
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Introduction to Python Language Programming

© 2023-2024 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 19 August 2024

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Case Tutorial 3

1.1 Example: running Python programs . 4
1.2 Example: simple uses of the print() function . 7
1.3 Example: using input() for numerical user entries . 8
1.4 Example: importing libraries . 9
1.5 Example: for() and while() loops . 10
1.6 Example: complex-number calculations . 14
1.7 Example: generating .csv output . 15
1.8 Example: Python functions . 16
1.9 Example: using lists . 17
1.10 Example: creating and using Python objects . 19
1.11 Example: . 22
1.12 Example: using Python to control a LabJack model U3 DAQ 23

A Problem-Solving Strategies 33

B Instructional philosophy 35

C Tools used 41

D Creative Commons License 45

E References 53

F Version history 55

Index 55

1

2 CONTENTS

Chapter 1

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

3

4 CHAPTER 1. CASE TUTORIAL

1.1 Example: running Python programs

First, you will need to visit www.python.org on the internet and download Python to your computer.
After that, you will need to install that downloaded software. When installing Python, I highly
recommend selecting the “Add python.exe to PATH” option, as this will make certain future uses
of Python much easier!!

Next, you will need to write your Python “source” code using a text editor program (Notepad++
is my editor of choice when using Microsoft Windows) and save the resulting file to a filename ending
with .py so that the operating system knows to associate that file with the Python interpreter
software.

It is important to understand that Python is an interpreted programming language, unlike C and
C++ which are compiled languages. Compiled languages require the use of a piece of software called
a compiler which translates the source code into the native “machine language” of your computer.
Another process called linking follows compilation, where the compiled “object code” gets linked to
libraries of code pre-installed on your computer to make it a complete executable program. Only
after compiling and linking will you be able to run that executable file output by the compiler. By
contrast, an interpreted program merely needs to be read by a piece of software called an interpreter
to run.

Generally speaking, compiled programming languages produce executable code that is smaller
and runs faster, while interpreted programming languages are easier (especially for those new to
programming) to administer.

To run your Python source code, you have two easy options:

1. Simply double-click on your source code file’s icon (it should appear as a Python logo if properly
named with a .py extension) and the installed Python interpreter will run it

2. Open up a command-line window (type cmd) into Microsoft Windows’ search bar, then at the
command line navigate to the proper directory (folder) where your Python source code file is
located, then type python followed by your source code’s filename and press Enter

Be aware that if you choose the first option you will need to have some provision in your source
code to cause Python to hesitate prior to closing the window it opens upon execution. Otherwise,
that window will close automatically as soon as the program is finished, which in most cases means
you won’t get an opportunity to see what it did!

1.1. EXAMPLE: RUNNING PYTHON PROGRAMS 5

Shown below are some visuals for option number 1. First we see the icon as it should appear on
a Microsoft Windows desktop, for a source code file named test.py which was written to compute
series and parallel impedance for an inductor and a capacitor:

Once we double-click on this icon, an interpreter window opens up to display the results of the
executed program:

Note the “Enter anything to quit!” line at the end of the output, created by a print() instruction
followed immediately by an input() instruction awaiting user keyboard input before proceeding.
The existence of that final input() instruction is why this window remains visible for us to view
all that happened before it. Without that final input() instruction, the interpreter window would
simply close on its own immediately following the lines of printed output, which means we would
never have an opportunity to actually see that output – all we would see is a “flash” on the screen
as the interpreter window opens up and then immediately closes!

6 CHAPTER 1. CASE TUTORIAL

Shown below is a visual for option number 2. Here we have started up a Windows command-line
environment where we first navigate to the Desktop where our Python source code file test.py

resides, using the command-line instruction cd Desktop to get there. After that we type python

test.py to run our Python code:

This happens to be the exact same impedance-calculating code as the prior example (option
number 1), and here that final print() instruction saying “Enter anything to quit” and that final
input() instruction are both unnecessary. As before, the program waits for us to make a keyboard
entry before finally terminating, but unlike the spontaneous window that opened up when we double-
clicked the icon and immediately closed upon program termination, the Windows command-line
environment remains to show us our program’s output even after our program stops running.

So, there are two easy options for running Python programs on your personal computer. The
first is extremely easy to run but requires an extra line or two of code added to your programs so
that the computer will pause before closing out the window used to show what your program did.
The second is a little clumsier to run but requires no extra lines of code for you to add to your
source.

1.2. EXAMPLE: SIMPLE USES OF THE PRINT() FUNCTION 7

1.2 Example: simple uses of the print() function

Code listing:

x = 11

y = 3

print ("X =", x)

print ("Y =", y)

print ("")

print ("The sum of", x, "and", y, "is", x + y)

print ("The difference of", x, "and", y, "is", x - y)

print ("The product of", x, "and", y, "is", x * y)

print ("The quotient of", x, "and", y, "is", x / y)

print ("The quotient of", y, "and", x, "is", ’{:.5}’.format(y / x))

print (x, "raised to the", y, "power is", x ** y)

print (x, "modulo", y, "is", x % y)

Output of program when executed using python3:

X = 11

Y = 3

The sum of 11 and 3 is 14

The difference of 11 and 3 is 8

The product of 11 and 3 is 33

The quotient of 11 and 3 is 3.6666666666666665

The quotient of 3 and 11 is 0.27273

11 raised to the 3 power is 1331

11 modulo 3 is 2

8 CHAPTER 1. CASE TUTORIAL

1.3 Example: using input() for numerical user entries

Code listing:

print("Enter a floating-point value for X: ", end=’’)

x = float(input ())

print("Enter a floating-point value for Y: ", end=’’)

y = float(input ())

print ("X =", x)

print ("Y =", y)

print ("")

print ("The sum of", x, "and", y, "is", x + y)

print ("The difference of", x, "and", y, "is", x - y)

print ("The product of", x, "and", y, "is", x * y)

print ("The quotient of", x, "and", y, "is", x / y)

print ("The quotient of", y, "and", x, "is", ’{:.5}’.format(y / x))

print (x, "raised to the", y, "power is", x ** y)

print (x, "modulo", y, "is", x % y)

The input() instruction in Python casts every entry as a string of text characters. Since we wish
x and y to be mathematical variables rather than text, we use the float() function to immediately
convert each user-input string into floating-point values.

By default every Python print() instruction terminates with a linefeed character, so in order to
maintain user input on the same line as the prompting text we use the end= parameter to tell both
print() instructions to add nothing at all to the standard output after printing the line of text.
Then, when the input() instruction executes, it does so on the same line.

Output of program when executed using python3:

Enter a floating-point value for X: 3

Enter a floating-point value for Y: 4

X = 3.0

Y = 4.0

The sum of 3.0 and 4.0 is 7.0

The difference of 3.0 and 4.0 is -1.0

The product of 3.0 and 4.0 is 12.0

The quotient of 3.0 and 4.0 is 0.75

The quotient of 4.0 and 3.0 is 1.3333

3.0 raised to the 4.0 power is 81.0

3.0 modulo 4.0 is 3.0

1.4. EXAMPLE: IMPORTING LIBRARIES 9

1.4 Example: importing libraries

Like most other programming languages, Python is extensible which means it’s possible to write
code in the Python language that may be conveniently included within other Python programs to
extend capabilities for other programmers. A prime example of such a code library is the math

library containing advanced arithmetic functions such as exponential, trigonometric, etc.
Consider the following example program displaying the sine of the angle 45 degrees:

Code listing:

from math import *

print("The sine of 45 degrees is", sin(radians(45)))

Output of program when executed using python3:

The sine of 45 degrees is 0.7071067811865475

The line of code from math import * instructs the Python interpreter to import all functions
contained within the standard Python math library. This give us access to such functions as sin()
and radians(). However, it is also possible to do this instead:

import math

print("The sine of 45 degrees is", math.sin(math.radians(45)))

This still enables us to use the sin() and radians(), but to call those functions we must preface
each of their names with math (separated by a period symbol) so that Python knows in which
library to find them. This latter method is obviously less convenient, given the necessity to write
math.sin() instead of just sin(), but it carries with it the advantage of allowing us to write our
own custom functions that will not conflict with the ones built into the math library. For example, it
would be possible for us to write our own sin() function accepting an argument in units of degrees
instead of radians, and still have math.sin() accept angles in radians.

10 CHAPTER 1. CASE TUTORIAL

1.5 Example: for() and while() loops

Code listing:

from math import *

for t in range (0,6):

print("Time =", t, "seconds", end="")

print(" ", end="")

print("Decaying value =", 100 * exp(-t), "%")

This for() loop takes the variable t and increments it from 0 to 5 as an integer1 variable. In many
languages such as C, C++, Java, etc. a loop containing multiple instructions would group those
instructions together to form a “block” of code by means of curly-brace symbols ({ and }). However,
in the Python programming language we use indenting rather than brace symbols. Indented code is
typical for most programming languages but only as an optional means to enhance code readability.
In Python indenting is mandatory for creating blocks of code.

Any number of spaces or tabs may be used to declare one code block, but that number must then
be consistent for that block. Here I chose to use two spaces of indentation for the three print()

instructions within the for() loop.

Output of program when executed using python3:

Time = 0 seconds Decaying value = 100.0 %

Time = 1 seconds Decaying value = 36.787944117144235 %

Time = 2 seconds Decaying value = 13.53352832366127 %

Time = 3 seconds Decaying value = 4.978706836786395 %

Time = 4 seconds Decaying value = 1.8315638888734178 %

Time = 5 seconds Decaying value = 0.6737946999085467 %

1Python’s range() function is compatible only with integer variables, and not with floating-point variables or any
other types.

1.5. EXAMPLE: FOR() AND WHILE() LOOPS 11

Here we see a different version of the program where t increments by two each iteration rather
than by one:

Code listing:

from math import *

for t in range (0,7,2):

print("Time =", t, "seconds", end="")

print(" ", end="")

print("Decaying value =", 100 * exp(-t), "%")

Output of program when executed using python3:

Time = 0 seconds Decaying value = 100.0 %

Time = 2 seconds Decaying value = 13.53352832366127 %

Time = 4 seconds Decaying value = 1.8315638888734178 %

Time = 6 seconds Decaying value = 0.24787521766663584 %

12 CHAPTER 1. CASE TUTORIAL

If we wish to treat x as a floating-point variable so we may increment it by non-whole-numbered
values, we cannot use the range() function which is integer-only. Instead, we will use a while()

loop allowing us to use any standard conditional we might choose to determine how many iterations
the loop will complete before finishing:

Code listing:

from math import *

t = 0.0

while t <= 5.0:

print("Time =", t, "seconds", end="")

print(" ", end="")

print("Decaying value =", 100 * exp(-t), "%")

t = t + 0.5

Note how the initial value for t is specified as 0.0 rather than simply as 0. Within the while()

instruction’s conditional, we also specify a value with what appears to be a gratiutous decimal point
(5.0 rather than just 5). These are our way of instructing Python that we wish t to be a floating-
point value. Python is a dynamically typed language which means it assumes no particular type for
its variables until run-time when those variables become initialized, operated on, etc. This stands
in stark contrast to languages such as C and C++ which are statically typed and require variables
to be declared as particular types before being used in the code.

Output of program when executed using python3:

Time = 0.0 seconds Decaying value = 100.0 %

Time = 0.5 seconds Decaying value = 60.653065971263345 %

Time = 1.0 seconds Decaying value = 36.787944117144235 %

Time = 1.5 seconds Decaying value = 22.313016014842983 %

Time = 2.0 seconds Decaying value = 13.53352832366127 %

Time = 2.5 seconds Decaying value = 8.20849986238988 %

Time = 3.0 seconds Decaying value = 4.978706836786395 %

Time = 3.5 seconds Decaying value = 3.0197383422318502 %

Time = 4.0 seconds Decaying value = 1.8315638888734178 %

Time = 4.5 seconds Decaying value = 1.1108996538242306 %

Time = 5.0 seconds Decaying value = 0.6737946999085467 %

1.5. EXAMPLE: FOR() AND WHILE() LOOPS 13

Here is another example of a Python program utilizing a for() loop:

Code listing:

print("Enter the number of paralleled resistors: ", end="")

n = int(input())

Rtotal = 0.0

for count in range (0,n):

print("Resistor #", count + 1, "value in Ohms = ", end="")

R = float(input())

Rtotal = Rtotal + (1 / R)

print("These", n, "resistors in parallel make", 1 / Rtotal, "Ohms")

Output of program when executed using python3:

Enter the number of paralleled resistors: 4

Resistor # 1 value in Ohms = 1500

Resistor # 2 value in Ohms = 1200

Resistor # 3 value in Ohms = 680

Resistor # 4 value in Ohms = 2200

These 4 resistors in parallel make 291.9594067135051 Ohms

14 CHAPTER 1. CASE TUTORIAL

1.6 Example: complex-number calculations

Code listing:

from math import *

from cmath import *

f = 60.0 ; L = 100e-3 ; C = 2.7e-6 ; R = 1.5e3

Zl = complex(0,2*pi*f*L)

Zc = complex(0,-1/(2*pi*f*C))

print("Zl =", abs(Zl), "Ohms @", degrees(phase(Zl)), "degrees")

print("Zc =", abs(Zc), "Ohms @", degrees(phase(Zc)), "degrees")

print("Series Ztotal =", abs(R+Zl+Zc), "Ohms @", degrees(phase(R+Zl+Zc)),

"degrees")

print("Parallel Ztotal =", abs(1/(1/R+1/Zl+1/Zc)), "Ohms @",

degrees(phase(1/(1/R+1/Zl+1/Zc))), "degrees")

Note the importation of two code libraries in this Python program: math and cmath. The math

library is necessary for the constant pi and for functions such as degrees(). The cmath library is
necessary the phase() function which is unique to complex-number arithmetic.

Output of program when executed using python3:

Zl = 37.69911184307752 Ohms @ 90.0 degrees

Zc = 982.4379203203417 Ohms @ -90.0 degrees

Series Ztotal = 1772.718651180452 Ohms @ -32.2037850758358 degrees

Parallel Ztotal = 39.19008481628548 Ohms @ 88.50287867064141 degrees

Note some features of this code listing useful for fitting as much code as possible into as small
a screen space (page space) as possible. First, note the use of semicolons to separate individual
instructions on one line of code. Here, the semicolons perform the same purpose as they do in
languages such as C or C++, namely to indicate the end of an instruction prior to the beginning
of another. Python does not need semicolons when instructions are placed in their own distinct
lines, but if you wish to cram multiple instructions into a single line on the page they are essential.
Second, note how two of the print() instructions are broken into two lines of text each so they do
not run off the printed page here.

1.7. EXAMPLE: GENERATING .CSV OUTPUT 15

1.7 Example: generating .csv output

Code listing:

from math import *

from cmath import *

f = 100.0 ; L = 100e-3 ; C = 2.7e-6 ; R = 1.5e3 ; fmax = 1e3

print("Freq , Zseries , Zparallel")

while f <= fmax:

Zl = complex(0,2*pi*f*L)

Zc = complex(0,-1/(2*pi*f*C))

print(f, ",", abs(R+Zl+Zc), ",", abs(1/(1/R+1/Zl+1/Zc)))

f = f + 100.0

Output of program when executed using python3:

Freq , Zseries , Zparallel

100.0 , 1589.761021005475 , 70.25109187407097

200.0 , 1509.4978890423038 , 216.76684379650098

300.0 , 1500.0212906692964 , 1427.105076177392

400.0 , 1503.598363961192 , 346.614606251871

500.0 , 1512.785716281622 , 187.23184708642194

600.0 , 1525.6801997713828 , 132.35134475497486

700.0 , 1541.577543267316 , 103.89939950541053

800.0 , 1560.1336353329743 , 86.19638901083295

900.0 , 1581.1359259645624 , 73.98527407843896

1000.0 , 1604.4266157514717 , 64.98781723832091

This comma-separated data may be copied from the interpreter window and pasted into a
spreadsheet or other mathematical visualizing software to be graphed. Alternatively, if running
the Python program from a command-line environment, you may use redirection to send that text
output to a file of your own preference. Below we see the command-line text that could be used
to invoke the Python interpreter to run the Python source-code file test.py and redirecting the
output to a new file named data.csv:

python test.py > data.csv

16 CHAPTER 1. CASE TUTORIAL

1.8 Example: Python functions

Code listing:

import math

def sin(angle):

return math.sin(math.radians(angle))

print("The sine of pi/4 radians is", math.sin(math.pi/4))

print("The sine of 45 degrees is", sin(45))

Our custom function is named sin(), and since we imported the math library by saying import

math rather than saying from math import * it means we can create our own sine function that
is distinct from the sine function within the math library. Our own sine function is simply sin()

expecting an argument in the unit of degrees, whereas the math library’s version of the sine function
(math.sin()) naturally expects its argument in the unit of radians.

Output of program when executed using python3:

The sine of pi/4 radians is 0.7071067811865475

The sine of 45 degrees is 0.7071067811865475

Interestingly, when functions are used within Python, their definitions must precede their use.
For example, the following version of the same program which locates the custom sin() function
after its first use will not work:

import math

print("The sine of pi/4 radians is", math.sin(math.pi/4))

print("The sine of 45 degrees is", sin(45))

This placement of the sin() function definition is TOO LATE!!

def sin(angle):

return math.sin(math.radians(angle))

1.9. EXAMPLE: USING LISTS 17

1.9 Example: using lists

Python supports multiple types of data arrays: lists, dictionaries, tuples, and sets. In this example
we will see the use of lists which are the most similar of those four to arrays used in C and C++,
used to randomly pick between three different types of components as well as display their values
and units:

import random as rn

rn.seed() # "Seeds" the random number generator with the system time value

types = ["resistor", "capacitor", "inductor"]

units = ["kiloOhm", "microFarad", "milliHenry"]

while 1:

n = rn.randint(0,len(types) - 1)

print(rn.randint(0,10000) * 0.01, end=’ ’)

print(units[n], end=’ ’)

print(types[n])

input() # Waits for Enter keystroke before looping again

In this program we define two lists, one named types and another named units. Within the
while loop we generate a random integer value (n) which is then used as the index to select a
particular element stored within each of the two lists. Note how the same index is used to select the
component type and the respective unit of measurement, as those two things should go together.
The value stored in n ranges from 0 upwards to one less than the length of the types list, as a
three-element list requires its index value to be either 0, 1, or 2.

18 CHAPTER 1. CASE TUTORIAL

When run, we get a sequence of random values for components, together with matching
component descriptions and units of measurement:

57.83 microFarad capacitor

52.27 milliHenry inductor

50.29 microFarad capacitor

44.93 milliHenry inductor

17.01 milliHenry inductor

45.56 kiloOhm resistor

1.10. EXAMPLE: CREATING AND USING PYTHON OBJECTS 19

1.10 Example: creating and using Python objects

Python is an object-oriented programming language like C++ (and unlike C), where we not only can
create custom functions, but custom objects which may contain properties (variables and constants
within an object) and associated methods (functions within an object).

Here is a very simple program where a class of objects is defined for resistors, each object within
that class containing nominal and tolerance values as properties as well as high-value and low-value
calculation functions as methods. Once this class is defined, objects may be created according to
that class template:

Code listing:

class Resistor:

def __init__(R, x, y):

R.nominal = x

R.tolerance = y

def highval(R):

return R.nominal + (R.nominal * (R.tolerance / 100.0))

def lowval(R):

return R.nominal - (R.nominal * (R.tolerance / 100.0))

r1 = Resistor(1.5e3, 5)

r2 = Resistor(1.0e3, 1)

r3 = Resistor(2.2e3, 2)

print("Resistor R1 has a nominal value of", r1.nominal, "Ohms")

print("but may be as low as", r1.lowval(), "Ohms")

print("or as high as", r1.highval(), "Ohms")

print(" ")

print("Resistor R2 has a nominal value of", r2.nominal, "Ohms")

print("but may be as low as", r2.lowval(), "Ohms")

print("or as high as", r2.highval(), "Ohms")

print(" ")

print("Resistor R3 has a nominal value of", r3.nominal, "Ohms")

print("but may be as low as", r3.lowval(), "Ohms")

print("or as high as", r3.highval(), "Ohms")

20 CHAPTER 1. CASE TUTORIAL

Output of program when executed using python3:

Resistor R1 has a nominal value of 1500.0 Ohms

but may be as low as 1425.0 Ohms

or as high as 1575.0 Ohms

Resistor R2 has a nominal value of 1000.0 Ohms

but may be as low as 990.0 Ohms

or as high as 1010.0 Ohms

Resistor R3 has a nominal value of 2200.0 Ohms

but may be as low as 2156.0 Ohms

or as high as 2244.0 Ohms

In this program, r1, r2, and r3 are actually objects containing all the properties and methods
defined within the Resistor class template. Those properties and methods are accessed for each of
the three resistor objects by means of the period (.) delimiter, such that r1.nominal is a property
of the r1 object, and r1.lowval() is a method of the r1 object.

1.10. EXAMPLE: CREATING AND USING PYTHON OBJECTS 21

Just like variables, objects in Python may be re-defined at any point within the program’s
execution. Consider this example program, which defines object r1 but then later re-defines its
properties:

Code listing:

class Resistor:

def __init__(R, x, y):

R.nominal = x

R.tolerance = y

def highval(R):

return R.nominal + (R.nominal * (R.tolerance / 100.0))

def lowval(R):

return R.nominal - (R.nominal * (R.tolerance / 100.0))

r1 = Resistor(1.5e3, 5)

print("Resistor R1 has a nominal value of", r1.nominal, "Ohms")

print("but may be as low as", r1.lowval(), "Ohms")

print("or as high as", r1.highval(), "Ohms")

print(" ")

r1.nominal = 10e3

r1.tolerance = 0.1

print("Resistor R1 has a nominal value of", r1.nominal, "Ohms")

print("but may be as low as", r1.lowval(), "Ohms")

print("or as high as", r1.highval(), "Ohms")

Output of program when executed using python3:

Resistor R1 has a nominal value of 1500.0 Ohms

but may be as low as 1425.0 Ohms

or as high as 1575.0 Ohms

Resistor R1 has a nominal value of 10000.0 Ohms

but may be as low as 9990.0 Ohms

or as high as 10010.0 Ohms

22 CHAPTER 1. CASE TUTORIAL

1.11 Example:

Code listing:

Output of program when executed using python3:

1.12. EXAMPLE: USING PYTHON TO CONTROL A LABJACK MODEL U3 DAQ 23

1.12 Example: using Python to control a LabJack model U3
DAQ

A popular manufacturer of low-cost data acquisition (DAQ) hardware is LabJack, with their model
U3 DAQ being a good entry-level device. This particular model interfaces with a personal computer
via a USB cable and is also powered by the computer’s USB port 5 Volt DC source:

Several “Flexible I/O” ports (FIO0 through FIO7) are provided which may be configured for
either discrete (“digital”) or analog input usage. A Python package called LabJackPython provides a
cross-platform Python programming language library with built-in functions and methods enabling
low-level control of LabJack U3, U6, UE9, and U12 DAQ devices. A free software package provided
by LabJack called UD Library Installer provides multiple applications2 and software drivers
for quick and easy configuration and control of LabJack devices with little or no programming
required. The USB drivers contained in LabJack’s UD Library are necessary in order to use the
LabJackPython Python package, so you will need to perform two software installations: the UD

Library Installer from LabJack, and the LabJackPython using the Python pip installation utility
operated from the computer’s command line.

Follow the instructions from LabJack on how to install this software on your computer before
attempting to run the Python examples shown in this section. The Windows command-line
instruction I used to install LabJackPython package on my computer for these demos is as follows:

py -m pip install LabJackPython

2Among these applications are Kipling, LJControlPanel, and LJStreamUD.

24 CHAPTER 1. CASE TUTORIAL

From a Python interpreter shell, you may enter the following commands to control the LED
visible on the outside of the U3 unit:

>>> import u3

>>> d = u3.U3()

>>> d.toggleLED()

The first line (import u3) instructs Python to import the U3 device library previously installed
on your personal computer. The next line constructs a new object named d tied to the first U3
device the computer finds plugged in to its USB port. Note that this simple discovery technique
only works when you have one LabJack device plugged in at a time! The third and final instruction
toggles the binary state of the DAQ’s single external LED. Executing that line more than once
continues to toggle the LED, first off, then on, then off again, etc. This is a simple and effective test
to check that your computer is actually able to communicate with the DAQ via Python commands.

This next test uses the Python interpreter to manually read the analog voltage applied to input
FIO0:

>>> import u3

>>> d = u3.U3()

>>> d.configIO(FIOAnalog = 0x01)

>>> d.getAIN(0)

The configIO() method3 sets the functionality of the FIO inputs using a hexadecimal value
whose eight bits relate to FIO0 through FIO7, respectively. In this case we are configuring FIO0 to
be an analog input and the rest digital, since 0x01 is equal to a binary value of 0b 0000 0001. If we
had wished to configure the first three FIO inputs to be analog, we would have used the hexadecimal
value 0x07 which is binary 0b 0000 0111. It is important we specify the analog nature of any FIOs
before we attempt to read their analog voltage values, otherwise the next instruction will return an
error message!

The getAIN(0) method then reads the analog voltage applied to FIO0 and returns a floating-
point value scaled in actual Volts according to the calibration data stored within the U3 DAQ’s
memory. Incidentally, if you wish to view this calibration data, you may do so using the following
command:

>>> d.getCalibrationData()

3In object-oriented programming languages such as Python, a method is a function attached to an object. In this
case, the object is d which is the particular U3 DAQ we’re communicating with, and configIO() is one of the methods
associated with that object.

1.12. EXAMPLE: USING PYTHON TO CONTROL A LABJACK MODEL U3 DAQ 25

An extremely simple Python program using the toggleLED() method is shown below, also using
Python’s time library to create a two-second pause in the while loop’s execution:

import u3

import time

d = u3.U3()

while (1):

d.toggleLED()

time.sleep(2)

Writing this short program using a text editor program, then saving it to a filename ending with
the extension .pymakes it immediately recognizable to the computer’s operating system as a Python
source code file. Invoking that source file, either by double-clicking on its icon or by specifying it
by name at a command-line interface (e.g. py myfile.py), will cause Python to execute these
instructions.

26 CHAPTER 1. CASE TUTORIAL

A simple Python program reading the first three FIO analog voltage inputs (and re-reading them
with every press of the “Enter” key on the controlling computer) is shown here ready to save to a
file ending in .py and executed by double-clicking on the Windows icon for that file:

import u3

d = u3.U3()

d.configIO(FIOAnalog = 0x07) # Sets first three FIOs to analog mode

while (1):

a = d.getAIN(0) # Reads FIO0 as analog input and stores in "a"

b = d.getAIN(1) # Reads FIO0 as analog input and stores in "b"

c = d.getAIN(2) # Reads FIO0 as analog input and stores in "c"

print("FIO0 =", a, "Volts")

print("FIO1 =", b, "Volts")

print("FIO2 =", c, "Volts")

input() # Pauses until user presses Enter

An example of this program’s output when run is shown here, pressing the “Enter” key three
times to get three readings of the analog inputs:

FIO0 = 0.438432256 Volts

FIO1 = 0.37528848000000004 Volts

FIO2 = 0.35026924800000003 Volts

FIO0 = 0.41698720000000006 Volts

FIO1 = 0.36397025600000005 Volts

FIO2 = 0.34490798400000006 Volts

FIO0 = 0.41758289600000004 Volts

FIO1 = 0.36397025600000005 Volts

FIO2 = 0.344312288 Volts

1.12. EXAMPLE: USING PYTHON TO CONTROL A LABJACK MODEL U3 DAQ 27

A more detailed and sophisticated way to read analog inputs on the model U3 DAQ makes use
of the getFeedback() method. This method reads the raw analogto-digital converter (ADC) count
value as an integer number.

import u3

d = u3.U3()

d.configIO(FIOAnalog = 0x07) # Sets first three FIOs to analog mode

while (1):

a_raw, = d.getFeedback(u3.AIN(0)) # Reads FIO0 counts and stores in "a_raw"

b_raw, = d.getFeedback(u3.AIN(1)) # Reads FIO1 counts and stores in "b_raw"

c_raw, = d.getFeedback(u3.AIN(2)) # Reads FIO2 counts and stores in "c_raw"

print("FIO0 =", a_raw, "counts")

print("FIO1 =", b_raw, "counts")

print("FIO2 =", c_raw, "counts")

input() # Pauses until user presses Enter

Note the comma symbols prior to the = assignment used to send the results of the getFeedback()
method to the variables a raw, b raw, and c raw. This is because the getFeedback() method
returns a list4 rather than a single variable. The list in this case happens to contain only one entry,
and placing a comma before the “equals” assignment operator extracts that one entry’s value as a
regular integer value. If not for the commas, variables a raw, b raw, and c raw would all become
lists themselves.

An example of this program’s output when run is shown here, pressing the “Enter” key three
times to get three readings of the analog inputs:

FIO0 = 12048 counts

FIO1 = 10064 counts

FIO2 = 9520 counts

FIO0 = 11584 counts

FIO1 = 9808 counts

FIO2 = 9408 counts

FIO0 = 11568 counts

FIO1 = 9904 counts

FIO2 = 9440 counts

4Lists in Python are similar to arrays or structures in C or C++, namely collections of variables under a single
name for easy access.

28 CHAPTER 1. CASE TUTORIAL

LabJackPython also supports discrete, or digital, I/O control for any FIO channels in digital
mode rather than analog. For example, we may run the following commands manually from a
Python interpreter to read the status of FIO6:

>>> import u3

>>> d = u3.U3()

>>> d.configIO(FIOAnalog = 0x01)

>>> d.getFeedback(u3.BitDirWrite(6,0)) # Sets the direction of FIO6 as input

>>> d.getFIOState(6) # Reads the digital logic state of FIO6

In this example, the method configIO(FIOAnalog = 0x01) setting FIO0 to analog input
mode is really just ensuring all the other FIO channels are set to digital. Next we have the
getFeedback(u3.BitDirWrite(6,0)) instruction setting (writing) the direction bit to a 0 value
for FIO6 which configures that FIO to be an input rather than an output. The getFIOState()

method reads the logical state of input FIO6 and displays it as either a 1 or a 0 depending on what
the FIO6 input terminal is connected to.

Next, we will examine the Python instructions needed to configure FIO6 as a digital output
rather than a digital input, and then setting its output value to be 1 and 0 in turn:

>>> import u3

>>> d = u3.U3()

>>> d.configIO(FIOAnalog = 0x01)

>>> d.getFeedback(u3.BitDirWrite(6,1)) # Sets the direction of FIO6 as output

>>> d.setFIOState(6, 1) # Writes the digital logic state of FIO6 to a 1 value

>>> d.setFIOState(6, 0) # Writes the digital logic state of FIO6 to a 0 value

Note that in all these examples it is not necessary to re-execute the import u3 or d = u3.U3()

or d.configIO(FIOAnalog = 0x01) instructions so long as they have already been executed during
the same Python interpreter session. They are shown in these test examples assuming a fresh start
of Python each time.

1.12. EXAMPLE: USING PYTHON TO CONTROL A LABJACK MODEL U3 DAQ 29

LabJack model U3 DAQs also contain 32-bit hardware counters which may be read via Python.
These counters may be configured to read the digital (high/low) status of any FIO input terminal,
incrementing by one every time the logic level transitions from a “high” state to a “low” state (i.e. a
negative-edge clocked counter). The following Python program demonstrates how to read a counter
inside of a model U3 DAQ:

import u3

d = u3.U3()

Enables Counter 0 and sets FIO0-FIO3 to analog mode (0x0F = 0b 0000 1111)

d.configIO(EnableCounter0 = True, FIOAnalog = 0x0F)

while (1):

count, = d.getFeedback(u3.Counter0(Reset = False))

print("Counter value =", count)

count, = d.getFeedback(u3.Counter0(Reset = True))

input() # Pauses until user presses Enter

Note how the first getFeedback() method does not reset the counter, but the second one
does. This causes the counter’s value to be re-set to zero just prior to the program waiting for
the user’s “Enter” keystroke. If no negative-edge pulses are detected before pressing “Enter”, the
next displayed counter value will be zero. However, if the input terminal receives some pulses prior to
the “Enter” keystroke then the next value printed to the console after pressing “Enter” will register
the number of pulses accumulated.

An example of this program’s output when run is shown here, pressing the “Enter” key three
times to get display four readings of the counter:

Counter value = 0

Counter value = 318

Counter value = 0

Counter value = 771

While it would be possible to write a Python program to repeatedly read the digital status of any
FIO terminal and increment a variable (within Python) to count how many times that digital signal
has pulsed, this strategy would miss pulses whose frequency exceeded the Python program’s loop
execution rate. The beauty of a hardware counter is that the DAQ keeps its own count of pulses
regardless of whether that counter value is read by a computer or not. Thus, when the Python
program reads the counter’s value, it is sure to read the true value of pulses captured in real time.

30 CHAPTER 1. CASE TUTORIAL

The model U3’s counter is assigned to any FIO terminal other than FIO0 through FIO3 by
means of an offset value which defaults to four (4). So, by default, FIO4 is the terminal driving
the enabled counter. However, if we wish to assign the counter to sense logic states at a different
terminal, all we have to do is change the offset value. The following program shows how this is done
within the configIO() method, in this particular case setting that offset value to five (5) which
makes FIO5 the terminal where any negative pulse edges will increment the counter:

import u3

d = u3.U3()

Enables Counter 0 and sets FIO0-FIO3 to analog mode (0x0F = 0b 0000 1111)

d.configIO(EnableCounter0 = True, TimerCounterPinOffset = 5, FIOAnalog = 0x0F)

while (1):

count, = d.getFeedback(u3.Counter0(Reset = False))

print("Counter value =", count)

count, = d.getFeedback(u3.Counter0(Reset = True))

input() # Pauses until user presses Enter

1.12. EXAMPLE: USING PYTHON TO CONTROL A LABJACK MODEL U3 DAQ 31

LabJack model U3 DAQs support up to two hardware counters, called counter 0 and counter 1.
In the following program5 we see both counters being read, with the offset value set to five (5) which
means counter 0 is reading the digital status of FIO5 and counter 1 is reading the digital status of
FIO6:

import u3

d = u3.U3()

Enables Counters 0 & 1 and sets FIO0-FIO3 to analog mode (0x0F = 0b 0000 1111)

d.configIO(EnableCounter0 = True, EnableCounter1 = True,

TimerCounterPinOffset = 5, FIOAnalog = 0x0F)

while (1):

count0, = d.getFeedback(u3.Counter0(Reset = False))

count1, = d.getFeedback(u3.Counter1(Reset = False))

print("Counter 0 value =", count0, " Counter 1 value =", count1)

count0, = d.getFeedback(u3.Counter0(Reset = True))

input() # Pauses until user presses Enter

This program resets the value of counter 0 before every “Enter” keystroke from the user, but
allows counter 1 to continue accumulating.

5Here the configIO() method’s line is broken into two simply for readability on the printed page of this document.

32 CHAPTER 1. CASE TUTORIAL

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

33

34 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

35

36 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

37

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

38 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

39

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

40 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

41

42 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

43

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

44 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

45

46 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

47

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

48 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

49

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

50 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

51

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

52 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

53

54 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

19 August 2024 – corrected a minor spelling error.

25 May 2024 – added another Case Tutorial section, this one showing a use of lists in a manner
similar to C/C++ arrays.

12 February 2024 – modified the “Example: simple uses of the print() function” and “Example:
using input() for numerical user entries” sections of the Case Tutorial chapter to include lines of
code demonstrating how to format the number of decimals shown for a floating-point value.

1 January 2024 – added content to the Case Tutorial chapter.

31 December 2023 – document first created, with nothing but a Case Tutorial chapter.

55

Index

Adding quantities to a qualitative problem, 34
Annotating diagrams, 33

Checking for exceptions, 34
Checking your work, 34
Code, computer, 41
Compiled language, 4
Compiler, 4

DAQ, 23
Data acquisition unit (DAQ), 23
Dimensional analysis, 33

Edwards, Tim, 42

Graph values to solve a problem, 34

How to teach with these modules, 36
Hwang, Andrew D., 43

Identify given data, 33
Identify relevant principles, 33
Instructions for projects and experiments, 37
Intermediate results, 33
Interpreted language, 4
Interpreter, 4
Inverted instruction, 36

Knuth, Donald, 42

LabJack, 23
Lamport, Leslie, 42
Limiting cases, 34
Linker, 4

Method, object, 19
Moolenaar, Bram, 41

Object, Python, 19

Open-source, 41

Problem-solving: annotate diagrams, 33
Problem-solving: check for exceptions, 34
Problem-solving: checking work, 34
Problem-solving: dimensional analysis, 33
Problem-solving: graph values, 34
Problem-solving: identify given data, 33
Problem-solving: identify relevant principles, 33
Problem-solving: interpret intermediate results,

33
Problem-solving: limiting cases, 34
Problem-solving: qualitative to quantitative, 34
Problem-solving: quantitative to qualitative, 34
Problem-solving: reductio ad absurdum, 34
Problem-solving: simplify the system, 33
Problem-solving: thought experiment, 33
Problem-solving: track units of measurement, 33
Problem-solving: visually represent the system,

33
Problem-solving: work in reverse, 34
Property, object, 19

Qualitatively approaching a quantitative
problem, 34

Reductio ad absurdum, 34–36

Simplifying a system, 33
Socrates, 35
Socratic dialogue, 36
Stallman, Richard, 41

Thought experiment, 33
Torvalds, Linus, 41

Units of measurement, 33

56

INDEX 57

Visualizing a system, 33

Work in reverse to solve a problem, 34
WYSIWYG, 41, 42

	Case Tutorial
	Example: running Python programs
	Example: simple uses of the print() function
	Example: using input() for numerical user entries
	Example: importing libraries
	Example: for() and while() loops
	Example: complex-number calculations
	Example: generating .csv output
	Example: Python functions
	Example: using lists
	Example: creating and using Python objects
	Example:
	Example: using Python to control a LabJack model U3 DAQ

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	References
	Version history
	Index

