
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

PLC Timer Programming

© 2025 by Tony R. Kuphaldt – under the terms and conditions of the Creative
Commons Attribution 4.0 International Public License

Last update = 20 May 2025

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

1.1 Recommendations for students . 3

1.2 Challenging concepts related to programmable logic controllers (PLCs) 5

1.3 Recommendations for instructors . 6

2 Case Tutorial 9

2.1 Example: NAND function in a PLC . 10

3 Tutorial 13

3.1 Review of basic PLC functionality . 13

3.2 Serial PLC communication . 21

3.3 Ethernet PLC communication . 21

3.4 PLC-HMI network communication . 21

3.5 PLC remote I/O communication . 21

4 Derivations and Technical References 23

4.1 Feature comparisons between PLC models . 24

4.1.1 Viewing live values . 24

4.1.2 Forcing live values . 25

4.1.3 Special “system” values . 25

4.1.4 Free-running clock pulses . 26

4.1.5 Standard counter instructions . 26

4.1.6 High-speed counter instructions . 26

4.1.7 Timer instructions . 26

4.1.8 ASCII text message instructions . 27

4.1.9 Analog signal scaling . 27

4.2 Legacy Allen-Bradley memory maps and I/O addressing 28

4.3 SELogic control equations . 34

4.3.1 Basic logical functions . 35

4.3.2 Set-reset latch instructions . 37

4.3.3 One-shot instructions . 38

4.3.4 Counter instructions . 39

4.3.5 Timer instructions . 41

iii

CONTENTS 1

5 Questions 43

5.1 Conceptual reasoning . 47
5.1.1 Reading outline and reflections . 48
5.1.2 Foundational concepts . 49

5.2 Quantitative reasoning . 50
5.2.1 Miscellaneous physical constants . 51
5.2.2 Introduction to spreadsheets . 52

5.3 Diagnostic reasoning . 55

A Problem-Solving Strategies 57

B Instructional philosophy 59

C Tools used 65

D Creative Commons License 69

E Version history 77

Index 77

2 CONTENTS

Chapter 1

Introduction

1.1 Recommendations for students

A programmable logic controller or PLC is a specialized form of industrial computer, designed to
be programmed by the end user for many different types of discrete and continuous process control
applications. The word “programmable” in its name reveals just why PLCs are so useful: the end-
user is able to program, or instruct, the PLC to execute virtually any control function imaginable.

PLCs were introduced to industry as electronic replacements for electromechanical relay controls.
In applications where relays typically control the starting and stopping of electric motors and other
discrete output devices, the reliability of an electronic PLC meant fewer system failures and longer
operating life. The re-programmability of a PLC also meant changes could be implemented to the
control system strategy must easier than with relay circuits, where re-wiring was the only way to
alter the system’s function. Additionally, the computer-based nature of a PLC meant that process
control data could now be communicated by the PLC over networks, allowing process conditions to
be monitored in distant locations, and by multiple operator stations.

The legacy of PLCs as relay-replacements is probably most evident in their traditional
programming language: a graphical convention known as a Ladder Diagram. Ladder Diagram PLC
programs resemble ladder-style electrical schematics, where vertical power “rails” convey control
power to a set of parallel “rung” circuits containing switch contacts and relay coils. A human
being programming a PLC literally draws the diagram on the screen, using relay-contact symbols
to represent instructions to read data bits in the PLC’s memory, and relay-coil symbols to represent
instructions writing data bits to the PLC’s memory. When executing, these graphical elements
become colored when “conductive” to virtual electricity, thereby indicating their status to any human
observer of the program. This style of programming was developed to make it easier for industrial
electricians to adapt to the new technology of PLCs. While Ladder Diagram programming definitely
has limitations compared to other computer programming languages, it is relatively easy to learn
and diagnose, which is why it remains popular as a PLC programming language today.

While ladder diagram programming was designed to be simple by virtue of its resemblance to
relay ladder-logic schematic diagrams, this very same resemblance often creates problems for students
encountering it for the very first time. A very common misconception is to think that the contact and

3

4 CHAPTER 1. INTRODUCTION

coil symbols shown on the editing screen of the PLC programming software are somehow identical
or at least directly representative of real-world contacts and coils wired to the PLC. This is not true.
Contacts and coils shown on the screen of PLC programming software applications are instructions
for the PLC to follow, and their logical states depend both on how they are drawn in the program
and upon their related bit states in the PLC’s memory.

The relationship between a discrete sensor (e.g. switch) and the colored state of a ladder diagram
element inside of a PLC follows a step-by-step chain of causation:

1. Physical closure of the discrete switch causes electricity to flow through the switch’s contact.

2. This electrical current flows through the PLC input terminal wired to that switch.

3. This energization causes a corresponding bit in the PLC’s memory to become “high” (1).

4. Any Ladder Diagram “contact” instruction associated with that bit will become “actuated”. If
the contact instruction is normally-open, the “1” bit state will “close” the contact instruction
and cause it to be colored. If the contact instruction is normally-closed, the “1” bit state will
“open” is and cause it to be un-colored.

5. If all elements in a rung of the Ladder Diagram program are colored, the final instruction (at
the far right end of the rung) will become activated and will cause it to fulfill its function.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to test whether a switch is normally-open
or normally-closed?

• How might an experiment be designed and conducted to test the “scan time” of a PLC
program?

• What are some practical applications of PLCs?

• What is the “normal” status of a switch?

• How does a “two-out-of-three” alarm or shutdown system function?

• What is a “nuisance trip”?

• Are there applications where a hard-wired relay control system might actually be better than
a system using a PLC?

• What purpose is served by the color highlighting feature of PLC program editing software?

• How might you alter one of the example analyses shown in the text, and then determine the
behavior of that altered circuit?

• Devise your own question based on the text, suitable for posing to someone encountering this
subject for the first time

1.2. CHALLENGING CONCEPTS RELATED TO PROGRAMMABLE LOGIC CONTROLLERS (PLCS)5

1.2 Challenging concepts related to programmable logic
controllers (PLCs)

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Normal status of a switch – to say that a switch is “normally open” or “normally closed”
refers to its electrical state when at rest, and not necessarily the state you will typically find
the switch in. The root of the confusion here is the word normal, which most people take to
mean “typical” or “ordinary”. In the case of switches, though, it refers to the zero-stimulation
status of the switch as it has been manufactured. In the case of PLCs it refers to the status
of a “virtual switch” when its controlling bit is 0.

• Seal-in contacts – the simplest and most common way to make momentary-contact “Start”
and “Stop” switches latch a motor’s state on and off is to wire an auxiliary contact from the
contactor in parallel with the Start switch to “seal in” that circuit once the contactor energizes.
The same logical structure may be implemented in PLC ladder-diagram programming by
placement of a virtual contact in parallel with the initiating contact, that additional contact
being controlled by the coil of that same rung. This, however, complicates analysis of the circuit
by granting it states. State-based logic is more complex than combinational logic because the
status of state-based logic depends not only on input conditions but also on past history. This
means a person must analyze the PLC program before and after input condition changes to
determine how it will respond.

• Sourcing versus Sinking output currents – a common misconception is that since PLC
outputs are called “outputs” it must mean that current only ever exits those terminals. This is
untrue. All that “output” actually signifies is the fact that the PLC is outputting information
consisting of voltage values measured between that terminal and ground. Sometimes the
assertion of an “on” state requires that the PLC output channel actually draws current in
through its “output” terminal!

6 CHAPTER 1. INTRODUCTION

1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment – Interpret elements of a real PLC ladder-logic program such as those shown
in the Simplified and Full Tutorial chapters, including identification of virtual coils, virtual
contacts (normally-open and normally-closed), color-highlighting, and associated statuses of
those elements based on color highlighting.

• Outcome – Apply the concept of “normal” contact status to real and virtual contacts in PLC
systems

Assessment – Predict the status of every PLC program virtual contact and PLC program
coil in a ladder-style diagram for various input switch state combinations. Good starting
points include the Case Tutorial section “Example: NAND function in a PLC” as well as the
two-out-of-three water flow alarm system shown in the Simplified Tutorial chapter.

• Outcome – Properly associate physical switch states with their associated PLC bit states,
PLC virtual contact states, PLC virtual coil states, and PLC output states in a PLC-controlled
system.

Assessment – Determine PLC bit states based on given physical switch stimuli in a
schematic diagram; e.g. pose problems in the form of the “Determining bit statuses from
switch conditions” Conceptual Reasoning question.

Assessment – Determine physical switch stimuli based on given PLC bit states in a
schematic diagram; e.g. pose problems in the form of the “Determining necessary switch
conditions for bit statuses” Conceptual Reasoning question.

Assessment – Determine PLC ladder-diagram program element coloring based on given
physical switch stimuli in a schematic diagram; e.g. pose problems in the form of the
“Determining color highlighting from switch conditions” Conceptual Reasoning question.

Assessment – Determine PLC bit states based on color-highlighting shown in a live view
of a PLC’s ladder-diagram program; e.g. pose problems in the form of the “Determining bit
statuses from color highlighting”.

Assessment – Determine physical switch stimuli based on color-highlighting shown in a live
view of a PLC’s ladder-diagram program; e.g. pose problems in the form of the “Determining
process switch stimuli from color highlighting” Conceptual Reasoning question.

1.3. RECOMMENDATIONS FOR INSTRUCTORS 7

• Outcome – Sketch wire connections necessary to interface a PLC to a controlled process

Assessment – Sketch wire placement in a pictorial diagram showing how switches would
connect to the input channels of a PLC and how loads would connect to the output channels
of the same PLC; e.g. pose problems in the form of the “Sketching wires to PLC discrete I/O”
Conceptual Reasoning question.

• Outcome – Diagnose a fault within a PLC-controlled system

Assessment – Identify possible faults to account for a system’s improper function based on
an examination of the color highlighting in a live view of the PLC’s ladder-diagram program;
e.g. pose problems in the form of the “Troubleshooting motor control program” and “Motor
starter diagnosis from color highlighting” Diagnostic Reasoning questions.

Assessment – Identify possible faults to account for a system’s improper function based on
an examination of the I/O status indicators on the front of the PLC; e.g. pose problems in the
form of the “Troubleshooting motor control PLC from I/O indicators” Diagnostic Reasoning
question.

• Outcome – Independent research

Assessment – Locate PLC I/O module datasheets and properly interpret some of the
information contained in those documents including number of I/O channels, voltage and
current limitations, sourcing versus sinking capability, etc.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

9

10 CHAPTER 2. CASE TUTORIAL

2.1 Example: NAND function in a PLC

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Programmable Logic Controller (PLC)

+
−VS

A

B

IN2 IN5

OUT3

C1

C1

OUT

RLL program display

"Virtual" contacts and coils
inside the PLC processor’s
memory

A

B
OUT

A B OUT

0

0

0

01

1

1 1

1

1

1

0

NAND function

Switch A unpressed
Switch B unpressed

PLC bit states:

OUT3 = 1
C1 = 0
IN5 = 0
IN2 = 0

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Programmable Logic Controller (PLC)

+
−VS

A

B

IN2 IN5

OUT3

C1

C1

OUT

RLL program display

"Virtual" contacts and coils
inside the PLC processor’s
memory

A

B
OUT

A B OUT

0

0

0

01

1

1 1

1

1

1

0

NAND function

Switch A unpressed
Switch B pressed

PLC bit states:

OUT3 = 1
C1 = 0
IN5 = 1
IN2 = 0

2.1. EXAMPLE: NAND FUNCTION IN A PLC 11

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Programmable Logic Controller (PLC)

+
−VS

A

B

IN2 IN5

OUT3

C1

C1

OUT

RLL program display

Switch A pressed
Switch B unpressed

"Virtual" contacts and coils
inside the PLC processor’s
memory

A

B
OUT

A B OUT

0

0

0

01

1

1 1

1

1

1

0

NAND function

PLC bit states:

OUT3 = 1
C1 = 0
IN5 = 0
IN2 = 1

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Programmable Logic Controller (PLC)

+
−VS

A

B

IN2 IN5

OUT3

C1

C1

OUT

RLL program display

"Virtual" contacts and coils
inside the PLC processor’s
memory

A

B
OUT

A B OUT

0

0

0

01

1

1 1

1

1

1

0

NAND function

Switch A pressed
Switch B pressed

PLC bit states:

OUT3 = 0
C1 = 1
IN5 = 1
IN2 = 1

12 CHAPTER 2. CASE TUTORIAL

Chapter 3

Tutorial

3.1 Review of basic PLC functionality

A Programmable Logic Controller, or PLC, is a general-purpose industrial computer designed to be
easily programmed by end-user maintenance and engineering personnel for specific control functions.
PLCs have input and output channels (often hosted on removable “I/O cards”) intended to connect
to field sensor and control devices such as proximity switches, pushbuttons, solenoids, lamps, sirens,
etc. The user-written program instructs the PLC how to energize its outputs in accordance with
input conditions.

PLC

X1

X2

X3

X4

X5

X6

L1 L2 Y1

Y2

Y3

Y4

Y5

Y6
Programming

port
Common Source

ProcessorPower
supply

L1

Gnd

L2/N

IN 0+
IN 0-

IN 1+
IN 1-

IN 2+
IN 2-

IN 3+
IN 3-

Input

Analog

ANL COM

ANL COM

ANL COM

ANL COM

Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC

Monolithic PLC

VAC 1

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

VAC 2

OUT0

Output
0
1
2
3

6
7

4
5

Individual cards may be
removed and replaced

All I/O is fixed in one PLC unit

Modular ("rack-based") PLC

PLCs were originally invented as a replacement for hard-wired relay control systems, and a
popular PLC programming language called Ladder Diagram was invented to allow personnel familiar
with relay ladder logic diagrams to write PLC programs performing the same discrete (on/off)
functions as control relays. With a PLC, the discrete functionality for any system could be altered
merely by editing the Ladder Diagram program rather than by re-wiring connections between
physical relays.

13

14 CHAPTER 3. TUTORIAL

The following diagram shows a PLC separated into three sections: (1) a discrete input card, (2)
the program space in the processor’s memory, and (3) a discrete output card :

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

Inputs IN0 through IN3 are connected to a pushbutton switch, temperature switch, pressure
switch, and limit switch, respectively. Outputs OUT0 through OUT3 connect to an indicator lamp,
electric heater, solenoid coil, and electromechanical relay coil, respectively. The input card triggers1

bits in the PLC’s memory to switch from 0 to 1 when each respective input is electrically energized,
and another set of bits in the PLC’s memory control TRIACs inside the output card to turn on when
1 and off when 0. However, with no program installed in the processor, this PLC will not actually
do anything. As the switch contacts open and close, the only thing the PLC will do is represent
their discrete states by the bits IN0 through IN3 (0 = de-energized and 1 = energized).

1Not shown in this simplified diagram are the optotransistors coupled to the LEDs inside the input card, translating
each LED’s state to a discrete logic level at the transistor to be interpreted by the PLC’s digital processor. Likewise,
another set of LEDs driven by the processor’s outputs couple to the opto-TRIACs in the output card. Optical isolation
of all I/O points is standard design practice for industrial PLCs.

3.1. REVIEW OF BASIC PLC FUNCTIONALITY 15

This next diagram shows the same PLC, but this time with a very simple Ladder Diagram
program running in the processor, and with stimuli applied to some of the switches:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

Temp = 140o

Press. = 23 kPa

No contact

=1

=0

=0

IN1 OUT3

IN2 OUT0

=1

Pressed
=1

=0

=0

=0

Inputs IN0 and IN1 are energized by their closed switches (pushbutton and temperature),
triggering those bits to “1” states in the PLC’s memory. The Ladder Diagram program consists
of two virtual “contact” instructions and two virtual “coil” instructions, the contact instructions
controlled by input bits IN1 and IN2 and the coil instructions controlling output bits OUT3 and OUT0.
Contact instruction IN1 “connects” (virtually) to coil instruction OUT3, contact IN2 connecting to
coil OUT0 similarly. Colored highlighting shows the “virtual electricity” status of these instructions,
as though they were relays being energized with real electricity. Contact instruction IN1 is colored
because it is a “normally-open” that is being stimulated into its closed state by its “1” bit status.
Contact instruction IN2 is also normally-open, but since its bit is “0” it remains uncolored, and
so is the coil it’s connected to. The end-result of this program is that the relay’s state follows the
temperature switch, and the lamp’s state follows the pressure switch.

16 CHAPTER 3. TUTORIAL

Things get more complex when we begin adding normally-closed contact instructions to the
program. Consider this next diagram, with updated stimuli and an expanded Ladder Diagram
program for the PLC to follow:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

Temp = 140o

Press. = 23 kPa

No contact

=1

=0

=0

IN1 OUT3

IN2 OUT0

=1

=0

=0

=0

IN2

Unpressed
=0

IN0 OUT1

The first two rungs of the program are unchanged, as are the temperature and pressure switch
statuses, and so outputs OUT3 and OUT0 do precisely what they did before. A new rung has been
added to the program, with contact instructions linked to bits IN2 and IN0, and the pushbutton
switch is no longer being pressed. Both bits IN0 and IN2 are currently “0” and so their respective
contact instructions are both in their “normal” (i.e. resting) states. The normally-closed contact
instruction IN2 is colored because it is “closed” but the OUT1 coil in that rung is uncolored because
the normally-open contact instruction IN0 is uncolored and therefore blocks virtual electricity from
reaching that coil.

Practically any logic function may be made simply by drawing virtual contact and coil
instructions controlling the flow of “virtual electricity”. We could describe the above program
in Boolean terms: OUT0 = IN2; OUT1 = (IN2)(IN0) ; OUT2 = 0 ; OUT3 = IN1.

3.1. REVIEW OF BASIC PLC FUNCTIONALITY 17

This next diagram shows the same PLC with a completely re-written program. The program
is now written so that the solenoid coil will energize if the limit switch makes contact, or if the
temperature is below 110o and the pushbutton is pressed, or if the pressure rises above 30 kPa and
the pushbutton is unpressed:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

Temp = 140o

Press. = 23 kPa

No contact

=1

=0

=0

IN1

IN2

=0

=0

=0

Unpressed
=0

IN0

OUT2IN3

IN0

=0

All switch stimuli are the same as before, resulting in a “0” state for bit OUT2 and a
correspondingly de-energized solenoid. It should be clear to see how this program implements the
intended AND and OR functionality by means of series-connected and parallel-connected contact
instructions, respectively, with inversion (i.e. the NOT function) implemented by normally-closed
rather than normally-open contact instructions.

18 CHAPTER 3. TUTORIAL

The logical chain of causality from input to output on a PLC is very important to understand,
and will be represented here by a sequence of numbered statements:

1. Energization of input channels controls input bit states (no current = 0 and current = 1)

2. Bit states control the resting/actuated status of contact instructions (0 = resting and 1 =
actuated)

3. The resting/actuated status of a contact instruction, combined with its “normal” type
determines virtual conductivity (open = uncolored and closed = colored)

4. Continuous color on a rung activates that rung’s coil instruction

5. The coil’s status controls output bits (uncolored = 0 and colored = 1)

6. Output bits control energization of output channels (0 = off and 1 = on)

All PLCs follow this chain of logic precisely, and this same causality must be mentally tracked in
order to successfully analyze a Ladder Diagram program in a PLC. The most confusing part of this
for new students seems to be the relationship of contact instructions to real-world switch inputs.
Many students have an unfortunate tendency to want to directly2 associate real-world switch status
with Ladder Diagram color, and/or to believe that the “normal” status of a Ladder Diagram contact
instruction must always match the “normal” status of the real-world switch. These and other such
misconceptions are rooted in the same error, namely not deliberately following the chain of causation
from beginning to end (i.e. input energization → input bit state → contact instruction actuation →
color based on normal type and bit state → coil color → output bit state → output energization).

2For a normally-open contact instruction, this association is direct. However, for a normally-closed contact
instruction it is inverted!

3.1. REVIEW OF BASIC PLC FUNCTIONALITY 19

Being fully-fledged digital computers in their own right, PLCs are not limited to executing simple
Boolean functions represented by “virtual relay” contacts and coils. Other digital functions include
counters and timers. An example of a counter program is shown here:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

IN2

IN0

IN3

CTUDUp
Count

up/down

Down

Reset

OUT1

Preset =
14

The CTUD instruction is an up/down counter receiving three discrete inputs and generating one
discrete output. The program is written so that this counter instruction’s count value will increment
(i.e. count up) once for every closure of the limit switch, decrement (i.e. count down) once for every
closure of the pushbutton switch, and reset to zero if the pressure falls below 30 kPa. The output
signal (“wired” to coil OUT1) energizes the heating element if this count value reaches or exceeds the
“preset” value of 14.

20 CHAPTER 3. TUTORIAL

Next we see an example PLC program showcasing two timing instructions, an on-delay timer
and an off-delay timer:

L1 L2

IN1

IN2

IN3

IN0

Discrete input card

Trip = 110o

Trip = 30 kPa

Ladder Diagram PLC program

Discrete output card

OUT1

OUT0

OUT2

OUT3

OUT1

Preset =

TON
On-delay

EN

Preset =

EN TOF
Off-delay

9 sec

5 sec

OUT0IN1

IN2

When the pressure exceeds 30 kPa and closes the pressure switch connected to input IN2, the TON
timer instruction begins counting. After 5 seconds of continuous activation, output OUT1 activates to
energize the heating element. When the pressure falls below 30 kPa, the heating element immediately
de-energizes.

When the temperature exceeds 110o and closes the temperature switch connected to input IN1,
the TOF timer instruction immediately activates its output (OUT0) to energize the indicator lamp.
When the temperature cools down below 110o, the off-delay timer begins timing and does not de-
energize the indicator lamp until 9 seconds after the temperature switch has opened.

3.2. SERIAL PLC COMMUNICATION 21

Both the utility and versatility of programmable logic controllers should be evident in this brief
tutorial. These are digital computers, fully programmable by the end-user in a simple instructional
language, designed to implement discrete logic functions, counting functions, timing functions, and
a whole host of other useful operations for the purpose of controlling electrically-based systems.
Originally designed to replace hard-wired electromechanical relay control circuits, PLCs are designed
to mimic the functionality of relays while providing superior reliability and reconfigurability.

PLCs are not limited to contact, coil, counter, and timer instructions, either. A typical PLC
literally offers dozens of instruction types in its set, which may be applied and combined in
nearly limitless fashion. Other types of PLC programming instructions include latch instructions
(offering bistable “set” and “reset” capability), one-shot instructions (outputting an active state
for exactly one “scan” of the PLC’s program every time the input transitions from inactive to
active), sequencers (controlling a pre-determined sequence of discrete states based on a count
value), arithmetic instructions (e.g. addition, subtraction, multiplication, division, etc.), comparison
instructions (comparing two numerical values and generating a discrete signal indicating equality,
inequality, etc.), data communication instructions (sending and receiving digital messages over a
communications network), and clock/calendar functions (tracking time and date).

One advantage of PLCs over relay circuitry which may not be evident at first inspection is the
fact that the number of virtual “contacts” and “coils” and other instructions is limited only by
how much memory the PLC’s processor has. The example programs shown on the previous pages
were extremely short, but a real PLC program may be dozens of pages long! Electromechanical
control and timing relays are, of course, limited in the number of physical switch contacts each one
offers, which in turn limits how elaborate the control system may be. For the sake of illustration,
a PLC with a single discrete input (say, IN0 wired to a pushbutton switch) may contain a program
with hundreds of virtual contacts labeled IN0 triggering all kinds of logical, counting, and timing
functions.

3.2 Serial PLC communication

3.3 Ethernet PLC communication

3.4 PLC-HMI network communication

3.5 PLC remote I/O communication

22 CHAPTER 3. TUTORIAL

Chapter 4

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

23

24 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.1 Feature comparisons between PLC models

In most cases, similarities are far greater for different models of PLC than differences. However,
differences do exist, and it is worth exploring the differences in basic features offered by an array of
PLC models.

4.1.1 Viewing live values

• Allen-Bradley Logix 5000: the Controller Tags folder (typically on the left-hand pane of the
programming window set) lists all the tag names defined for the PLC project, allowing you to
view the real-time status of them all. Discrete inputs do not have specific input channel tag
names, as tag names are user-defined in the Logix5000 PLC series.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Data Files listing (typically on the left-
hand pane of the programming window set) lists all the data files within that PLC’s memory.
Opening a data file window allows you to view the real-time status of these data points.
Discrete inputs are the I file addresses (e.g. I:0/2, I:3/5, etc.). The letter “I” represents
“input,” the first number represents the slot in which the input card is plugged, and the last
number represents the bit within that data element (a 16-bit word) corresponding to the input
card.

• Siemens S7-200: the Status Chart window allows the user to custom-configure a table showing
the real-time values of multiple addresses within the PLC’s memory. Discrete inputs are the
I memory addresses (e.g. I0.1, I1.5, etc.).

• Koyo (Automation Direct) DirectLogic and CLICK: the Data View window allows the user to
custom-configure a table showing the real-time values of multiple addresses within the PLC’s
memory. Discrete inputs are the X memory addresses (e.g. X1, X2, etc.).

4.1. FEATURE COMPARISONS BETWEEN PLC MODELS 25

4.1.2 Forcing live values

• Allen-Bradley Logix 5000: forces may be applied to specific tag names by right-clicking on the
tag (in the program listing) and selecting the “Monitor” option. Discrete outputs do not have
specific output channel tag names, as tag names are user-defined in the Logix5000 PLC series.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Force Files listing (typically on the left-
hand pane of the programming window set) lists those data files within the PLC’s memory
liable to forcing by the user. Opening a force file window allows you to view and set the
real-time status of these bits. Discrete outputs are the O file addresses (e.g. O:0/7, O:6/2,
etc.). The letter “O” represents “output,” the first number represents the slot in which the
output card is plugged, and the last number represents the bit within that data element (a
16-bit word) corresponding to the output card.

• Siemens S7-200: the Status Chart window allows the user to custom-configure a table showing
the real-time values of multiple addresses within the PLC’s memory, and enabling the user to
force the values of those addresses. Discrete outputs are the Q memory addresses (e.g. Q0.4,
Q1.2, etc.).

• Koyo (Automation Direct) DirectLogic and CLICK: the Override View window allows the
user to force variables within the PLC’s memory. Discrete outputs are the Y memory addresses
(e.g. Y1, Y2, etc.).

4.1.3 Special “system” values

Every PLC has special registers holding data relevant to its operation, such as error flags, processor
scan time, etc.

• Allen-Bradley Logix 5000: various “system” values are accessed via GSV (Get System Value)
and SSV (Save System Value) instructions.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Data Files listing (typically on the left-
hand pane of the programming window set) shows file number 2 as the “Status” file, in which
you will find various system-related bits and registers.

• Siemens S7-200: the Special Memory registers contain various system-related bits and registers.
These are the SM memory addresses (e.g. SM0.1, SMB8, SMW22, etc.).

• Koyo (Automation Direct) DirectLogic and CLICK: the Special registers contain various
system-related bits and registers. These are the SP memory addresses (e.g. SP1, SP2, SP3,
etc.) in the DirectLogic PLC series, and the SC and SD memory addresses in the CLICK PLC
series.

26 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.1.4 Free-running clock pulses

• Allen-Bradley SLC 500: status bit S:4/0 is a free-running clock pulse with a period of 20
milliseconds, which may be used to clock a counter instruction up to 50 to make a 1-second
pulse (because 50 times 20 ms = 1000 ms = 1 second).

• Siemens S7-200: Special Memory bit SM0.5 is a free-running clock pulse with a period of 1
second.

• Koyo (Automation Direct) DirectLogic: Special relay SP4 is a free-running clock pulse with a
period of 1 second.

4.1.5 Standard counter instructions

• Allen-Bradley Logix 5000: CTU count-up, CTD count-down, and CTUD count-up/down
instructions.

• Allen-Bradley SLC 500: CTU and CTD instructions.

• Siemens S7-200: CTU count-up, CTD count-down, and CTUD count-up/down instructions.

• Koyo (Automation Direct) DirectLogic: UDC counter instruction.

4.1.6 High-speed counter instructions

• Allen-Bradley SLC 500: HSU high-speed count-up instruction.

• Siemens S7-200: HSC high-speed counter instruction, used in conjunction with the HDEF high-
speed counter definition instruction.

4.1.7 Timer instructions

• Allen-Bradley Logix 5000: TOF off-delay timer, TON on-delay timer, RTO retentive on-delay
timer, TOFR off-delay timer with reset, TONR on-delay timer with reset, and RTOR retentive
on-delay timer with reset instructions.

• Allen-Bradley SLC 500: TOF off-delay timer, TON on-delay timer, and RTO retentive on-delay
timer instructions.

• Siemens S7-200: TOF off-delay timer, TON on-delay timer, and TONR retentive on-delay timer
instructions.

4.1. FEATURE COMPARISONS BETWEEN PLC MODELS 27

4.1.8 ASCII text message instructions

• Allen-Bradley Logix 5000: the “ASCII Write” instructions AWT and AWA may be used to do
this. The “ASCII Write Append” instruction (AWA) is convenient to use because it may be
programmed to automatically insert linefeed and carriage-return commands at the end of a
message string.

• Allen-Bradley SLC 500: the “ASCII Write” instructions AWT and AWA may be used to do
this. The “ASCII Write Append” instruction (AWA) is convenient to use because it may be
programmed to automatically insert linefeed and carriage-return commands at the end of a
message string.

• Siemens S7-200: the “Transmit” instruction (XMT) is useful for this task when used in Freeport
mode.

• Koyo (Automation Direct) DirectLogic: the “Print Message” instruction (PRINT) is useful for
this task.

4.1.9 Analog signal scaling

• Allen-Bradley Logix 5000: the I/O configuration menu (specifically, the Module Properties
window) allows you to directly and easily scale analog input signal ranges into any arbitrary
numerical range desired. Floating-point (“REAL”) format is standard, but integer format may
be chosen for faster processing of the analog signal.

• Allen-Bradley PLC-5, SLC 500, and MicroLogix: raw analog input values are 16-bit signed
integers. The SCL and SCP instructions are custom-made for scaling these raw integer ADC
count values into ranges of your choosing.

• Siemens S7-200: raw analog input values are 16-bit signed integers. Interestingly, the S7-200
PLC provides built-in potentiometers assigned to special word registers (SMB28 and SMB29)
with an 8-bit (0-255 count) range. These values may be used for any suitable purpose,
including combination with the raw analog input register values in order to provide mechanical
calibration adjustments for the analog input(s).

• Koyo (Automation Direct) DirectLogic: you must use standard math instructions (e.g. ADD,
MUL) to implement a y = mx+ b linear equation for scaling purposes.

• Koyo (Automation Direct) CLICK: the I/O configuration menu allows you to directly and
easily scale analog input signal ranges into any arbitrary numerical range desired.

28 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.2 Legacy Allen-Bradley memory maps and I/O addressing

A wise PLC programmer once told me that the first thing any aspiring programmer should learn
about the PLC they intend to program is how the digital memory of that PLC is organized.
This is sage advice for any programmer, especially on systems where memory is limited, and/or
where I/O has a fixed association with certain locations in the system’s memory. Virtually every
microprocessor-based control system comes with a published memory map showing the organization
of its limited memory: how much is available for certain functions, which addresses are linked to
which I/O points, how different locations in memory are to be referenced by the programmer.

Discrete input and output channels on a PLC correspond to individual bits in the PLC’s
memory array. Similarly, analog input and output channels on a PLC correspond to multi-bit
words (contiguous blocks of bits) in the PLC’s memory. The association between I/O points
and memory locations is by no means standardized between different PLC manufacturers, or even
between different PLC models designed by the same manufacturer. This makes it difficult to write
a general tutorial on PLC addressing, and so my ultimate advice is to consult the engineering
references for the PLC system you intend to program.

The most common brand of PLC in use in the United States at the time of this writing (2019)
is Allen-Bradley (Rockwell), and a great many of these Allen-Bradley PLCs still in service happen
to use a unique form of I/O addressing1 students tend to find confusing.

1The most modern Allen-Bradley PLCs have all but done away with fixed-location I/O addressing, opting instead
for tag name based I/O addressing. However, enough legacy Allen-Bradley PLC systems still exist in industry to
warrant coverage of these addressing conventions.

4.2. LEGACY ALLEN-BRADLEY MEMORY MAPS AND I/O ADDRESSING 29

The following table shows a partial memory map for an Allen-Bradley SLC 500 PLC2:

File number File type Logical address range

0 Output image O:0 to O:30

1 Input image I:0 to I:30

2 Status S:0 to S:n

3 Binary B3:0 to B3:255

4 Timers T4:0 to T4:255

5 Counters C5:0 to C5:255

6 Control R6:0 to R6:255

7 Integer N7:0 to N7:255

8 Floating-point F8:0 to F8:255

9 Network x9:0 to x9:255

10 through 255 User defined x10:0 to x255:255

Note that Allen-Bradley’s use of the word “file” differs from personal computer parlance. In
the SLC 500 controller, a “file” is a block of random-access memory used to store a particular
type of data. By contrast, a “file” in a personal computer is a contiguous collection of data bits
with collective meaning (e.g. a word processing file or a spreadsheet file), usually stored on the
computer’s hard disk drive. Within each of the Allen-Bradley PLC’s “files” are multiple “elements,”
each element consisting of a set of bits (8, 16, 24, or 32) representing data. Elements are addressed
by number following the colon after the file designator, and individual bits within each element
addressed by a number following a slash mark. For example, the first bit (bit 0) of the second
element in file 3 (Binary) would be addressed as B3:2/0.

In Allen-Bradley PLCs such as the SLC 500 and PLC-5 models, files 0, 1, and 2 are exclusively
reserved for discrete outputs, discrete inputs, and status bits, respectively. Thus, the letter
designators O, I, and S (file types) are redundant to the numbers 0, 1, and 2 (file numbers). Other
file types such as B (binary), T (timers), C (counters), and others have their own default file numbers
(3, 4, and 5, respectively), but may also be used in some of the user-defined file numbers (10 and
above). For example, file 7 in an Allen-Bradley controller is reserved for data of the “integer” type
(N), but integer data may also be stored in any file numbered 10 or greater at the user’s discretion.
Thus, file numbers and file type letters for data types other than output (O), input (I), and status
(S) always appear together. You would not typically see an integer word addressed as N:30 (integer
word 30 in the PLC’s memory) for example, but rather as N7:30 (integer word 30 in file 7 of the
PLC’s memory) to distinguish it from other integer word 30’s that may exist in other files of the
PLC’s memory.

2Also called the data table, this map shows the addressing of memory areas reserved for programs entered by
the user. Other areas of memory exist within the SLC 500 processor, but these other areas are inaccessible to the
technician writing PLC programs.

30 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

This file-based addressing notation bears further explanation. When an address appears in a
PLC program, special characters are used to separate (or “delimit”) different fields from each other.
The general scheme for Allen-Bradley SLC 500 PLCs is shown here:

File type
(letter)

File separator
(colon)

Word separator
(point)

Element
number

Bit separator
(slash)

Word Bit
number number

File
number

Not all file types need to distinguish individual words and bits. Integer files (N), for example,
consist of one 16-bit word for each element. For instance, N7:5 would be the 16-bit integer word
number five held in file seven. A discrete input file type (I), though, needs to be addressed as
individual bits because each separate I/O point refers to a single bit. Thus, I:3/7 would be bit
number seven residing in input element three. The “slash” symbol is necessary when addressing
discrete I/O bits because we do not wish to refer to all sixteen bits in a word when we just mean a
single input or output point on the PLC. Integer numbers, by contrast, are collections of 16 bits each
in the SLC 500 memory map, and so are usually addressed as entire words rather than bit-by-bit3.

Certain file types such as timers are more complex. Each timer “element4” consists of two
different 16-bit words (one for the timer’s accumulated value, the other for the timer’s target value)
in addition to no less than three bits declaring the status of the timer (an “Enabled” bit, a “Timing”
bit, and a “Done” bit). Thus, we must make use of both the decimal-point and slash separator
symbols when referring to data within a timer. Suppose we declared a timer in our PLC program
with the address T4:2, which would be timer number two contained in timer file four. If we wished
to address that timer’s current value, we would do so as T4:2.ACC (the “Accumulator” word of timer
number two in file four). The “Done” bit of that same timer would be addressed as T4:2/DN (the
“Done” bit of timer number two in file four)5.

3This is not to say one cannot specify a particular bit in an otherwise whole word. In fact, this is one of the
powerful advantages of Allen-Bradley’s addressing scheme: it gives you the ability to precisely specify portions of
data, even if that data is not generally intended to be portioned into smaller pieces!

4Programmers familiar with languages such as C and C++ might refer to an Allen-Bradley “element” as a data

structure, each type with a set configuration of words and/or bits.
5Referencing the Allen-Bradley engineering literature, we see that the accumulator word may alternatively be

addressed by number rather than by mnemonic, T4:2.2 (word 2 being the accumulator word in the timer data
structure), and that the “done” bit may be alternatively addressed as T4:2.0/13 (bit number 13 in word 0 of the
timer’s data structure). The mnemonics provided by Allen-Bradley are certainly less confusing than referencing word
and bit numbers for particular aspects of a timer’s function!

4.2. LEGACY ALLEN-BRADLEY MEMORY MAPS AND I/O ADDRESSING 31

A hallmark of the SLC 500’s addressing scheme common to many legacy PLC systems is that
the address labels for input and output bits explicitly reference the physical locations of the I/O
channels. For instance, if an 8-channel discrete input card were plugged into slot 4 of an Allen-
Bradley SLC 500 PLC, and you wished to specify the second bit (bit 1 out of a 0 to 7 range), you
would address it with the following label: I:4/1. Addressing the seventh bit (bit number 6) on a
discrete output card plugged into slot 3 would require the label O:3/6. In either case, the numerical
structure of that label tells you exactly where the real-world input signal connects to the PLC.

To illustrate the relationship between physical I/O and bits in the PLC’s memory, consider this
example of an Allen-Bradley SLC 500 PLC, showing one of its discrete input channels energized
(the switch being used as a “Start” switch for an electric motor):

Power
supply

L1

Gnd

L2/N

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

SLC 500 4-slot chassis

Slot 0 Slot 1 Slot 2 Slot 3

+
−

24 VDC
power
supply

(pressed)

Input bit I:1/3
inside the PLC’s
memory is "set"

0 10 0 0 0 0 00 0 0 00 0 0 0

Input image element for slot 1

B
it 0

B
it 1

B
it 2

B
it 3

B
it 4

B
it 5

B
it 6

B
it 7

B
it 8

B
it 9

B
it 10

B
it 11

B
it 12

B
it 13

B
it 14

B
it 15

"Start"

Output

VDC1

VDC1

VDC2

VDC2

COM1

COM1

COM2

COM2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

If an input or output card possesses more than 16 bits – as in the case of the 32-bit discrete
output card shown in slot 3 of the example SLC 500 rack – the addressing scheme further subdivides
each element into words and bits (each “word” being 16 bits in length). Thus, the address for bit
number 27 of a 32-bit input module plugged into slot 3 would be I:3.1/11 (since bit 27 is equivalent
to bit 11 of word 1 – word 0 addressing bits 0 through 15 and word 1 addressing bits 16 through
31):

Power
supply

L1

Gnd

L2/N

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

SLC 500 4-slot chassis

Slot 0 Slot 1 Slot 2 Slot 3

+
−

24 VDC
power
supply

inside the PLC’s
memory is "set"

0 0 0 0 0 0 00 0 0 00 0 0 0

B
it 0

B
it 1

B
it 2

B
it 3

B
it 4

B
it 5

B
it 6

B
it 7

B
it 8

B
it 9

B
it 10

B
it 11

B
it 12

B
it 13

B
it 14

B
it 15

Output

VDC1

VDC1

VDC2

VDC2

COM1

COM1

COM2

COM2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Output bit O:3.1/11

Output image element for slot 3

1
0

0 0 0 0 0 0 0 0 0 0 00 0 0 0Word 1

Word 0

Lamp

4.2. LEGACY ALLEN-BRADLEY MEMORY MAPS AND I/O ADDRESSING 33

A close-up photograph of a 32-bit DC input card for an Allen-Bradley SLC 500 PLC system
shows this multi-word addressing:

The first sixteen input points on this card (the left-hand LED group numbered 0 through 15) are
addressed I:X.0/0 through I:X.0/15, with “X” referring to the slot number the card is plugged into.
The next sixteen input points (the right-hand LED group numbered 16 through 31) are addressed
I:X.1/0 through I:X.1/15.

Legacy PLC systems typically reference each one of the I/O channels by labels such as “I:1/3”
(or equivalent6) indicating the actual location of the input channel terminal on the PLC unit. The
IEC 61131-3 programming standard refers to this channel-based addressing of I/O data points as
direct addressing. A synonym for direct addressing is absolute addressing.

Addressing I/O bits directly by their card, slot, and/or terminal labels may seem simple and
elegant, but it becomes very cumbersome for large PLC systems and complex programs. Every time
a technician or programmer views the program, they must “translate” each of these I/O labels to
some real-world device (e.g. “Input I:1/3 is actually the Start pushbutton for the middle tank
mixer motor”) in order to understand the function of that bit. A later effort to enhance the clarity
of PLC programming was the concept of addressing variables in a PLC’s memory by arbitrary
names rather than fixed codes. The IEC 61131-3 programming standard refers to this as symbolic
addressing in contrast to “direct” (channel-based) addressing, allowing programmers arbitrarily

6Some systems such as the Texas Instruments 505 series used “X” labels to indicate discrete input channels and
“Y” labels to indicate discrete output channels (e.g. input X9 and output Y14). This same labeling convention is still
used by Koyo in its DirectLogic and “CLICK” PLC models. Siemens continues a similar tradition of I/O addressing
by using the letter “I” to indicate discrete inputs and the letter “Q” to indicate discrete outputs (e.g. input channel
I0.5 and output Q4.1).

34 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

name I/O channels in ways that are meaningful to the system as a whole. To use our simple
motor “Start” switch example, it is now possible for the programmer to designate input I:1/3 (an
example of a direct address) as “Motor start switch” (an example of a symbolic address) within
the program, thus greatly enhancing the readability of the PLC program. Initial implementations
of this concept maintained direct addresses for I/O data points, with symbolic names appearing as
supplements to the absolute addresses.

The modern trend in PLC addressing is to avoid the use of direct addresses such as I:1/3

altogether, so they do not appear anywhere in the programming code. The Allen-Bradley “Logix”
series of programmable logic controllers is the most prominent example of this new convention
at the time of this writing. Each I/O point, regardless of type or physical location, is assigned
a tag name which is meaningful in a real-world sense, and these tag names (or symbols as they
are alternatively called) are referenced to absolute I/O channel locations by a database file. An
important requirement of tag names is that they contain no space characters between words (e.g.
instead of “Motor start switch”, a tag name should use hyphens or underscore marks as spacing
characters: “Motor start switch”), since spaces are generally assumed by computer programming
languages to be delimiters (separators between different variables).

4.3 SELogic control equations

Some programmable logic controllers use Boolean-style equations to describe logical functions. A
company called Schweitzer Engineering Laboratories (SEL) manufactures control equipment for the
electric power industry, including a wide range of protective relays and programmable automation
controllers, which use Boolean equations to describe logic. Their brand name for this is SELogic.

4.3. SELOGIC CONTROL EQUATIONS 35

4.3.1 Basic logical functions

For example, suppose we wished to implement a three-input AND function as well as a three-input
OR function in a SEL controller with the three inputs being IN201, IN202, and IN203. The symbolic
functions and their equivalent SELogic equations are shown in the following illustration:

IN201

IN202

IN203

OUT101

OUT102

IN201

IN202

IN203

Logic function symbols

OUT101 = IN201 AND IN202 AND IN203

OUT102 = IN201 OR IN202 OR IN203

Equivalent SELogic equations

SEL programming software7 provides text-entry fields for typing these control equations. A more
primitive interface makes use of the built-in serial terminal server capability of SEL controllers,
allowing programming edits to be made with nothing more than a serial terminal (e.g. personal
computer running terminal emulator software such as Termite or PuTTY or Hyperterminal) on a
command-line interface. The following screenshot shows these two SELogic control equations being
edited in a window:

In this particular controller (an SEL-2440 “DPAC” Discrete Programmable Automation
Controller) all inputs are numbered beginning with 201 and all outputs beginning with 101.

7SEL-5030 AcSELerator QuickSet software was used for all of these examples.

36 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

A simple combinational logic function is shown in this next illustration:

IN201

IN202

IN203

Logic function symbols

OUT105 OUT105 = IN201 AND IN202 OR (NOT IN203)

Equivalent SELogic equation

All SELogic equations support text comments, which is an important detail for any non-trivial
coding. Comments are ignored by the controller, but serve as notes for any future programmers
examining the code. In SELogic, comments are preceded by the hashtag symbol (#). For example,
here is a comment as it would appear following an SELogic equation for a simple AND function:

OUT102 = IN205 AND IN208 # THIS IS AN AND FUNCTION

Characters to the left of the # are regarded as executable code by the controller, while text to
the right of the # are merely comments.

4.3. SELOGIC CONTROL EQUATIONS 37

4.3.2 Set-reset latch instructions

Set-Reset (or S-R) latch instructions are useful for applications such as motor starter controls,
where the controller must “latch” the motor on after momentary closure of the “Start” pushbutton
switch, and latch the motor off following momentary actuation of the “Stop” pushbutton. PLCs
programmed in Ladder Diagram code typically use either retentive coils (“Set” and “Reset” coils) or
seal-in contacts “wired” in parallel with the Start contact instruction. SELogic provides a dedicated
function for latching called a Latch Bit.

Latch instructions in SELogic require a number of different parameters to be specified. First and
foremost is the allocation of usable latch instructions in the controller’s memory. Like legacy-style
industrial PLCs with limited memory resources, the programmer first needs to declare to the PLC
how many counters, timers, etc. will be used in the program so that the PLC may allocate limited
memory to those functions. For SELogic latches, this is done through the ELAT parameter. For
example the equation ELAT = 3 allocates three latches which are called LT01, LT02, and LT03. After
that, each latch requires assignment of its Set (SET) and Reset (RST) inputs. A screenshot showing
the Set and Reset inputs of a single latch instruction appears here:

Listed as plain ASCII text, the SELogic equations would appear as follows to declare a single
latch instruction and then configure its two inputs as shown in the previous screenshot, where IN201
causes the latch to set and IN202 causes the latch to reset:

ELAT = 1

SET01 = IN201

RST01 = IN202

In SELogic, the name of the latch (e.g. LT01) is its output bit. Using the example just shown,
we could direct output OUT108 to be controlled by LT01’s output with an additional line of SELogic
code:

OUT108 = LT01

38 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.3.3 One-shot instructions

One-shot functionality also is provided within SELogic by the R TRIG and F TRIG instructions,
referring to rising-edge and falling-edge, respectively. The purpose of a “one-shot” instruction is to
activate the output for a single scan of the controller’s program upon a false-to-true (rising edge) or
true-to-false (falling edge) transition of the input signal. This next illustration shows examples of
each:

IN201

Logic function symbols

OUT105

OUT104
One-shot

rising

IN201
One-shot

OUT104 = R_TRIG IN201

OUT105 = F_TRIG IN201

Equivalent SELogic equations

falling

4.3. SELOGIC CONTROL EQUATIONS 39

4.3.4 Counter instructions

Counter instructions in SELogic require a number of different parameters to be specified. First and
foremost is the allocation of usable counter instructions in the controller’s memory. Like legacy-style
industrial PLCs with limited memory resources, the programmer first needs to declare to the PLC
how many counters, timers, etc. will be used in the program so that the PLC may allocate limited
memory to those functions. For SELogic counters, this is done through the ESC parameter. For
example the equation ESC = 2 allocates two counters which are called SC01 and SC02. After that,
each counter requires assignment of input variables such as Preset Value (PV), Reset (R), Load
PV (LD), Count up input (CU) and Count down input (CD). A screenshot showing all of these
variables (enabling two counters, followed by the parameters for Counter 1) appears here:

Listed as plain ASCII text, the SELogic equations would appear as follows to declare two counter
instructions and then configure the first counter’s inputs: a preset value of 50, IN204 causing it to
reset, IN203 causing it to load the preset value, IN201 causing it to increment, and IN202 causing
it to decrement:

ESC = 2

SC01PV = 50

SC01R = IN204

SC01LD = IN203

SC01CU = IN201

SC02CD = IN202

40 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

Once configured, the accumulated value of the first counter instruction is addressed simply as
SC01. Discrete outputs based on the attainment of certain count values may be driven by comparison
statements such as =, >, and <. For example, to activate output OUT107 whenever the first counter’s
accumulated value exceeds 12, you would need to write the following SELogic equation:

OUT107 = SC01 > 12

The comparison statement SC01 > 12 is either true or false – that is to say, it is a Boolean
quantity – and so its truth-value fits well with the discrete status of output OUT107. When the
counter’s value exceeds 12, OUT107 activates; if equal to or less than 12, OUT107 de-activates.

4.3. SELOGIC CONTROL EQUATIONS 41

4.3.5 Timer instructions

Like counter instructions, timer instructions in SELogic require a number of different parameters
to be specified. First and foremost is the allocation of usable timer instructions in the controller’s
memory. Like legacy-style industrial PLCs with limited memory resources, the programmer first
needs to declare to the PLC how many counters, timers, etc. will be used in the program so that
the PLC may allocate limited memory to those functions. For SELogic timers, this is done through
the ESV parameter. For example the equation ESV = 1 allocates memory space for a single timer
called SV01. After that, the timer requires assignment of input variables such as Timer Pickup
(PU), Timer Dropout (DO), and Input. A screenshot showing all of these variables for a single timer
appears here:

The SELogic timer instruction is capable of both on-delay and off-delay. This is the meaning of
the “pickup” and “dropout” time delays: the pickup time refers to a time delay on activation of the
timer (i.e. on-delay) while the dropout time refers to a time delay on de-activation (i.e. off-delay).
For example, if we only wished to have an on-delay SV01 timer with a delay time of 5 seconds we
would set SV01PU = 5 and SV01DO = 0. If we merely wished for an off-delay timer with a delay time
of 8 seconds, we would set SV01PU = 0 and SV01DO = 8. If we wanted a timer to exhibit both an
on-delay of 2 seconds and an off-delay of 3 seconds, we would set the pickup and dropout parameters
exactly as shown in the above screenshot image. Note the resolution of these time settings: down
to 0.001 seconds, or 1 millisecond.

In SELogic, the name of the timer (e.g. SV01) is its input, or controlling, bit. The time-delayed
output bit of the timer is addressed by adding the suffix “T” to the timer name. Using our example
of timer SV01, its time-delayed output bit would be SV01T. Below is an example of this timer’s
output being set to control output OUT105:

OUT105 = SV01T

42 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

43

44 CHAPTER 5. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

45

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

46 CHAPTER 5. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

5.1. CONCEPTUAL REASONING 47

5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

48 CHAPTER 5. QUESTIONS

5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

5.1. CONCEPTUAL REASONING 49

5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

???

???

???

???

???

???

???

???

???

???

???

50 CHAPTER 5. QUESTIONS

5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

5.2. QUANTITATIVE REASONING 51

5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

52 CHAPTER 5. QUESTIONS

5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

5.2. QUANTITATIVE REASONING 53

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

54 CHAPTER 5. QUESTIONS

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

5.3. DIAGNOSTIC REASONING 55

5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

56 CHAPTER 5. QUESTIONS

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

57

58 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

59

60 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

61

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

62 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

63

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

64 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

65

66 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

67

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

68 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

69

70 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

71

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

72 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

73

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

74 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

75

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

76 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

20 May 2025 – document first created, taking content from the legacy “Introduction to PLCs”
(mod plc) module.

77

Index

Absolute addressing, 33
Adding quantities to a qualitative problem, 58
Annotating diagrams, 57

Card, I/O, 13
Checking for exceptions, 58
Checking your work, 58
Code, computer, 65

Dimensional analysis, 57
Direct addressing, 33

Edwards, Tim, 66

Graph values to solve a problem, 58
Greenleaf, Cynthia, 43

How to teach with these modules, 60
Hwang, Andrew D., 67
Hyperterminal software, 35

I/O, 13
Identify given data, 57
Identify relevant principles, 57
Instructions for projects and experiments, 61
Intermediate results, 57
Inverted instruction, 60

Knuth, Donald, 66

Ladder Diagram, 3, 13
Lamport, Leslie, 66
Limiting cases, 58

Memory map, 29
Metacognition, 48
Moolenaar, Bram, 65
Murphy, Lynn, 43

One-shot, 21, 38
Open-source, 65

PLC, 3, 13
Problem-solving: annotate diagrams, 57
Problem-solving: check for exceptions, 58
Problem-solving: checking work, 58
Problem-solving: dimensional analysis, 57
Problem-solving: graph values, 58
Problem-solving: identify given data, 57
Problem-solving: identify relevant principles, 57
Problem-solving: interpret intermediate results,

57
Problem-solving: limiting cases, 58
Problem-solving: qualitative to quantitative, 58
Problem-solving: quantitative to qualitative, 58
Problem-solving: reductio ad absurdum, 58
Problem-solving: simplify the system, 57
Problem-solving: thought experiment, 57
Problem-solving: track units of measurement, 57
Problem-solving: visually represent the system,

57
Problem-solving: work in reverse, 58
Programmable Logic Controller, 3, 13
PuTTY software, 35

Qualitatively approaching a quantitative
problem, 58

Reading Apprenticeship, 43
Reductio ad absurdum, 58–60
Relay ladder logic, 13

Schoenbach, Ruth, 43
Schweitzer Engineering Laboratories, 34
Scientific method, 48
SEL, 34
SEL-2440 DPAC, 35

78

INDEX 79

SEL-5030 AcSELerator QuickSet software, 35
SELogic, 34
Set-Reset latch, 37
Simplifying a system, 57
Socrates, 59
Socratic dialogue, 60
SPICE, 43
Stallman, Richard, 65
Symbol, 34
Symbolic addressing, 34

Tag name, 34
Terminal emulator software, 35
Termite software, 35
Thought experiment, 57
Torvalds, Linus, 65

Units of measurement, 57

Visualizing a system, 57

Work in reverse to solve a problem, 58
WYSIWYG, 65, 66

	Introduction
	Recommendations for students
	Challenging concepts related to programmable logic controllers (PLCs)
	Recommendations for instructors

	Case Tutorial
	Example: NAND function in a PLC

	Tutorial
	Review of basic PLC functionality
	Serial PLC communication
	Ethernet PLC communication
	PLC-HMI network communication
	PLC remote I/O communication

	Derivations and Technical References
	Feature comparisons between PLC models
	Viewing live values
	Forcing live values
	Special ``system'' values
	Free-running clock pulses
	Standard counter instructions
	High-speed counter instructions
	Timer instructions
	ASCII text message instructions
	Analog signal scaling

	Legacy Allen-Bradley memory maps and I/O addressing
	SELogic control equations
	Basic logical functions
	Set-reset latch instructions
	One-shot instructions
	Counter instructions
	Timer instructions

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets

	Diagnostic reasoning

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	Version history
	Index

