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Chapter 1

Introduction

Polyphase electric circuits are standard for transmitting and distributing large amounts of electrical
energy over long distances, and it is the primary form of electric circuit encountered in industrial
applications. Three-phase circuits are particularly popular, and as such comprise an essential topic
of study for anyone seeking to understand electricity as used in the modern world.

The basic idea behind polyphase electric circuits is that multiple AC sources out-of-step with
each other work together to deliver energy to loads. Polyphase circuits tend to deliver energy more
continuously than single-phase electric circuits, and certain types of loads such as electric motors
exhibit better operating characteristics than their single-phase counterparts.

Important concepts related to polyphase circuits include alternating current (AC),
electromagnetic induction, phase angle, frequency, phasors, phase sequence,
transformers, delta versus wye networks, line versus phase quantities, Kirchhoff’s Voltage
Law, Kirchhoff’s Current Law, RMS quantities, Ohm’s Law, the Conservation of Energy,
grounding, hot versus neutral conductors, and rectification.

Here are some good questions to ask of yourself while studying this subject:

e How might an experiment be designed and conducted to explore the concept of phase versus
line quantities in a three-phase AC system? What hypothesis (i.e. prediction) might you pose
for that experiment, and what result(s) would either support or disprove that hypothesis?

e What are some practical applications of polyphase AC circuits?
e Why is AC generally preferred over DC for the transmission and use of electric power?

e Why is polyphase AC generally preferred over single-phase AC for the transmission and use of
electric power?

e Which fundamental principles of electric circuits are useful for discerning equal line and phase
quantities in a three-phase network?

e Which fundamental principles of electric circuits are useful for discerning unequal line and
phase quantities in a three-phase network?
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How is phase rotation reversed in a three-phase electric circuit?

Why are fuses always located on a “hot” conductor and never on a “neutral” or “ground”
conductor?

Why is an electric power system always grounded at the source and never at the load?
Why do we find 120/208 Volt three-phase systems and not 120/240 Volt three-phase systems?
What is the purpose of rectification?

Why is three-phase rectification preferred over single-phase rectification?



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module — can you explain why the circuits behave as they do?
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2.1 Example: wye-wound versus delta-wound motors

100 horsepower wye-wound electric motor energized by 460 Volts (line voltage) assuming 100% motor
efficiency and a power factor of 1:

Ijine = 93.63 A
Vphase = 265.6 V (i.e. across each of the motor’s three windings)
Iphase = 93.63 A (i.e. through each of the motor’s three windings)

100 horsepower delta-wound electric motor energized by 460 Volts (line voltage) assuming 100%
motor efficiency and a power factor of 1:

4115
100 HP

Ijine = 93.63 A
Vphase =460 V (i.e. across each of the motor’s three windings)
Iphase = 54.06 A (i.e. through each of the motor’s three windings)
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2.2 Example: three-phase motor calculations with imperfect
efficiency

A three-phase AC electric motor delivers 1250 lb-ft of torque at 850 RPM to a mechanical load.
Assuming a line voltage of 480 Volts and an energy-conversion efficiency of 92%, we may calculate
the following:

Converting torque (Ib-ft) and speed (RPM) values into horsepower:

p_ ST (850 RPM)(1250 Ib-ft) oo
5252.113 5252.113

Converting horsepower into Watts:

P =202.30 HP x 745.7% = 150.85 kW

This is the mechanical power output by the motor, expressed in units of Watts. The motor is 92
percent efficient (n = 0.92), which means the electrical power input to the motor must be greater:

Pout = Pinn

P, 150.85 kW
n 092

= 163.97 kW

Pin:

Given a line voltage of 480 Volts, the line current must be 197.228 Amperes:

_ Ptotal _ 163.97 kW =197.228 A

Iine
e Vi3 (480 V)V3
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2.3 Example: wye-wound generator and wye-connected
resistive load

Generator |

Viine =240V 300 Q (each)
Load

Viine = 240 Volts

Ijine = 0.46188 Amperes

Vphase (generator) = 138.564 Volts
Iphase (generator) = 0.46188 Amperes
Vphase (load) = 138.564 Volts

Iphase (load) = 0.46188 Amperes
Piotar = 192 Watts
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2.4 Example: delta-wound generator and delta-connected
resistive load

Generator

Vline = 125 V
40 Q (each)
Load

L A

]

Viine = 125 Volts

Ijine = 5.4127 Amperes

Vphase (generator) = 125 Volts
Iphase (generator) = 3.125 Amperes
Vph,a,se (load) = 125 Volts

Iphase (load) = 3.125 Amperes
Ptotal = 1171.9 Watts
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2.5 Example: wye-wound generator and delta-connected
resistive load

Generator

V“ne =4160V

850 Q (each)
Load

NV

Viine = 4160 Volts

Ijine = 8.477 Amperes

Vphase (generator) = 2401.8 Volts
Iphase (generator) = 8.477 Amperes
Vph,a,se (load) = 4160 Volts

Iphase (load) = 4.894 Amperes
Piotar = 61.079 kiloWatts
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2.6 Example: delta-wound generator and wye-connected
resistive load

Generator

Viie= 600V 370 Q (each)
Load

N

Wine = 600 Volts

Ijine = 0.9362 Amperes

Vphase (generator) = 600 Volts
Iphase (generator) = 0.5405 Amperes
Vphase (load) = 346.4 Volts

Iphase (load) = 0.9362 Amperes
Piotar = 972.97 Watts
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2.7 Example: experimental motor-generator set

Three-phase electricity is not available in most residences, and this means performing three-phase
AC electrical experiments at home is usually considered impossible. However, it is possible to build a
simple motor-generator set to produce safe (i.e. low-voltage, low-current) three-phase AC electricity
suitable for running small experiments:

In this example, we are using two electric motors designed for use in radio-controlled (RC) hobby
vehicles. The motor on the right is a standard brush-type DC permanent-magnet motor. The motor
on the left is a brushless motor with the same diameter case (36 millimeters)!'. A brushless motor is
really a synchronous three-phase AC motor with a permanent-magnet rotor, which means it naturally
produces three-phase AC simply by rotating the shaft. This size of motor rests securely within the
recess of a 35 mm DIN rail, and when lashed in place with cable ties are nicely aligned shaft-to-shaft.
A pair of flange couplings attach to the motor shafts using set-screws, and those flanges are coupled
by lacing a 22 AWG copper wire through the four holes, making a simple shaft-to-shaft coupling so
that the brush-type motor is able to spin the brushless motor (generator).

Brushless motors made for RC vehicle use are rated by their number of poles (just like any other
AC motor) and the shaft speed per Volt. Most brushless motors are four-pole which means they
must rotate at 1800 RPM to output a frequency of 60 Hz. Two-pole motors (like the one shown)
rotate at 3600 RPM to produce 60 Hz. The RPM/Volt rating is usually specified as a number
followed by the letters “KV”. In this example the orange-colored brushless motor is 3000KV which
means 3000 RPM per Volt. Spinning at 3600 RPM was found to generate approximately 0.88 Volts
RMS between any two of the three wires, which admittedly is not much, but which may be stepped
up through a three-phase transformer bank. Greater three-phase voltage could be obtained by using
a brushless motor with a lesser “KV” number (representing more turns of wire on each stator pole
and/or a stronger permanent magnet on the rotor). The black-colored brush-type motor required
4.75 Volts to drive the other motor to that speed.

1Both the “3650” can size and “550” can size RC motors have the exact same outer diameter. In this particular
example the brush-type motor has a 550 “can” and the brushless has a 3650 “can”.
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2.8 Example: phase rotation test circuit

Multi-channel oscilloscopes work well to indicate phase rotation in three-phase circuits, but other
techniques exist as well for determining the ABC versus CBA rotation of a three-phase circuit. The
schematic below shows how you may build a three-phase voltage divider resistor network to create
a three-phase voltage divider for safely testing phase rotation in cases where the line voltage could
damage the test instrument’s inputs. This Wye-connected resistor network also provides a “ground”
reference if the power system lacks one:

Phase rotation CW Phase rotation CCW
if Vo is larger if Vex Is larger
- -- -

A - X s C
o

Directions for use:
2;/3':;} 2]33‘;;’2 (1) Connect A, B, and C to 3-phase lines
(2) Leave X floating (not connected to power system)
(3) Measure V,yx and Vy with an AC voltmeter
(4) If Vex > Vax then phase sequence is ABC

Note: capacitor's peak voltage =25% ~ —i— O0.0LKF (5) If Vax > Vex then phase sequence is ACB

of the line RMS voltage (e.g. Vac) -1 Siﬂi;gf_eéd
-polariz

(@)

B
The natural phase shift offered by the capacitor interacts with the shifted phases at terminals A
and C to produce a higher current through one resistor than through the other. As such, this is a

great example of an unbalanced three-phase network, phase voltages and currents being intentionally
unequal.
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Here we see a SPICE analysis of this rotation-testing circuit:

VAC2
120V O 120°

Vact
1zovaooe

0

VAC3
120V 0 240°

3

SPICE source file (netlist):

* Phase rotation tester made of two resistors and one capacitor
* Phase rotation in this case is 2-1-3 (a.k.a. 3-2-1)

VAC1 1 0 ac 120 0 sin

VAC2 2 0 ac 120 120 sin
VAC3 3 0 ac 120 -120 sin
R1 1 4 270000

R2 2 4 270000

C1 3 4 1E-08 IC=0

.OPTION ITL5=0 NUMDGT=6
.AC LIN 1 60 60

.PRINT AC VM(1,4) VM(2,4)
.END

SPICE analysis summary:

Index frequency mag(v(1)-v(4)) mag(v(2)-v(4))

0 6.000000e+01 4.839760e+01 1.805242e+02

With the phase rotation such that node 2 leads node 1 (both with respect to ground which
is always node 0 in SPICE), the voltage between node 2 and the center-point of the Wye (node
4) is larger than the voltage between node 1 and the center-point. In this particular analysis,
mag (v(2)-v(4)) is 180.5242 Volts while mag(v(1(-v(4)) is 48.39760 Volts.
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Tutorial

15
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3.1 Multi-phase AC generators

The term polyphase means “many phases” which describes a form of AC electrical system where
multiple sinusoidal voltages exist out-of-step with each other. The most common form of polyphase
AC power in industry is three-phase, where the respective voltages and currents are phase-shifted
from one another by 120°, but all polyphase systems share similar traits. This tutorial will focus on
three-phase AC circuits because this is by far the most common form of polyphase circuit.

A simple alternator or AC generator is nothing more than a magnetized rotor spinning between
a pair of electromagnetic poles, the stationary wire coils (“stator windings”) developing AC voltage
as the spinning rotor’s magnet passes by:

Mechanical
diagram
Schematic Phasor diagram
diagram
+
} 60V
— + 60V O0°

_120V 60V 0 0°

In this particular example each stator winding outputs 60 Volts AC, and since they’re connected
in series-aiding fashion the total output voltage will be 120 Volts. This machine is properly called a
single-phase generator, because all its stator winding voltages are in-phase with each other. Recall
that AC polarity symbols (+ and —) indicate the actual polarity of each voltage during the positive
half-cycle of the alternating waveform.
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A much more common design of AC generator uses three sets of stator windings to generate three
AC voltages phase-shifted from one another by 120°. The reason these three AC voltages are not
in-phase with each other is precisely because the three stator poles are not physically aligned with
each other, which means the magnetic poles of the spinning rotor will pass by each stator pole pair
at different times:

Mechanical
diagram

Schematic
diagram

Phasor diagram

* c
60V O00°
- 60V [1120°

+
:|~60VDO° 60V [1120° \ 6OV 10° 60V [J0°

/\ 0V [ 240°
\\/
60V [0 120° _\\/
5

60V O 120

60V [] 240°

As the generator’s rotor spins counter-clockwise, stator winding pair “A” will reach its positive
peak value before stator winding pair “B”, and that before stator winding pair “C”. This A-B-C
order is called the phase sequence or phase rotation of the generator, and each stator winding set is
simply called a “phase”. Phase rotation is easiest to apprehend by viewing the schematic diagram,
noting the phase order as you rotate counter-clockwise around the schematic (in the same direction
as the rotor): at the top is “A” (arbitrarily defined as having a 0° phase angle) followed by “B” 120
degrees later (—120° or 240° phase-shifted from “A”) followed by “C” 120 degrees after that.

The phasor diagram also declares an A-B-C phase rotation: the blue vectors represent stator
voltages at that instant in time when stator winding pair “A” is at its positive peak value (i.e. 0° on
a cosine wave), and in a phasor diagram it is the vectors themselves that rotate counter-clockwise
so that a stationary observer would notice vector tips passing by in an A-B-C order.

If we were to connect an AC voltmeter between any one phase terminal on this generator and
ground, it would register 120 Volts: the sum of the individual stator winding voltages (60 Volts each)
comprising that phase. However, if we were to connect an AC voltmeter between any two of the
un-grounded terminals on this three-phase generator, it would register 207.85 Volts. For example,
connecting the red lead of the voltmeter to terminal A and the black lead to terminal B gives us
this difference of potential:

Vi — Vi = (120 V£0°) — (120 V/240°) = 207.84 V/30°

This is the length and direction of a resultant vector starting at B and ending at A on the phasor
diagram.
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The following oscilloscope screenshot shows the output of a three-phase generator, each channel
of the oscilloscope connected across one stator winding set (e.g. Channel 1 measuring phase “A”,
Channel 2 measuring phase “B”, and Channel 3 measuring phase “C”):

k4 Pos: 0,0005 SANESREC

dction
Sane mage

File
Farmat

CH1 1.00% CH2 1.00%

In this oscillograph we clearly see a 120° phase shift between successive waveforms, and we may
also discern the phase rotation of the generator: surveying the three sinusoids from left to right (the
forward direction of time) on the oscillograph, we see channel 1 (Yellow) reaches its positive peak
120 degrees before channel 2 (Cyan), which reaches its positive peak 120 degrees before channel 3
(Magenta): a 1-2-3 phase rotation. It should be noted that a 1-2-3 phase rotation is synonymous
with a 2-3-1 or a 3-1-2 phase rotation, since we may find any of these triads within the sequence as
written in longer form: 1-2-3-1-2-3-1-2-3.

Phase rotation may be reversed by either reversing the alternator’s shaft’s direction of rotation,
or by exchanging the number labels for any two out of three phases. The first method of phase
rotation reversal requires no explanation: if the alternator shaft spins in the opposite direction, the
sequence must switch from 1-2-3 to 3-2-1. The second method is a bit less intuitive, but may be easily
seen by taking the long “1-2-3” sequence previously mentioned (1-2-3-1-2-3-1-2-3) and re-writing it
with any two numbers swapped throughout the entire sequence:

Swapping 1 and 2:  2-1-3-2-1-3-2-1-3 (equivalent to 3-2-1)
Swapping 2 and 3:  1-3-2-1-3-2-1-3-2 (equivalent to 3-2-1)
Swapping 1 and 3:  3-2-1-3-2-1-3-2-1 (obviously 3-2-1)

No matter which two phases we swap, the original 1-2-3 rotation turns into a 3-2-1 rotation.
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3.2 Wye and Delta connections

19

The three stator winding sets in a three-phase AC generator may be connected in either a “Wye”

(also called a “Star”) or a “Delta” fashion, each with its own characteristics:

Mechanical Wye or Star connection
diagram
A-B-Crotation A Sc!‘]ematic
diagram Phasor diagram
A
+ c A-B-C rotation
60V 0 0° o
60V O
+ 60V 0120°\ 60V O 0° 60V 0O0°
60V [0 0°
60V 00 240° _ oV 02407
60VD240_° + \/ L 60V [ 240°
¢ 60V 0 1207 _\\/ B
B + c
60V [ 120
Mechanical Delta connection
diagram A
A-B-C rotation Schema’[ic
diagram Phasor diagram
60V [ 240°
oA A A-B-C rotation
60V [ 240 +
/ 60V O0°
+ -
C o
B B + BOV O 0Of 60V [0° A
\/ 60V [ 0° cov 0 1k 60V [ 240°]
eovulzo?’L _\\/ - 60V 0 240°
‘S C 60V O 120°
60V [ 120 B
C

Please note the orientations of the polarities on the schematic diagrams and of the voltage vectors
in the phasor diagrams, as they are not arbitrary. A Wye-connected generator’s stator windings must
join together at a point sharing a common polarity: in the example show above, all the — terminals
join at the center of the Wye. A Delta-connected generator’s stator windings must join together such
that the phasor sum of all stator winding voltages is zero (— joins to + at each node). These proper
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connections are not just important for generator windings, but also for three-phase transformer!

windings as well.

It is customary to represent polyphase generators in the simplest possible form on a schematic
diagram, using a single coil symbol to denote each “phase” of the stator winding rather than
separately denote each portion of each stator winding as previously shown. Examples of Wye-
connected sources and loads appears in the following diagram:

Wye-connected Wye-connected
motor or generator resistive load

By contrast, a “Delta-connected” device has its three elements joined as the sides of a triangle:

Delta-connected Delta-connected
motor or generator resistive load

4115 VWA

Each configuration has its own unique advantages and disadvantages in the larger context of a
three-phase electrical power system. Either source type may connect to either load type (e.g. Delta
to Wye, Delta to Delta, Wye to Delta, Wye to Wye) so long as the voltage and current ratings of
all components are compatible.

IThe subject of polyphase transformer wiring is treated in its own learning module.
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The voltage appearing across the terminals of each element in a polyphase device is called the
phase voltage, and the current through each element in a polyphase device is called the phase current:

I hase
50
I
Vphase phase//
Vphase

Voltage appearing between any two of the connecting conductors (power lines) is called the line
voltage of the polyphase system, and current through any of the connecting conductors (power lines)
is called the line current:

IIine

A
YVIine ?
—_—
IIine m\
VIine Vline
Y
—

IIine

Line and phase quantities relate to each other differently between Delta versus Wye networks.
Line voltage for a balanced? Wye device exceeds phase voltage by a factor of v/3, while line current
for a balanced Delta device exceeds phase current by the same factor®:

System type Voltage Current
Wye (Y) Viine = \/'?; X Vphase Ljine = Iphase
Delta (A) Viine = phase Tjine = \/g X Iphase

2Here, the term “balanced” refers to a condition where all phase voltages and currents are symmetrically equal.
Unbalanced conditions can and do exist in real polyphase power systems, but the degree of imbalance is usually quite
small except in cases of component faults.

3This factor is mathematically derived in section 5.1 beginning on page 38.
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While it may be tempting to simply memorize these mathematical relationships, it is far better
to understand why they are so’. In a Wye network, Ijjne = phase because each line is in series
with a phase element, and we know series-connected elements share the same current. Likewise,
Viine = Vphase in a Delta network because each line pair is in parallel with a phase element, and we
know parallel-connected elements share the same voltage:

Iline= Iphase Vlinezvphase
because currents are equal in series because voltages are equal in parallel

IIine

e 2118

VIine
Vphase

Phase and line voltages are unequal in Wye networks, as are phase and line currents in Delta
networks. In each of these cases, though, we may see once again by visual inspection that these line
and phase quantities cannot be equal because the line quantities are the result of two additive phase
quantities. In a Wye network, line voltage is the (phasor) sum of two phase voltages in accordance
with Kirchhoff’s Voltage Law. In a Delta network, line current is the (phasor) sum of two currents in
accordance with Kirchhoff’s Current Law. If we know the system in question is balanced, however,
we may be assured that the multiplying factor between these line and phase quantities will be the
square-root of three (\/3), therefore line voltage is /3 times greater than Wye phase voltage, and
line current is v/3 times greater than Delta phase current:

VIine =_\/€ Vphase Ilinez_\/—3 Iphase

|
line |
phase
T ! Kirchhoff's -~ —_—
X Current Law 1 } 2115
: node -
[}
7 I .
¢ Kirchhoff's :V“ne
1 Voltage Law |
vV | loop [ phase
phase | 1
' |
: 1

4This is a general principle of learning: always seek to discover the reasons why. Rote memorization is of limited
value.
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As an example of phase and line voltages in a Wye-connected system, we see a great many three-
phase industrial power circuits in the United States of the “480/277” Volt configuration. These are
a Wye-connected devices exhibiting having phase voltages of 277 Volts RMS (each) and a balanced
line voltage of 480 Volts RMS, because 277 x+/3 ~ 480.

In the Wye-connected system we see how two smaller phase voltages add to form a larger line
voltage. In the Delta-connected system we see how a larger line current splits to form two smaller
phase currents. The key to understanding these mathematical relationships is to recognize where
the properties of series and parallel networks and Kirchhoff’s Laws dictate quantities be identical or
different, and then all we need to remember is that if the two are different, the line quantity will be
greater by a factor of v/3.

One of the major advantages of polyphase electrical power systems over single-phase electrical
power systems is a more continuous transfer of energy. In a three-phase circuit there is never
a moment in time where all currents or all voltages are zero: at every moment in time work is
being done, and energy transferred from source to load. Single-phase AC power systems, however,
experience moments in time where energy transfer halts: whenever the voltage and/or current
waveforms cross zero. This distinction is analogous to a multi-cylinder piston engine compared to
a single-cylinder piston engine: the multi-cylinder engine’s power output is more continuous over
time because there is always at least one piston performing work while the others are not, while the
single-cylinder engine’s output output “pulses” as the one piston must successively perform intake,
compression, power, and exhaust strokes.

This continuity of energy transfer results in more power transmitted from source to load for a
given amount of line current and line voltage than for a single-phase system. This is important in
the design of high-power electrical transmission lines, where greater voltage requires larger insulators
and greater current requires heavier-gauge wire. The advantage of less voltage and/or less current
required to transmit the same amount of power in a three-wire three-phase system versus a two-wire
single-phase is great enough that it offsets the additional cost of the third conductor.

However, polyphase AC circuits were actually invented as an alternative to single-phase AC
circuits for yet another advantageous: a better design of AC electric motor. As it so happens,
AC induction-style motors are simpler in design and construction than single-phase induction-style
motors, and therefore tend to be more rugged and reliable than the latter. Three-phase AC induction
motors may also be easily reversed: simply swap any two lines feeding power to the motor (thereby
reversing the phase rotation), and the motor spins in the opposite direction as before. This economy
of motor design, more than anything else, is what led to the development and widespread adoption
of polyphase AC generators and power systems.
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In order to better understand power calculations in three-phase circuits, we will consider a
specific example. Here we have a 480/277 Wye-connected alternator supplying electrical power to a
Delta-connected load consisting of three 200 Ohm resistive heating elements:

480/277 V source 480 V load

200 Q

200 Q 200 Q

To begin our calculation of all electrical quantities in this circuit, we will apply Ohm’s Law to
the calculation of phase current at the load, since we already know the load’s phase voltage (480
Volts RMS) and phase resistance (200 Ohms):

4
I 80V

phase(load) — m =24 A

Now that we know phase current at the Delta-connected load, we may calculate line current for
the whole system by multiplying by the square-root of three:

Diine = (V3)(2.4 A) = 4.157 A

This line current must be the same as the phase current in the Wye-connected alternator, since
line and phase currents are equal in Wye-connected devices by virtue of their series connection. We
already know the phase voltage of the alternator (277 Volts) because that was given to us, but we
could just as well calculate it from the line voltage of 480 Volts as such:

‘/line = (\/g) (Vphase(source) )

‘/line
Vphase(sou'r‘ce) = \/g
480 V
‘/phase(source) = — =27T1 V=277V

V3
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Tabulating all phase voltages and currents in our balanced system with a line voltage of 480 V
and a line current of 4.157 A:

Quantity | Source | Load
Viohase 27TV | 480V
Tphase 4157 A | 24 A

Power for each of the three source or three load elements in this balanced system is simply the
product of phase voltage and phase current (P = I'V) as it is for any resistive load. Expanding our
table to include the power for each phase element:

Quantity | Source | Load
Vihase 2717V 480 V
Iphase 4157 A | 24 A
Pohase 1152 W | 1152 W

Total generated power at the alternator (as well as total dissipated power at the resistive heater)
is the simple sum of all three phase elements: 3456 watts in each case. No “square-root-of-three”
factor is required in this calculation, because power (work over time) is not a phasor quantity®.
The Law of Energy Conservation demands that all power be accounted for, and thus three resistors
dissipating 1152 watts each must be together dissipating 3456 watts total:

480/277 V source Piota = 3456 W
Piota = 3456 W
1152 W
VWWA
1152 W 1152 W

5You may recall from basic physics that while force and displacement are both vector quantities (having direction as
well as magnitude), work and energy are not. Since power is nothing more than the rate of work over time, and neither
work nor time are vector quantities, power is not a vector quantity either. This is closely analogous to voltage, current,
and power in polyphase electrical networks, where both voltage and current are phasor quantities (having phase angle
“direction” as well as magnitude) but where power merely has magnitude. We call such “directionless” quantities
scalar. Scalar arithmetic is simple, with quantities adding and subtracting directly rather than trigonometrically.
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In the interest of convenience, though, it is helpful to have a formula to calculate power in a
balanced three-phase system knowing just the line voltage and current rather than phase voltages
and currents. You will note how the simple product of line voltage (480 V) and line current (4.157
A) does not yield total power (3456 W) in this system. We may develop a proper formula for
calculating total power from line voltage and current by beginning with the formula described in
calculating total power from the power of each resistor at the Delta-connected load:

Ptotal - (3) (Pphase)

Ptotal = (3)(Iphase)(%hase)

We may substitute i, for Ippese and Viine for Vppese in this equation if we properly relate them

for the Delta’ connection. While Vj;pe = bhase i & Delta configuration, Iyhgse = I“ﬁ

Pt = (3) () (Vi)

We may consolidate the two constants in this formula (3 and v/3) by re-writing the number 3 as
the product \/3\/3, then canceling one of these with the v/3 in the denominator:

Pasas = (V3VB) (22 V)

Ptotal - (\/g)(lline)(viine)

As a test of our conclusion, we may check to see that this new formula accurately calculates the
total power’ of our balanced three-phase system:

Piotal = (V/3)(4.157 A)(480 V)

Piotar = 3456 W

6We end up with the same final result if we substitute line quantities in a Wye-connected system, too. Instead of
Viine = Vphase and Ippgse = Il\i/%e in the Delta connection we have Ijjne = Iphase and Vppase = V“—\/%e in the Wye

connection. The end-result is still Pyora; = (V3)(Ijine)(Viine) based on line quantities.

7In the United States, total system power is often expressed in units of horsepower, with 745.7 horsepower equal
to 1 Watt. Therefore, 3456 W could be expressed as 4.635 HP. The equivalence of 745.7 Watts to 1 horsepower
is important to know when working with electric motors which (at least in the United States) are usually rated in
horsepower.
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3.3 Wye and Delta grounding

So far all the three-phase configurations shown have been ungrounded: that is, none of the terminals
or conductors have any direct connection to Earth ground. While it is possible (and practical in
many cases) to use polyphase power without an explicit Earth ground connection, it is not always
the safest. Firmly connecting the source to Earth limits the voltage which may develop between
any non-grounded (“hot”) conductor and Earth ground for all loads powered by that source. This is
especially important in power systems with overhead lines, where lightning strikes may dramatically
elevate common-mode® voltages in the system.
In Wye-connected systems, the natural point to ground is the center of the “Y”, like this:

Wye-connected
power source

A
B
N 4-wire, 3-phase
power wiring
. C

The three “hot” terminals of the source are typically labeled “A”, “B”, and “C”, while the
grounded point is referred to as the “Neutral” (N). The voltage measured between any two of the
“hot” terminals (A to B, B to C, or A to C) will be v/3 times more than the voltage measured
between any “hot” terminal and the neutral (A to N, B to N, or C to N). Common voltages for
4-wire Wye-connected systems include 208/120 and 480/277.

8 Common-mode voltage is the algebraic average of voltage with respect to ground shared among multiple points.
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The existence of dual voltage levels in a center-grounded Wye system enables the use of loads
with different voltage ratings. For example, in a 208/120 Wye system, a three-phase motor with
windings rated for 208 Volts would draw power from the three “hot” conductors directly, while lamps
rated for 120 Volts would connect between any “hot” conductor and the neutral:

Wye-connected
power source (208V/120V)

B

* > > >— N
— — >— — > C

Fuse Fuses
Switch _ XA 3-pole switch
208 volt
120 volt 120 volt 120 volt motor
lamp lamp lamp

A good practice in such systems is to equally spread the 120 Volt loads among the three phases,
so that (ideally) the phase loading on the source will be nicely balanced when all loads are operating.
If the loading is perfectly balanced, in fact, the neutral conductor will carry no current at the point
where it connects to the center of the Wye.

Note the use of fuses on all the “hot” load conductors, but no fuses on any “neutral” (grounded)
conductor. The reason for this is so that in the event of a fuse blowing, only the hot conductor(s)
will be disconnected from the load, leaving the neutral conductor connected and thereby maintaining
the lowest possible potential at the load relative to Earth ground for safety.

Note also how only the source has an Earth ground connection, and none of the loads. This is
important, as multiple connections to Earth ground between source and load invites ground loop
currents which are problematic for many reasons’. Also, grounding at the source ensures all loads

9The Earth is a relatively poor conductor of electricity, and so any current passing from one grounding point to
another will develop a voltage drop between those points, just like current passing through a resistor, which would
make those points no longer equipotential with each other. Also, ground currents can, over time, cause corrosion of
the metal grounding rod as it chemically interacts with ions in the soil, and this will increase its contact resistance
to make it a poorer ground connection. Finally, ground loops invite electrical noise, as they constitute a physically
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powered by that source have a reliable ground reference; if the entire system relied on one load for
its grounding and that load ever disconnected from the system for any reason, the grounding would
be lost.

In Delta-connected systems, there is no “natural” point to connect to Earth ground as there is in
Wye-connected systems. The most common grounding configuration for a Delta-connected source
is shown here, sometimes called the “high-leg” connection. Here, one of the source’s phase coils is
center-tapped to provide a connection point for Earth ground:

Delta-connected
power source

B

This configuration yields three different voltages available to power loads. If the phase voltage
of the Delta-connected source is 240 Volts, the three available voltages are:

e 240 Volts (between A-B, B-C, and A-C)
e 120 Volts (between B-N and C-N)
e 208 Volts (between A-N)!°

A disadvantage of this configuration is that the lower-voltage loads cannot be balanced among
all three phase coils of the source as they can in Wye-connected systems. Any single-phase loads
(those connected between any one “hot” conductor and the neutral conductor) inevitably place
more burden on the B-C phase coil than the other two phase coils. However, this imbalance is often
negligible in commercial settings where three-phase loads (e.g. motors) are larger than single-phase
loads (e.g. receptacles and lighting).

Another interesting characteristic of this grounding scheme is that any Wye-connected load
powered by such a “high-leg” Delta source is guaranteed to have a center-node potential that is
not the same as Earth’s. This may be a source of confusion for anyone accustomed to measuring
phase-to-ground voltages on a Wye-connected network.

large circuit which may experience induced currents from magnetic fields perpendicular to that loop. This noise may
compromise the integrity of electronic signals with connections to the power circuit.
10A colorful term for this odd voltage is bastard voltage.
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3.4 Three-phase rectification

Another advantage of three-phase AC power is in applications where the AC must be rectified into
DC using semiconductor diodes, which may be thought of as one-way valves for electricity: allowing
current to flow in one direction but blocking current from flowing in the other:

Single-phase alternator Single-phase rectifier
+
Rectified DC

Single-phase AC

Three-phase alternator

Three-phase rectifier

— -+

L7XRREERERN
Rectified DC

Three-phase AC (ABC phase sequence)

Rectified three-phase AC is “smoother” rectified single-phase AC, with less ripple voltage to
create noise that may couple to nearby electronic circuits, because the phase-shifted currents overlap
each other. This is why all automotive alternators are three-phase rather than single-phase machines.
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Both of the rectifier circuits previously shown are full-wave in nature, making full use of each
half-cycle of the AC. A three-phase, full-wave rectifier is also known as a siz-pulse rectifier because
for each full cycle of the AC waveform there are six distinct pulses output by the rectifier network:
two pulse per phase multiplied by three phases. However, half-wave rectification of three-phase AC
is also possible, and such a rectifier is known as a three-pulse rectifier:

Three-pulse rectifier

+

123123

8.99.900N
Rectified DC

Six-pulse rectifier

.l.

123456123456

LTRRRERRRERN
Rectified DC
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Chapter 4

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism
written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.

33
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4.1 Prototype electrical power transmission system

An interesting description of a prototype three-phase electric power system installed in Frankfort,
Germany is found on page 454 of Volume 1 of Cassier’s Magazine, which was an engineering
periodical published from 1891 to the early 1900’s out of London, England. The article in which
this quote is found is called “The Transmission of Power” written by Carl Hering, describing the
innovative features of a three-phase electric power system, particularly with reference to electric
motors:

Time will not permit a detailed discussion of this three-phase system here; it will suffice
to say that it consists of three simple alternating currents, — one in each wire, — the
waves or impulses in the three wires following each other in succession similarly to the
relative motions of the three cranks of a three-cylinder steam engine, or the pistons of
a three-plunger pump. Such a set of currents produces a rotating magnetic field, while
the simple alternating current produces merely an oscillating field. The rotating field
furthermore has a definite direction of rotation. It is this feature of a rotating magnetic
field as distinguished from an oscillating one which renders it particularly well adapted to
run motors. The ordinary simple alternating current motor may be said to be analogous
to a steam-engine with one crank, having its slide-valve operated by an independent
rapidly running engine ; it has a dead point from which it will not start, but after it
is up to speed it will run very steadily. The rotating field motor, on the other hand, is
analogous to a three-crank engine operating its own valves. There is no dead point, and
it can start itself, even with full load. [page 454]

On this same page Hering begins to describe the lack of a neutral, or “return”, wire in the
three-phase power system:

An interesting feature about this system is that although the three currents have different
phases, they need no separate return leads, because the nature of the currents is such
that each acts as a return current for the other two in multiple arc. The three circuits
are therefore merely connected together to [page 454]

a common terminal, after they have passed through the dynamos, transformers, and
lamps. This terminal we will call the neutral point. This neutral point was grounded
throughout the system, in the low-tension as well as in the high-tension circuits, and at
both ends of the line. No current, however, will flow through the ground when the plant
is working normally. [page 455]

Next, the author describes the transmission line connecting the power plant to the load:

The line consists of three bare, hard-drawn, copper wires, 4 millimeters in diameter
(slightly less than a No. 6 B. & S. wire), having a resistance of about 2 Ohms per mile.
The distance being 108.6 miles, the resistance of each wire is about 217 Ohms, which,
with 5 amperes, makes a loss of about 1000 volts on each of the three lines. The lines
were run on poles with one cross-arm 16 feet above the ground, the wires being one
meter from another. There were 3227 poles, at 200 feet spans : each pole had a skull
and crossbones painted on it to indicate the sure fate of anyone who could not keep his
hands off. There were 3000 large porcelain insulators, 8 inches in diameter, made in two
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parts and with three oil grooves, and 6500 small ones, made in one piece and with one
oil groove. The only apparatus connected with the high-tension circuit was the fuse wire
and a short-circuiting device to replace the switches for opening the circuit. The fuses
for each of the three lines consisted of two copper wires in parallel, each .15 millimeters
in diameter (between Nos. 34 and 35 B. & S. gage) and 2 meters in length. They were
stretched between two poles outside of the building. They were exploded (one can hardly
apply the term “blown”) several times to test their effectiveness. Even to an electrician
it seems strange to think of several hundred horse-power being transmitted through a
few wires about the size of a hair! The short-circuiting devices consisted of pieces of
bare wire shaped like a V inverted, suspended directly over the line wires. These were
placed at very frequent intervals along the line. In case of any danger or interruption, or
in case the line must be handled, this wire is lowered by a string, and drops on the line
wires, thereby short-cutting the line, which blows the fuse and opens the circuit. This is
a very cheap and effective substitute for a switch, which would be dangerous to handle
in a 30,000 volt circuit ; furthermore there is absolutely no possibility of a current being
on the line when this device is down. [page 455]
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Chapter 5

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

37
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5.1 Derivation of /3 factor

The mathematical ratio of unequal line to phase quantities in a balanced three-phase network is
always v/3, and this will be demonstrated for a Wye-connected network:

The following phasor diagram shows line and phase voltages in a Wye-connected three-phase
source. Solid phasors express the phase voltage for each of the three stator winding pairs in a
three-phase generator, while dashed lines express the line voltage between any two of the three
output terminals on the generator. The direction of each vector (each line segment tipped by an
arrowhead) expresses its phase shift in time, as the sine wave voltages produced by each of the three
phase windings will be shifted apart from each other by 120 degrees. Here, each phase winding in
the alternator happens to produce 120 VAC, resulting in a line voltage equal to the trigonometric
sum of the 120 VAC phasors, 208 VAC:

Voltage phasor diagram for a
Schematic diagram for a wye-connected generator
wye-connected generator c

/{<O V O 120°

120V O-120°

Ve = 208V

A simple way to calculate the side lengths of these non-right triangles is to use the Law of Sines,
which simply states the ratio between the length of a triangle’s side and the sine of its opposite angle
is constant, for any triangle:

sina sinb sinc

A B C
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Applying this to the solution of the voltage between phases A and B (120 Volts each, individually):

sin 120° sin 30° sin 30°

VA B VA VB

sin 120° _ sin 30°
Vag 120 Volts

in 1200
Vag = (120 Volts) (“n )

sin 30°

Vap = 207.84 Volts ~ 208 Volts

The ratio £2120° js equal to the square-root of three (\/g)7 and with a symmetrical phasor

sin 30°

diagram (i.e. a balanced three-phase network) this factor will be true as the ratio between any line

voltage to phase voltage in a Wye network.
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This same factor applies to balanced Delta-connected networks as the ratio between line current
and phase current, and for precisely the same reason. Consider the following diagrams for a Delta-

connected AC generator outputting 12 Amperes through each phase winding (to a load that is not
shown):

Voltage phasor diagram for a
delta-connected generator

Schematic diagram for a
delta-connected generator

% 12A00° \V
® —)
1AD 1200\ \/12A 0 -120°

v 80z ="

E aul|

Applying the Law of Sines to the solution of currents at each node:

sin 120° sin 30°

Iline Iphase

sin 120° sin 30°

Liine T 12 Amperes

sin 120°
Tjine = (12 Amperes) (bllr;gooo)

Vap = 20.784 Amperes = 20.8 Amperes

The ratio 55;13209)0 is equal to the square-root of three (\/g), and with a symmetrical phasor

diagram (i.e. a balanced three-phase network) this factor will be true as the ratio between any line
current to phase current in a Delta network.
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5.2 Electrical safety

A subject of extreme importance to all electrical practitioners is electrical safety, with Ohm’s and
Joule’s Laws being excellent starting points for a discussion on that topic. Here we examine the
human body as an electrical load: electrical charge carriers passing through the resistance of the
body from an external source relinquish some of their energy in the same way charge carriers lose
energy passing through any other resistance. The rate of energy dissipation (i.e. power) through the
body’s resistance is predicted by Joule’s Law, P = I?R. The total amount of energy delivered to a
body by an electric current is a function of that power dissipation rate multiplied by the amount of
time current flowed®.

Electrical energy poses two distinctly different threats to any living body: the first threat is
forced activation of the body’s nervous system by electric current passing through nerve cells, and
the second threat is burning from the thermal power dissipated in flesh and bone. Both threats are
direct functions of the amount of energy delivered to the body, with the first effect (called electric
shock) beginning at lower levels of current than the second effect.

Electric shock — not to be confused with the general condition of circulatory shock characterized
by reduced blood circulation in the body — first manifests as a tingling sensation, then as pain
with greater electric current intensity. At a certain threshold value, the current will be sufficient
to override voluntary muscle control. At higher levels of current, breathing will become difficult
or may cease due to paralysis of the diaphragm muscles within the chest. At even higher levels of
current, the heart (itself a muscle of the body) will either fall into an arrhythmic beat pattern or
cease beating altogether. All of these effects will occur at current levels significantly less than one
Ampere.

Some of the most detailed data we possess on the effects of electric shock come from the research
of University of California Berkeley Professor Charles Dalziel, who in the year 1961 published a
report entitled “Deleterious Effects of Electric Shock”. Dalziel performed electric shock experiments
on human volunteers, subjecting both males and females to varying degrees of electric current, both
direct (DC) and alternating (AC), for the purpose of determining thresholds of sensation, pain, and
loss of muscular control.

Table II of Dalziel’s’ report (shown on page 24) is partially? reproduced in the following table.
The headings “M” and “F” refer to male and female subjects, respectively. Tests conducted using
direct current® are labeled “DC” while tests conducted using alternating current* are labeled with

1Putting units of measurement to this concept, the amount of energy in Joules is equal to average power in Joules
per second multiplied by time in seconds, with the unit of “seconds” canceling out. For brief exposures to electricity,
such as lightning strikes, the most important measurement with regard to safety is the total energy delivered to the
body. The same is true for deliberate applications of electricity to the body, for example cardiac defibrillators, where
the machine’s setting is calibrated in Joules of energy delivered per impulse.

2The original Table I contained a column of data representing thresholds for women at 10 kHz alternating current,
but these were estimations and not actual data. Extrapolating from the other data points where women tended to
exhibit the same effects as men at approximately % the current, Dalziel writes, “Tests on women were not made on
frequencies other than 60 cycles, but if it is assumed that the response for women would be similar, values for women
can be estimated at two-thirds of the corresponding value for men.” Readers should note that I have taken editorial
liberties with the description of bodily effects, for no reason other than formatting.

3Direct current, or DC, refers to a continuous flow of electric charge carriers in one direction only.

4 Alternating current, or AC, refers to an electric current that periodically switches direction, the period of that
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frequency values expressed in the unit of Hertz (Hz) or cycles per second. All data points are
expressed in milliAmperes (mA), one milliAmpere being Tloo of an Ampere:

Bodily effect DC, M | DC,F | 60 Hz, M | 60 Hz, F | 10 kHz, M
Slight sensation 1 mA 0.6 mA 0.4 mA 0.3 mA 7 mA
felt on hand
Median perception 5.2 mA | 3.5 mA 1.1 mA 0.7 mA 12 mA
threshold
Shock, with no loss 9 mA 6 mA 1.8 mA 1.2 mA 17 mA

of muscular control

Pain, with 50%
of subjects losing 62 mA | 41 mA 9 mA 6 mA 55 mA

muscular control

Pain, labored breathing,
99.5% of subjects losing | 90 mA | 60 mA 23 mA 15 mA 94 mA

muscular control

For rather obvious reasons no human tests were conducted to the point of cardiac fibrillation.
Dalziel’s report does, however, provide data collected on a variety of animals (pigs, sheep, calves,
dogs, cats, guinea pigs, rabbits) which were anesthetized and then administered large amounts
of electric current until their hearts malfunctioned. From this admittedly limited data, Dalziel
extrapolated the values to obtain 500 mA (3 Ampere) of direct current and 100 mA ({5 Ampere)
of alternating current as thresholds for “possible” human heart fibrillation following a three-second
electric shock.

All gruesome details aside, the lesson to be learned here is very plain: very little electric current
is necessary to induce painful and even life-threatening effects on the human body! These danger
thresholds are all substantially less than the amount of current most power conductors are rated to
handle, and less than the ratings of fuses and circuit breakers designed to protect conductors from
overheating.

switching measured in cycles per second or Hertz. In North America, the standard AC grid power frequency is 60
cycles per second, or 60 Hz. The second AC frequency used in Dalziel’s experiments is 10 kHz, which is 10 kilo-Hertz,
or 10000 cycles per second.
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The first line of defense against electrical shock is to place as much electrical resistance between
your body and the circuit’s conductors as is practical, as a means of impeding the flow of electric
current to and through your body. Turning “off” any disconnecting switches between the circuit and
its energy source is a simple means to do this, essentially inserting an air gap between the circuit and
its normal source of power. This allows all points within the circuit to achieve an equipotential state,
which may then be made equipotential to your body by connection to Earth ground (where you are
standing). If there is no voltage present (i.e. no difference in the potential energy levels of electric
charge carriers at different points), then there should be no possibility of dissipating electrical energy
into your body.

Once all electrical energy sources have been disconnected from the circuit you intend to work
on, an additional safety measure is to bond that circuit’s power conductors to Earth ground. This
step forces the power conductors to be electrically common with Earth, and therefore guarantees
a condition of equipotentiality with the Earth. Line workers who install and maintain electric
power line conductors do this as a standard part of their operating procedure: attaching temporary
grounding cables between the power conductors and Earth after opening all disconnect switches
normally connecting those lines to electrical sources. This extra step of bonding the power conductors
ensures no stray sources” of electrical energy may pose a threat.

The following photograph shows a work site at a 230 kV (230,000 Volt!) electrical substation,
where electricians are busy performing maintenance work on a high-voltage component. In addition
to opening large switches (called disconnects) to isolate this new component from any source of
voltage, they have taken the additional step of bonding the high-voltage conductors to each other
and to Earth ground by means of temporary wire cables. The cables on this work site happen to be
yellow in color, and may be seen hanging down from C-shaped clamps attached to three horizontal
metal tubes called busbars which serve as conductors for electricity in this substation:

5Examples include electrostatic or magnetic “coupling” with adjacent energized power lines, nearby lightning
strikes, etc.
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Obviously, such measures are quite necessary on high-voltage systems such as substation busbars
— there simply is no safe way to work on energized conductors at this voltage level. However,
in lower-voltage circuits it is often necessary to take electrical measurements and make certain
adjustments while the circuit is in an energized state. If the circuit in question cannot be “killed” by
disconnection of its power source and therefore must be worked on “live”, the next best protective
measure is to layer insulating material on your body where contact might otherwise be made to
permit an electric current through it. This means wearing insulating gloves and shoes, at minimum.
The principle behind this technique is Ohm’s Law: for any given amount of voltage (V'), current (I)
will be inversely proportional to the total resistance (R) of the circuit pathway. Layering electrically
insulating material over your body’s possible points of contact (e.g. hands, feet) increases the total
resistance of the circuit pathway, and therefore minimizes the amount of current that may flow in
the event of physical contact between two points where a substantial voltage exists.

Lastly, in order to minimize the risk of electric current passing through one’s chest (where the
heart and diaphragm muscles are located), a wise habit when working on energized circuits is to
place one hand in a pocket so that only one hand is in use. This will not only prevent arm-to-arm
passage of electric current, but it also minimizes the number of potential points of contact with bare
skin. Electrical practitioners commonly refer to this as the One-Hand Rule. Ideally, the best hand
to place in a pocket is the left hand, because this is the side of the body where the heart is most
vulnerable.

It is worth noting that the danger from electric shock is best quantified in terms of current, not
voltage, since it is electric current that activates nerve cells. The amount of current passing through
a victim’s body from an applied voltage is a function of Ohm’s Law (I = %), and since resistance (R)
varies greatly with skin dryness and layering provided by shoes and clothing, it is difficult to predict
how much voltage poses a shock hazard. A generally accepted threshold of danger is 30 Volts, but
this assumes direct contact with dry skin. Moist skin, perspiration, cuts or punctures, and other
factors reducing body resistance may greatly reduce the voltage threshold for shock hazard! Another
factor is the general health of the victim prior to receiving the electric shock. A preexisting cardiac
condition will likely predispose that individual to harm resulting from an electric shock.

Burns produced by electricity passing through the body may manifest on the skin, at the point
of contact with an electrical conductor (such as a wire), or in severe cases may extend to internal
organs. Comparing internal flesh with skin, dry human skin tends to exhibit much greater levels
of electrical resistance than the internal organs which are wet. This is why electricity causes skin-
surface burns before causing internal organ burns: for any given amount of electric current passing
through different resistances, power dissipated by that current will be greatest at the area greatest
resistance. Mathematically stated, P is maximized where R is greatest, given any value of (I), in
accordance with Joule’s Law (I*R).

Another mechanism of electrically-caused burns is arc flash: the heating of air by the passage
of electric current through it (rather than through the body). Under normal conditions air is an
extremely good insulator of electricity, with no free charge carriers available to sustain an electric
current. However, when sufficient voltage causes the electrons in air molecules to separate from
their respective atoms, the negatively-charged electrons and positively-charged ions constitute charge
carriers, and will form an electric current called either a spark or an arc. This current heats the air
molecules by dissipating power as described by Joule’s Law (P = I2R), with I being the magnitude
of current traveling through the ionized air and R being the resistance of the arc path.
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The amount of resistance exhibited by a high-temperature arc is surprisingly low, typically less
than one Ohm across the entire length of the arc. With such low resistance, Ohm’s Law predicts
relatively high current values for even modest voltages (I = %), resulting in high power levels. Even
if the amount of energy released by each charge carrier moving through the arc is small, the fact that
a great many charge carriers are moving through the arc each second means that the total amount
of energy dissipated may be phenomenally large. This is why arcs forming in high-voltage electric
power systems may reach temperatures of tens of thousands of degrees®!

In the United States of America, a widely respected standard document for electrical hazards and
protection is the National Fire Protection Association (NFPA) standard 70E. This document rates
both electric shock and arc flash hazards for electric power circuits based on voltage and current
capabilities, as well as specifies best practices for protection against those hazards.

An example of NFPA 70E standards applied to an industrial installation is the following pair of
photographs showing warning labels affixed to metal-clad electrical switchgear (i.e. metal cabinets
housing large circuit breakers). Each label cites both arc flash and electric shock hazards, including
boundary distances within which greater hazards exist:

Arc Flash and Shock Hazard
Appropriate PPE Required
Arc Flash P Arc Flash Protection
iy Arc Flashsgounzgt;mo“ 138in Arc Flash Boundary

4.4 callem?2  Incident Energy at 36 in

Incident Eney ‘
"9y at 18 in ‘ Refer to NFPA 70E-15 Table H.3(b) for
[

Refer to NFPA 70E-15 Table H.3(b) for

guidance on selection of arc-rated guidance on selection of arc-rated

clothing and other PPE, clothing and other PPE. i
Shock Protection H Shock Protection
Shock Hazard when cover is removed 2400 VAC Shock Hazard when cover is removed
Glove Class 1 Glove Class

42in Limited Approach Boundary 60in Limited Approach Boundary
Restricted Approach Boundary 26in Restricted Approach Boundary

www.andritz.com  Richmond, BC +1 (604) 214 9248
Project No: 11913-00 ‘ Prepared on: D ber 18, 2015

Warning: Changes in equipment settings or Waring: Cheries i
& '|ﬂ. system configuration il invaldate the smm%ﬂewm
' Automation cacusted vaies and PE requiemerts Automation =

The first line of defense against arc flash is the same as for electric shock: de-energize the circuit
so there will be no electrical energy present to harm you. The procedure for de-energizing includes
placing a warning tag as well as a secure lock on any main disconnecting switches or circuit breakers
to ensure power does not get accidently applied to the circuit while people are in harm’s way. This
is referred to in industry as lock-out, tag-out, or LOTO.

6The NFPA 70E electrical safety standard (Informative Annex K) cites temperatures as high as 35,000 degrees
Fahrenheit in arc flash events, and states that such events are lethal at distances up to 10 feet (3.05 meters). It is worth
noting that electric arc temperatures are limited only by the rate of power dissipated in the arc. Unlike chemically-
driven combustion events, where temperature is limited by the rate at which the various chemical reactants are able
to combine, no such limiting factor exists with electric arcs: the more power dissipated in the arc, the hotter it will
become. These temperatures involved with electric power faults can be so high that they vaporize the metal wires!
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Generally accepted lock-out, tag-out procedures for electrical equipment include (but are not
limited to) the following steps:

1. Turn equipment off using regular on/off switch to interrupt load current
2. Open all disconnect switches and/or circuit breakers feeding electrical power to the equipment

Visually confirm (if possible) that all poles of the disconnecting switch(es) are open

-~ w

Attempt to re-start equipment as your first confirmation that power is indeed shut off

5. Attach locks and tags to prevent disconnecting switches from being re-closed; if no lockable
disconnect means exists, you must open and tag two or more redundant disconnects!

6. Confirm proper operation of voltage meter against a known source

7. Test for dangerous voltage between all relevant conductors, especially those you could bodily
contact, including between pairs of phase conductors in a polyphase system as well as between
each phase conductor and earth ground

8. Confirm (again) proper operation of voltage meter against a known source

Such a lengthy procedure may seem paranoid, but there is good reason for all these steps.
Remember that all safety standards and procedures are written in blood: in other words, every one
of them exists because either someone got hurt or came close to getting hurt by not taking appropriate
precautions. One example of the latter is the following photograph generously shared by Jim Lyon”
who discovered a failed three-phase disconnect switch during a routine LOTO procedure:

As you can see in this photograph, one of the linkages between the disconnecting switch pole and
the actuating lever has broken, allowing one phase to remain closed while the other two opened as
they should. Such a failure would neither be apparent to the operator of that switch nor by anyone’s
external inspection of it, but would be revealed by proper voltage testing (phase-to-ground) on
that faulted phase conductor. Had Mr. Lyon simply trusted the switch handle’s “off” position as
proof of a zero-energy state, he could have been electrocuted touching the un-opened conductor
“downstream” of the switch.

"Mr. Lyon granted me permission to include his safety-related photographs in my open-source writings during an
exchange on the professional social-media website LinkedIn.
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Another important note with regard to electrical safety and LOTO is the proper function of your
test equipment. Multimeters and test leads are not just tools for precision measurement, but are
life-saving indicators of dangerous voltage. I have personally witnessed multiple instances of failed
multimeter test leads, where one or more leads failed open such that the meter could not reliably
register the presence of voltage. This is why good LOTO procedure always includes verification of
the meter both before and after checking for dangerous voltages at the system conductors.

In cases where de-energization is not possible or not practical, special “arc-flash rated” clothing
may be worn to protect your skin against the high temperatures of arc flash should an arc flash
occur. Arc flash suits cover all skin surfaces, and are rated according to the number of calories® of
heat the fabric may sustain without disintegrating. The following photograph shows a pair of arc
flash suits hanging on a wall ready for electricians to use while working on circuit breakers at an
electric power generating station:

The blue-colored hood covers the worker’s head and neck, while the grey-colored jumpsuit covers
the rest of the worker’s body.

8A calorie is simply another unit of energy measurement. The unit-conversion equivalence is 4.187 Joules per
calorie.
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The hazards of electrical arcs are not limited to bodily burns. Given sufficient arc power, the
explosive expansion of hot air and the shrapnel created by disintegrating hardware represents its
own unique hazard, known as arc blast. As an electrically-driven explosion®, arc blast is limited only
by the available power of the fault, and can in fact be more violent than a chemical explosion. No
suit can ensure safety against arc blast, and so the only reasonable precaution is maintaining a safe

distance beyond the blast radius.

9The concussive effects of an arc blast originate from the rapid expansion of air and vaporized metal, producing
intense sound waves and blast pressures. Extremely bright light, as well as high temperatures caused by convection
of super-heated air and by radiation of infrared light from the arc are capable of creating third-degree burns on
unprotected skin.



Chapter 6

Animations

Some concepts are much easier to grasp when seen in action. A simple yet effective form of animation
suitable to an electronic document such as this is a “flip-book” animation where a set of pages in the
document show successive frames of a simple animation. Such “flip-book” animations are designed
to be viewed by paging forward (and/or back) with the document-reading software application,
watching it frame-by-frame. Unlike video which may be difficult to pause at certain moments,
“flip-book” animations lend themselves very well to individual frame viewing.

49
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6.1 Rotating magnetic field animated

The following animation shows how the “rotating” magnetic field of a three-phase AC induction
motor is produced by the interaction of three stator winding sets energized with different phases
(A, B, and C) of a three-phase AC power source. A red arrow shows the direction of the resultant
magnetic field created by the interaction of the three winding sets.
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Chapter 7

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.
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7.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C4++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C+-+ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>
using namespace std;

int main (void)

{
float x, y;
x = 200;
y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;
cout << "the two numbers " << x << " and " << y << " and then" << endl;
cout << '"displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;
cout << "Difference = " << x - y << endl;
cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0O;

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C4++ code, and is included only to make the code more pleasing! to view.

L Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.



7.1. PROGRAMMING IN C++ 7

Let’s examine the C++ source code to explain what it means:

#include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here; but it is fairly standard practice in C4++ programming.

Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments
to that function. Braces surround lines of executable code belonging to a particular function.

The float declaration reserves places in the computer’s memory for two floating-point
variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz
would be a single variable).

The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout
command. Note how verbatim text is enclosed in quotation marks, while variables such as x
or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.
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After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system?, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

gt++ -0 myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram. exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram. exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio®, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on
the two numbers 200 and -560.5 and then
displays the results on the computer’s console.

Sum = -360.5
Difference = 760.5
Product = -112100
Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.
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learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.



80 CHAPTER 7. PROGRAMMING REFERENCES

7.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python3* and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> symbols represent the prompt within the Python interpreter “shell”; signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200
>>> y = -560.5
>>> x +y
-360.5
>>> x -y
760.5
>>> x x y
-112100.0
>>x /vy
-0.35682426404995538
>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.
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More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *
>>> 5in(30.0)
-0.98803162409286183
>>> sin(radians(30.0))
0.49999999999999994
>>> pow(2.0, 5.0)

32.0

>>> 10g10(10000.0)

4.0

>>> e
2.7182818284590451

>>> pi
3.1415926535897931

>>> log(pow(e,6.0))
6.0

>>> asin(0.7071068)
0.78539819000368838
>>> degrees(asin(0.7071068))
45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the 1og10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.
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Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors® as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * £ * 4.7e-6)

>>> zc complex (0,-xc)

>>> x1 =2 % pi * f % 1.0

>>> z1 = complex(0,x1)

>>> r + zc + z1
(400-187.388112391548823)

>>> 1/(1/r + 1/zc + 1/21)
(355.837695813625+125.357937776193853)
>>> polar(r + zc + zl)
(441.717448903332, -0.4381072059213295)
>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)
-0.4381072059213295

>>> degrees(phase(r + zc + z1))
-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect () function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as X¢ £ —90° with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 §2), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0 — j X,  and
0+ jX; Q, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Q / —25.102°).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians; abs() returns
just the polar magnitude; phase () returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.
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assignment of variables as well as a convenient text record® of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram. py:

x = 200
y = -560.5

print ("Sum")
print(x + y)

print ("Difference")
print(x - y)

print ("Product")
print(x * y)

print ("Quotient")
print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5
Difference
760.5

Product
-112100.0
Quotient
-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.
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If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.



7.3. MODELING WYE AND DELTA NETWORKS USING C++ 85

7.3 Modeling Wye and Delta networks using C++4

The following program written in the C++ programming language calculates parameters in a three-
phase circuit, where the source may be either Wye or Delta, and the load may also be (independently)
Wye or Delta:

#include <iostream>
#include <cmath>
using namespace std;

int main (void)
{
bool source_wye, load_wye;
float Vsrc_phase, V_line, Vld_phase, Isrc_phase, I_line, Ild_phase, Rld_phase;

cout << "Enter source phase voltage: ";
cin >> Vsrc_phase;
n

cout << "Choose source type, Wye (1) or Delta (0): ";
cin >> source_wye;

cout << "Enter load phase resistance: ";

cin >> Rld_phase;

cout << "Choose load type, Wye (1) or Delta (0): ";
cin >> load_wye;

if (source_wye == true)

V_line = sqrt(3) * Vsrc_phase;
else

V_line = Vsrc_phase;

if (load_wye == true)

V1d_phase = V_line / sqrt(3);
else

V1ld_phase = V_line;

I1d_phase = Vld_phase / Rld_phase;

if (load_wye == true)
I_line = Ild_phase;
else
I_line = sqrt(3) * Ild_phase;

if (source_wye == true)
Isrc_phase = I_line;
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else
Isrc_phase = I_line / sqrt(3);
cout << "Source phase voltage = " << Vsrc_phase << " Volts" << endl;
cout << "Source phase current = " << Isrc_phase << " Amperes" << endl;
cout << "Line voltage = " << V_line << " Volts" << endl;
cout << "Line current = " << I_line << " Amperes" << endl;
cout << "Load phase voltage = " << Vld_phase << " Volts" << endl;
cout << "Load phase current = " << Ild_phase << " Amperes" << endl;
cout << "Total power = " << V_line * I_line * sqrt(3) << " Watts" << endl;
return 0;
}

Let’s analyze how this program works, exploring the following programming principles along the

way:

e Order of execution

e Preprocessor directives, namespaces

e The main function: return values, arguments

e Delimiter characters (e.g. { } ;)

e Variable types (float, bool), names, and declarations

e Printing text output (cout, <<, endl)

e Accepting user input (cin, >>)

e Conditional statements (if, else)

e Comparison (==)

e Basic arithmetic (¥, /)

e Arithmetic functions (sqrt)

e Boolean states (true, false)

The first thing we should recognize is that the sequence of execution for this code is in the same
order you would read an English document: left to right and top to bottom. This is very common
in text-based computer programming languages.

The #include and namespace directives instruct the compiler how to interpret later instructions
such as cout and sqrt. The main function encapsulates all the code we wish to run (enclosed
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between a matching pair of “curly-brace” symbols: { }), and presents it to the compiler software as
the first point of execution for the compiled program.

The first two lines within the main function declare all the variables this program will need for
its mathematical calculations. In C and C++ all variables used in a program must be explicitly
declared by type and by name before they are used in any way. This ensures the computer knows
how much memory to reserve for each variable, and how to access each one. Here we have two
Boolean-type variables capable only of being true or false, 1 or 0; also we have seven floating-point
variables suitable for representing “real” numbers.

Note how variable names in C/C++ may be any combination of letters, and are case-sensitive.
Spaces are not allowed in variable names because these are interpreted by the compiler software to
be delimiting symbols, separating different objects. This is why underscore characters (-) are used
in some of these variable names, to put some visual separation between parts of the variable name
while maintaining an unbroken word for that name.

All cout lines print text to the computer’s console for viewing by the user. All cin lines accept
user-typed input. Like the variable declaration lines, each of these is terminated by a semicolon
character (;) to signify the end of each complete line of code. This is necessary, like the period
symbol at the end of a sentence, to tell the C++ compiler software where each line of code stops
and the next begins, because in C and C++ whitespace in the source code is ignored.

Much of this program consists of if and else statements, the purpose of these being to check
condition of the Boolean variables (true or false) and use these conditions to calculate phase
quantities from line quantities (or vice-versa). Immediately following each if and else statement is
a single line of code containing one or more arithmetic instructions, which is what will be executed if
the condition is true. If the condition stated within the parentheses of an if statement is true, then
the line following that if statement is executed and the else line (and its following statement) are
ignored. If the condition for an if statement is false, the computer skips ahead to the line following
the else statement and executes that (only).

Note the use of double-equals symbols (==) in the if statement conditional lines. In C and C++,
the double-equals symbol means check for equality and returns a result that is either true or false.
Compare this with the use of the single-equals symbols in all the calculation lines. In C and C++,
a single equals symbol means the variable on the left will be set equal to the quantity on the right.

Finally, at the end of the program we have a set of cout lines instructing the computer to print
text labels and variable values to the console for viewing. Anything enclosed in parentheses is printed
verbatim, while anything in a cout line not enclosed in parentheses will have its value printed to
the console rather than the literal letters of its name. Note also how endl is a special control word,
instructing the computer to terminate that line of printed text and begin a new line.
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Here is an example screenshot of this program running:

Enter source phase voltage: 120

Choose source type, Wye (1) or Delta (0): 1
Enter load phase resistance: 100

Choose load type, Wye (1) or Delta (0): O
Source phase voltage = 120 Volts

Source phase current = 3.6 Amperes

Line voltage = 207.846 Volts

Line current = 3.6 Amperes

Load phase voltage = 207.846 Volts

Load phase current = 2.07846 Amperes
Total power = 1296 Watts

An interesting simplification of the conditional (if) code is to eliminate the equality check, since
the variables whose states we are checking are already Boolean in nature and therefore can only be
either true or false (1 or 0). Conditional statements such as if evaluate the check function within
their parentheses and then act on the result of that check either being true or false. However, since
the variable’s we're checking are already either true or false, we may simplify the if statements in
the following manner, as shown in this portion of the source code listing;:

if (source_wye)

V_line = sqrt(3) * Vsrc_phase;
else

V_line = Vsrc_phase;

if (load_wye)

Vld_phase = V_line / sqrt(3);
else

V1ld_phase = V_line;

I1d_phase = V1d_phase / Rld_phase;

if (load_wye)
I_line = Ild_phase;
else
I_line = sqrt(3) * Ild_phase;

if (source_wye)
Isrc_phase = I_line;
else
Isrc_phase = I_line / sqrt(3);

For example, if (source_wye) is logically equivalent to if (source_wye == true).



Chapter 8

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read' the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture?, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding — How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

89



90 CHAPTER 8. QUESTIONS

GENERAL CHALLENGES FOLLOWING TUTORIAL READING

e Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

e Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

e Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

e Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

o Identify any new concept(s) presented in the text, and explain in your own words.

e Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

e Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

e Devise an experiment to disprove a plausible misconception.

e Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

e Describe any useful problem-solving strategies applied in the text.

e Devise a question of your own to challenge a reader’s comprehension of the text.
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GENERAL FOLLOW-UP CHALLENGES FOR ASSIGNED PROBLEMS

e Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

e Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

e Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

e Is there more than one way to solve this problem? Which method seems best to you?

e Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

e What would you say was the most challenging part of this problem, and why was it so?
e Was any important information missing from the problem which you had to research or recall?

e Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

e Examine someone else’s solution to identify where they applied fundamental laws or principles.

e Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

e For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

e For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

e For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

e Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

e Identify where it would be easy for someone to go astray in attempting to solve this problem.

e Formulate your own problem based on what you learned solving this one.

GENERAL FOLLOW-UP CHALLENGES FOR EXPERIMENTS OR PROJECTS

e In what way(s) was this experiment or project easy to complete?

e Identify some of the challenges you faced in completing this experiment or project.
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Show how thorough documentation assisted in the completion of this experiment or project.

Which fundamental laws or principles are key to this system’s function?

Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

What will happen if (component X) fails (open/shorted/etc.)?

What would have to occur to make this system unsafe?
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8.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking®. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3 Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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8.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” — Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should
read these educational resources closely, write their own outline and reflections on the reading, and
discuss in detail their findings with classmates and instructor(s). You should be able to do all of the
following after reading any instructional text:

Briefly OUTLINE THE TEXT, as though you were writing a detailed Table of Contents. Feel
free to rearrange the order if it makes more sense that way. Prepare to articulate these points in
detail and to answer questions from your classmates and instructor. Outlining is a good self-test of
thorough reading because you cannot outline what you have not read or do not comprehend.

Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as
you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded
in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor
and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.
Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

Specifically identify any points you found CONFUSING. The reason for doing this is to help
diagnose misconceptions and overcome barriers to learning.



8.1. CONCEPTUAL REASONING 95

8.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

’ Kirchhoff’s Voltage Law ‘

’ Kirchhoff’s Current Law ‘

Grounding

[ Alternator |

Alternator

’ Phasor diagram ‘

’ Phase sequence ‘

’ Wye connection ‘

’ Delta connection ‘

’ Phase versus line ‘

’Wye voltages and currents ‘

’ Delta voltages and currents ‘
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’Advantages of polyphase electrical systems

’Power in a three-phase system

’ Wye grounding ‘

’ Delta grounding ‘

8.1.3 Similar voltages and currents

Identify points within this circuit absolutely guaranteed to share the same current, whether or not
the source or load happen to be balanced:

® O ¢ 00

1 Source

Next, identify point-pairs within this circuit absolutely guaranteed to share the same voltage
between them, whether or not the source or load happen to be balanced.

In each case, identify the fundamental electrical principle that guarantees these equalities.

e What conditions would have to be met in order for I, = I5 = I?

e What conditions would have to be met in order for Vi o = Vo3 = V317
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8.1.4 Testing for single-phase or three-phase

Suppose you are preparing to repair some power wiring inside of a home, and are wondering whether
or not the home is supplied with 3-phase or single-phase power. You do not have a voltmeter available
to measure voltage, but you do have plenty of electric lamps, switches, wires, and other standard
residential wiring components available for use.

The two possibilities for this home’s power source are shown here, the coils representing secondary
windings of the utility power transformer:

Single-phase
120V 120V
2?7
Line Neutral Line Line Neutral Line
(IIHOtII) (IIHOtII) (IIHOtII) (IIHOtII)

An experienced electrician suggests you build the following circuit to test whether or not the
home’s power is supplied by a 3-phase source or a single-phase source:

Line Line Neutral

L

Main !
circuit 0
breaker L
Test circuit
e

The electrician tells you to open and close the switch, and observe the brightness of the lamps.
This will indicate whether or not the system is 3-phase.

Explain how this circuit works. What sort of lamp behavior would indicate a 3-phase source?
What sort of lamp behavior would indicate a single-phase source?

Is this test circuit capable of indicating the phase rotation of the source, assuming it is three-
phase?
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e Assuming you did possess an AC voltmeter at this work site, describe how you could use that
meter to tell whether this was a polyphase or single-phase power system.

e If the utility transformer were pole-mounted and visible from ground level, what details might
you look for to determine whether this was a polyphase or single-phase power system?

e Explain why the “Hot” conductors are called by that name.



8.2. QUANTITATIVE REASONING 99

8.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
erTors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases™” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely” on an answer key!

4

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students
to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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8.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (o) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) x 10~% H/m represents a center value (i.e. the location
parameter) of 1.25663706212 x 10~ Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 x 106 Henrys per meter.

Avogadro’s number (N4) = 6.02214076 x 10?* per mole (mol™!)

Boltzmann’s constant (k) = 1.380649 x 10~2% Joules per Kelvin (J/K)

Electronic charge (¢) = 1.602176634 x 107! Coulomb (C)

Faraday constant (F) = 96,485.33212... x 10* Coulombs per mole (C/mol)

Magnetic permeability of free space (uo) = 1.25663706212(19) x 1076 Henrys per meter (H/m)
Electric permittivity of free space () = 8.8541878128(13) x 10~!2 Farads per meter (F/m)
Characteristic impedance of free space (Zp) = 376.730313668(57) Ohms (€2)

Gravitational constant (G) = 6.67430(15) x 107! cubic meters per kilogram-seconds squared
(m?/kg-s”)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 x 10~3* joule-seconds (J-s)

Stefan-Boltzmann constant (o) = 5.670374419... x 10~® Watts per square meter-Kelvin*
(W/m?K*)

Speed of light in a vacuum (¢) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants — Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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8.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

A B C D
Di stance travel ed 46.9 Ki |l ometers
Ti me el apsed 1.18 Hour s
Aver age speed =Bl / B2 km' h

G |WI|IN |

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables® would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.



102 CHAPTER 8. QUESTIONS

Common” arithmetic operations available for your use in a spreadsheet include the following:
e Addition (+)

e Subtraction (-)

e Multiplication (*)

e Division (/)

e Powers ()

e Square roots (sqrt())

e Logarithms (1n() , 1og10Q))

Parentheses may be used to ensure® proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of az? + bz + c:

_ —b=EVb? —4ac

. 2a
A B
1 x_1 = (-B4 + sqrt((B4°2) - (4*B3%*B5))) / (2*B3)
2 X_2 = (-B4 - sqrt((B4°2) - (4*B3+*B5))) / (2+*B3)
3 a= 9
4 b = 5
5 c = -2

This example is configured to compute roots’ of the polynomial 922 4 5z — 2 because the values
of 9, 5, and —2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and ¢ coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

"Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9962 + 52 — 2) the two roots happen to be z = 0.269381 and = = —0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.



8.2. QUANTITATIVE REASONING 103

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y = V/b% — dac z=2a

_ —b*y
z
A B C

1 x_1 = (-B4 + C1) / C2 |= sqrt((B4°2) - (4*B3+*B5))
2 X_2 - (-B4 - c1) / c2 |=2*B3

3 a = 9

4 b = 5

5 c = )

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary'? — all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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8.2.3 Total power dissipation

The line voltage to this three-phase load is 480 Volts. How much power (total) is dissipated by the
load? How much current is there in each line supplying the load?

V”ne: 480 VAC
|
[ 1
25Q
YAVAYA
25Q 25Q

Ptotal =

Iline =

e Suppose the load were unbalanced instead of balanced as it is. How could we calculate total
power in this case?
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8.2.4 Balanced Delta source and Delta load

Calculate all voltages and currents in this three-phase circuit where a three-phase generator delivers
electrical energy to a resistive load:

Source [ Load
4115 VWA
220V 790 Q

Viine =

® ljine =

Vphase (source) =

o [ hase (source) =

Vphase (load) =

Iphase (load) =

L4 Ptm‘,al =

e A common challenge for students new to three-phase circuit calculations is remembering when
phase and line quantities differ, versus when they are the same. Explain how we may draw
correct conclusions based on the properties of series versus parallel networks.
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8.2.5 Balanced Delta source and Wye load

Calculate all voltages and currents in this three-phase circuit where a three-phase generator delivers
electrical energy to a resistive load:

<o
\‘34 11

0 Gce

Vphase (source) =

Iphase (source) =

Vphase (load) =

® [hase (load) =

Wine =

Il?ine =

L4 Ptotal =

e A common challenge for students new to three-phase circuit calculations is remembering when
phase and line quantities differ, versus when they are the same. Explain how we may draw
correct conclusions based on the properties of series versus parallel networks.
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8.2.6 Balanced Wye source and Delta load

Calculate all voltages and currents in this three-phase circuit where a three-phase generator delivers
electrical energy to a resistive load:

75Q

Piota = 14 KW

Vphase (source) =

Iphase (source) =

Vphase (load) =

® [hase (load) =

Wine =

Il?ine =

e A common challenge for students new to three-phase circuit calculations is remembering when
phase and line quantities differ, versus when they are the same. Explain how we may draw
correct conclusions based on the properties of series versus parallel networks.
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8.2.7 Three-phase versus single-phase power transmission

A balanced, three-phase power system has a line voltage of 13.8 kV and a line current of 150 Amperes.
How much power is being delivered to the resistive load?

V“ne = 138 kV
IIine = 150 A
3-phase 3-phase
source load
Lines

A 13.8 kV single-phase system could be designed to provide the same amount of power to a load,
but it would require heavier-gauge (more expensive!) conductors. Determine the extra percentage
of expense in wire cost (based on the weight of the wires) resulting from the use of single-phase

instead of three-phase.

Viine = 13.8 kV
Single-phase Single-phase
source load
Lines

Also, explain why a three-phase power system has a phase sequence or phase rotation but a

single-phase power system does not.

e If three-phase requires less conductor metal than single-phase, would four-phase be even better?

e What would a two-phase system look like, and would it have a phase rotation?
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8.2.8 Three-phase electric motor with CT current measurement

Suppose the current through each of the ammeters is 2.81 Amperes, and the ratio of each current
transformer is 100:5. Calculate the horsepower output of this AC motor, assuming a power factor

of 1 and an efficiency of 88%:

T1 T2 T3

Thermal overload

100:5

B O) Contactor 5 o]
[©] [
100:5
480VAC | e O)
3-phase |
100:5

Ammeters

=l

o Why do you suppose CTs are being used to aid in current measurement, as opposed to directly-

connected ammeters?
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8.2.9 Direct-coupled and transformer-coupled loads

Calculate the operating current through each of the load resistances shown in this circuit (assuming
each three-phase load is balanced), as well as the power dissipated by each load:

A
Vine=138KkV B

U

L
S G
Lkl |

1240 Q

R,
950 Q

e If a resistor in either load happens to fail open, will that fault affect current in any other
resistor within that load?

e If a resistor in either load happens to fail open, will that fault affect current in any other
resistor within the other load?
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8.2.10 Wye source and Wye load with and without line fault

Calculate the amount of current output to the ammeter by the current transformer (CT) under
normal load conditions, assuming a balanced three-phase source and a balanced three-phase load:

300:5
I
Ammeter
A
/T\
—_ p
Vpnase = 72KV ? 650

65Q

Iammeter =

Now, re-calculate the ammeter’s current supposing a tree branch falls across lines A and C,
causing a low-resistance fault:

300:5
I
Ammeter
A
/T\
—_ p
Vphase = 72 KV b 65Q
L % Riai =10Q
- 65Q
) 650

[ammeter =

Hint: you will need to consider phase angles for the fault current calculation! Feel free to assume
an ABC phase rotation, where V4 = 7200 V £0° and Vg = 7200 V /—120° and V¢ = 7200 V £120°.
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e Will the load phase currents be affected by this fault?

8.2.11 Balanced Wye source with unbalanced Delta load

Calculate the amount of current passing through each of the line conductors as this balanced Wye
source powers an unbalanced Delta load:

70Q
|

110Q 80 Q
2400V O C°
C

CBA phase rotation

T4

Ip =
Io =

Also, express voltage Vpc (voltage and phase angle as sensed by an oscilloscope with probe
touching B and reference touching C) as a phasor quantity.

e Does the imbalance of this circuit affect voltages, currents, or both.

e Identify some of the fundamental principles of electric circuits (e.g. laws, properties) applicable
to the solution of this problem.

e Is an unbalanced load realistic? Why or why not?
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8.2.12 Balanced Wye source with unbalanced Delta load and line fault

Calculate the amount of current passing through each of the line conductors as this balanced Wye
source powers an unbalanced Delta load with a fault between line conductors B and C, the fault
itself equivalent to a 3 Ohm resistance in series with a 1000 uF capacitance:

1 70 Q
VWA

110 Q 80 Q
2400V O C°
C

CBA phase rotation

Note that the fault is not shown in this diagram, and is left for you to insert.
Iy =
Ip =

I =

e How does the presence of this fault affect the phasor diagram for line currents?
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8.2.13 Three-phase simulation program

The following computer program written in the C language simulates AC waveforms in a three-phase
system:

{

}

f
{

}

#include <stdio.h>
#include <math.h>

float sinecalc(float);

int main (void)

float angle;
int n;

printf("Angle , Phase A , Phase B , Phase C");
for (angle = 0 ; angle <= 720 ; angle = angle + 10.0)
{
printf ("\n%f", angle);
for (n =0 ; n <=2 ; ++n)
{
printf(" , %f", sinecalc(angle + (n * 120)));

}
}

return 0;

loat sinecalc (float input)

return sin(input * M_PI / 180);

This program outputs text in a comma-separated-variable (CSV) format suitable for plotting

with spreadsheet or other math visualization software, a plot shown on the following page.



QUANTITATIVE REASONING 115

I I I I I ‘data.csv’ usling 1:2 I
‘data.csv’ using 1:3
1r 'data.gsvtusing 1:4 ---;-++ b
0.5 |
0F
-05
IO
1 1 1 1 1 1 1
0 100 200 300 400 500 600 700

Answer the following questions about the program and its corresponding plotted output:

e What purpose is served by the sinecalc() function?

e Which waveform in the plot represents the “A” phase, the “B” phase, and the “C” phase?
e How are the three different phase angles of these waveforms implemented in the code?

e Are both for() loops strictly necessary in this program?

e What would happen if the 10.0 constant value were set to 30.0 instead?

How could the code be modified to plot waveforms with RMS values of 277 Volts each?

e Do these plotted waveforms have a specific frequency? Why or why not?
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8.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough — you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.
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8.3.1 Winding faults within three-phase motors

Three-phase AC induction motors respond differently to the loss (i.e. “open” fault) of one phase
winding, depending on whether they are internally wye- or delta-connected:

A
B

en fault Open fault

Which of these two motor designs will fare better in the event of an open fault in one phase
winding, and why?

e A good problem-solving technique is to insert quantitative values into a problem which has

none. Explain how you might apply such a technique to this problem, and describe how the
results could be helpful.



118 CHAPTER 8. QUESTIONS



Chapter 9

Projects and Experiments

The following project and experiment descriptions outline things you can build to help you
understand circuits. With any real-world project or experiment there exists the potential for physical
harm. FElectricity can be very dangerous in certain circumstances, and you should follow proper safety
precautions at all times!

9.1 Recommended practices

This section outlines some recommended practices for all circuits you design and construct.

119
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9.1.1 Safety first!

Electricity, when passed through the human body, causes uncomfortable sensations and in large
enough measures’ will cause muscles to involuntarily contract. The overriding of your nervous
system by the passage of electrical current through your body is particularly dangerous in regard
to your heart, which is a vital muscle. Very large amounts of current can produce serious internal
burns in addition to all the other effects.

Cardio-pulmonary resuscitation (CPR) is the standard first-aid for any victim of electrical shock.
This is a very good skill to acquire if you intend to work with others on dangerous electrical circuits.
You should never perform tests or work on such circuits unless someone else is present who is
proficient in CPR.

As a general rule, any voltage in excess of 30 Volts poses a definitive electric shock hazard, because
beyond this level human skin does not have enough resistance to safely limit current through the
body. “Live” work of any kind with circuits over 30 volts should be avoided, and if unavoidable
should only be done using electrically insulated tools and other protective equipment (e.g. insulating
shoes and gloves). If you are unsure of the hazards, or feel unsafe at any time, stop all work and
distance yourself from the circuit!

A policy 1 strongly recommend for students learning about electricity is to mever come into
electrical contact® with an energized conductor, no matter what the circuit’s voltage® level! Enforcing
this policy may seem ridiculous when the circuit in question is powered by a single battery smaller
than the palm of your hand, but it is precisely this instilled habit which will save a person from
bodily harm when working with more dangerous circuits. Experience has taught me that students
who learn early on to be careless with safe circuits have a tendency to be careless later with dangerous
circuits!

In addition to the electrical hazards of shock and burns, the construction of projects and running
of experiments often poses other hazards such as working with hand and power tools, potential

IProfessor Charles Dalziel published a research paper in 1961 called “The Deleterious Effects of Electric Shock”
detailing the results of electric shock experiments with both human and animal subjects. The threshold of perception
for human subjects holding a conductor in their hand was in the range of 1 milliampere of current (less than this
for alternating current, and generally less for female subjects than for male). Loss of muscular control was exhibited
by half of Dalziel’s subjects at less than 10 milliamperes alternating current. Extreme pain, difficulty breathing,
and loss of all muscular control occurred for over 99% of his subjects at direct currents less than 100 milliamperes
and alternating currents less than 30 milliamperes. In summary, it doesn’t require much electric current to induce
painful and even life-threatening effects in the human body! Your first and best protection against electric shock is
maintaining an insulating barrier between your body and the circuit in question, such that current from that circuit
will be unable to flow through your body.

2By “electrical contact” I mean either directly touching an energized conductor with any part of your body, or
indirectly touching it through a conductive tool. The only physical contact you should ever make with an energized
conductor is via an electrically insulated tool, for example a screwdriver with an electrically insulated handle, or an
insulated test probe for some instrument.

3 Another reason for consistently enforcing this policy, even on low-voltage circuits, is due to the dangers that even
some low-voltage circuits harbor. A single 12 Volt automobile battery, for example, can cause a surprising amount of
damage if short-circuited simply due to the high current levels (i.e. very low internal resistance) it is capable of, even
though the voltage level is too low to cause a shock through the skin. Mechanics wearing metal rings, for example,
are at risk from severe burns if their rings happen to short-circuit such a battery! Furthermore, even when working on
circuits that are simply too low-power (low voltage and low current) to cause any bodily harm, touching them while
energized can pose a threat to the circuit components themselves. In summary, it generally wise (and always a good
habit to build) to “power down” any circuit before making contact between it and your body.
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contact with high temperatures, potential chemical exposure, etc. You should never proceed with a
project or experiment if you are unaware of proper tool use or lack basic protective measures (e.g.
personal protective equipment such as safety glasses) against such hazards.

Some other safety-related practices should be followed as well:

All power conductors extending outward from the project must be firmly strain-relieved (e.g.
“cord grips” used on line power cords), so that an accidental tug or drop will not compromise
circuit integrity.

All electrical connections must be sound and appropriately made (e.g. soldered wire joints
rather than twisted-and-taped; terminal blocks rather than solderless breadboards for high-
current or high-voltage circuits). Use “touch-safe” terminal connections with recessed metal
parts to minimize risk of accidental contact.

Always provide overcurrent protection in any circuit you build. Always. This may be in the
form of a fuse, a circuit breaker, and/or an electronically current-limited power supply.

Always ensure circuit conductors are rated for more current than the overcurrent protection
limit. Always. A fuse does no good if the wire or printed circuit board trace will “blow” before
it does!

Always bond metal enclosures to Earth ground for any line-powered circuit. Always. Ensuring
an equipotential state between the enclosure and Earth by making the enclosure electrically
common with Earth ground ensures no electric shock can occur simply by one’s body bridging
between the Earth and the enclosure.

Avoid building a high-energy circuit when a low-energy circuit will suffice. For example,
I always recommend beginning students power their first DC resistor circuits using small
batteries rather than with line-powered DC power supplies. The intrinsic energy limitations
of a dry-cell battery make accidents highly unlikely.

Use line power receptacles that are GFCI (Ground Fault Current Interrupting) to help avoid
electric shock from making accidental contact with a “hot” line conductor.

Always wear eye protection when working with tools or live systems having the potential to
eject material into the air. Examples of such activities include soldering, drilling, grinding,
cutting, wire stripping, working on or near energized circuits, etc.

Always use a step-stool or stepladder to reach high places. Never stand on something not
designed to support a human load.

When in doubt, ask an ezpert. If anything even seems remotely unsafe to you, do not proceed
without consulting a trusted person fully knowledgeable in electrical safety.
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9.1.2 Other helpful tips

Experience has shown the following practices to be very helpful, especially when students make their
own component selections, to ensure the circuits will be well-behaved:

e Avoid resistor values less than 1 k{2 or greater than 100 k€2, unless such values are definitely
necessary?. Resistances below 1 k2 may draw excessive current if directly connected to
a voltage source of significant magnitude, and may also complicate the task of accurately
measuring current since any ammeter’s non-zero resistance inserted in series with a low-value
circuit resistor will significantly alter the total resistance and thereby skew the measurement.
Resistances above 100 k2 may complicate the task of measuring voltage since any voltmeter’s
finite resistance connected in parallel with a high-value circuit resistor will significantly alter
the total resistance and thereby skew the measurement. Similarly, AC circuit impedance values
should be between 1 k2 and 100 k2, and for all the same reasons.

e Ensure all electrical connections are low-resistance and physically rugged. For this reason, one
should avoid compression splices (e.g. “butt” connectors), solderless breadboards®, and wires
that are simply twisted together.

e Build your circuit with testing in mind. For example, provide convenient connection points
for test equipment (e.g. multimeters, oscilloscopes, signal generators, logic probes).

e Design permanent projects with maintenance in mind. The more convenient you make
maintenance tasks, the more likely they will get done.

e Always document and save your work. Circuits lacking schematic diagrams are more
difficult to troubleshoot than documented circuits. Similarly, circuit construction is simpler
when a schematic diagram precedes construction. Experimental results are easier to interpret
when comprehensively recorded. Consider modern videorecording technology for this purpose
where appropriate.

e Record your steps when troubleshooting. Talk to yourself when solving problems. These
simple steps clarify thought and simplify identification of errors.

4An example of a necessary resistor value much less than 1 kQ is a shunt resistor used to produce a small voltage
drop for the purpose of sensing current in a circuit. Such shunt resistors must be low-value in order not to impose
an undue load on the rest of the circuit. An example of a necessary resistor value much greater than 100 k2 is an
electrostatic drain resistor used to dissipate stored electric charges from body capacitance for the sake of preventing
damage to sensitive semiconductor components, while also preventing a path for current that could be dangerous to
the person (i.e. shock).

5 Admittedly, solderless breadboards are very useful for constructing complex electronic circuits with many
components, especially DIP-style integrated circuits (ICs), but they tend to give trouble with connection integrity after
frequent use. An alternative for projects using low counts of ICs is to solder IC sockets into prototype printed circuit
boards (PCBs) and run wires from the soldered pins of the IC sockets to terminal blocks where reliable temporary
connections may be made.
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9.1.3 Terminal blocks for circuit construction

Terminal blocks are the standard means for making electric circuit connections in industrial systems.
They are also quite useful as a learning tool, and so I highly recommend their use in lieu of
solderless breadboards®. Terminal blocks provide highly reliable connections capable of withstanding
significant voltage and current magnitudes, and they force the builder to think very carefully about
component layout which is an important mental practice. Terminal blocks that mount on standard
35 mm DIN rail” are made in a wide range of types and sizes, some with built-in disconnecting
switches, some with built-in components such as rectifying diodes and fuseholders, all of which
facilitate practical circuit construction.

I recommend every student of electricity build their own terminal block array for use in
constructing experimental circuits, consisting of several terminal blocks where each block has at
least 4 connection points all electrically common to each other® and at least one terminal block
that is a fuse holder for overcurrent protection. A pair of anchoring blocks hold all terminal blocks
securely on the DIN rail, preventing them from sliding off the rail. Each of the terminals should
bear a number, starting from 0. An example is shown in the following photograph and illustration:

Electrically common DIN rail en
points shown in blue / ail end
(typical for all terminal blocks)

® —«—— Anchor block
[OO OO0 @ OO OQ]-«— 4-terminal block
[OIc——7 O] = Fuseholder block
—~«—— 4-terminal block
OO0 O03m@ OO OQ|-«—4-terminal block
OO O04m@ OO OQ|-«—4-terminal block
OO0 OO05@ OO OQ|-«—4-terminal block
OO O06 M OO OQ|-«—4-terminal block
OO OO7/mm 00 OQO|-«—4-terminal block
OO O08mM OO OQ|-«—4-terminal block
OO0 O09 @ OO OQ|-«—4-terminal block
OO OOL0@m OO OQ|-«— 4-terminal block
OO0 OOLlImM OO OQ|-«—4-terminal block
OO0 OOL.Z@m OO OQ|-«—4-terminal block

@ —«— Anchor block

DIN rail end

Screwless terminal blocks (using internal spring clips to clamp wire and component lead ends) are
preferred over screw-based terminal blocks, as they reduce assembly and disassembly time, and also
minimize repetitive wrist stress from twisting screwdrivers. Some screwless terminal blocks require
the use of a special tool to release the spring clip, while others provide buttons® for this task which
may be pressed using the tip of any suitable tool.

6Solderless breadboard are preferable for complicated electronic circuits with multiple integrated “chip”
components, but for simpler circuits I find terminal blocks much more practical. An alternative to solderless
breadboards for “chip” circuits is to solder chip sockets onto a PCB and then use wires to connect the socket pins to
terminal blocks. This also accommodates surface-mount components, which solderless breadboards do not.

"DIN rail is a metal rail designed to serve as a mounting point for a wide range of electrical and electronic devices
such as terminal blocks, fuses, circuit breakers, relay sockets, power supplies, data acquisition hardware, etc.

8Sometimes referred to as equipotential, same-potential, or potential distribution terminal blocks.

9The small orange-colored squares seen in the above photograph are buttons for this purpose, and may be actuated
by pressing with any tool of suitable size.
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The following example shows how such a terminal block array might be used to construct a
series-parallel resistor circuit consisting of four resistors and a battery:

Schematic diagram Pictorial diagram

Fuse

®
[®@0 Ooo0m o0 o
\ ol—=—1

ob™do2m w80 00 -
R, || [©8 O03m]a0 09| R, +
1 1| [Oo\oo4m 33ka
— 71kQ 1S5 \005 0| [0 o6
6V — oo po6myao ao| {|g
R, oo ©o7m |00 00 2
o0 Pos m tee o 22kQ
R oo o9 m o0 oo 6V
4 1| |00 @olocm o0 o0
47kQY {5 dolio_ 00 0o

OO Oolzmo o0 oo
@

Numbering on the terminal blocks provides a very natural translation to SPICE'? netlists, where
component connections are identified by terminal number:

* Series-parallel resistor circuit
vl 10 dc 6

rl 2 5 7100

r2 5 8 2200

r3 2 8 3300

r4 8 11 4700

rjmpl 1 2 0.01

rjmp2 0 11 0.01

.op
.end

Note the use of “jumper” resistances rjmpl and rjmp2 to describe the wire connections between
terminals 1 and 2 and between terminals 0 and 11, respectively. Being resistances, SPICE requires
a resistance value for each, and here we see they have both been set to an arbitrarily low value of
0.01 Ohm realistic for short pieces of wire.

Listing all components and wires along with their numbered terminals happens to be a useful
documentation method for any circuit built on terminal blocks, independent of SPICE. Such a
“wiring sequence” may be thought of as a non-graphical description of an electric circuit, and is
exceptionally easy to follow.

10SPICE is computer software designed to analyze electrical and electronic circuits. Circuits are described for the
computer in the form of netlists which are text files listing each component type, connection node numbers, and
component values.



9.1. RECOMMENDED PRACTICES 125

An example of a more elaborate terminal block array is shown in the following photograph,
with terminal blocks and “ice-cube” style electromechanical relays mounted to DIN rail, which is
turn mounted to a perforated subpanel'!. This “terminal block board” hosts an array of thirty five
undedicated terminal block sections, four SPDT toggle switches, four DPDT “ice-cube” relays, a
step-down control power transformer, bridge rectifier and filtering capacitor, and several fuses for
overcurrent protection:

Four plastic-bottomed “feet” support the subpanel above the benchtop surface, and an unused
section of DIN rail stands ready to accept other components. Safety features include electrical
bonding of the AC line power cord’s ground to the metal subpanel (and all metal DIN rails),
mechanical strain relief for the power cord to isolate any cord tension from wire connections,
clear plastic finger guards covering the transformer’s screw terminals, as well as fused overcurrent
protection for the 120 Volt AC line power and the transformer’s 12 Volt AC output. The perforated
holes happen to be on }1 inch centers with a diameter suitable for tapping with 6-32 machine screw
threads, their presence making it very easy to attach other sections of DIN rail, printed circuit boards,
or specialized electrical components directly to the grounded metal subpanel. Such a “terminal block
board” is an inexpensive'? yet highly flexible means to construct physically robust circuits using
industrial wiring practices.

H An electrical subpanel is a thin metal plate intended for mounting inside an electrical enclosure. Components are
attached to the subpanel, and the subpanel in turn bolts inside the enclosure. Subpanels allow circuit construction
outside the confines of the enclosure, which speeds assembly. In this particular usage there is no enclosure, as the
subpanel is intended to be used as an open platform for the convenient construction of circuits on a benchtop by
students. In essence, this is a modern version of the traditional breadboard which was literally a wooden board such
as might be used for cutting loaves of bread, but which early electrical and electronic hobbyists used as platforms for
the construction of circuits.

12 At the time of this writing (2019) the cost to build this board is approximately $250 US dollars.
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9.1.4 Conducting experiments

An experiment is an exploratory act, a test performed for the purpose of assessing some proposition
or principle. Experiments are the foundation of the scientific method, a process by which careful
observation helps guard against errors of speculation. All good experiments begin with an hypothesis,
defined by the American Heritage Dictionary of the English Language as:

An assertion subject to verification or proof, as (a) A proposition stated as a basis for
argument or reasoning. (b) A premise from which a conclusion is drawn. (c) A conjecture
that accounts, within a theory or ideational framework, for a set of facts and that can
be used as a basis for further investigation.

Stated plainly, an hypothesis is an educated guess about cause and effect. The correctness of this
initial guess matters little, because any well-designed experiment will reveal the truth of the matter.
In fact, incorrect hypotheses are often the most valuable because the experiments they engender
lead us to surprising discoveries. One of the beautiful aspects of science is that it is more focused
on the process of learning than about the status of being correct'®. In order for an hypothesis to be
valid, it must be testable'®, which means it must be a claim possible to refute given the right data.
Hypotheses impossible to critique are useless.

Once an hypothesis has been formulated, an experiment must be designed to test that hypothesis.
A well-designed experiment requires careful regulation of all relevant variables, both for personal
safety and for prompting the hypothesized results. If the effects of one particular variable are to
be tested, the experiment must be run multiple times with different values of (only) that particular
variable. The experiment set up with the “baseline” variable set is called the control, while the
experiment set up with different value(s) is called the test or experimental.

For some hypotheses a viable alternative to a physical experiment is a computer-simulated
experiment or even a thought experiment. Simulations performed on a computer test the hypothesis
against the physical laws encoded within the computer simulation software, and are particularly
useful for students learning new principles for which simulation software is readily available'®.

13Science is more about clarifying our view of the universe through a systematic process of error detection than it is
about proving oneself to be right. Some scientists may happen to have large egos — and this may have more to do with
the ways in which large-scale scientific research is funded than anything else — but scientific method itself is devoid
of ego, and if embraced as a practical philosophy is quite an effective stimulant for humility. Within the education
system, scientific method is particularly valuable for helping students break free of the crippling fear of being wrong.
So much emphasis is placed in formal education on assessing correct retention of facts that many students are fearful
of saying or doing anything that might be perceived as a mistake, and of course making mistakes (i.e. having one’s
hypotheses disproven by experiment) is an indispensable tool for learning. Introducing science in the classroom — real
science characterized by individuals forming actual hypotheses and testing those hypotheses by experiment — helps
students become self-directed learners.

M This is the principle of falsifiability: that a scientific statement has value only insofar as it is liable to disproof
given the requisite experimental evidence. Any claim that is unfalsifiable — that is, a claim which can never be
disproven by any evidence whatsoever — could be completely wrong and we could never know it.

15A very pertinent example of this is learning how to analyze electric circuits using simulation software such as
SPICE. A typical experimental cycle would proceed as follows: (1) Find or invent a circuit to analyze; (2) Apply
your analytical knowledge to that circuit, predicting all voltages, currents, powers, etc. relevant to the concepts you
are striving to master; (3) Run a simulation on that circuit, collecting “data” from the computer when complete; (4)
Evaluate whether or not your hypotheses (i.e. predicted voltages, currents, etc.) agree with the computer-generated
results; (5) If so, your analyses are (provisionally) correct — if not, examine your analyses and the computer simulation
again to determine the source of error; (6) Repeat this process as many times as necessary until you achieve mastery.
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Thought experiments are useful for detecting inconsistencies within your own understanding of
some subject, rather than testing your understanding against physical reality.

Here are some general guidelines for conducting experiments:

The clearer and more specific the hypothesis, the better. Vague or unfalsifiable hypotheses
are useless because they will fit any experimental results, and therefore the experiment cannot
teach you anything about the hypothesis.

Collect as much data (i.e. information, measurements, sensory experiences) generated by an
experiment as is practical. This includes the time and date of the experiment, too!

Newver discard or modify data gathered from an experiment. If you have reason to believe the
data is unreliable, write notes to that effect, but never throw away data just because you think
it is untrustworthy. It is quite possible that even “bad” data holds useful information, and
that someone else may be able to uncover its value even if you do not.

Prioritize quantitative data over qualitative data wherever practical. Quantitative data is more
specific than qualitative, less prone to subjective interpretation on the part of the experimenter,
and amenable to an arsenal of analytical methods (e.g. statistics).

Guard against your own bias(es) by making your experimental results available to others. This
allows other people to scrutinize your experimental design and collected data, for the purpose
of detecting and correcting errors you may have missed. Document your experiment such that
others may independently replicate it.

Always be looking for sources of error. No physical measurement is perfect, and so it is
impossible to achieve exact values for any variable. Quantify the amount of uncertainty (i.e.
the “tolerance” of errors) whenever possible, and be sure your hypothesis does not depend on
precision better than this!

Always remember that scientific confirmation is provisional — no number of “successful”
experiments will prove an hypothesis true for all time, but a single experiment can disprove
it. Put into simpler terms, truth is elusive but error is within reach.

Remember that scientific method is about learning, first and foremost. An unfortunate
consequence of scientific triumph in modern society is that science is often viewed by non-
practitioners as an unerring source of truth, when in fact science is an ongoing process of
challenging existing ideas to probe for errors and oversights. This is why it is perfectly
acceptable to have a failed hypothesis, and why the only truly failed experiment is one where
nothing was learned.
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The following is an example of a well-planned and executed experiment, in this case a physical
experiment demonstrating Ohm’s Law.

Planning Time/Date = 09:30 on 12 February 2019

HYPOTHESIS: the current through any resistor should be exactly proportional
to the voltage impressed across it.

PROCEDURE: connect a resistor rated 1 k Ohm and 1/4 Watt to a variable-voltage
DC power supply. Use an ammeter in series to measure resistor current and
a voltmeter in parallel to measure resistor voltage.

RISKS AND MITIGATION: excessive power dissipation may harm the resistor and/
or pose a burn hazard, while excessive voltage poses an electric shock hazard.
30 Volts is a safe maximum voltage for laboratory practices, and according to
Joule’s Law a 1000 Ohm resistor will dissipate 0.25 Watts at 15.81 Volts
(P=V"2/R), so I will remain below 15 Volts just to be safe.

Experiment Time/Date = 10:15 on 12 February 2019

DATA COLLECTED:

(Voltage) (Current) (Voltage) (Current)
0.000 V. = 0.000 mA 8.100 = 7.812 mA
2.700 V. = 2.603 mA 10.00 V. = 9.643 mA
5.400 V. = 5.206 mA 14.00 V. = 13.49 mA

Analysis Time/Date = 10:57 on 12 February 2019

ANALYSIS: current definitely increases with voltage, and although I expected
exactly one milliAmpere per Volt the actual current was usually less than
that. The voltage/current ratios ranged from a low of 1036.87 (at 8.1 Volts)
to a high of 1037.81 (at 14 Volts), but this represents a variance of only
-0.0365% to +0.0541%, from the average, indicating a very consistent
proportionality -- results consistent with Ohm’s Law.

ERROR SOURCES: one major source of error is the resistor’s value itself. I
did not measure it, but simply assumed color bands of brown-black-red meant
exactly 1000 Ohms. Based on the data I think the true resistance is closer
to 1037 Ohms. Another possible explanation is multimeter calibration error.
However, neither explains the small positive and negative variances from the
average. This might be due to electrical noise, a good test being to repeat
the same experiment to see if the variances are the same or different. Noise
should generate slightly different results every time.
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The following is an example of a well-planned and executed virtual experiment, in this case
demonstrating Ohm’s Law using a computer (SPICE) simulation.

Planning Time/Date = 12:32 on 14 February 2019

HYPOTHESIS: for any given resistor, the current through that resistor should be
exactly proportional to the voltage impressed across it.

PROCEDURE: write a SPICE netlist with a single DC voltage source and single
1000 Ohm resistor, then use NGSPICE version 26 to perform a "sweep" analysis
from O Volts to 25 Volts in 5 Volt increments.

* SPICE circuit
vl 1 0 dc
rl 1 0 1000

.dc v1 0 256 5

.print dc v(1) i(vi)

.end

RISKS AND MITIGATION: none.

DATA COLLECTED:

DC transfer characteristic

Thu Feb 14 13:05:08 2019

.000000e+00
.000000e+00
.000000e+01
.500000e+01
.000000e+01
.500000e+01

Analysis Time/Date = 13:06 on

.000000e+00
.000000e+00
.000000e+01
.500000e+01
.000000e+01
.500000e+01

0.000000e+00
-5.00000e-03
-1.00000e-02
-1.50000e-02
-2.00000e-02
-2.50000e-02

14 February 2019

ANALYSIS: perfect agreement between data and hypothesis -- current is precisely

1/1000 of the applied voltage for all values.
agreement would have probably meant my netlist was incorrect.

Anything other than perfect
The negative

current values surprised me, but it seems this is just how SPICE interprets

normal current through a DC voltage source.

ERROR SOURCES: none.
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As gratuitous as it may seem to perform experiments on a physical law as well-established as
Ohm’s Law, even the examples listed previously demonstrate opportunity for real learning. In
the physical experiment example, the student should identify and explain why their data does not
perfectly agree with the hypothesis, and this leads them naturally to consider sources of error. In
the computer-simulated experiment, the student is struck by SPICE’s convention of denoting regular
current through a DC voltage source as being negative in sign, and this is also useful knowledge for
future simulations. Scientific experiments are most interesting when things do not go as planned!

Aside from verifying well-established physical laws, simple experiments are extremely useful as
educational tools for a wide range of purposes, including:

e Component familiarization (e.g. Which terminals of this switch connect to the NO versus NC
contacts?)

e System testing (e.g. How heavy of a load can my AC-DC power supply source before the
semiconductor components reach their thermal limits?)

e Learning programming languages (e.g. Let’s try to set up an “up” counter function in this

PLCY)

Above all, the priority here is to inculcate the habit of hypothesizing, running experiments, and
analyzing the results. This experimental cycle not only serves as an excellent method for self-directed
learning, but it also works exceptionally well for troubleshooting faults in complex systems, and for
these reasons should be a part of every technician’s and every engineer’s education.

9.1.5 Constructing projects

Designing, constructing, and testing projects is a very effective means of practical education. Within
a formal educational setting, projects are generally chosen (or at least vetted) by an instructor
to ensure they may be reasonably completed within the allotted time of a course or program of
study, and that they sufficiently challenge the student to learn certain important principles. In a
self-directed environment, projects are just as useful as a learning tool but there is some risk of
unwittingly choosing a project beyond one’s abilities, which can lead to frustration.

Here are some general guidelines for managing projects:

e Define your goal(s) before beginning a project: what do you wish to achieve in building it?
What, exactly, should the completed project do?

e Analyze your project prior to construction. Document it in appropriate forms (e.g. schematic
diagrams), predict its functionality, anticipate all associated risks. In other words, plan ahead.

e Set a reasonable budget for your project, and stay within it.
e Identify any deadlines, and set reasonable goals to meet those deadlines.
e Beware of scope creep: the tendency to modify the project’s goals before it is complete.

e Document your progress! An easy way to do this is to use photography or videography: take
photos and/or videos of your project as it progresses. Document failures as well as successes,
because both are equally valuable from the perspective of learning.
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9.2 Experiment: SPICE modeling of a three-phase AC
circuit

SPICE is a powerful computer-based simulation tool for circuit analysis, and if mastered provides
a way for students to create their own practice problems. In this experiment, we will do just that:
create a three-phase AC circuit practice problem, and use SPICE to give us the answer key!

Your hypothesis may simply be the predicted values for voltage and/or current in any portions
of the three-phase network. Feel free to take any three-phase AC circuit found in this learning
module — especially one with an accompanying SPICE netlist — modify it, and use this as the basis
of your experiment. The SPICE Modeling of Power Circuits learning module is another resource
for example circuits and SPICE netlists, which you may sample and modify.

EXPERIMENT CHECKLIST:

e Prior to experimentation:

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

Write a procedure to test the hypothesis, complete with adequate controls and
documentation (e.g. schematic diagrams, programming code).

entify any risks (e.g. shock hazard, component damage) and write a mitigation
Identif isk: hock 1 d td d writ itigati
plan based on best practices and component ratings.

e During experimentation:

Safe practices followed at all times (e.g. no contact with energized circuit).
Correct equipment usage according to manufacturer’s recommendations.

All data collected, ideally quantitative with full precision (i.e. no rounding).

o After each experimental run:

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

Identify any uncontrolled sources of error in the experiment.

e After all experimental re-runs:

Save all data for future reference.

Write an analysis of experimental results and lessons learned.
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e Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

e It is quite likely you may need to insert some extraneous components in your simulated circuit
in order to placate some of SPICE’s idiosyncrasies. Identify some of these, and explain the
compensating measures you must take to satisfy SPICE.
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Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

e Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions — learn why those solutions work.

e Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

e Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

e Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

e Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

e Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

e Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

Work “backward” from a hypothetical solution to a new set of given conditions.

Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” — Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

Articulate communication is fundamental to work that is complex and interdisciplinary.

Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment' where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic’> dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity® through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary ezplain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Fveryone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers — the goal is to practice the articulation and
defense of one’s own reasoning.

No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

e No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

e You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

e Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

e A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

e Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

e Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied? effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge® one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5 Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.



140 APPENDIX B. INSTRUCTIONAL PHILOSOPHY



Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU
project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSTAYG (What You See Is All You
Get).

Leslie Lamport’s XTEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was KTEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to I/ TEX as C is to C++. This means it is permissible to use any and all TEX
commands within I#TEX source code, and it all still works. Some of the features offered
by ETEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. T typically set my gnuplot
output format to default (X11 on my Linux PC) for quick viewing while I'm developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I'm writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I'm listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import
* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 — Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 — Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor — Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 — License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if

designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 — Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 — Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 — Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 — Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 — Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c¢. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.



152 APPENDIX D. CREATIVE COMMONS LICENSE



Appendix E

References

Dalziel, Charles F., Deleterious Effects of Electric Shock, University of California, Berkeley, CA,
October 1961.

Hering, Carl, “The Transmission of Power”, Cassier’s Magazine, Volume 1, pp. 449-456, The Cassier
Magazine Company, New York, April 1892.

NFPA 70FE Standard for Electrical Safety in the Workplace, 2015 Edition, NFPA, Quincy, MA, 2016.

153



154 APPENDIX E. REFERENCES



Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

23 October 2023 — added a Case Tutorial section showing an RC phase-rotation testing network.

12 October 2023 — typo correction (“wye-wound versus delta-wound” instead of “wye-wound
versus delta-would”) courtesy of David Mitchell.

21 June 2023 - added Quantitative Reasoning question related to computer programming
(simulating three-phase circuits).

8-9 March 2023 — divided the Tutorial into sections, and elaborated on three-phase rectifier circuits.
Also edited some instructor notes.

28 November 2022 — placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

8 May 2021 — commented out or deleted empty chapters.

23 April 2021 — added a new Case Tutorial section showing an inexpensive motor-generator set
for producing low-voltage three-phase AC.

18 March 2021 — corrected multiple instances of “volts” that should have been capitalized “Volts”.

11 March 2021 - added phase rotation note to illustrations in Tutorial, and also completed the
quote from Hering’s article.

9 March 2021 - added a Case Tutorial chapter with three-phase circuit examples, and also made
some additions to instructor notes.

10 November 2020 — minor edits to Tutorial.
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14 October 2020 - significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

20 April 2020 — added clarification that grounding is done only at the source, and never at the
load, in a power circuit. Also, capitalized all instances of the word “Earth”.

13-14 April 2020 — added animation of the rotating magnetic field for a three-phase AC induction
motor, as well as some minor edits to graphics in one of the Conceptual Reasoning problems.

5 January 2020 - added bullet-list of relevant programming principles to the Programming
References section.

4 January 2020 — added Programming References chapter, with section on simulating Wye/Delta
circuits.

17 December 2019 — added footnote defining common-mode voltage.
25 April 2019 — edited Tutorial to reference Kirchhoff’s Laws more completely.
30 March 2019 - added more questions, and one experiment.

28 March 2019 — added questions, as well as a comment about Watts-Horsepower conversion to
the Tutorial.

10 March 2019 — completed the Foundational Concepts list.
1 January 2019 — added a Technical Reference section on electrical safety.

5 November 2018 - retitled Historical References section(s) so as to not be redundant to the
“Historical References” chapter.

September 2018 — separated “Derivations and Technical References” chapter into two chapters,
one for technical references and the other for “Historical References”.

August 2018 — corrected error in citation of Carl Hering’s article on an early three-phase electric
power system. I originally described this system as being at Niagara Falls, when it was actually
in Frankfort (Germany). Also, corrected References chapter, which was not showing up as its own
chapter (from being commented out). Finally, added content to the Introduction.

July 2018 — document first created.
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