “output,” the first number represents the slot in which the
output card is plugged, and the last number represents the bit within that data element (a
16-bit word) corresponding to the output card.

• Siemens S7-200: the Status Chart window allows the user to custom-configure a table showing
the real-time values of multiple addresses within the PLC’s memory, and enabling the user to
force the values of those addresses. Discrete outputs are the Q memory addresses (e.g. Q0.4,
Q1.2, etc.).

• Koyo (Automation Direct) DirectLogic and CLICK: the Override View window allows the
user to force variables within the PLC’s memory. Discrete outputs are the Y memory addresses
(e.g. Y1, Y2, etc.).

5.1.3 Special “system” values

Every PLC has special registers holding data relevant to its operation, such as error flags, processor
scan time, etc.

• Allen-Bradley Logix 5000: various “system” values are accessed via GSV (Get System Value)
and SSV (Save System Value) instructions.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Data Files listing (typically on the left-
hand pane of the programming window set) shows file number 2 as the “Status” file, in which
you will find various system-related bits and registers.

• Siemens S7-200: the Special Memory registers contain various system-related bits and registers.
These are the SM memory addresses (e.g. SM0.1, SMB8, SMW22, etc.).

• Koyo (Automation Direct) DirectLogic and CLICK: the Special registers contain various
system-related bits and registers. These are the SP memory addresses (e.g. SP1, SP2, SP3,
etc.) in the DirectLogic PLC series, and the SC and SD memory addresses in the CLICK PLC
series.
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5.1.4 Free-running clock pulses

• Allen-Bradley SLC 500: status bit S:4/0 is a free-running clock pulse with a period of 20
milliseconds, which may be used to clock a counter instruction up to 50 to make a 1-second
pulse (because 50 times 20 ms = 1000 ms = 1 second).

• Siemens S7-200: Special Memory bit SM0.5 is a free-running clock pulse with a period of 1
second.

• Koyo (Automation Direct) DirectLogic: Special relay SP4 is a free-running clock pulse with a
period of 1 second.

5.1.5 Standard counter instructions

• Allen-Bradley Logix 5000: CTU count-up, CTD count-down, and CTUD count-up/down
instructions.

• Allen-Bradley SLC 500: CTU and CTD instructions.

• Siemens S7-200: CTU count-up, CTD count-down, and CTUD count-up/down instructions.

• Koyo (Automation Direct) DirectLogic: UDC counter instruction.

5.1.6 High-speed counter instructions

• Allen-Bradley SLC 500: HSU high-speed count-up instruction.

• Siemens S7-200: HSC high-speed counter instruction, used in conjunction with the HDEF high-
speed counter definition instruction.

5.1.7 Timer instructions

• Allen-Bradley Logix 5000: TOF off-delay timer, TON on-delay timer, RTO retentive on-delay
timer, TOFR off-delay timer with reset, TONR on-delay timer with reset, and RTOR retentive
on-delay timer with reset instructions.

• Allen-Bradley SLC 500: TOF off-delay timer, TON on-delay timer, and RTO retentive on-delay
timer instructions.

• Siemens S7-200: TOF off-delay timer, TON on-delay timer, and TONR retentive on-delay timer
instructions.
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5.1.8 ASCII text message instructions

• Allen-Bradley Logix 5000: the “ASCII Write” instructions AWT and AWA may be used to do
this. The “ASCII Write Append” instruction (AWA) is convenient to use because it may be
programmed to automatically insert linefeed and carriage-return commands at the end of a
message string.

• Allen-Bradley SLC 500: the “ASCII Write” instructions AWT and AWA may be used to do
this. The “ASCII Write Append” instruction (AWA) is convenient to use because it may be
programmed to automatically insert linefeed and carriage-return commands at the end of a
message string.

• Siemens S7-200: the “Transmit” instruction (XMT) is useful for this task when used in Freeport
mode.

• Koyo (Automation Direct) DirectLogic: the “Print Message” instruction (PRINT) is useful for
this task.

5.1.9 Analog signal scaling

• Allen-Bradley Logix 5000: the I/O configuration menu (specifically, the Module Properties
window) allows you to directly and easily scale analog input signal ranges into any arbitrary
numerical range desired. Floating-point (“REAL”) format is standard, but integer format may
be chosen for faster processing of the analog signal.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: raw analog input values are 16-bit signed
integers. The SCL and SCP instructions are custom-made for scaling these raw integer ADC
count values into ranges of your choosing.

• Siemens S7-200: raw analog input values are 16-bit signed integers. Interestingly, the S7-200
PLC provides built-in potentiometers assigned to special word registers (SMB28 and SMB29)
with an 8-bit (0-255 count) range. These values may be used for any suitable purpose,
including combination with the raw analog input register values in order to provide mechanical
calibration adjustments for the analog input(s).

• Koyo (Automation Direct) DirectLogic: you must use standard math instructions (e.g. ADD,
MUL) to implement a y = mx+ b linear equation for scaling purposes.

• Koyo (Automation Direct) CLICK: the I/O configuration menu allows you to directly and
easily scale analog input signal ranges into any arbitrary numerical range desired.
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5.2 Legacy Allen-Bradley memory maps and I/O addressing

A wise PLC programmer once told me that the first thing any aspiring programmer should learn
about the PLC they intend to program is how the digital memory of that PLC is organized.
This is sage advice for any programmer, especially on systems where memory is limited, and/or
where I/O has a fixed association with certain locations in the system’s memory. Virtually every
microprocessor-based control system comes with a published memory map showing the organization
of its limited memory: how much is available for certain functions, which addresses are linked to
which I/O points, how different locations in memory are to be referenced by the programmer.

Discrete input and output channels on a PLC correspond to individual bits in the PLC’s
memory array. Similarly, analog input and output channels on a PLC correspond to multi-bit
words (contiguous blocks of bits) in the PLC’s memory. The association between I/O points
and memory locations is by no means standardized between different PLC manufacturers, or even
between different PLC models designed by the same manufacturer. This makes it difficult to write
a general tutorial on PLC addressing, and so my ultimate advice is to consult the engineering
references for the PLC system you intend to program.

The most common brand of PLC in use in the United States at the time of this writing (2019)
is Allen-Bradley (Rockwell), and a great many of these Allen-Bradley PLCs still in service happen
to use a unique form of I/O addressing1 students tend to find confusing.

1The most modern Allen-Bradley PLCs have all but done away with fixed-location I/O addressing, opting instead
for tag name based I/O addressing. However, enough legacy Allen-Bradley PLC systems still exist in industry to
warrant coverage of these addressing conventions.
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The following table shows a partial memory map for an Allen-Bradley SLC 500 PLC2:

File number File type Logical address range
0 Output image O:0 to O:30

1 Input image I:0 to I:30

2 Status S:0 to S:n

3 Binary B3:0 to B3:255

4 Timers T4:0 to T4:255

5 Counters C5:0 to C5:255

6 Control R6:0 to R6:255

7 Integer N7:0 to N7:255

8 Floating-point F8:0 to F8:255

9 Network x9:0 to x9:255

10 through 255 User defined x10:0 to x255:255

Note that Allen-Bradley’s use of the word “file” differs from personal computer parlance. In
the SLC 500 controller, a “file” is a block of random-access memory used to store a particular
type of data. By contrast, a “file” in a personal computer is a contiguous collection of data bits
with collective meaning (e.g. a word processing file or a spreadsheet file), usually stored on the
computer’s hard disk drive. Within each of the Allen-Bradley PLC’s “files” are multiple “elements,”
each element consisting of a set of bits (8, 16, 24, or 32) representing data. Elements are addressed
by number following the colon after the file designator, and individual bits within each element
addressed by a number following a slash mark. For example, the first bit (bit 0) of the second
element in file 3 (Binary) would be addressed as B3:2/0.

In Allen-Bradley PLCs such as the SLC 500 and PLC-5 models, files 0, 1, and 2 are exclusively
reserved for discrete outputs, discrete inputs, and status bits, respectively. Thus, the letter
designators O, I, and S (file types) are redundant to the numbers 0, 1, and 2 (file numbers). Other
file types such as B (binary), T (timers), C (counters), and others have their own default file numbers
(3, 4, and 5, respectively), but may also be used in some of the user-defined file numbers (10 and
above). For example, file 7 in an Allen-Bradley controller is reserved for data of the “integer” type
(N), but integer data may also be stored in any file numbered 10 or greater at the user’s discretion.
Thus, file numbers and file type letters for data types other than output (O), input (I), and status
(S) always appear together. You would not typically see an integer word addressed as N:30 (integer
word 30 in the PLC’s memory) for example, but rather as N7:30 (integer word 30 in file 7 of the
PLC’s memory) to distinguish it from other integer word 30’s that may exist in other files of the
PLC’s memory.

2Also called the data table, this map shows the addressing of memory areas reserved for programs entered by
the user. Other areas of memory exist within the SLC 500 processor, but these other areas are inaccessible to the
technician writing PLC programs.
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This file-based addressing notation bears further explanation. When an address appears in a
PLC program, special characters are used to separate (or “delimit”) different fields from each other.
The general scheme for Allen-Bradley SLC 500 PLCs is shown here:

File type
(letter)

File separator
(colon)

Word separator
(point)

Element
number

Bit separator
(slash)

Word Bit
number number

File
number

Not all file types need to distinguish individual words and bits. Integer files (N), for example,
consist of one 16-bit word for each element. For instance, N7:5 would be the 16-bit integer word
number five held in file seven. A discrete input file type (I), though, needs to be addressed as
individual bits because each separate I/O point refers to a single bit. Thus, I:3/7 would be bit
number seven residing in input element three. The “slash” symbol is necessary when addressing
discrete I/O bits because we do not wish to refer to all sixteen bits in a word when we just mean a
single input or output point on the PLC. Integer numbers, by contrast, are collections of 16 bits each
in the SLC 500 memory map, and so are usually addressed as entire words rather than bit-by-bit3.

Certain file types such as timers are more complex. Each timer “element4” consists of two
different 16-bit words (one for the timer’s accumulated value, the other for the timer’s target value)
in addition to no less than three bits declaring the status of the timer (an “Enabled” bit, a “Timing”
bit, and a “Done” bit). Thus, we must make use of both the decimal-point and slash separator
symbols when referring to data within a timer. Suppose we declared a timer in our PLC program
with the address T4:2, which would be timer number two contained in timer file four. If we wished
to address that timer’s current value, we would do so as T4:2.ACC (the “Accumulator” word of timer
number two in file four). The “Done” bit of that same timer would be addressed as T4:2/DN (the
“Done” bit of timer number two in file four)5.

3This is not to say one cannot specify a particular bit in an otherwise whole word. In fact, this is one of the
powerful advantages of Allen-Bradley’s addressing scheme: it gives you the ability to precisely specify portions of
data, even if that data is not generally intended to be portioned into smaller pieces!

4Programmers familiar with languages such as C and C++ might refer to an Allen-Bradley “element” as a data

structure, each type with a set configuration of words and/or bits.
5Referencing the Allen-Bradley engineering literature, we see that the accumulator word may alternatively be

addressed by number rather than by mnemonic, T4:2.2 (word 2 being the accumulator word in the timer data
structure), and that the “done” bit may be alternatively addressed as T4:2.0/13 (bit number 13 in word 0 of the
timer’s data structure). The mnemonics provided by Allen-Bradley are certainly less confusing than referencing word
and bit numbers for particular aspects of a timer’s function!
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A hallmark of the SLC 500’s addressing scheme common to many legacy PLC systems is that
the address labels for input and output bits explicitly reference the physical locations of the I/O
channels. For instance, if an 8-channel discrete input card were plugged into slot 4 of an Allen-
Bradley SLC 500 PLC, and you wished to specify the second bit (bit 1 out of a 0 to 7 range), you
would address it with the following label: I:4/1. Addressing the seventh bit (bit number 6) on a
discrete output card plugged into slot 3 would require the label O:3/6. In either case, the numerical
structure of that label tells you exactly where the real-world input signal connects to the PLC.

To illustrate the relationship between physical I/O and bits in the PLC’s memory, consider this
example of an Allen-Bradley SLC 500 PLC, showing one of its discrete input channels energized
(the switch being used as a “Start” switch for an electric motor):
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If an input or output card possesses more than 16 bits – as in the case of the 32-bit discrete
output card shown in slot 3 of the example SLC 500 rack – the addressing scheme further subdivides
each element into words and bits (each “word” being 16 bits in length). Thus, the address for bit
number 27 of a 32-bit input module plugged into slot 3 would be I:3.1/11 (since bit 27 is equivalent
to bit 11 of word 1 – word 0 addressing bits 0 through 15 and word 1 addressing bits 16 through
31):
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A close-up photograph of a 32-bit DC input card for an Allen-Bradley SLC 500 PLC system
shows this multi-word addressing:

The first sixteen input points on this card (the left-hand LED group numbered 0 through 15) are
addressed I:X.0/0 through I:X.0/15, with “X” referring to the slot number the card is plugged into.
The next sixteen input points (the right-hand LED group numbered 16 through 31) are addressed
I:X.1/0 through I:X.1/15.

Legacy PLC systems typically reference each one of the I/O channels by labels such as “I:1/3”
(or equivalent6) indicating the actual location of the input channel terminal on the PLC unit. The
IEC 61131-3 programming standard refers to this channel-based addressing of I/O data points as
direct addressing. A synonym for direct addressing is absolute addressing.

Addressing I/O bits directly by their card, slot, and/or terminal labels may seem simple and
elegant, but it becomes very cumbersome for large PLC systems and complex programs. Every time
a technician or programmer views the program, they must “translate” each of these I/O labels to
some real-world device (e.g. “Input I:1/3 is actually the Start pushbutton for the middle tank
mixer motor”) in order to understand the function of that bit. A later effort to enhance the clarity
of PLC programming was the concept of addressing variables in a PLC’s memory by arbitrary
names rather than fixed codes. The IEC 61131-3 programming standard refers to this as symbolic
addressing in contrast to “direct” (channel-based) addressing, allowing programmers arbitrarily

6Some systems such as the Texas Instruments 505 series used “X” labels to indicate discrete input channels and
“Y” labels to indicate discrete output channels (e.g. input X9 and output Y14). This same labeling convention is still
used by Koyo in its DirectLogic and “CLICK” PLC models. Siemens continues a similar tradition of I/O addressing
by using the letter “I” to indicate discrete inputs and the letter “Q” to indicate discrete outputs (e.g. input channel
I0.5 and output Q4.1).
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name I/O channels in ways that are meaningful to the system as a whole. To use our simple
motor “Start” switch example, it is now possible for the programmer to designate input I:1/3 (an
example of a direct address) as “Motor start switch” (an example of a symbolic address) within
the program, thus greatly enhancing the readability of the PLC program. Initial implementations
of this concept maintained direct addresses for I/O data points, with symbolic names appearing as
supplements to the absolute addresses.

The modern trend in PLC addressing is to avoid the use of direct addresses such as I:1/3

altogether, so they do not appear anywhere in the programming code. The Allen-Bradley “Logix”
series of programmable logic controllers is the most prominent example of this new convention
at the time of this writing. Each I/O point, regardless of type or physical location, is assigned
a tag name which is meaningful in a real-world sense, and these tag names (or symbols as they
are alternatively called) are referenced to absolute I/O channel locations by a database file. An
important requirement of tag names is that they contain no space characters between words (e.g.
instead of “Motor start switch”, a tag name should use hyphens or underscore marks as spacing
characters: “Motor start switch”), since spaces are generally assumed by computer programming
languages to be delimiters (separators between different variables).

Having introduced Allen-Bradley’s addressing notation for SLC 500 model PLCs, I will now
abandon it in favor of the modern convention of symbolic addressing throughout the rest of this
chapter, so as to avoid making the programming examples brand- or model-specific. Each data
point within my PLC programs will bear its own tag name rather than a direct (channel-based)
address label.
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5.3 Koyo “drum” sequencer instructions

The drum instruction offered in Koyo PLCs is a model of simplicity itself. This instruction is
practically self-explanatory, as shown in the following example:

Koyo CLICK PLC program

Drum (TimeBase:sec)

Step Duration 1 2 3

1

2

3

10

15

18

Output

Complete

1=Y001
2=Y002
3=Y003

New Step

Current Step

Elapsed Time

DS1

TD1

X001

The three-by-three grid of squares represent steps in the sequence and bit states for each step.
Rows represent steps, while columns represent output bits written by the drum instruction. In this
particular example, a three-step sequence proceeds at the command of a single input (X001), and the
drum instruction’s advance from one step to the next proceeds strictly on the basis of elapsed time
(a time base orientation). When the input is active, the drum proceeds through its timed sequence.
When the input is inactive, the drum halts wherever it left off, and resumes timing as soon as the
input becomes active again.

Being based on time, each step in the drum instruction has a set time duration for completion.
The first step in this particular example has a duration of 10 seconds, the second step 15 seconds,
and the third step 18 seconds. At the first step, only output bit Y001 is set. In the second step, only
output bit Y002 is set. In the third step, output bits Y002 and Y003 are set (1), while bit Y001 is
reset (0). The colored versus uncolored boxes reveal which output bits are set and reset with each
step. The current step number is held in memory register DS1, while the elapsed time (in seconds)
is stored in timer register TD1. A “complete” bit is set at the conclusion of the three-step sequence.

Koyo drum instructions may be expanded to include more than three steps and more than three
output bits, with each of those step times independently adjustable and each of the output bits
arbitrarily assigned to any writable bit addresses in the PLC’s memory.
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This next example of a Koyo drum instruction shows how it may be set up to trigger on events
rather than on elapsed times. This orientation is called an event base:

Koyo CLICK PLC program

Drum

Step 1 2 3

1

2

3

Output

Complete

1=Y001
2=Y002
3=Y003

New Step

Current Step DS1

X001
(EventBase)

Event

X002

X003

X004

Here, a three-step sequence proceeds when enabled by a single input (X001), with the drum
instruction’s advance from one step to the next proceeding only as the different event condition bits
become set. When the input is active, the drum proceeds through its sequence when each event
condition is met. When the input is inactive, the drum halts wherever it left off regardless of the
event bit states.

For example, during the first step (when only output bit Y001 is set), the drum instruction waits
for the first condition input bit X002 to become set (1) before proceeding to step 2, with time being
irrelevant. When this happens, the drum immediately advances to step 2 and waits for input bit
X003 to be set, and so forth. If all three event conditions were met simultaneously (X002, X003,
and X004 all set to 1), the drum would skip through all steps as fast as it could (one step per PLC
program scan) with no appreciable time elapsed for each step. Conversely, the drum instruction will
wait as long as it must for the right condition to be met before advancing, whether that event takes
place in milliseconds or in days.
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5.4 Allen-Bradley sequencer instructions

Rockwell (Allen-Bradley) PLCs use a more sophisticated set of instructions to implement sequences.
The closest equivalent to Koyo’s drum instruction is the Allen-Bradley SQO (Sequencer Output)
instruction, shown here:

Sequencer Output
SQO

File

Mask

Dest

Control

Length

Position

EN

DN
#B3:0

FFFFh

Rockwell SLC 500 PLC program

R6:0

3

1

I:1/0

O:0.0

You will notice there are no colored squares inside the SQO instruction box to specify when
certain bits are set or reset throughout the sequence, in contrast to the simplicity of the Koyo PLC’s
drum instruction. Instead, the Allen-Bradley SQO instruction is told to read a set of 16-bit words
beginning at a location in the PLC’s memory arbitrarily specified by the programmer, one word at a
time. It steps to the next word in that set of words with each new position (step) value. This means
Allen-Bradley sequencer instructions rely on the programmer already having pre-loaded an area of
the PLC’s memory with the necessary 1’s and 0’s defining the sequence. This makes the Allen-
Bradley sequencer instruction more challenging for a human programmer to interpret because the
bit states are not explicitly shown inside the SQO instruction box, but it also makes the sequencer
far more flexible in that these bits are not fixed parameters of the SQO instruction and therefore
may be dynamically altered as the PLC runs. With the Koyo drum instruction, the assigned output
states are part of the instruction itself, and are therefore fixed once the program is downloaded to
the PLC (i.e. they cannot be altered without editing and re-loading the PLC’s program). With the
Allen-Bradley, the on-or-off bit states for the sequence may be freely altered7 during run-time. This
is a very useful feature in recipe-control applications, where the recipe is subject to change at the
whim of production personnel, and they would rather not have to rely on a technician or an engineer
to re-program the PLC for each new recipe.

7Perhaps the most practical way to give production personnel access to these bits without having them learn and
use PLC programming software is to program an HMI panel to write to those memory areas of the PLC. This way,
the operators may edit the sequence at any time simply by pressing “buttons” on the screen of the HMI panel, and
the PLC need not have its program altered in any “hard” way by a technician or engineer.



146 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

The “Length” parameter tells the SQO instruction how many words will be read (i.e. how
many steps are in the entire sequence). The sequencer advances to each new position when its
enabling input transitions from inactive to active (from “false” to “true”), just like a count-up
(CTU) instruction increments its accumulator value with each new false-to-true transition of the
input. Here we see another important difference between the Allen-Bradley SQO instruction and
the Koyo drum instruction: the Allen-Bradley instruction is fundamentally event-driven, and does
not proceed on its own like the Koyo drum instruction is able to when configured for a time base.

Sequencer instructions in Allen-Bradley PLCs use a notation called indexed addressing to specify
the locations in memory for the set of 16-bit words it will read. In the example shown above, we see
the “File” parameter specified as #B3:0. The “#” symbol tells the instruction that this is a starting
location in memory for the first 16-bit word, when the instruction’s position value is zero. As the
position value increments, the SQO instruction reads 16-bit words from successive addresses in the
PLC’s memory. If B3:0 is the word referenced at position 0, then B3:1 will be the memory address
read at position 1, B3:2 will be the memory address read at position 2, etc. Thus, the “position”
value causes the SQO instruction to “point” or “index” to successive memory locations.

The bits read from each indexed word in the sequence are compared against a static mask8

specifying which bits in the indexed word are relevant. At each position, only these bits are written
to the destination address.

As with most other Allen-Bradley instructions, the sequencer requires the human programmer to
declare a special area in memory reserved for the instruction’s internal use. The “R6” file exists just
for this purpose, each element in that file holding bit and integer values associated with a sequencer
instruction (e.g. the “enable” and “done” bits, the array length, the current position, etc.).

8In this particular example, the mask value is FFFF hexadecimal, which means all 1’s in a 16-bit field. This mask
value tells the sequencer instruction to regard all bits of each B3 word that is read. To contrast, if the mask were set
to a value of 000F hexadecimal instead, the sequencer would only pay attention to the four least-significant bits of
each B3 word that is read, while ignoring the 12 more-significant bits of each 16-bit word. The mask allows the SQO
instruction to only write to selected bits of the destination word, rather than always writing all 16 bits of the indexed
word to the destination word.
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To illustrate, let us examine a set of bits held in the B3 file of an Allen-Bradley SLC 500 PLC,
showing how each row (element) of this data file would be read by an SQO instruction as it stepped
through its positions:

0 0 0 0 0 00 00 0 0
B

it 0

B
it 1

B
it 2

B
it 3

B
it 4

B
it 5

B
it 6

B
it 7

B
it 8

B
it 9

B
it 10

B
it 11

B
it 12

B
it 13

B
it 14

B
it 15

0
0 0 0 0 0 00 0 0 0

Data File B3 (bin) -- BINARY

B3:0

0

0 0 0 0 0 0 00 0 0 00 0 0 0 0
0 0 0 0 0 0 00 0 0 0B3:1

B3:2
B3:3

1
1
11

1111
111

1 11

Read at position = 1
Read at position = 2
Read at position = 3

If File = #B3:0, then . . .

The sequencer’s position number is added to the file reference address as an offset. Thus, if the
data file is specified in the SQO instruction box as #B3:0, then B3:1 will be the row of bits read
when the sequencer’s position value is 1, B3:2 will be the row of bits read when the position value
is 2, and so on.

The mask value specified in the SQO instruction tells the instruction which bits out of each row
will be copied to the destination address. A mask value of FFFFh (FFFF in hexadecimal format)
means all 16 bits of each B3 word will be read and written to the destination. A mask value of 0001h
means only the first (least-significant) bit will be read and written, with the rest being ignored.

Let’s see what would happen with an SQO instruction having a mask value of 000Fh, starting
from file index #B3:0, and writing to a destination that is output register O:0.0, given the bit array
values in file B3 shown above:

0 0 0 0 0 00 00 0 0

B
it 0

B
it 1

B
it 2

B
it 3

B
it 4
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it 5

B
it 6

B
it 7

B
it 8

B
it 9

B
it 10

B
it 11

B
it 12

B
it 13

B
it 14

B
it 15

0
0 0 0 0 0 00 0 0 0

B3:0

0

0 0 0 0 0 0 00 0 0 00 0 0 0 0
0 0 0 0 0 0 00 0 0 0B3:1

B3:2
B3:3

1
1
11

1111
111

1 11
Read at position = 2

Mask 0 0 0 0 00 0 00 11 11000 000Fh

1
Output register as written
at sequencer position = 20 0 0X X X X X X X X X X X XO:0.0

When this SQO instruction is at position 2, it reads the bit values 0010 from B3:2 and writes
only those four bits to O:0.0. The “X” symbols shown in the illustration mean that all the other
bits in that output register are untouched – the SQO instruction does not write to those bits because
they are “masked off” from being written. You may think of the mask’s zero bits inhibiting source
bits from being written to the destination word in the same sense that masking tape prevents paint
from being applied to a surface.
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The following Allen-Bradley SLC 500 PLC program shows how a pair of SQO instructions plus
an on-delay timer instruction may be used to duplicate the exact same functionality as the “time
base” Koyo drum instruction presented earlier:

The first SQO instruction reads bits in the B3 file array, sending only the three least-significant
of them to the output register O:0.0 (as specified by the 0007h mask value). The second SQO
instruction reads integer number values from elements of the N7 integer file and places them into
the “preset” register of timer T4:0, so as to dynamically update the timer’s preset value with each
step of the sequence. The timer, in turn, counts off each of the time delays and then enables
both sequencers to advance to the next position when the specified time has elapsed. Here we
see a tremendous benefit of the SQO instruction’s indexed memory addressing: the fact that the
SQO instruction reads its bits from arbitrarily-specified memory addresses means we may use SQO
instructions to sequence any type of data existing in the PLC’s memory! We are not limited to
turning on and off individual bits as we are with the Koyo drum instruction, but rather are free to
index whole integer numbers, ASCII characters, or any other forms of binary data resident in the
PLC’s memory.

Data file windows appear on the computer screen showing the bit array held in the B3 file as well
as the timer values held in the N7 file. In this live screenshot, we see both sequencer instructions at
position 2, with the second SQO instruction having loaded a value of 15 seconds from register N7:2
to the timer’s preset register T4:0.PRE.

Note how the enabling contact address for the second SQO instruction is the “enable” bit of the
first instruction, ensuring both instructions are enabled simultaneously. This keeps the two separate
sequencers synchronized (on the same step).
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Event-based transitions may be implemented in Allen-Bradley PLCs using a complementary
sequencing instruction called SQC (Sequencer Compare). The SQC instruction is set up very similar
to the SQO instruction, with an indexed file reference address to read from, a reserved memory
structure for internal use, a set length, and a position value. The purpose of the SQC instruction
is to read a data register and compare it against another data register, setting a “found” (FD) bit
if the two match. Thus, the SQC instruction is ideally suited for detecting when certain conditions
have been met, and thus may be used to enable an SQO instruction to proceed to the next step in
its sequence.

The following program example shows an Allen-Bradley MicroLogix 1100 PLC programmed with
both an SQO and an SQC instruction:

The three-position SQO (Sequencer Output) instruction reads data from B3:1, B3:2, and B3:3,
writing the four least-significant of those bits to output register O:0.0. The three-position SQC
(Sequencer Compare) instruction reads data from B3:6, B3:7, and B3:8, comparing the four least-
significant of those bits against input bits in register I:0.0. When the four input bit conditions
match the selected bits in the B3 file, the SQC instruction’s FD bit is set, causing both the SQO
instruction and the SQC instruction to advance to the next step.

Lastly, Allen-Bradley PLCs offer a third sequencing instruction called Sequencer Load (SQL),
which performs the opposite function as the Sequencer Output (SQO). An SQL instruction takes
data from a designated source and writes it into an indexed register according to a position count
value, rather than reading data from an indexed register and sending it to a designated destination
as does the SQO instruction. SQL instructions are useful for reading data from a live process and
storing it in different registers within the PLC’s memory at different times, such as when a PLC is
used for datalogging (recording process data).
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5.5 SELogic control equations

Some programmable logic controllers use Boolean-style equations to describe logical functions. A
company called Schweitzer Engineering Laboratories (SEL) manufactures control equipment for the
electric power industry, including a wide range of protective relays and programmable automation
controllers, which use Boolean equations to describe logic. Their brand name for this is SELogic.
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5.5.1 Basic logical functions

For example, suppose we wished to implement a three-input AND function as well as a three-input
OR function in a SEL controller with the three inputs being IN201, IN202, and IN203. The symbolic
functions and their equivalent SELogic equations are shown in the following illustration:

IN201

IN202

IN203

OUT101

OUT102

IN201

IN202

IN203

Logic function symbols

OUT101 = IN201 AND IN202 AND IN203

OUT102 = IN201 OR IN202 OR IN203

Equivalent SELogic equations

SEL programming software9 provides text-entry fields for typing these control equations. A more
primitive interface makes use of the built-in serial terminal server capability of SEL controllers,
allowing programming edits to be made with nothing more than a serial terminal (e.g. personal
computer running terminal emulator software such as Termite or PuTTY or Hyperterminal) on a
command-line interface. The following screenshot shows these two SELogic control equations being
edited in a window:

In this particular controller (an SEL-2440 “DPAC” Discrete Programmable Automation
Controller) all inputs are numbered beginning with 201 and all outputs beginning with 101.

9SEL-5030 AcSELerator QuickSet software was used for all of these examples.
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A simple combinational logic function is shown in this next illustration:

IN201

IN202

IN203

Logic function symbols

OUT105 OUT105 = IN201 AND IN202 OR (NOT IN203)

Equivalent SELogic equation

All SELogic equations support text comments, which is an important detail for any non-trivial
coding. Comments are ignored by the controller, but serve as notes for any future programmers
examining the code. In SELogic, comments are preceded by the hashtag symbol (#). For example,
here is a comment as it would appear following an SELogic equation for a simple AND function:

OUT102 = IN205 AND IN208 # THIS IS AN AND FUNCTION

Characters to the left of the # are regarded as executable code by the controller, while text to
the right of the # are merely comments.



5.5. SELOGIC CONTROL EQUATIONS 153

5.5.2 Set-reset latch instructions

Set-Reset (or S-R) latch instructions are useful for applications such as motor starter controls,
where the controller must “latch” the motor on after momentary closure of the “Start” pushbutton
switch, and latch the motor off following momentary actuation of the “Stop” pushbutton. PLCs
programmed in Ladder Diagram code typically use either retentive coils (“Set” and “Reset” coils) or
seal-in contacts “wired” in parallel with the Start contact instruction. SELogic provides a dedicated
function for latching called a Latch Bit.

Latch instructions in SELogic require a number of different parameters to be specified. First and
foremost is the allocation of usable latch instructions in the controller’s memory. Like legacy-style
industrial PLCs with limited memory resources, the programmer first needs to declare to the PLC
how many counters, timers, etc. will be used in the program so that the PLC may allocate limited
memory to those functions. For SELogic latches, this is done through the ELAT parameter. For
example the equation ELAT = 3 allocates three latches which are called LT01, LT02, and LT03. After
that, each latch requires assignment of its Set (SET) and Reset (RST) inputs. A screenshot showing
the Set and Reset inputs of a single latch instruction appears here:

Listed as plain ASCII text, the SELogic equations would appear as follows to declare a single
latch instruction and then configure its two inputs as shown in the previous screenshot, where IN201
causes the latch to set and IN202 causes the latch to reset:

ELAT = 1

SET01 = IN201

RST01 = IN202

In SELogic, the name of the latch (e.g. LT01) is its output bit. Using the example just shown,
we could direct output OUT108 to be controlled by LT01’s output with an additional line of SELogic
code:

OUT108 = LT01
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5.5.3 One-shot instructions

One-shot functionality also is provided within SELogic by the R TRIG and F TRIG instructions,
referring to rising-edge and falling-edge, respectively. The purpose of a “one-shot” instruction is to
activate the output for a single scan of the controller’s program upon a false-to-true (rising edge) or
true-to-false (falling edge) transition of the input signal. This next illustration shows examples of
each:

IN201

Logic function symbols

OUT105

OUT104
One-shot

rising

IN201
One-shot

OUT104 = R_TRIG IN201

OUT105 = F_TRIG IN201

Equivalent SELogic equations

falling
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5.5.4 Counter instructions

Counter instructions in SELogic require a number of different parameters to be specified. First and
foremost is the allocation of usable counter instructions in the controller’s memory. Like legacy-style
industrial PLCs with limited memory resources, the programmer first needs to declare to the PLC
how many counters, timers, etc. will be used in the program so that the PLC may allocate limited
memory to those functions. For SELogic counters, this is done through the ESC parameter. For
example the equation ESC = 2 allocates two counters which are called SC01 and SC02. After that,
each counter requires assignment of input variables such as Preset Value (PV), Reset (R), Load
PV (LD), Count up input (CU) and Count down input (CD). A screenshot showing all of these
variables (enabling two counters, followed by the parameters for Counter 1) appears here:

Listed as plain ASCII text, the SELogic equations would appear as follows to declare two counter
instructions and then configure the first counter’s inputs: a preset value of 50, IN204 causing it to
reset, IN203 causing it to load the preset value, IN201 causing it to increment, and IN202 causing
it to decrement:

ESC = 2

SC01PV = 50

SC01R = IN204

SC01LD = IN203

SC01CU = IN201

SC02CD = IN202



156 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

Once configured, the accumulated value of the first counter instruction is addressed simply as
SC01. Discrete outputs based on the attainment of certain count values may be driven by comparison
statements such as =, >, and <. For example, to activate output OUT107 whenever the first counter’s
accumulated value exceeds 12, you would need to write the following SELogic equation:

OUT107 = SC01 > 12

The comparison statement SC01 > 12 is either true or false – that is to say, it is a Boolean
quantity – and so its truth-value fits well with the discrete status of output OUT107. When the
counter’s value exceeds 12, OUT107 activates; if equal to or less than 12, OUT107 de-activates.
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5.5.5 Timer instructions

Like counter instructions, timer instructions in SELogic require a number of different parameters
to be specified. First and foremost is the allocation of usable timer instructions in the controller’s
memory. Like legacy-style industrial PLCs with limited memory resources, the programmer first
needs to declare to the PLC how many counters, timers, etc. will be used in the program so that
the PLC may allocate limited memory to those functions. For SELogic timers, this is done through
the ESV parameter. For example the equation ESV = 1 allocates memory space for a single timer
called SV01. After that, the timer requires assignment of input variables such as Timer Pickup
(PU), Timer Dropout (DO), and Input. A screenshot showing all of these variables for a single timer
appears here:

The SELogic timer instruction is capable of both on-delay and off-delay. This is the meaning of
the “pickup” and “dropout” time delays: the pickup time refers to a time delay on activation of the
timer (i.e. on-delay) while the dropout time refers to a time delay on de-activation (i.e. off-delay).
For example, if we only wished to have an on-delay SV01 timer with a delay time of 5 seconds we
would set SV01PU = 5 and SV01DO = 0. If we merely wished for an off-delay timer with a delay time
of 8 seconds, we would set SV01PU = 0 and SV01DO = 8. If we wanted a timer to exhibit both an
on-delay of 2 seconds and an off-delay of 3 seconds, we would set the pickup and dropout parameters
exactly as shown in the above screenshot image. Note the resolution of these time settings: down
to 0.001 seconds, or 1 millisecond.

In SELogic, the name of the timer (e.g. SV01) is its input, or controlling, bit. The time-delayed
output bit of the timer is addressed by adding the suffix “T” to the timer name. Using our example
of timer SV01, its time-delayed output bit would be SV01T. Below is an example of this timer’s
output being set to control output OUT105:

OUT105 = SV01T
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Chapter 6

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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6.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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6.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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6.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

???

???

???

???

???

???

???

???

???

???

???
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6.1.3 Relay ladder logic analogy for a PLC

Analyze the status of all relay contacts and lamps in this hard-wired relay “ladder logic” control
circuit, annotating the diagram to show electrical conductivity and non-conductivity of all contacts
and energization statuses of all relay coils and loads:

L1 L2

PBNO "A"

Pressure switch

CR1

CR2

120 VAC

Selector switch
Left Right

CR3

CR2 CR1

CR3

CR1

CR2

Green

Red

CR4

CR4 CR3

Assume the following input conditions:

• Pushbutton switch unpressed

• Pressure above trip threshold

• Selector switch in its right-hand position



6.1. CONCEPTUAL REASONING 167

Now, analyze the status of this PLC-controlled system assuming the same input conditions.
Note the distinction between the 120 VAC circuitry and the “virtual circuit” in the blue-shaded
area representing the program executed by the PLC’s microprocessor. As with the relay-based
system, annotate all real-world contact conductivities and coil energization statuses, as well as show
which of the PLC program’s elements should be “colored” to reflect virtual conductivity and virtual
energization:

L1 L2

PBNO "A"

Pressure switch

120 VAC

Selector switch
Left Right

Green

Red

Y1

Y2

PLC input card

Y1

Y2

PLC output card

X1

X1

X1

X2

X2

X2

X3

X3

X3

C4

C4

PLC program

Assume the same input conditions:

• Pushbutton switch unpressed

• Pressure above trip threshold

• Selector switch in its right-hand position

How is the PLC-controlled system similar to the hard-wired relay control system? How is it
different?
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Challenges

• What advantages does the PLC enjoy over the hard-wired relay control system?

• What advantages does the electromechanical relay design enjoy over the PLC control system?

6.1.4 Sourcing versus sinking PLC I/O

Discrete (on/off) I/O for PLCs often works on AC (alternating current) power. AC input circuitry
usually consists of an optocoupler (LED) with rectification and a large dropping resistor to allow
120 Volt AC operation. AC output circuitry usually consists of TRIACs. Explain how both of these
technologies work.

DC I/O for a PLC generally consists of optocoupled LEDs for inputs and bipolar transistors
for outputs. Some examples are shown in the following schematics. Note carefully the different
variations:

Discrete input module Discrete input module

X0

X1

X2

X3
Com

X0

X1

X2

X3

Com

Com

Com
Y0

Y1

Y2

Y3

Y0

Y1

Y2

Y3

Discrete output module Discrete output module

Determine for each of these input and output module types, whether they would be properly
designated sourcing or sinking.

Challenges

• Determine how real input and output devices (e.g. switches, solenoid coils) would need to be
connected to the I/O terminals of these modules.
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6.1.5 Sketching wires to PLC discrete I/O

Sketch the wires necessary to connect two pressure switches and two relay coils to the following Allen-
Bradley MicroLogix 1000 PLC (model 1761-L10BWA, with 6 discrete DC inputs either sourcing or
sinking, and 4 discrete relay contact outputs). Be sure to wire the two switches so they source
current to the PLC’s inputs (the low-pressure switch to I/2 and the high-pressure switch to I/5,
normally-open contacts on both) and wire the relay coils so the PLC sources current to them (O/0
and O/1):

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

Com NC NO

Com NC NO

PSL

PSH

Challenges

• Define “sinking” and “sourcing” as these terms apply to PLC I/O terminals.



170 CHAPTER 6. QUESTIONS

6.1.6 Two different motor control programs

Two technicians, Jill and Bob, work on programming Siemens S7-200 PLCs to control the starting
and stopping of electric motors. Both PLCs are wired identically, as shown:

Port 0Port 1

SIEMENS
SIMATIC
S7-200

RUN

STOP

SF/DIAG

Q0

I0

.0 .1 .2 .3 .4 .5 .6 .7

I1

.0 .1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 .6 .7

Q1

.0 .1

CPU 224XP

DC/DC/DC

M L+ DC1M 1L+ 0.0 0.1 0.2 0.3 0.4 0.5 0.62M 2L+ 0.7 1.0 1.1

M L+1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2M 1.0 1.1 1.2 1.3 1.4 1.5

1L 0.0 0.1 0.2 0.3 2L 0.4 0.5 0.6 3L 0.7 1.0 1.1 ACN L1

AC/DC/Relay

Start Stop

120 VAC
supply480 VAC 3-θ

supply

However, despite being wired identically, the two technicians’ PLC programs are quite different.
Jill’s program uses retentive coil instructions (“Set” and “Reset” coils) while Bob’s uses a “seal-in”
contact instruction to perform the function of latching the motor on and off:

S

R

Q0.0

Q0.0

I0.1

I0.4

Jill’s PLC program

Q0.0I0.1 I0.4

Bob’s PLC program

Q0.0

Explain how both of these PLC programs function properly to control the starting and stopping
of the electric motor.

Challenges
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• It is ordinarily a bad thing to assign identical bit addresses to multiple coil instructions in a
PLC program. With Jill’s retentive coil program, however, this is not only permissible but in
fact necessary for its proper operation. Explain why this is.

• A common misconception of students first learning PLC programming is to think that the
type of contact instruction used in the PLC program must match the type of switch contact
connected to that input (e.g. “A N.O. PLC instruction must go with a N.O. switch”). Explain
why this is incorrect.

• Explain how both PLC programs will react if both the “start” and “stop” pushbuttons are
simultaneously pressed.

• Alter both PLC programs to be “fail-safe” (i.e. shut the motor off) if ever the stop pushbutton
switch fails circuit open.
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6.1.7 Redundant coils in a program

In relay ladder logic (RLL) programming, it is considered bad practice to have multiple instances of
an identical (standard) “relay” coil in a program:

. . .

. . .

Pump_run

Switch_hand

Timer_01 Level_low

Pump_runOL_contact Sump_wet

Identical coils!

Explain why this is considered poor practice in PLC programming. Next, determine the status
of the Pump run output channel given the following bit states:

• Timer 01 = 1

• Level low = 1

• Switch hand = 0

• OL contact = 0

• Sump wet = 0

Challenges

• Explain why it is acceptable to have redundant retentive coils in a PLC Ladder Diagram
program.
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6.1.8 Determining bit statuses from switch conditions

PLC #1
Suppose we have an Allen-Bradley MicroLogix 1000 PLC connected to three momentary-contact

pushbutton switches as shown in this illustration:

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5A

B

C

Determine the bit statuses of I:0/0, I:0/1, and I:0/2 when switch A is unpressed (released),
switch B is unpressed (released), and switch C is pressed.
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PLC #2
Suppose we have a Siemens S7-200 PLC connected to two process switches as shown in this

illustration:

Port 0Port 1

SIEMENS
SIMATIC
S7-200

RUN

STOP

SF/DIAG

Q0

I0

.0 .1 .2 .3 .4 .5 .6 .7

I1

.0 .1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 .6 .7

Q1

.0 .1

CPU 224XP

DC/DC/DC

M L+ DC1M 1L+ 0.0 0.1 0.2 0.3 0.4 0.5 0.62M 2L+ 0.7 1.0 1.1

M L+1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2M 1.0 1.1 1.2 1.3 1.4 1.5

24 VDC

130 oF

12 GPM

Determine the bit statuses of I0.2 and I1.1 when the temperature switch senses 194 oF and
the flow switches senses 19 GPM.
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PLC #3
Suppose we have an Allen-Bradley SLC 500 PLC connected to two process switches as shown in

this illustration:

Power
supply

L1

Gnd

L2/N

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Slot 0 Slot 1 Slot 2 Slot 3
(processor) (discrete input) (discrete output)

120 VAC
power

VAC 1

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

VAC 2

OUT0

Output
0
1
2
3

6
7

4
5

2 feet

37 PSI

Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

(discrete input)

Determine the bit statuses of I:1/3 and I:1/5 when the level switch senses 3 feet and the
pressure switch senses 14 PSI.
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PLC #4
Suppose we have a Siemens S7-200 PLC connected to two process switches as shown in this

illustration:

Port 0Port 1

SIEMENS
SIMATIC
S7-200

RUN

STOP

SF/DIAG

Q0

I0

.0 .1 .2 .3 .4 .5 .6 .7

I1

.0 .1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 .6 .7

Q1

.0 .1

CPU 224XP

DC/DC/DC

M L+ DC1M 1L+ 0.0 0.1 0.2 0.3 0.4 0.5 0.62M 2L+ 0.7 1.0 1.1

M L+1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2M 1.0 1.1 1.2 1.3 1.4 1.5

24 VDC

130 oF

12 GPM

Determine the bit statuses of I0.2 and I1.1 when the temperature switch senses 122 oF and
the flow switches senses 15 GPM.
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PLC #5
Suppose we have an Allen-Bradley MicroLogix 1000 PLC connected to three momentary-contact

pushbutton switches as shown in this illustration:

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5A

B

C

Determine the bit statuses of I:0/0, I:0/1, and I:0/3 when switch A is pressed, switch B is
unpressed (released), and switch C is pressed.

Challenges

• Explain the meaning of the word “normal” as it applies to a switch contact.
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6.1.9 Determining necessary switch conditions for bit statuses

Suppose we have an Allen-Bradley SLC 500 PLC connected to two process switches as shown in this
illustration:

Power
supply

L1

Gnd

L2/N

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Slot 0 Slot 1 Slot 2 Slot 3
(processor) (discrete input) (discrete output)

120 VAC
power

VAC 1

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

VAC 2

OUT0

Output
0
1
2
3

6
7

4
5

37 PSI

Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

(discrete input)

3 feet

88 oF

Determine the process conditions necessary to generate the following input bit statuses in the
PLC’s memory:

• I:1/3 = 1

• I:1/5 = 0

Challenges

• What do the numbers “1” and “3” mean for input bit I:1/3 in this Allen-Bradley PLC?

• What do the numbers “1” and “5” mean for input bit I:1/5 in this Allen-Bradley PLC?

• How would you specify the bit address for the fourth channel on the other input card of this
PLC?
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6.1.10 Determining color highlighting from bit statuses

PLC #1
Suppose a Siemens 545 PLC has the following input bit states:

• X1 = 0

• X2 = 1

• X3 = 0

Sketch color highlighting for the contacts and coils in the PLC’s program given these bit statuses,
also determining the status of output bit Y1:

X1 X2 X3 Y1

X2 X1



180 CHAPTER 6. QUESTIONS

PLC #2
Suppose we have a Siemens S7-200 PLC connected to a pair of momentary-contact pushbutton

switches and light bulbs as shown in this illustration:

Switch A

Switch B

Lamp Y

Lamp Z

Port 0Port 1

SIEMENS
SIMATIC
S7-200

RUN

STOP

SF/DIAG

Q0

I0

.0 .1 .2 .3 .4 .5 .6 .7

I1

.0 .1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 .6 .7

Q1

.0 .1

CPU 224XP

DC/DC/DC

M L+ DC1M 1L+ 0.0 0.1 0.2 0.3 0.4 0.5 0.62M 2L+ 0.7 1.0 1.1

M L+1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2M 1.0 1.1 1.2 1.3 1.4 1.5

24 VDC
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Examine the following relay ladder logic (RLL) program for this Siemens PLC, determining the
statuses of the two lamps provided both switches are simultaneously pressed by a human operator:

I0.7I1.2

I0.7 I1.2

Q0.1

Q0.3

Finally, draw color highlighting showing how these “contact” instructions will appear in an online
editor program given the stated input conditions.

Challenges

• Sketch a logic gate diagram implementing the same function as the first PLC program.

• Identify the significance of the labels “X” and “Y” for this PLC’s bits. What do you suppose
“X” signifies? What do you suppose “Y” signifies?
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6.1.11 Determining color highlighting from switch conditions

Suppose we have an Allen-Bradley model “SLC 500” PLC connected to a pair of process switches
and lamps as shown in this illustration:

Power
supply

L1

Gnd

L2/N

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Slot 0 Slot 1 Slot 2 Slot 3
(processor) (discrete input) (discrete output)(unused)

120 VAC
power

VAC 1

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

VAC 2

OUT0

Output
0
1
2
3

6
7

4
5

Lamp Y

Lamp Z

Temperature switch

Flow switch

Trips @ 150 oF

Trips @ 3.5 GPM

Examine the following “offline-view” (i.e. non-color-highlighted) relay ladder logic (RLL)
program for this Allen-Bradley PLC, determining the statuses of the two lamps given a temperature
of 172 oF and a flow of 5.1 GPM:

I:1 I:1

2 6

O:3

0

4

I:1 I:1

2 6

O:3

Finally, draw color highlighting showing how these “contact” instructions will appear in an online
editor program given the stated input conditions.
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Challenges

• Identify the significance of the labels “I” and “O” for this PLC’s bits.

• Identify the significance of the first and second numbers in each bit label (e.g. the numbers
“1” and “2” in the bit address I:1/2, for example). What pattern do you see as you compare
the I/O connections with the respective contact instructions in the PLC program?



184 CHAPTER 6. QUESTIONS

6.1.12 Determining bit statuses from color highlighting

PLC #1
Examine this “live” display of a Siemens S7-300 PLC’s program, and from this determine all bit

statuses represented by the color highlighting in this ladder logic program:

Q0.1

I1.1

I1.1 I0.5

I0.2 Q0.6

• I0.2 =

• I0.5 =

• I1.1 =

• Q0.1 =

• Q0.6 =
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PLC #2
Examine this “live” display of a Siemens S7-300 PLC’s program, and from this determine all bit

statuses represented by the color highlighting in this ladder logic program:

I0.7

I0.7

Q0.1

Q0.3I1.1

I1.1

• I0.7 =

• I1.1 =

• Q0.1 =

• Q0.3 =
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PLC #3
Examine this “live” display of an Allen-Bradley PLC’s program, and from this determine all bit

statuses represented by the color highlighting in this ladder logic program:

I:0/1 O:4/2I:0/7

I:0/2

I:0/1 O:4/5I:0/7

• I:0/1 =

• I:0/2 =

• I:0/7 =

• O:4/2 =

• O:4/5 =
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PLC #4
Examine this “live” display of an Allen-Bradley PLC’s program, and from this determine all bit

statuses represented by the color highlighting in this ladder logic program:

I:0/1

I:0/2

I:0/1

I:0/3

I:0/0

I:0/0I:0/4

O:2/1

O:2/2

• I:0/0 =

• I:0/1 =

• I:0/2 =

• I:0/3 =

• I:0/4 =

• O:2/1 =

• O:2/2 =

Challenges

• PLC training expert Ron Beaufort teaches students to think of a “normally-open” PLC
program contact instruction as a command to the PLC’s processor to “Go look for a 1”.
Conversely, he teaches students to think of a “normally-closed” instruction as a command to
“Go look for a 0”. Explain what Mr. Beaufort means by these phrases, and how this wisdom
relates to this particular problem. Incidentally, Mr. Beaufort’s excellent instructional videos
(available freely on YouTube) are quite valuable to watch!

• Identify the significance of the labels “I” and “Q” for this PLC’s bits. What do you suppose
“I” signifies? What do you suppose “Q” signifies?
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6.1.13 Determining process switch stimuli from color highlighting

Suppose we have a PLC connected to three process switches as shown in this illustration:

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

Personal
computer
display

120 VAC "line" power

L1 L2

(Ladder Diagram program)

Y1X3

X5

X3 Y2X5

Com

NC

NO

Trip = 25 PSI

Com

NO

NC

Trip = 170 oF

Com

NO

NC

X1

X1

Trip = 3 ft

Based on the highlighting you see in the “live” PLC program display, determine as best you can
the pressure and temperature stimulating each switch.

Also, determine the following bit states within the PLC’s memory corresponding to the same
color-highlighting:

• X1 =

• X3 =

• X5 =

• Y1 =
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• Y2 =

Challenges

• Identify which LED indicators on the PLC’s face would be lit in this condition.
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6.1.14 Determining necessary switch contact types

The following PLC program was written to control the operation of a large electric motor-driven
pump. A variety of “permissive” inputs protect the pump from damage under abnormal conditions,
and one permissive in particular (“valve open”) will only allow the pump to start up if one of the
valves in the piping system is in the full-open position:

MotorStart

Stop

Vibration

S

R

Motor

Bearing temp.

Oil pressure

Motor temp.

Valve open

Identify the type of contact (either NO or NC) necessary for each of these electrical switch
contacts, based on the trip condition (either high or low) and how each input is applied in the PLC
program:

• Start pushbutton = NO or NC ?

• Throttling valve open limit = NO or NC ?

• Stop pushbutton = NO or NC ?

• High bearing temperature = NO or NC ?
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• High vibration = NO or NC ?

• High motor temperature = NO or NC ?

• Low oil pressure = NO or NC ?

Challenges

• Explain why it is a helpful problem-solving strategy to first identify the necessary virtual
contact coloring which will allow the motor to start up and keep running (i.e. the condition
of all permissives during correct operating conditions).
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6.1.15 Motor start-up limit counter

This Koyo “CLICK” PLC has been programmed to control the starting and stopping of an electric
motor, including a counter instruction to prevent the motor from being started up more than a
specified number of times:

RS-485

LG

C1

X1

AD1V

AD1I

AD2V

AD2I

ACOM

DA1V

DA1I

DA2V

DA2I

CLICK

X2

X3

X4

C2

Y1

Y2

Y3

Y4

+V

C0-02DD1-D

Koyo

PWR

RUN

ERR

TX1

RX1

TX2

RX2

RUN

STOP

PORT 1

PORT 2

TX3

RX3

PORT 3

0 24V

24 VDC

Start

Stop

Reset

Contactor
relay coil

M1
Counter

SetPoint

Current

CT1

CTD1
Up

Reset

Complete

CT1

X1 X2 Y1

Y1

CT1

Y1

X3

8

Program (inside PLC)

Identify the counter instruction in the program shown, its input “connections”, and also how
the result of the counter reaching its pre-set limit forces the motor to stop. Also, determine the
maximum number of times the motor may be started up, assuming the counter’s current value goes
to zero when the Reset button is pressed.

Finally, determine how to modify this PLC program so that the counter may be manually reset
by the operator without requiring a separate pushbutton labeled “Reset”.

Challenges

• If an operator presses the “Start” button multiple times while the motor is already running, do
these button-presses get counted by the counter instruction, or do only the real motor start-up
events get counted?

• What do you suppose the label “CTD1” represents inside the counter instruction?

• Note the number of times the bit Y1 is referenced inside this PLC program: once in a coil
instruction and twice in contact instructions. Is there any limit to how many times a bit
address may be used in a PLC program?

• Describe the purpose of the first contact instruction labeled Y1 in this program, explaining
why it is often referred to as a seal-in contact.
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6.1.16 Allen-Bradley counter program

Analyze this Allen-Bradley PLC program and explain what it is supposed to do:

O:1

0

0

RES

17

C5:2

C5:2

O:1

0

I:0

0

Start
I:0

1

Stop

O:1

0

I:0

2

Reset

Motor

Motor

C5:2

DN

Motor

DN

CTU
Count Up

Counter

Preset

Accum

CU
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6.1.17 Room occupancy counter

This Siemens S7-200 PLC has been programmed to count the number of people in a room, by
incrementing a counter every time a person enters through the doorway, and decrementing that
same counter whenever someone exits through the same doorway. The two optical switches activate
whenever their respective light beams are broken by someone passing through. Their horizontal
separation is just a couple of inches – much less than the girth of a person’s torso. The operating
status of each switch is that it energizes the PLC input when the light beam is broken:

Light sources

Photo-switches

Port 0Port 1

SIEMENS
SIMATIC
S7-200

RUN

STOP

SF/DIAG

Q0

I0

.0 .1 .2 .3 .4 .5 .6 .7

I1

.0 .1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 .6 .7

Q1

.0 .1

CPU 224XP

DC/DC/DC

M L+ DC1M 1L+ 0.0 0.1 0.2 0.3 0.4 0.5 0.62M 2L+ 0.7 1.0 1.1

M L+1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2M 1.0 1.1 1.2 1.3 1.4 1.5

PLC

Entering

Examine the program in this PLC for counting people, and determine how it is able to
differentiate between a person entering the room and a person leaving the room:

CU

R

PV CV

CTUD

CD

LD

QU

QD

P

P

I1.3

I1.3

I1.0

I1.0
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Challenges

• Explain how a timing diagram of the switch states would be helpful in analyzing the operation
of this PLC program.

• Transition (edge-detecting) functions are implemented in Allen-Bradley PLCs using the one-
shot rising (OSR) instruction. Research how the OSR instruction is used, and how it differs
from the “P” and “N” contacts shown in this Siemens PLC program.

• Will this system still function properly if the optical sensors are spaced farther apart than the
width of a human body? Explain why or why not.

6.1.18 PLC timing diagrams

Identify the type of PLC timer instruction (i.e. on-delay, off-delay, or retentive) capable of producing
the following timing diagrams, as well as each timer instruction’s preset value in seconds. Assume
each horizontal-axis division of this timing diagram represents one second:

Timer input

Timer output

Timer input

Timer output

Timer input

Timer output

Challenges

• Modify the amount of time delay for any of these timer functions, and re-sketch the output.
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6.1.19 Sequenced-start conveyor belts

A gravel-crushing operation uses three long conveyor belts to move rock from the quarry to the
crusher. The belts must be started up in a particular sequence to avoid overloading the electric
motors driving them:

M M M

Conveyor A Conveyor B Conveyor C

PLC

Start Stop
pushbutton pushbutton

Rock from quarry

Rock to crusher

First, determine a start-up sequence that makes sense: which conveyor belt should start first,
next, and last? What might happen if the sequence were reversed? Why not simply start all conveyor
motors simultaneously?
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This operation uses a Siemens S7 series PLC to control the three conveyor belts. Analyze this
program and explain how it accomplishes the task of starting up the three conveyors in sequence:

Start Stop

IN TON

100 msPT

M0.0

M0.0

Run

Run

M0.0
Run

T2

+85

IN TON

100 msPT+85

T3T2

Conv_C_motor
M0.0
Run

Q0.0

T2

T3

Conv_B_motor

Conv_A_motor

Q0.1

Q0.2

I0.0I0.1

Lastly, determine where you might add a contact instruction for an emergency shutoff safety
switch, so that all three conveyors stop simultaneously if ever the safety switch is actuated.

Challenges

• How long is the time delay between conveyor start-ups? How might this time delay be altered
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if needed?

• Suppose a warning siren were added to the system, sounding for a full 15 seconds before the
first conveyor belt starts. How would you modify the PLC program to include this additional
functionality?

• Suppose a technician uses the PLC’s force utility to force bit T2 to a “0” state. How will this
affect the operation of the system? Could the consequences of this force be dangerous in any
way?

• Suppose a technician uses the PLC’s force utility to force bit Q0.1 to a “0” state. How will
this affect the operation of the system? Could the consequences of this force be dangerous in
any way?
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6.1.20 Switch contact types for a timed conveyor control

Suppose an Allen-Bradley PLC controls the starting and stopping of a conveyor belt, using a timer
to sound an audible warning siren for 5 seconds before the conveyor belt starts up (to warn people
before the belt begins to move):

0.1

0

B3:0/0

T4:1

50

I:1/4
START_SWITCH

I:1/2
STOP_SWITCH

I:1/0
PULL_CABLE

B3:0/0

B3:0/0

T4:1/DN O:3/0
CONTACTOR

B3:0/0 T4:1/DN O:3/5
SIREN

ENABLE

ENABLE

ENABLE

Timer On Delay

Timer

Time Base

Preset

Accum

TON
EN

DN

ENABLE

Determine the necessary contact connections (form-A or form-B) on the real-life Start, Stop, and
emergency Pull-Cable switches to complement the virtual contact types in the PLC program.

Start switch = form-A or form-B?

Stop switch = form-A or form-B?

Pull-Cable switch = form-A or form-B?

Challenges

• How could you modify this program so that the operator has to hold the “Start” pushbutton
switch actuated for the duration of the warning siren before the motor would start (i.e.
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everything would simply stop if the operator only momentarily pressed the “Start” button)?

• Suppose a technician decides to use the force utility in the PLC to force bit B3:0/0 to a “0”
state in order to test the warning siren’s operation without actually starting up the conveyor
belt. Explain what is flawed with this testing strategy, and identify a better approach.

• How will this system behave if the pull-cable switch fails open?

• How will this system behave if the stop switch fails shorted?
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6.1.21 Air compressor control program

An Allen-Bradley Logix5000 PLC is used to control the starting and stopping of an air compressor
based on momentary-contact pushbutton switch inputs as well as high and low pressure switches
(PSH and PSL, respectively). Analyze this program and explain how it is supposed to work:

0

run_time

3600000

in_start_switch in_stop_switch run_enable

run_enable

run_enable

out_comp_motor

out_comp_motorin_psl in_psh

out_comp_motor

EN

DN

RTO
Retentive Timer On

Timer

Time Base

Preset

Accum

0.001

(continued on next page)
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RES

run_time.dn run_time

run_time.dn

0

hours

250

out_warning_lighthours.dn

RES

in_reset_switch

in_reset_switch hours

DN

CTU
Count Up

Counter

Preset

Accum

CU

(continued from previous page)

In particular, answer these following questions:

• Determine the “normal” electrical statuses of all switches (e.g. NO or NC) connected to the
inputs of this PLC, based on an examination of the respective contact instructions within the
PLC program.

• Why is is important that a retentive timer instruction be used for the calculation of total
run-time?

• What is the significance of the maintenance warning light controlled by this PLC?

Challenges

• Note how all instructions in this Logix5000 PLC program are addressed by tagname rather
than by hardware addresses (e.g. I:2/6, O:3/1). How do you suppose the PLC “knows” which
real I/O points to associate with which instructions in the program?

• How will this system behave if the reset switch fails shorted?
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• How will this system behave if the high-pressure switch fails open?

• How will this system behave if the high-pressure switch fails shorted?

• How will this system behave if the low-pressure switch fails open?

• How will this system behave if the low-pressure switch fails shorted?
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6.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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6.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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6.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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6.2.3 Frequency divider program

An important pump in a chemical process is turned by an electric motor, and operators want to
have visual indication in the control room that the pump is indeed turning. There is no way to
attach a speed switch to the pump shaft (that would be too easy!). Instead, someone has installed
a proximity switch near the pump shaft, situated to pick up the passing of a keyway in the shaft
with each rotation. Thus, the proximity switch will output a “pulse” signal when the pump shaft is
spinning:

Pump

Motor

Signal cable
to PLC input

Proximity switch

Pulse signal (when pump is running)I:3/2

Operations personnel wanted the indicator light in the control room to blink when the pump
is running, for an indication of shaft motion. The problem is, the shaft turns much too fast
(approximately 1750 RPM) to directly drive the indicator with the proximity switch signal, and
so an Allen-Bradley PLC was programmed to produce a slower blink using this program:

0

I:3/2

C5:0

32767

RES

C5:0C5:0/DN

C5:0.ACC/13 O:1/5

DN

CTU
Count Up

Counter

Preset

Accum

CU
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Explain how this program works to fulfill the function of a frequency divider, converting the
high-speed pulse signal of the proximity switch into a low-speed blink for the operator light.

Challenges

• Explain how a frequency divider circuit built out of J-K flip-flop integrated circuits functions,
and then describe how this PLC program is similar in principle.

• Explain how to speed up the blinking rate of the light for any given motor shaft speed.

6.2.4 Integer format error between PLC and HMI

Suppose a PLC program contains a counter instruction that counts in unsigned 16-bit integer
format. An HMI connected to this PLC, however, is configured to read and interpret this counter’s
accumulated value as a BCD number instead of unsigned binary.

Determine how the HMI will interpret and display a PLC counter accumulated value of 38199
(decimal).

Challenges

• If the PLC’s counter increments by one, what will the HMI display read?

• If the PLC’s counter increments by two, what will the HMI display read?

• If the PLC’s counter increments by three, what will the HMI display read?
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6.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.
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6.3.1 Incorrect PLC output wiring

The PLC shown below is supposed to control the energization of a lamp and a small motor. Someone
wired both loads to different PLC output channels as shown in the illustration below, but was
surprised to find neither load energized when its respective PLC output channel activated:

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

Lamp
Motor

Explain what is wrong in this circuit, and then re-sketch the wiring so that these loads will
function properly. Incidentally, this same error happens to be a very common misconception among
students new to PLCs. Identify what the fundamental misconception is, and how it may be remedied.

Challenges

• What information should we ideally have regarding the PLC and the two loads shown in order
to design a complete circuit that will function safely and reliably?

• From the information available in the illustration, is it possible to formulate an educated guess
about the type of discrete output channels offered by this PLC?
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6.3.2 Troubleshooting motor control program

Suppose we have an Allen-Bradley MicroLogix 1000 controller connected to a pair of momentary-
contact pushbutton switches and contactor controlling power to an electric motor as shown in this
illustration:

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

OL contact

"Stop" switch

"Start" switch

Contactor coil

This motor control system has a problem, though: the motor refuses to start when the “Start”
pushbutton is pressed. Examine the “live” display of the ladder logic program inside this Allen-
Bradley PLC to determine what the problem is, assuming an operator is continuously pressing the
“Start” pushbutton as you examine the program:

I:0/3 I:0/2 I:0/0

O:0/2

O:0/2

Identify at least two causes that could account for all you see here.

Challenges



214 CHAPTER 6. QUESTIONS

• Identify the symptoms resulting from the “Start” switch being failed open.

• Identify the symptoms resulting from the “Stop” switch being failed open.

• Identify the symptoms resulting from the contactor coil being failed open.
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6.3.3 Troubleshooting motor control PLC from I/O indicators

Suppose we have an Allen-Bradley SLC 500 controller connected to a pair of momentary-contact
pushbutton switches and contactor controlling power to an electric motor as shown in this
illustration:

Power
supply

L1

Gnd

L2/N

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

IN 0+
IN 0-

IN 1+
IN 1-

IN 2+
IN 2-

IN 3+
IN 3-

Input

Analog

ANL COM

ANL COM

ANL COM

ANL COM

Reset

480 VAC

T1T2T3

H1H2 H3H4

X1X2

Motor

Contactor

Overload
block

VAC 1

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

VAC 2

OUT0

Output
0
1
2
3

6
7

4
5

Start

Stop

F1 F2 F3

F4

F5

F6 F7

1 2 3 4

5

6

7

8

This motor control system has a problem, though: the motor refuses to start when the “Start”
pushbutton is pressed. Closely examine the pictorial diagram (including the status LEDs on the
PLC’s I/O cards), then identify at least two faults that could account for the motor’s refusal to
start.

Challenges

• Explain why knowledge of the PLC program is not necessary to diagnose this fault.
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6.3.4 Turbine low-oil trip

A PLC is being used to monitor the oil pressure for a steam turbine driving an electrical generator,
shutting steam off to the turbine if ever the oil pressure drops below a 10 PSI limit. The turbine’s
lubrication oil pump is driven by the turbine shaft itself, supplying itself with pressurized lubricating
oil to keep all the turbine bearings properly lubricated and cooled:

Turbine

Steam supply

S

ATO
(vent)
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air supply
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Oil pump

PSLPLC
Start

Stop
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Another technician programmed the PLC for the start/stop function, but this program has a
problem:

IN_switch_Start IN_switch_Stop

"Start" pushbutton

"Stop" pushbutton

Discrete input
card

IN_switch_Start

IN_switch_Stop

Discrete output
card

Real-world I/O wiring

PLC program

Low oil pressure
IN_oil_press

Solenoid coil

OUT_valve

OUT_valveIN_oil_press

OUT_valve

Identify what this problem is, and fix it! Hint: the oil pump is driven by the turbine, and as
such cannot generate any oil pressure until the turbine begins to spin.

Challenges

• Explain how this problem could be fixed by the addition of a timer instruction to the PLC
program.
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6.3.5 Motor starter diagnosis from color highlighting

PLC #1
Identify one plausible fault to explain why this PLC-controlled motor refuses to start up when

the “Start” button is pressed, given the following wiring diagram and online PLC program display
shown below. Note: no one is pushing any buttons at this time.
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"Start" pushbutton

"Stop" pushbutton
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card

IN_switch_Start

IN_switch_Stop

Discrete output
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PLC program

High temperature shutdown

IN_temp_hi

IN_temp_hi

Motor contactor

OUT_motor

OUT_motor

OUT_motor
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PLC #2
Identify one plausible fault to explain why this PLC-controlled motor refuses to start up when

the “Start” button is pressed, given the following wiring diagram and online PLC program display
shown below. Note: no one is pushing any buttons at this time.
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PLC #3
Identify one plausible fault to explain why this PLC-controlled motor refuses to start up when

the “Start” button is pressed, given the following wiring diagram and online PLC program display
shown below. Note: no one is pushing any buttons at this time.

IN_switch_Start IN_switch_Stop

"Start" pushbutton

"Stop" pushbutton

Discrete input
card

IN_switch_Start

IN_switch_Stop

Discrete output
card

Real-world I/O wiring

PLC program

High temperature shutdown

IN_temp_hi

IN_temp_hi

Motor contactor

OUT_motor

OUT_motor

OUT_motor

Challenges

• If you did not have access to a computer to view the PLC’s live status, how could you diagnose
these faults?
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6.3.6 Cannery counter diagnosis

A PLC is used to count the number of cans traveling by on a conveyor belt in a fish canning factory.
An optical proximity switch detects the passage of each can, sending a discrete (on/off) signal to one
of the PLC’s input channels. The PLC then counts the number of pulses to determine the number
of cans that have passed by:
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One day the canning line operator tells you the PLC has stopped counting even though cans
continue to run past the proximity switch as the conveyor belt moves. Identify what you would do
to begin diagnosing this problem, justifying each step you would take.

Challenges
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• Identify different areas or components within this system that could possibly be at fault, as a
prelude to identifying specific diagnostic steps.

• Are there any ways you could diagnose this problem without the use of test equipment (e.g.
multimeter)?

• Explain the significance of the “sourcing” and “sinking” labels on the I/O cards as well as the
proximity switch.
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6.3.7 Parking garage counter faults

The following Koyo CLICK PLCs are supposed to count the number of cars entering a parking
garage, using a pressure-sensitive switch that the cars drive over when entering the garage. The
car-count value is sent to a computer in the main office via a network cable plugged into the PLC.
The parking attendant is able to reset the count to 0 at the end of his shift, using a key-switch:
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PLC #1
Suppose the counter’s current value as displayed on the main office computer is stuck at 574 no

matter how many more cars drive over the pressure switch and enter the garage. Explain how you
would go about diagnosing the problem in this system, justifying each step you would take.

PLC #2
Suppose the counter’s current value as displayed on the main office computer is stuck at 1357

no matter how many more cars drive over the pressure switch and enter the garage. A voltmeter
connected to the terminals of the reset switch registers 23.9 Volts DC all the time. Does this
voltmeter test provide any diagnostically useful information to us?
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PLC #3
Suppose the counter’s current value as displayed on the main office computer is stuck at 822

no matter how many more cars drive over the pressure switch and enter the garage. A voltmeter
connected between terminals X2 and C1 registers 0.0 Volts DC all the time. Does this voltmeter test
provide any diagnostically useful information to us?

PLC #4
Suppose the counter’s current value as displayed on the main office computer is stuck at 0 no

matter how many more cars drive over the pressure switch and enter the garage. A voltmeter
connected between terminals X2 and C1 registers 25.1 Volts DC all the time. Does this voltmeter
test provide any diagnostically useful information to us?

Challenges

• For any diagnostic tests deemed useless, identify a better diagnostic test.

• For any diagnostic tests deemed useful, identify the next diagnostic test you would take.
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6.3.8 Possible faults in a PLC/HMI pump control system

A large water pump at a wastewater treatment facility is speed-controlled by a VFD, receiving
commands from a PLC/HMI control system:
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This system is newly constructed, and when the operators try starting up the pump by pressing
the “Pump start” icon on the touch-screen, nothing happens. A technician temporarily connects a
jumper wire across the two terminals at the VFD where the control cable lands. At this, the motor
starts up and runs.

Identify the likelihood of each specified fault for this circuit. Consider each fault one at a time (i.e.
no coincidental faults), determining whether or not each fault is compatible with all measurements
and symptoms in this circuit.

• Circuit breaker off

• Touch-screen panel malfunctioning

• Programming error in PLC

• Faulted power cable between VFD and motor

• Faulted power cable between breaker and VFD

• PLC output card malfunctioning

• Open control cable

• Shorted control cable

• Open data cable
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Challenges

• Identify the next diagnostic test or measurement you would make on this system. Explain how
the result(s) of this next test or measurement help further identify the location and/or nature
of the fault.
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6.3.9 Possible faults in a PLC/HMI package-counting system

A PLC counts packages coming by on a conveyor belt in a manufacturing facility. An optical sensor
detects these packages as they travel by on the conveyor belt:
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Unfortunately, something is not working correctly in this system. The HMI display continues to
read a count value of zero no matter how many packages pass by the sensor switch. This very same
system worked just fine three days ago, and had been working fine for one whole year before that.

Brainstorm at least five different faults that could account for this problem, and then devise a
“next test” you would conduct to narrow the field of potential faults. The simpler this test (i.e. the
least amount of time to conduct and the less complicated test equipment required), the better!

Challenges

• Explain how your proposed diagnostic test would either confirm or eliminate certain fault
possibilities.
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6.3.10 Diagnostic tests on a failed PLC/HMI pump control system

A large water pump at a wastewater treatment facility is speed-controlled by a VFD, receiving
commands from a PLC/HMI control system:
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This system is newly constructed, and when the operators try starting up the pump by pressing
the “Pump start” icon on the touch-screen, nothing happens. You happen to notice a glowing
“Power” indicator LED on the VFD, but none of the warning LEDs on the VFD are lit.

Assess whether each of the following diagnostic tests would be useful on this failed system:

• Measure AC Volts at VFD input

• Measure AC Volts at VFD output

• Jumper control cable terminals at VFD

• Jumper control cable terminals at PLC output card

• Force PLC output bit on

• Measure DC Volts between PLC output terminals

• Check PLC mode (Run/Terminal/Stop)

Challenges

• What, exactly, makes a diagnostic test useful?
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6.3.11 Correcting PLC program errors

PLC program #1

A PLC has been programming to control the starting and stopping of a three-phase electric
motor. Shown here is a partial wiring diagram and offline PLC program display for the system:

"Start" pushbutton

"Stop" pushbutton

Discrete input
card

Discrete output
card

PLC program

Contactor coil

Overload contact

PB_start

PB_stop

OL_switch

Motor

Real-world I/O wiring and tagnames

PB_start Motor

Motor

PB_stop OL_switch

Identify the problem(s) in this PLC program, and modify it so that it will work as it should.
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PLC program #2

A PLC has been programming to control the starting and stopping of a three-phase electric
motor. Shown here is a partial wiring diagram and offline PLC program display for the system:

"Start" pushbutton

"Stop" pushbutton

Discrete input
card
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card

PLC program
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PB_stop

OL_switch

Motor
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S
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Identify the problem(s) in this PLC program, and modify it so that it will work as it should.
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PLC program #3

A PLC has been programming to control the starting and stopping of a three-phase electric motor.
The program is supposed to require that the operator press and hold the “Start” pushbutton for at
least three seconds before the motor starts and runs. Shown here is a partial wiring diagram and
offline PLC program display for the system:
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Identify the problem(s) in this PLC program, and modify it so that it will work as it should.
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PLC program #4

A technician needs to write a PLC program to control a water pump driven by an electric motor.
This water pump will be manually started and stopped by pushbutton switches, and shut down
automatically by any one of several “permissive” switches. The operating statuses of these switches
are listed here:

• Start pushbutton (normally-open): open when unpressed, closed when pressed

• Stop pushbutton (normally-closed): closed when unpressed, open when pressed

• Low water level (normally-closed): closed when level is low, open when level is adequate

• Low oil pressure (normally-open): open when pressure is low, closed when pressure is
adequate

• High vibration (normally-closed): closed when still, open when vibrating

• Water leak detector (normally-open): open when dry, closed when wet (leak detected)

The technician’s first attempt is shown here, but it contains a serious error. Identify and correct
this error:

Start_PB Stop_PB

Oil_press_low

Vib_high

Leak

MotorShutdown

Motor

ShutdownWater_level_low
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PLC program #5

A technician needs to write a PLC program to control a water pump driven by an electric motor.
This water pump will be manually started and stopped by pushbutton switches, and shut down
automatically by any one of several “permissive” switches. The operating statuses of these switches
are listed here:

• Start pushbutton (normally-open): open when unpressed, closed when pressed

• Stop pushbutton (normally-closed): closed when unpressed, open when pressed

• Low water level (normally-closed): closed when level is low, open when level is adequate

• Low oil pressure (normally-open): open when pressure is low, closed when pressure is
adequate

• High vibration (normally-closed): closed when still, open when vibrating

• Water leak detector (normally-open): open when dry, closed when wet (leak detected)

The technician’s first attempt is shown here, but it contains a serious error. Identify and correct
this error:

Start_PB Stop_PB

Oil_press_low Vib_high Leak

MotorShutdown

Motor

ShutdownWater_level_low
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PLC program #6

A technician needs to write a PLC program to control a water pump driven by an electric motor.
This water pump will be manually started and stopped by pushbutton switches, and shut down
automatically by any one of several “permissive” switches. The operating statuses of these switches
are listed here:

• Start pushbutton (normally-open): open when unpressed, closed when pressed

• Stop pushbutton (normally-closed): open when unpressed, closed when pressed

• Low water level (normally-closed): closed when level is low, open when level is adequate

• Low oil pressure (normally-open): open when pressure is low, closed when pressure is
adequate

• High vibration (normally-closed): closed when still, open when vibrating

• Water leak detector (normally-open): open when dry, closed when wet (leak detected)

The technician’s first attempt is shown here, but it contains a serious error. Identify and correct
this error:

Start_PB Stop_PB

Oil_press_low Vib_highLeak

MotorShutdown

Motor

ShutdownWater_level_low
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PLC program #7

A technician needs to write a program for an Allen-Bradley CompactLogix PLC to control a
pressure-relieving solenoid valve in a gas processing system. A pair of high-pressure control switches
signals the PLC when to open the solenoid valve: one telling the PLC to open the valve after a
3-second time delay and the other (called the “high-high” switch, with a higher trip setting) telling
the PLC to open the valve immediately. A pushbutton switch serves as a manual override to open
the solenoid valve immediately when pressed. In all cases, the solenoid vent valve will remain open
(energized) until pressure falls below the setting of a low-pressure gas switch. The operating statuses
of these switches are listed here:

• Override pushbutton (normally-open): open when unpressed, closed when pressed

• Low gas pressure (normally-closed): closed when pressure is less than 10 PSI, open when
pressure exceeds 10 PSI

• High gas pressure (normally-closed): closed when pressure is less than 30 PSI, open when
pressure exceeds 30 PSI

• High-high gas pressure (normally-open): open when pressure is less than 40 PSI, closed
when pressure exceeds 40 PSI

The technician’s first attempt is shown here, but it contains a serious error. Identify and correct
this error:
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Challenges

• ???
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Chapter 7

Projects and Experiments

The following project and experiment descriptions outline things you can build to help you
understand circuits. With any real-world project or experiment there exists the potential for physical
harm. Electricity can be very dangerous in certain circumstances, and you should follow proper safety
precautions at all times!

7.1 Recommended practices

This section outlines some recommended practices for all circuits you design and construct.

237
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7.1.1 Safety first!

Electricity, when passed through the human body, causes uncomfortable sensations and in large
enough measures1 will cause muscles to involuntarily contract. The overriding of your nervous
system by the passage of electrical current through your body is particularly dangerous in regard
to your heart, which is a vital muscle. Very large amounts of current can produce serious internal
burns in addition to all the other effects.

Cardio-pulmonary resuscitation (CPR) is the standard first-aid for any victim of electrical shock.
This is a very good skill to acquire if you intend to work with others on dangerous electrical circuits.
You should never perform tests or work on such circuits unless someone else is present who is
proficient in CPR.

As a general rule, any voltage in excess of 30 Volts poses a definitive electric shock hazard, because
beyond this level human skin does not have enough resistance to safely limit current through the
body. “Live” work of any kind with circuits over 30 volts should be avoided, and if unavoidable
should only be done using electrically insulated tools and other protective equipment (e.g. insulating
shoes and gloves). If you are unsure of the hazards, or feel unsafe at any time, stop all work and
distance yourself from the circuit!

A policy I strongly recommend for students learning about electricity is to never come into
electrical contact2 with an energized conductor, no matter what the circuit’s voltage3 level! Enforcing
this policy may seem ridiculous when the circuit in question is powered by a single battery smaller
than the palm of your hand, but it is precisely this instilled habit which will save a person from
bodily harm when working with more dangerous circuits. Experience has taught me that students
who learn early on to be careless with safe circuits have a tendency to be careless later with dangerous
circuits!

In addition to the electrical hazards of shock and burns, the construction of projects and running
of experiments often poses other hazards such as working with hand and power tools, potential

1Professor Charles Dalziel published a research paper in 1961 called “The Deleterious Effects of Electric Shock”
detailing the results of electric shock experiments with both human and animal subjects. The threshold of perception
for human subjects holding a conductor in their hand was in the range of 1 milliampere of current (less than this
for alternating current, and generally less for female subjects than for male). Loss of muscular control was exhibited
by half of Dalziel’s subjects at less than 10 milliamperes alternating current. Extreme pain, difficulty breathing,
and loss of all muscular control occurred for over 99% of his subjects at direct currents less than 100 milliamperes
and alternating currents less than 30 milliamperes. In summary, it doesn’t require much electric current to induce
painful and even life-threatening effects in the human body! Your first and best protection against electric shock is
maintaining an insulating barrier between your body and the circuit in question, such that current from that circuit
will be unable to flow through your body.

2By “electrical contact” I mean either directly touching an energized conductor with any part of your body, or
indirectly touching it through a conductive tool. The only physical contact you should ever make with an energized
conductor is via an electrically insulated tool, for example a screwdriver with an electrically insulated handle, or an
insulated test probe for some instrument.

3Another reason for consistently enforcing this policy, even on low-voltage circuits, is due to the dangers that even
some low-voltage circuits harbor. A single 12 Volt automobile battery, for example, can cause a surprising amount of
damage if short-circuited simply due to the high current levels (i.e. very low internal resistance) it is capable of, even
though the voltage level is too low to cause a shock through the skin. Mechanics wearing metal rings, for example,
are at risk from severe burns if their rings happen to short-circuit such a battery! Furthermore, even when working on
circuits that are simply too low-power (low voltage and low current) to cause any bodily harm, touching them while
energized can pose a threat to the circuit components themselves. In summary, it generally wise (and always a good
habit to build) to “power down” any circuit before making contact between it and your body.
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contact with high temperatures, potential chemical exposure, etc. You should never proceed with a
project or experiment if you are unaware of proper tool use or lack basic protective measures (e.g.
personal protective equipment such as safety glasses) against such hazards.

Some other safety-related practices should be followed as well:

• All power conductors extending outward from the project must be firmly strain-relieved (e.g.
“cord grips” used on line power cords), so that an accidental tug or drop will not compromise
circuit integrity.

• All electrical connections must be sound and appropriately made (e.g. soldered wire joints
rather than twisted-and-taped; terminal blocks rather than solderless breadboards for high-
current or high-voltage circuits). Use “touch-safe” terminal connections with recessed metal
parts to minimize risk of accidental contact.

• Always provide overcurrent protection in any circuit you build. Always. This may be in the
form of a fuse, a circuit breaker, and/or an electronically current-limited power supply.

• Always ensure circuit conductors are rated for more current than the overcurrent protection
limit. Always. A fuse does no good if the wire or printed circuit board trace will “blow” before
it does!

• Always bond metal enclosures to Earth ground for any line-powered circuit. Always. Ensuring
an equipotential state between the enclosure and Earth by making the enclosure electrically
common with Earth ground ensures no electric shock can occur simply by one’s body bridging
between the Earth and the enclosure.

• Avoid building a high-energy circuit when a low-energy circuit will suffice. For example,
I always recommend beginning students power their first DC resistor circuits using small
batteries rather than with line-powered DC power supplies. The intrinsic energy limitations
of a dry-cell battery make accidents highly unlikely.

• Use line power receptacles that are GFCI (Ground Fault Current Interrupting) to help avoid
electric shock from making accidental contact with a “hot” line conductor.

• Always wear eye protection when working with tools or live systems having the potential to
eject material into the air. Examples of such activities include soldering, drilling, grinding,
cutting, wire stripping, working on or near energized circuits, etc.

• Always use a step-stool or stepladder to reach high places. Never stand on something not
designed to support a human load.

• When in doubt, ask an expert. If anything even seems remotely unsafe to you, do not proceed
without consulting a trusted person fully knowledgeable in electrical safety.
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7.1.2 Other helpful tips

Experience has shown the following practices to be very helpful, especially when students make their
own component selections, to ensure the circuits will be well-behaved:

• Avoid resistor values less than 1 kΩ or greater than 100 kΩ, unless such values are definitely
necessary4. Resistances below 1 kΩ may draw excessive current if directly connected to
a voltage source of significant magnitude, and may also complicate the task of accurately
measuring current since any ammeter’s non-zero resistance inserted in series with a low-value
circuit resistor will significantly alter the total resistance and thereby skew the measurement.
Resistances above 100 kΩ may complicate the task of measuring voltage since any voltmeter’s
finite resistance connected in parallel with a high-value circuit resistor will significantly alter
the total resistance and thereby skew the measurement. Similarly, AC circuit impedance values
should be between 1 kΩ and 100 kΩ, and for all the same reasons.

• Ensure all electrical connections are low-resistance and physically rugged. For this reason, one
should avoid compression splices (e.g. “butt” connectors), solderless breadboards5, and wires
that are simply twisted together.

• Build your circuit with testing in mind. For example, provide convenient connection points
for test equipment (e.g. multimeters, oscilloscopes, signal generators, logic probes).

• Design permanent projects with maintenance in mind. The more convenient you make
maintenance tasks, the more likely they will get done.

• Always document and save your work. Circuits lacking schematic diagrams are more
difficult to troubleshoot than documented circuits. Similarly, circuit construction is simpler
when a schematic diagram precedes construction. Experimental results are easier to interpret
when comprehensively recorded. Consider modern videorecording technology for this purpose
where appropriate.

• Record your steps when troubleshooting. Talk to yourself when solving problems. These
simple steps clarify thought and simplify identification of errors.

4An example of a necessary resistor value much less than 1 kΩ is a shunt resistor used to produce a small voltage
drop for the purpose of sensing current in a circuit. Such shunt resistors must be low-value in order not to impose
an undue load on the rest of the circuit. An example of a necessary resistor value much greater than 100 kΩ is an
electrostatic drain resistor used to dissipate stored electric charges from body capacitance for the sake of preventing
damage to sensitive semiconductor components, while also preventing a path for current that could be dangerous to
the person (i.e. shock).

5Admittedly, solderless breadboards are very useful for constructing complex electronic circuits with many
components, especially DIP-style integrated circuits (ICs), but they tend to give trouble with connection integrity after
frequent use. An alternative for projects using low counts of ICs is to solder IC sockets into prototype printed circuit
boards (PCBs) and run wires from the soldered pins of the IC sockets to terminal blocks where reliable temporary
connections may be made.
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7.1.3 Terminal blocks for circuit construction

Terminal blocks are the standard means for making electric circuit connections in industrial systems.
They are also quite useful as a learning tool, and so I highly recommend their use in lieu of
solderless breadboards6. Terminal blocks provide highly reliable connections capable of withstanding
significant voltage and current magnitudes, and they force the builder to think very carefully about
component layout which is an important mental practice. Terminal blocks that mount on standard
35 mm DIN rail7 are made in a wide range of types and sizes, some with built-in disconnecting
switches, some with built-in components such as rectifying diodes and fuseholders, all of which
facilitate practical circuit construction.

I recommend every student of electricity build their own terminal block array for use in
constructing experimental circuits, consisting of several terminal blocks where each block has at
least 4 connection points all electrically common to each other8 and at least one terminal block
that is a fuse holder for overcurrent protection. A pair of anchoring blocks hold all terminal blocks
securely on the DIN rail, preventing them from sliding off the rail. Each of the terminals should
bear a number, starting from 0. An example is shown in the following photograph and illustration:
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Anchor block

Anchor block

DIN rail end

DIN rail end

Fuseholder block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block

Electrically common
points shown in blue

(typical for all terminal blocks)

1

5
4

6
7
8
9
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4-terminal block0

2

11
12

3

Screwless terminal blocks (using internal spring clips to clamp wire and component lead ends) are
preferred over screw-based terminal blocks, as they reduce assembly and disassembly time, and also
minimize repetitive wrist stress from twisting screwdrivers. Some screwless terminal blocks require
the use of a special tool to release the spring clip, while others provide buttons9 for this task which
may be pressed using the tip of any suitable tool.

6Solderless breadboard are preferable for complicated electronic circuits with multiple integrated “chip”
components, but for simpler circuits I find terminal blocks much more practical. An alternative to solderless
breadboards for “chip” circuits is to solder chip sockets onto a PCB and then use wires to connect the socket pins to
terminal blocks. This also accommodates surface-mount components, which solderless breadboards do not.

7DIN rail is a metal rail designed to serve as a mounting point for a wide range of electrical and electronic devices
such as terminal blocks, fuses, circuit breakers, relay sockets, power supplies, data acquisition hardware, etc.

8Sometimes referred to as equipotential, same-potential, or potential distribution terminal blocks.
9The small orange-colored squares seen in the above photograph are buttons for this purpose, and may be actuated

by pressing with any tool of suitable size.
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The following example shows how such a terminal block array might be used to construct a
series-parallel resistor circuit consisting of four resistors and a battery:

Fuse1

5
4

6
7
8
9
10

0

2

11
12

3 +
-

Pictorial diagramSchematic diagram

R1

R2

R3

R4

Fuse

R1

R2

R3

R4

6 V

6 V

2.2 kΩ

3.3 kΩ

4.7 kΩ

7.1 kΩ

7.1 kΩ

2.2 kΩ

3.3 kΩ

4.7 kΩ

Numbering on the terminal blocks provides a very natural translation to SPICE10 netlists, where
component connections are identified by terminal number:

* Series-parallel resistor circuit

v1 1 0 dc 6

r1 2 5 7100

r2 5 8 2200

r3 2 8 3300

r4 8 11 4700

rjmp1 1 2 0.01

rjmp2 0 11 0.01

.op

.end

Note the use of “jumper” resistances rjmp1 and rjmp2 to describe the wire connections between
terminals 1 and 2 and between terminals 0 and 11, respectively. Being resistances, SPICE requires
a resistance value for each, and here we see they have both been set to an arbitrarily low value of
0.01 Ohm realistic for short pieces of wire.

Listing all components and wires along with their numbered terminals happens to be a useful
documentation method for any circuit built on terminal blocks, independent of SPICE. Such a
“wiring sequence” may be thought of as a non-graphical description of an electric circuit, and is
exceptionally easy to follow.

10SPICE is computer software designed to analyze electrical and electronic circuits. Circuits are described for the
computer in the form of netlists which are text files listing each component type, connection node numbers, and
component values.
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An example of a more elaborate terminal block array is shown in the following photograph,
with terminal blocks and “ice-cube” style electromechanical relays mounted to DIN rail, which is
turn mounted to a perforated subpanel11. This “terminal block board” hosts an array of thirty five
undedicated terminal block sections, four SPDT toggle switches, four DPDT “ice-cube” relays, a
step-down control power transformer, bridge rectifier and filtering capacitor, and several fuses for
overcurrent protection:

Four plastic-bottomed “feet” support the subpanel above the benchtop surface, and an unused
section of DIN rail stands ready to accept other components. Safety features include electrical
bonding of the AC line power cord’s ground to the metal subpanel (and all metal DIN rails),
mechanical strain relief for the power cord to isolate any cord tension from wire connections,
clear plastic finger guards covering the transformer’s screw terminals, as well as fused overcurrent
protection for the 120 Volt AC line power and the transformer’s 12 Volt AC output. The perforated
holes happen to be on 1

4
inch centers with a diameter suitable for tapping with 6-32 machine screw

threads, their presence making it very easy to attach other sections of DIN rail, printed circuit boards,
or specialized electrical components directly to the grounded metal subpanel. Such a “terminal block
board” is an inexpensive12 yet highly flexible means to construct physically robust circuits using
industrial wiring practices.

11An electrical subpanel is a thin metal plate intended for mounting inside an electrical enclosure. Components are
attached to the subpanel, and the subpanel in turn bolts inside the enclosure. Subpanels allow circuit construction
outside the confines of the enclosure, which speeds assembly. In this particular usage there is no enclosure, as the
subpanel is intended to be used as an open platform for the convenient construction of circuits on a benchtop by
students. In essence, this is a modern version of the traditional breadboard which was literally a wooden board such
as might be used for cutting loaves of bread, but which early electrical and electronic hobbyists used as platforms for
the construction of circuits.

12At the time of this writing (2019) the cost to build this board is approximately $250 US dollars.
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7.1.4 Conducting experiments

An experiment is an exploratory act, a test performed for the purpose of assessing some proposition
or principle. Experiments are the foundation of the scientific method, a process by which careful
observation helps guard against errors of speculation. All good experiments begin with an hypothesis,
defined by the American Heritage Dictionary of the English Language as:

An assertion subject to verification or proof, as (a) A proposition stated as a basis for
argument or reasoning. (b) A premise from which a conclusion is drawn. (c) A conjecture
that accounts, within a theory or ideational framework, for a set of facts and that can
be used as a basis for further investigation.

Stated plainly, an hypothesis is an educated guess about cause and effect. The correctness of this
initial guess matters little, because any well-designed experiment will reveal the truth of the matter.
In fact, incorrect hypotheses are often the most valuable because the experiments they engender
lead us to surprising discoveries. One of the beautiful aspects of science is that it is more focused
on the process of learning than about the status of being correct13. In order for an hypothesis to be
valid, it must be testable14, which means it must be a claim possible to refute given the right data.
Hypotheses impossible to critique are useless.

Once an hypothesis has been formulated, an experiment must be designed to test that hypothesis.
A well-designed experiment requires careful regulation of all relevant variables, both for personal
safety and for prompting the hypothesized results. If the effects of one particular variable are to
be tested, the experiment must be run multiple times with different values of (only) that particular
variable. The experiment set up with the “baseline” variable set is called the control, while the
experiment set up with different value(s) is called the test or experimental.

For some hypotheses a viable alternative to a physical experiment is a computer-simulated
experiment or even a thought experiment. Simulations performed on a computer test the hypothesis
against the physical laws encoded within the computer simulation software, and are particularly
useful for students learning new principles for which simulation software is readily available15.

13Science is more about clarifying our view of the universe through a systematic process of error detection than it is
about proving oneself to be right. Some scientists may happen to have large egos – and this may have more to do with
the ways in which large-scale scientific research is funded than anything else – but scientific method itself is devoid
of ego, and if embraced as a practical philosophy is quite an effective stimulant for humility. Within the education
system, scientific method is particularly valuable for helping students break free of the crippling fear of being wrong.
So much emphasis is placed in formal education on assessing correct retention of facts that many students are fearful
of saying or doing anything that might be perceived as a mistake, and of course making mistakes (i.e. having one’s
hypotheses disproven by experiment) is an indispensable tool for learning. Introducing science in the classroom – real

science characterized by individuals forming actual hypotheses and testing those hypotheses by experiment – helps
students become self-directed learners.

14This is the principle of falsifiability: that a scientific statement has value only insofar as it is liable to disproof
given the requisite experimental evidence. Any claim that is unfalsifiable – that is, a claim which can never be
disproven by any evidence whatsoever – could be completely wrong and we could never know it.

15A very pertinent example of this is learning how to analyze electric circuits using simulation software such as
SPICE. A typical experimental cycle would proceed as follows: (1) Find or invent a circuit to analyze; (2) Apply
your analytical knowledge to that circuit, predicting all voltages, currents, powers, etc. relevant to the concepts you
are striving to master; (3) Run a simulation on that circuit, collecting “data” from the computer when complete; (4)
Evaluate whether or not your hypotheses (i.e. predicted voltages, currents, etc.) agree with the computer-generated
results; (5) If so, your analyses are (provisionally) correct – if not, examine your analyses and the computer simulation
again to determine the source of error; (6) Repeat this process as many times as necessary until you achieve mastery.
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Thought experiments are useful for detecting inconsistencies within your own understanding of
some subject, rather than testing your understanding against physical reality.

Here are some general guidelines for conducting experiments:

• The clearer and more specific the hypothesis, the better. Vague or unfalsifiable hypotheses
are useless because they will fit any experimental results, and therefore the experiment cannot
teach you anything about the hypothesis.

• Collect as much data (i.e. information, measurements, sensory experiences) generated by an
experiment as is practical. This includes the time and date of the experiment, too!

• Never discard or modify data gathered from an experiment. If you have reason to believe the
data is unreliable, write notes to that effect, but never throw away data just because you think
it is untrustworthy. It is quite possible that even “bad” data holds useful information, and
that someone else may be able to uncover its value even if you do not.

• Prioritize quantitative data over qualitative data wherever practical. Quantitative data is more
specific than qualitative, less prone to subjective interpretation on the part of the experimenter,
and amenable to an arsenal of analytical methods (e.g. statistics).

• Guard against your own bias(es) by making your experimental results available to others. This
allows other people to scrutinize your experimental design and collected data, for the purpose
of detecting and correcting errors you may have missed. Document your experiment such that
others may independently replicate it.

• Always be looking for sources of error. No physical measurement is perfect, and so it is
impossible to achieve exact values for any variable. Quantify the amount of uncertainty (i.e.
the “tolerance” of errors) whenever possible, and be sure your hypothesis does not depend on
precision better than this!

• Always remember that scientific confirmation is provisional – no number of “successful”
experiments will prove an hypothesis true for all time, but a single experiment can disprove
it. Put into simpler terms, truth is elusive but error is within reach.

• Remember that scientific method is about learning, first and foremost. An unfortunate
consequence of scientific triumph in modern society is that science is often viewed by non-
practitioners as an unerring source of truth, when in fact science is an ongoing process of
challenging existing ideas to probe for errors and oversights. This is why it is perfectly
acceptable to have a failed hypothesis, and why the only truly failed experiment is one where
nothing was learned.
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The following is an example of a well-planned and executed experiment, in this case a physical
experiment demonstrating Ohm’s Law.

Planning Time/Date = 09:30 on 12 February 2019

HYPOTHESIS: the current through any resistor should be exactly proportional

to the voltage impressed across it.

PROCEDURE: connect a resistor rated 1 k Ohm and 1/4 Watt to a variable-voltage

DC power supply. Use an ammeter in series to measure resistor current and

a voltmeter in parallel to measure resistor voltage.

RISKS AND MITIGATION: excessive power dissipation may harm the resistor and/

or pose a burn hazard, while excessive voltage poses an electric shock hazard.

30 Volts is a safe maximum voltage for laboratory practices, and according to

Joule’s Law a 1000 Ohm resistor will dissipate 0.25 Watts at 15.81 Volts

(P = V^2 / R), so I will remain below 15 Volts just to be safe.

Experiment Time/Date = 10:15 on 12 February 2019

DATA COLLECTED:

(Voltage) (Current) (Voltage) (Current)

0.000 V = 0.000 mA 8.100 = 7.812 mA

2.700 V = 2.603 mA 10.00 V = 9.643 mA

5.400 V = 5.206 mA 14.00 V = 13.49 mA

Analysis Time/Date = 10:57 on 12 February 2019

ANALYSIS: current definitely increases with voltage, and although I expected

exactly one milliAmpere per Volt the actual current was usually less than

that. The voltage/current ratios ranged from a low of 1036.87 (at 8.1 Volts)

to a high of 1037.81 (at 14 Volts), but this represents a variance of only

-0.0365% to +0.0541% from the average, indicating a very consistent

proportionality -- results consistent with Ohm’s Law.

ERROR SOURCES: one major source of error is the resistor’s value itself. I

did not measure it, but simply assumed color bands of brown-black-red meant

exactly 1000 Ohms. Based on the data I think the true resistance is closer

to 1037 Ohms. Another possible explanation is multimeter calibration error.

However, neither explains the small positive and negative variances from the

average. This might be due to electrical noise, a good test being to repeat

the same experiment to see if the variances are the same or different. Noise

should generate slightly different results every time.
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The following is an example of a well-planned and executed virtual experiment, in this case
demonstrating Ohm’s Law using a computer (SPICE) simulation.

Planning Time/Date = 12:32 on 14 February 2019

HYPOTHESIS: for any given resistor, the current through that resistor should be

exactly proportional to the voltage impressed across it.

PROCEDURE: write a SPICE netlist with a single DC voltage source and single

1000 Ohm resistor, then use NGSPICE version 26 to perform a "sweep" analysis

from 0 Volts to 25 Volts in 5 Volt increments.

* SPICE circuit

v1 1 0 dc

r1 1 0 1000

.dc v1 0 25 5

.print dc v(1) i(v1)

.end

RISKS AND MITIGATION: none.

DATA COLLECTED:

DC transfer characteristic Thu Feb 14 13:05:08 2019

-----------------------------------------------------------

Index v-sweep v(1) v1#branch

-----------------------------------------------------------

0 0.000000e+00 0.000000e+00 0.000000e+00

1 5.000000e+00 5.000000e+00 -5.00000e-03

2 1.000000e+01 1.000000e+01 -1.00000e-02

3 1.500000e+01 1.500000e+01 -1.50000e-02

4 2.000000e+01 2.000000e+01 -2.00000e-02

5 2.500000e+01 2.500000e+01 -2.50000e-02

Analysis Time/Date = 13:06 on 14 February 2019

ANALYSIS: perfect agreement between data and hypothesis -- current is precisely

1/1000 of the applied voltage for all values. Anything other than perfect

agreement would have probably meant my netlist was incorrect. The negative

current values surprised me, but it seems this is just how SPICE interprets

normal current through a DC voltage source.

ERROR SOURCES: none.
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As gratuitous as it may seem to perform experiments on a physical law as well-established as
Ohm’s Law, even the examples listed previously demonstrate opportunity for real learning. In
the physical experiment example, the student should identify and explain why their data does not
perfectly agree with the hypothesis, and this leads them naturally to consider sources of error. In
the computer-simulated experiment, the student is struck by SPICE’s convention of denoting regular
current through a DC voltage source as being negative in sign, and this is also useful knowledge for
future simulations. Scientific experiments are most interesting when things do not go as planned!

Aside from verifying well-established physical laws, simple experiments are extremely useful as
educational tools for a wide range of purposes, including:

• Component familiarization (e.g. Which terminals of this switch connect to the NO versus NC
contacts? )

• System testing (e.g. How heavy of a load can my AC-DC power supply source before the
semiconductor components reach their thermal limits? )

• Learning programming languages (e.g. Let’s try to set up an “up” counter function in this
PLC! )

Above all, the priority here is to inculcate the habit of hypothesizing, running experiments, and
analyzing the results. This experimental cycle not only serves as an excellent method for self-directed
learning, but it also works exceptionally well for troubleshooting faults in complex systems, and for
these reasons should be a part of every technician’s and every engineer’s education.

7.1.5 Constructing projects

Designing, constructing, and testing projects is a very effective means of practical education. Within
a formal educational setting, projects are generally chosen (or at least vetted) by an instructor
to ensure they may be reasonably completed within the allotted time of a course or program of
study, and that they sufficiently challenge the student to learn certain important principles. In a
self-directed environment, projects are just as useful as a learning tool but there is some risk of
unwittingly choosing a project beyond one’s abilities, which can lead to frustration.

Here are some general guidelines for managing projects:

• Define your goal(s) before beginning a project: what do you wish to achieve in building it?
What, exactly, should the completed project do?

• Analyze your project prior to construction. Document it in appropriate forms (e.g. schematic
diagrams), predict its functionality, anticipate all associated risks. In other words, plan ahead.

• Set a reasonable budget for your project, and stay within it.

• Identify any deadlines, and set reasonable goals to meet those deadlines.

• Beware of scope creep: the tendency to modify the project’s goals before it is complete.

• Document your progress! An easy way to do this is to use photography or videography: take
photos and/or videos of your project as it progresses. Document failures as well as successes,
because both are equally valuable from the perspective of learning.
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7.2 Experiment: contact and coil demonstration program

Conduct an experiment to explore the behavior of contact and coil Ladder Diagram instructions in a
functioning PLC. Your experiment should test the behavior of all basic contact and coil instructions
offered by the particular model of PLC available to you, and do so as simply as possible. You are
strongly recommended not to write a PLC program that might serve some practical purpose, but
rather to write the simplest possible version16 of a proof-of-concept program merely showcasing how
each instruction works.

An acceptable PLC program for this experiment must meet these three criteria:

• Simple – nothing “extra” included in the program to detract from the fundamental behavior
of the instruction(s) being explored.

• Complete – nothing missing from the program relevant to the fundamental behavior of the
instruction(s) being explored.

• Clearly documented – every rung clearly commented in your own words.

The practical purpose of this experiment is to serve as a reference for your future self modeling
how each of your PLC’s instructions work. This is why the experiment should not be a practical
program, because programs written to perform some practical purpose become complicated by the
details of that purpose.

Your analysis of each instruction’s function should be written as comments in the Ladder Diagram
program.

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

16As few rungs of code as possible, with as few instructions on each rung as possible.
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• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.√
Write an analysis of experimental results and lessons learned.

Challenges

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

• Where in the PLC’s memory are the single-bit registers (e.g. input registers, output registers,
and internal bit registers) located? What symbol(s) are used to address each one?

• What happens when two contact instructions are linked to the same bit address in the PLC’s
memory? Do these contact instructions operated differently, or identically?

• Does your PLC offer a special type of contact or other bit-level instruction to detect the
transition of a bit from one state to another? If so, how is this instruction used?

• What happens when two coil instructions are linked to the same bit address in the PLC’s
memory, but driven to different states (e.g. one “energized” and the other “de-energized”)?

• Experiment with using the force utility in your PLC to force certain bits to fixed values
regardless of program operation. How will the operation of your program be affected if a
particular input bit is forced? How will the operation of your program be affected if a particular
output bit is forced? How can you tell from the live program display that bits have been forced
to fixed values?
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7.3 Experiment: PLC implementation of basic logic
functions

Conduct an experiment demonstrating how a circuit using toggle switches (inputs) and a PLC may
be used to implement multiple basic logic functions (e.g. AND, OR, NAND, NOR, NOT, XOR,
XNOR) all operating off of the same inputs. Each logic function’s output should be represented by
its own discrete output on the PLC.

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.√
Write an analysis of experimental results and lessons learned.

Challenges

• How would you program logic functions having more than two inputs?

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

• Write a different PLC program to implement the exact same logic functions.
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7.4 Experiment: PLC implementation of an arbitrary truth
table

Conduct an experiment demonstrating how a circuit using toggle switches (inputs) and a PLC may
be used to implement an arbitrary truth table for a four-input combinational logic function. A
truth table template is given here for your use, to arbitrarily write “1” and “0” states in the output
column:

A B C D Output

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.
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• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.√
Write an analysis of experimental results and lessons learned.

Challenges

• Identify a truth table function possible to implement with no PLC at all.

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

• It is possible to implement your chosen logic function using only toggle switches and no PLC?

• Write a different PLC program to implement the exact same logic function.
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7.5 Experiment: PLC-controlled motor starter

Devise and execute an experiment to control the starting and stopping of either an AC or a DC
motor using a PLC to perform the latching function and two momentary-contact switches to signal
“Start” and “Stop”. The “Start” switch should be wired normally-open, and the “Stop” switch
normally-closed, so that any open switch wiring faults favor a stopped motor rather than a running
motor.

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.
√

Write an analysis of experimental results and lessons learned.

Challenges

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!
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• Identify some alternative means for interposing between the PLC and the electric motor, since
it is unlikely you will find a PLC with a discrete output channel rated to directly switch motor
current.

• Identify some alternative programming strategies for implementing the necessary latching
function.
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7.6 Experiment: counter demonstration program

Conduct an experiment to explore the behavior of counter Ladder Diagram instructions in a
functioning PLC. Your experiment should test the behavior of all basic counter instructions offered
by the particular model of PLC available to you, and do so as simply as possible. You are strongly
recommended not to write a PLC program that might serve some practical purpose, but rather
to write the simplest possible version17 of a proof-of-concept program merely showcasing how each
instruction works.

An acceptable PLC program for this experiment must meet these three criteria:

• Simple – nothing “extra” included in the program to detract from the fundamental behavior
of the instruction(s) being explored.

• Complete – nothing missing from the program relevant to the fundamental behavior of the
instruction(s) being explored.

• Clearly documented – every rung clearly commented in your own words.

The practical purpose of this experiment is to serve as a reference for your future self modeling
how each of your PLC’s instructions work. This is why the experiment should not be a practical
program, because programs written to perform some practical purpose become complicated by the
details of that purpose.

Your analysis of each instruction’s function should be written as comments in the Ladder Diagram
program.

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

17As few rungs of code as possible, with as few instructions on each rung as possible.
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• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.√
Write an analysis of experimental results and lessons learned.

Challenges

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

• How can you make a single counter both increment (count up) and decrement (count down)?

• How many bits are used by your PLC in each counter instruction? How can you tell?

• Can you “force” a counter to some accumulator value in the same way you can force a discrete
bit to a certain value?

• Is it possible to “pre-load” a counter to some non-zero value at the command of a single bit,
such as a pushbutton switch being pressed?
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7.7 Experiment: timer demonstration program

Conduct an experiment to explore the behavior of timer Ladder Diagram instructions in a
functioning PLC. Your experiment should test the behavior of all basic timer instructions offered
by the particular model of PLC available to you, and do so as simply as possible. You are strongly
recommended not to write a PLC program that might serve some practical purpose, but rather
to write the simplest possible version18 of a proof-of-concept program merely showcasing how each
instruction works.

An acceptable PLC program for this experiment must meet these three criteria:

• Simple – nothing “extra” included in the program to detract from the fundamental behavior
of the instruction(s) being explored.

• Complete – nothing missing from the program relevant to the fundamental behavior of the
instruction(s) being explored.

• Clearly documented – every rung clearly commented in your own words.

The practical purpose of this experiment is to serve as a reference for your future self modeling
how each of your PLC’s instructions work. This is why the experiment should not be a practical
program, because programs written to perform some practical purpose become complicated by the
details of that purpose.

Your analysis of each instruction’s function should be written as comments in the Ladder Diagram
program.

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

18As few rungs of code as possible, with as few instructions on each rung as possible.
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• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.√
Write an analysis of experimental results and lessons learned.

Challenges

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

• Can a timer instruction be made to count backwards?

• How many bits are used by your PLC in each timer instruction? How can you tell?

• Can you “force” a timer to some accumulator value in the same way you can force a discrete
bit to a certain value?

• Is it possible to “pre-load” a timer to some non-zero value at the command of a single bit,
such as a pushbutton switch being pressed?
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7.8 Experiment: PLC-controlled inrush-limiting motor
starter

Devise and execute an experiment to control the starting and stopping of either an AC or a DC
motor using a PLC to perform the latching function and sequencing of multiple contactors to limit
the motor’s inrush current. Two momentary-contact switches will signal “Start” and “Stop”.

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.√
Write an analysis of experimental results and lessons learned.

Challenges

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

• Identify some alternative means for interposing between the PLC and the electric motor, since
it is unlikely you will find a PLC with a discrete output channel rated to directly switch motor
current.
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• Identify some alternative programming strategies for implementing the necessary latching
function.
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7.9 Experiment: HMI display of PLC bits and words

Devise and execute an experiment configuring a Human-Machine Interface (HMI) unit to read data
bits and data words inside of a PLC. Recommended bits and words to read include those associated
with counter and timer instructions, so that the HMI display will show both accumulated values
and I/O bits for these PLC instructions while the PLC is running.

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.√
Write an analysis of experimental results and lessons learned.

Challenges

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

• Identify some of the different digital data types (e.g. signed integer, unsigned integer, floating-
point, Boolean) readable by the HMI from the PLC, and the word size used by each PLC
instruction.
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7.10 Experiment: arithmetic demonstration program

Conduct an experiment to explore the behavior of arithmetic Ladder Diagram instructions in a
functioning PLC. Your experiment should test the behavior of all basic arithmetic operations offered
by the particular model of PLC available to you, and do so as simply as possible. You are strongly
recommended not to write a PLC program that might serve some practical purpose, but rather
to write the simplest possible version19 of a proof-of-concept program merely showcasing how each
instruction works.

An acceptable PLC program for this experiment must meet these three criteria:

• Simple – nothing “extra” included in the program to detract from the fundamental behavior
of the instruction(s) being explored.

• Complete – nothing missing from the program relevant to the fundamental behavior of the
instruction(s) being explored.

• Clearly documented – every rung clearly commented in your own words.

The practical purpose of this experiment is to serve as a reference for your future self modeling
how each of your PLC’s instructions work. This is why the experiment should not be a practical
program, because programs written to perform some practical purpose become complicated by the
details of that purpose.

Your analysis of each instruction’s function should be written as comments in the Ladder Diagram
program.

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

19As few rungs of code as possible, with as few instructions on each rung as possible.
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• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.√
Write an analysis of experimental results and lessons learned.

Challenges

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

• What happens when you instruct an arithmetic operation in the PLC to do something
mathematically undefined, such as dividing by zero?

• Do the PLC’s arithmetic instructions operate on integer values, floating-point values, or both?
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7.11 Experiment: data transfer demonstration program

Conduct an experiment to explore the behavior of data transfer (i.e. communication/networking)
Ladder Diagram instructions in a functioning PLC. Your experiment should test the behavior of all
basic data transfer instructions offered by the particular model of PLC available to you, and do so
as simply as possible. You are strongly recommended not to write a PLC program that might serve
some practical purpose, but rather to write the simplest possible version20 of a proof-of-concept
program merely showcasing how each instruction works.

An acceptable PLC program for this experiment must meet these three criteria:

• Simple – nothing “extra” included in the program to detract from the fundamental behavior
of the instruction(s) being explored.

• Complete – nothing missing from the program relevant to the fundamental behavior of the
instruction(s) being explored.

• Clearly documented – every rung clearly commented in your own words.

The practical purpose of this experiment is to serve as a reference for your future self modeling
how each of your PLC’s instructions work. This is why the experiment should not be a practical
program, because programs written to perform some practical purpose become complicated by the
details of that purpose.

Your analysis of each instruction’s function should be written as comments in the Ladder Diagram
program.

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

20As few rungs of code as possible, with as few instructions on each rung as possible.
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• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.√
Write an analysis of experimental results and lessons learned.

Challenges

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

• How are the instructions configured or selected to either send or receive data?

• How the communicating PLCs addressed on the interconnecting network, if at all.

• How is the data communication triggered? In other words, what signals the starting time of
each message?

• How are communication errors signaled within the PLC program?

• What happens when you unplug the communication cable(s) during data communication?
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7.12 Project: PLC-controlled system

Wire and program a PLC to automatically monitor and/or control some small system. Ideas include,
but are not limited to:

• Control the starting and stopping of an electric motor, using hand switches for Start and
Stop initiation, with the PLC performing such functions as latching, counting the number of
start/stop cycles, calculating total motor run time, flagging maintenance alerts after a certain
amount of run time is reached, etc.

• Automatic starting and stopping of an air compressor to maintain relatively constant air
pressure in a vessel.

• Retrofit the controls on a consumer-grade appliance, removing the factory-original control
system and replacing it with a PLC. Appliance suggestions include a bread-making machine,
a clothes-washing machine, a coffee making machine, a food processor, a convection oven, a
pressure cooker, etc.

• Build a security alarm system for a home, sensing door and window statuses, and providing a
means for only authorized people to enter the room.

• Create an alarm clock complete with audio and visual alert capabilities. Provide a means for
any user to calibrate the clock against a known time standard and also be able to set wake-up
times without having to access the PLC coding.

• Build a weather station monitoring temperature, wind speed, wind direction, etc. Provide
alarms for cold-weather and hot-weather conditions, average daily temperature, etc.

• Build a solar tracker, automatically aiming a solar collector (photovoltaic panel, or
concentrating mirror) directly at the sun using servo motors.

• Build a miniature traffic light system for a set of intersections, sequencing green/amber/red
traffic lights, detecting cars on the road (using proximity switches), etc.

• Build a robot capable of navigating around a room, sensing and avoiding obstacles.

PROJECT CHECKLIST:

• Prior to construction:
√

Prototype diagram(s) and description of project scope.
√

Risk assessment/mitigation plan.
√

Timeline and action plan.

• During construction:
√

Safe work habits (e.g. no contact made with energized circuit at any time).
√

Correct equipment usage according to manufacturer’s recommendations.
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√
Timeline and action plan amended as necessary.

√
Maintain the originally-planned project scope (i.e. avoid adding features!).

• After completion:
√

All functions tested against original plan.
√

Full, accurate, and appropriate documentation of all project details.
√

Complete bill of materials.
√

Written summary of lessons learned.

Challenges

• ???.

• ???.

• ???.
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Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.



274 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.



Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix E

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

27 March 2025 – minor edits to the Simplified Tutorial.

7 March 2025 – reorganized the Full Tutorial chapter’s structure on ladder diagram (LD)
programming to be sections rather than subsections within one section.

4 March 2025 – minor typographical error correction, where the first letter in a sentence was not
capitalized.

4-19 February 2025 – added more problems from the Socratic Instrumentation project.

9 November 2024 – added an Introduction section on challenging concepts.

24 July 2024 – divided the Introduction chapter into two sections, one for students and one
for instructors, and added content to the instructor section recommending learning outcomes and
measures. Also divided the Simplified Tutorial into sections.

31 May 2024 – corrected errors in the “Example: PLC process switch statuses from contact status
coloring” Case Tutorial section, courtesy of James Connelly, where I mixed up two of the inputs on
the PLC (describing the wrong physical switches controlling inputs I:0/0 and I:0/3.

29 April 2024 – added requirement to annotate schematic and color-highlight the PLC program
in the Conceptual Reasoning question “Relay ladder logic analogy for a PLC”, as well as modified
the Challenge questions for the same. Also added more instructor notes to other questions.

18 May 2023 – minor wording improvement courtesy of Ron Felix.

3-5 May 2023 – corrected multiple instances of “volts” that should have been capitalized “Volts”
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as well as an error in one of the Conceptual Reasoning questions where I wrongly referred to process
switches as pushbuttons. Also added more questions challenging students to identify PLC virtual
contact status in relation to real-world switch status, as well as new Case Tutorial examples.

6 December 2022 – corrected an error in the Simplified Tutorial where I wrote “parallel” instead
of “series” (!), and also added questions to the Introduction chapter. Also edited image 6221 to add
a symbol showing normally-closed switch B to be in the open state, and added some content to the
Simplified Tutorial discussing HMIs.

28 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

6 May 2022 – re-wrote Simplified Tutorial chapter.

5 May 2022 – added a Case Tutorial chapter.

10 May 2021 – commented out or deleted empty chapters.

18 March 2021 – corrected multiple instances of “volts” that should have been capitalized “Volts”.

29 June 2020 – clarified an answer in the “Allen-Bradley counter program” question regarding the
number of times the motor will be allowed to start up.

20 May 2019 – added questions related to Human-Machine Interfaces (HMIs).

12 May 2019 – added more SELogic examples (S-R latch) to Technical References section, and
made minor edits to other instruction examples in that section. Also added several new questions
in Conceptual, Quantitative, and Diagnostic Reasoning sections. Also, re-structured sections and
subsections related to Ladder Diagram (LD) programming. Also, added a section on Human-Machine
Interfaces, or HMIs. Also, added an Experiment on using an HMI to read PLC bits and words.

9 May 2019 – added some PLC counter-based questions.

9 May 2019 – added more questions as well as a Project for a PLC-controlled system.

1 May 2019 – added more questions in all categories (Conceptual, Quantitative, and Diagnostic),
and also included “dry” versus “wet” output contacts for PLC discrete outputs.

23 April 2019 – added more questions in all categories (Conceptual, Quantitative, and Diagnostic),
and also included “dry” versus “wet” output contacts for PLC discrete outputs.

20 April 2019 – added some more Experiments.

19 April 2019 – minor edits to the demonstration program experiments.

16 April 2019 – continued adding content to the Technical References section on SELogic control
equations for SEL’s protective relays and programmable controllers.
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15 April 2019 – added a Technical References section on SELogic control equations for SEL’s
protective relays and programmable controllers.

14 April 2019 – added a lot of content to the Full Tutorial, as well as to the Technical References
chapter.

9 April 2019 – continued adding more content to the Simplified Tutorial.

8 April 2019 – added a Technical Reference section comparing basic Ladder Diagram instructions
of some common PLC models.

7 April 2019 – added content to Introduction and Tutorials.

30 March 2019 – document first created.
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Out coil, PLC programming, 101
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Problem-solving: simplify the system, 269
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269
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269
Problem-solving: work in reverse, 270
Profibus, 74
Programmable Logic Controller, 3, 46
Project management guidelines, 248
PuTTY software, 151

Quadrature pulse, 108
Qualitatively approaching a quantitative

problem, 270

Reading Apprenticeship, 159
Reading, active, 41
Reductio ad absurdum, 270–272
Relay ladder logic, 46
Relay Ladder Logic programming, 76
Remote PLC I/O, 64
Reset coil, PLC programming, 101
Retentive instruction, PLC programming, 101,

111
RLL, 76
Rockwell ControlLogix 5000 PLC, 59
Rockwell PLC-5, 56
Rockwell SLC 500 PLC, 57
RSView HMI software, Rockwell, 129
Rung, PLC programming, 78
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Safety, electrical, 238
Schoenbach, Ruth, 159
Schweitzer Engineering Laboratories, 150
Scientific method, 164, 244
Scope creep, 248
Seal-in contact, 85
SEL, 150
SEL-2440 DPAC, 151
SEL-5030 AcSELerator QuickSet software, 151
SELogic, 150
Sequencer Compare instruction, Allen-Bradley

PLC programming, 149
Sequencer Load instruction, Allen-Bradley PLC

programming, 149
Sequencer Output instruction, Allen-Bradley

PLC programming, 145
Set coil, PLC programming, 101
Set-Reset latch, 153
Shunt resistor, 240
Siemens 505 PLC, 55
Siemens S7-300 PLC, 59
Simplifying a system, 269
Sinking current, 68, 70
Socrates, 271
Socratic dialogue, 272
Solderless breadboard, 240, 241
Sourcing current, 68, 70
SPICE, 159, 245
SPICE netlist, 242
SQC instruction, Allen-Bradley PLC

programming, 149
SQL instruction, Allen-Bradley PLC

programming, 149
SQO instruction, Allen-Bradley PLC

programming, 145
Stallman, Richard, 277
Standard, de facto, 74
Standard, de jure, 74
Static contact, PLC programming, 103
Subpanel, 243
Surface mount, 241
Symbol, 142
Symbolic addressing, 142

Tag name, 126, 142
Tag name, naming conventions for, 127

Terminal block, 239–243
Terminal emulator software, 151
Termite software, 151
Texas Instruments 505 PLC, 55
Thought experiment, 245, 269
Timer, PLC programming, 110
Torvalds, Linus, 277
Transition-sensing contact, PLC programming,

103
True state, PLC programming, 87

Units of measurement, 269

Visualizing a system, 269

Wetted contact, 67
Wiring sequence, 242
Wonderware HMI software, 129
Work in reverse to solve a problem, 270
WYSIWYG, 277, 278

XIC (examine if closed), 97
XIO (examine if open), 97
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