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Chapter 1

Introduction

Resistance (R) is, simply put, friction encountered by electric charge carriers while in a state of
motion. It is one the foundational concepts of electric circuits, and in fact is given precise definition
through Ohm’s Law (R = V

I
). Generally speaking, the concept of resistance typically does not pose

a great challenge to students as they first encounter it. Reactance (X) and impedance (Z), which are
the closest equivalent to resistance for components such as capacitors and inductors in AC circuit,
often strike students as being vague and confusing. Resistance and reactance and impedance are
all expressed in the same unit of measurement (the Ohm), but that is where the similarity ends.
The mathematical strategies applied to the study of X and Z usually take the form of right-triangle
trigonometry, and while this itself is not particularly difficult to execute, the logic of why right
triangles are used to relate R, X, and Z together is not always presented, or presented well. As
a consequence of this confusion, students have a tendency to view AC circuit analysis as wholly
different from DC circuit analysis, with its own unique formulae and strategies. This is a shame,
because when properly understood, the concepts of reactance and impedance actually demonstrate
how AC circuit analysis is really the same as DC circuit analysis (just with a different type of
mathematics), rather than being entirely different in principle. The following tutorials seek to
remedy this sad state of affairs.

Important concepts related to these AC circuit parameters include Ohm’s Law, DC versus
AC electricity, Joule’s Law, energy exchange, sources versus loads, the Conservation of

Energy, inductance, capacitance, rates of change, true versus reactive versus apparent

power, phase shift, parasitic properties, induction versus dielectric heating, electromagnetic

waves, phasor quantities, filter networks, the unit phasor, and phasor diagrams.

This module contains several example calculations showing R, X, and Z applied to a range of
AC circuits. An excellent active reading strategy is to attempt to perform all those calculations
yourself, using the text as a guide to check your results. It is easy to deceive yourself by reading
or listening to a thorough presentation on some challenging concept and think you understand it
merely because it made sense to you at that time. The real test, however, is whether or not you can
perform the same analysis without assistance, and so you should look at computational examples in
any textbook as opportunities to try and to practice.

It is also instructive in the example calculations to closely inspect the phasor diagrams for
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4 CHAPTER 1. INTRODUCTION

impedance, voltage, and/or current to see if you are able to properly match each vector with its
respective complex-number quantity, as well as the sum. Again, do not be satisfied merely with
reading the text’s presentation, but prove to yourself that the numbers actually fit the diagrams!

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to demonstrate the phenomenon of
reactance? What hypothesis (i.e. prediction) might you pose for that experiment, and what
result(s) would either support or disprove that hypothesis?

• How might an experiment be designed and conducted to test whether a component was resistive
or reactive in nature? What hypothesis (i.e. prediction) might you pose for that experiment,
and what result(s) would either support or disprove that hypothesis?

• What does it mean to say that energy is conserved?

• What does it mean when we say that a component dissipates energy?

• What are some of the different ways in which energy dissipates?

• How does reactance differ from resistance?

• How does impedance relate to resistance and reactance?

• How may we tell from an inspection of voltage and current waveforms in a resistive circuit
that power dissipation will always be positive?

• How may we tell from an inspection of voltage and current waveforms in a reactive circuit that
power dissipation will alternate between positive and negative?

• How may we tell from an inspection of voltage and current waveforms in a capacitive circuit
that I = C dV

dt
?

• How may we tell from an inspection of voltage and current waveforms in an inductive circuit
that V = LdI

dt
?

• What is a “parasitic” effect in an electrical component?

• What is the function of a radio transmitting antenna?

• What do the “real” and “imaginary” portions of a rectangular-format complex number
represent for an AC quantity?

• What do the “magnitude” and “angle” portions of a polar-format complex number represent
for an AC quantity?

• What practical benefit do complex numbers lend to the analysis of AC circuits?

• Do the properties of series networks still hold true for AC as they do for DC?

• Do the properties of parallel networks still hold true for AC as they do for DC?
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• What is the purpose of a filter network?

• Of what consequence is reactive power in an AC power system?

• What trigonometric functions are used to convert a polar-form complex number into a
rectangular-form complex number?

• What trigonometric functions are used to convert a rectangular-form complex number into a
polar-form complex number?
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Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?
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2.1 Example: AC source and resistor
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2.2 Example: AC source and inductor
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2.3 Example: AC source and capacitor
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2.4 Example: custom inductor winding and testing

In this example we see a custom inductor made by winding 19 turns of 23-gauge enamel-coated copper
wire around a Micrometals T50-66C powdered iron toroidal core. This core’s datasheet specifies an
inductance factor (AL) of 51 nanoHenrys per turn-squared, so the inductor’s value should be:

L = ALN2

L = (51 × 10−9)(192) = 18.411 µH

Micrometal’s general catalog of core materials lists the type 66 as being “well-suited from 100
kHz to 500 kHz” and so a test was conducted using a NanoVNA vector network analyzer over that
same range of signal frequencies:

Analysis from the VNA shows the measured inductance to be quite close to the predicted value
of 18.411 microHenrys over the “swept” signal range of 100 kHz to 500 kHz:

Frequency Impedance Series L Deviation from predicted

100 kHz 0.148 + j11.3 Ω 17.974 µH −2.37%

300 kHz 1.11 + j33.5 Ω 17.782 µH −3.42%

500 kHz 2.76 + j56.1 Ω 17.849 µH −3.05%

The “real” portion of the complex impedance value represents series equivalent resistance in
Ohms, equal in this case to the resistance of the wire in the inductor’s coil as well as any connection
resistances between the inductor and the VNA. This value rises slightly with signal frequency due
to the skin effect, where electric current at very high frequency becomes excluded from traveling
in the wire’s center and therefore decreases the effective cross-sectional area of the conductor. The
“imaginary” portion of the complex impedance value is the inductive reactance (XL) in Ohms,
relating to inductance by the formula XL = 2πfL where f is the signal frequency in Hertz.
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Like most vector network analyzers, the NanoVNA produces a Smith chart plot of complex
impedance (normalized to 50 Ohms). As expected for a nearly-pure inductance, the path traced
during the 100-500 kHz “sweep” closely follows the 0 Ohm resistive circle circumference while
intersecting various inductive reactance circles as frequency rises. Here the red marker signifies
100 kHz (just above the +j0.2 circle denoting +j10 Ohms), the green marker 300 kHz (between the
+j0.5 and +j1.0 circles), and the blue marker 500 kHz (just above the +j1.0 circle denoting +j50
Ohms):
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Next we see the results of winding 30 turns of 23-gauge wire around another T50-66C powdered
iron core with the same inductance factor of 51 nanoHenrys per turn-squared:

L = ALN2

L = (51 × 10−9)(302) = 45.900 µH

Analysis from the VNA shows the measured inductance to deviate more significantly from the
predicted value of 45.9 microHenrys over the “swept” signal range of 100 kHz to 500 kHz than it
did with the previous (19-turn) inductor:

Frequency Impedance Series L Deviation from predicted

100 kHz 0.827 + j26.8 Ω 42.665 µH −7.048%

300 kHz 3.86 + j80.6 Ω 42.771 µH −6.817%

500 kHz 6.29 + j135 Ω 42.941 µH −6.447%

A greater number of wire turns means an increase in two different parasitic properties: first, the
wire will have greater total resistance because there is simply more of it for current to pass through;
second, the greater number of turns packed onto the same size toroid means individual turns being
closer together to one another than before which will increase the amount of inter-turn capacitance1.

1Recall that capacitance between any two conductive surfaces is a direct function of the overlapping area of those
surfaces, and an inverse function of separation distance. Here, with 30 turns of wire being packed closer together on
the same toroid than 19 turns of wire, the inter-turn capacitance must be greater.
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Here again we see the NanoVNA’s Smith chart showing complex impedance normalized to 50
Ohms, this time for the 30-turn inductor:

As one would expect, the curve lies farther to the right due to the increased inductive reactance
of the larger inductance over the same frequency range. Increased resistance from the longer wire
drives the curve closer to the middle of the Smith chart rather than remain on the periphery as
before.
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Using an entirely different toroidal core, I performed an experiment where I tried different
numbers of turns of the same 23-gauge enameled wire and measured inductance using a different
VNA (a PicoVNA model 106) sweeping from 300 kHz to 400 kHz:

Turns 300 kHz 354 kHz 381 kHz 400 kHz

2 6.06 µH 6.31 µH 6.43 µH 6.52 µH

4 22.79 µH 23.70 µH 24.13 µH 24.45 µH

5 36.36 µH 37.82 µH 38.51 µH 38.93 µH

10 149.63 µH 156.85 µH 159.24 µH 160.16 µH

The following photograph shows this iron core with four turns of wire wrapped around it, the
bare iron core itself being wrapped in white electrical tape to prevent the enameled wire from chafing
against the bare metal and possibly creating a coil-to-core shorted fault:

If you take any two inductance values at the same test frequency but for a different number of
turns, the ratio of those two inductance values approximately equals the square of the ratio of the
turns. For example, 160.16 microHenrys and 38.93 microHenrys at 400 kHz for 10 turns and 5 turns,
respectively, makes an inductance ratio of nearly four to one (4.11405:1) for a turns ratio that is
two to one (2:1). This confirms the general principle that inductance is proportional to the square
of the number of wire turns wrapped around the core.
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Computing the average AL value at each test frequency based on the four measured inductance
values and turns values ( L

N2 ) yields the following:

Frequency Average AL

300 kHz 1.473 µH per turn2

354 kHz 1.535 µH per turn2

381 kHz 1.562 µH per turn2

400 kHz 1.579 µH per turn2

Averaging these four AL values yields an aggregate AL of 1.537 µH per turn-squared for this
particular toroidal iron core. This figure, of course, will be useful for creating custom inductors
based on this toroid as the core material.
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2.5 Example: sine versus non-sine AC sources

Students learning to analyze RLC networks powered by AC voltage sources typically rely on
expensive signal generators to produce the pure sine-wave AC excitation voltage necessary for
voltmeter measurements to closely match predictions. However, robust triangle-wave oscillator
circuits are much less complicated to design and build than sine-wave oscillator circuits, so if students
wish to build their own signal generators for these introductory AC experiments it is good to know
that triangle-wave excitation yields results very close to sine-wave excitation.

A simple and versatile signal generator circuit appears below, outputting triangle, square, and
PWM (pulse-width-modulated) signals. The first image is the schematic diagram, followed by a
PCB layout:
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Here are some test results on simple RC networks:

Tri/Squ/PWM
oscillator

Jpower+

Jpower-

6 V

Triangle
output AC

GND

2k

0µ15

R1

C1
1 kHz

Connected to the RC network, frequency was measured using a Fluke model 87-III multimeter
and adjusted to 1 kHz, and then total voltage measured across the series R1 ↔ C1 combination as
233.0 mVAC.

Parameter Measured (triangle-wave) Predicted (sine-wave)

VR1 205.7 mVAC 205.8 mVAC

VC1 109.3 mVAC 109.2 mVAC

Testing a slightly more complex circuit at a frequency of 300 Hz, the loaded voltage output of
the oscillator being 231.6 mVAC this time:

Tri/Squ/PWM
oscillator

Jpower+

Jpower-

6 V

Triangle
output AC

GND

0µ15

R1

C1
300 Hz

C2 1µ1k

Parameter Measured (triangle-wave) Predicted (sine-wave)

VR1 23.7 mVAC 27.43 mVAC

VC1 207.5 mVAC 207.0 mVAC

VC2 23.7 mVAC 27.43 mVAC

In both applications, the greatest error between measured voltage and predicted voltage as a
percentage of total voltage was in the second circuit across R1||C1 (23.7 milliVolts rather than 27.43
milliVolts), and this is only −1.61% of the source voltage which is considerably less than the ± 5%
tolerance of the resistor and capacitors!
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If we compare the Fourier series for a sine wave and a triangle wave (both having unity peak values
and a frequency of ω) we see that the first harmonic of the triangle wave function is identical to the
sine wave, and that all the other harmonics in the triangle wave are significantly smaller-amplitude
than the fundamental:

Sine wave

cos ωt

Triangle wave

cos ωt +
1

9
cos 3ωt +

1

25
cos 5ωt +

1

49
cos 7ωt + · · · + 1

n2
cos nωt

This tells us any deviations between the measured (triangle-wave) and predicted (sine-wave)
voltage values are likely to be minimal, the third harmonic being only 11.1% of the fundamental’s
amplitude, the fifth harmonic being only 4% of the fundamental’s amplitude, etc. The effects of
higher-order harmonics are truly negligible due to their vastly smaller amplitudes as well as due to
the fact that most digital multimeters suffer “cut off” in the audio-frequency range and therefore
cannot measure signal components in the tens of thousands of Hertz.

With access to a digital oscilloscope having FFT capability2 to show precise voltage values for
each harmonic of a measured waveform, we have an even better solution for obtaining voltage
measurements in agreement with predicted values when not using perfectly sinusoidal signal
generators. Since the oscilloscope’s FFT algorithm separates and displays each of the sinusoidal
harmonics apart from one another in any non-sinusoidal waveform, if we simply pay attention to the
magnitudes of a common harmonic frequency within each voltage measurement we will essentially
take circuit measurements on purely sinusoidal voltages of the same frequency. For example, we
could measure the fundamental (i.e. the first harmonic)3 amplitude of source voltage, then the
fundamental amplitudes of each of the other components’ voltages, and check to see that these
measured voltage values match well with our predictions at that frequency. This technique, in
effect, lets us measure the effects of a purely sinusoidal signal even when the real signal is not
sinusoidal at all, by taking measurements only on a common harmonic of the measured voltages!

2At the time of this writing (2022) some inexpensive oscilloscopes may be found with rather poor FFT resolution,
resulting in wide spectral peaks with uncertain height (voltage) values. You know you are working with a sufficiently
precise instrument when the harmonic peaks show as thin lines rather than exaggerated bell-curves.

3There is no particular reason why we might choose the first harmonic over any of the others, other than the fact
that with triangle and square waves this fundamental will be vastly stronger than any of the other harmonics.
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This testing technique deserves some elaboration, and so we shall explore it by example. Consider
the following test circuit where a signal generator configured to output a square-wave AC signal at
1000 Hz energizes a simple RC network consisting of a 4.7 kΩ resistor and a 0.01 µF capacitor:
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We know from Fourier analysis that a square wave is actually equivalent to a sine wave at the
same fundamental frequency added to another sine wave one-third the amplitude at three times that
frequency (3rd harmonic) added to another sine wave one-fifth the amplitude of the fundamental
at five times that frequency (5th harmonic), and so on. If we examine the frequency-domain plots
of the signal generator’s output (channel A) versus the capacitor’s voltage drop (channel B), we see
the circuit’s response to pure sine waves at each of those frequencies:

1 kHz 5 kHz3 kHz

1 V

2 V

3 V
A = 3 V

B = 2.88 V

A = 1 V
B = 0.75 V

A = 0.6 V

B = 0.336 V

The relative peak heights of the channel A signal (3 Volts, 1 Volt, 0.6 Volts) are simply the result
of the Fourier series for a square wave and has nothing to do with the RC network. The ratios
between peak heights of channel A and channel B at each harmonic frequency, however, are unique
to the 4.7 kΩ and 0.01 µF RC network because those voltage pairs represent the attenuation of this
particular network at each of those sinusoidal frequencies.
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If we mathematically analyze this same RC network for each of the square wave’s harmonic
amplitudes and frequencies used in the test circuit, we should obtain results verifiable by using the
oscilloscope in FFT mode:

1 kHz

4.7 kΩ

0.01 µF
3 V

1 V
3 kHz

0.6 V
5 kHz

0.01 µF

4.7 kΩ

0.01 µF

4.7 kΩ

0.8497 V ∠  73.55o

2.877 V ∠  -16.45o

0.6631 V ∠  48.46o

0.7485 V ∠  -41.54o

0.3365 V ∠  -55.89o

0.4968 V ∠  34.11o

For students with access to oscilloscopes having fine-resolution FFT capability, this not only
means it is unnecessary to secure a signal generator with pure sinusoidal output, but it also means
the ability to energize any AC circuit with any waveshape and test its response at multiple sinusoidal
frequencies simultaneously !
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2.6 Examples: complex-number arithmetic

These complex-number arithmetic problems are presented to you, complete with answers (shown in
bold), for the purpose of practice, since nearly all AC circuit calculations will need to be performed
using complex numbers. Use these practice calculations to check your ability either to perform
these calculations “by hand” (using trigonometric functions) or your ability to use your calculator’s
complex-number functionality.

Note: electronic hand calculators and computer-based calculation programs use the proper
mathematical notation i to represent imaginary numbers rather than j. The letter j is used in
electrical engineering work in order to avoid confusion with i being misinterpreted as “current”.
Also note that calculators and software programs usually default to radians for angle measurement
rather than degrees, and will have to be configured (or converted) for degrees in order to handle the
polar-form complex quantities shown here. Check the “mode” options of your hand calculator to
ensure angles are in the correct unit and also that it will display in either rectangular or polar.

Addition and subtraction:

(5 + j6) + (2 − j1) = 7 + j5

(10 − j8) + (4 − j3) = 14 − j11

(−3 + j0) + (9 − j12) = 6 − j12

(3 + j5) − (0 − j9) = 3 + j14

(25 − j84) − (4 − j3) = 21 − j81

(−1500 + j40) + (299 − j128) = −1201 − j88

(256 15o) + (106 74o) = 31.356 30.87o

(10006 43o) + (12006 − 20o) = 1878.76 8.311o

(5226 71o) − (856 30o) = 461.236 77.94o

Multiplication and division:

(256 15o) × (126 10o) = 3006 25o

(16 25o) × (5006 − 30o) = 5006 − 5o

(5226 71o) × (336 9o) = 172266 80o

10 6 −80o

1 6 0o
= 106 − 80o

25 6 120o

3.5 6 −55o
= 7.1426 175o

−66 6 67o

8 6 −42o
= 8.256 − 71o

(3 + j5) × (2 − j1) = 11 + j7

(10 − j8) × (4 − j3) = 16 − j62

(3+j4)
(12−j2) = 0.1892 + j0.3649
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Reciprocation:

1
(15 6 60o)

= 0.06676 − 60o

1
(750 6 −38o)

= 0.001336 38o

1
(10+j3) = 0.0917 − j0.0275

1
1

156 45o
+ 1

926 −25o

= 14.066 36.74o

1
1

12006 73o
+ 1

5746 21o

= 425.76 37.23o

1
1

23k 6 −67o
+ 1

10k 6 −81o

= 7.013k 6 − 76.77o

1
1

1106 −34o
+ 1

806 19o
+ 1

706 10

= 29.896 2.513o

1
1

89k 6 −5o
+ 1

15k 6 33o
+ 1

9.35k 6 45

= 5.531k 6 37.86o

1
1

5126 34o
+ 1

1k 6 −25o
+ 1

9426 −20

+ 1

2.2k 6 44o

= 256.46 9.181o
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Sign reversal:

−(456 70o) = 456 − 110o

−(906 − 20o) = 906 160o

−(5 + j8) = −5 − j8

−(−3 + j9) = 3 − j9

−(10 − j15) = −10 + j15

Practical suggestions for using your calculator to perform these operations:

• Surround each complex-number quantity with parentheses when setting up arithmetic
operations; e.g., (3 + j5) * (4 - j2) instead of 3 + j5 * 4 - j2. This habit will
guarantee your calculator executes the desired order of operations rather than assert its own.
For instance, in the example given here the calculator may choose to multiply j5 by 4 and
then add on 3 and −j2 since multiplication typically precedes addition, if the two complex
numbers are not encapsulated in their own sets of parentheses.

• Store all calculated results in memory and then recall from memory when re-using those values,
rather than re-entering previously-calculated values by hand or sampling previously-calculated
values from the multi-line display. Manually re-entering values invites rounding errors and
keystroke errors in all cases, and I’ve found certain calculators (I’m looking at you, TI !) fail to
properly enter complex-number values when sampled from their multi-line displays. Getting
in the habit of using your calculator’s memory locations is an all-around good habit that will
serve you very well!



Chapter 3

Simplified Tutorial

Electrical resistance is essentially the friction experienced by electric charge carriers as they travel
from one location to another, and like all forms of friction any attempt at motion results in energy
dissipation (i.e. energy leaving the system and never returning). Charge carriers exit an electrical
resistance at a lower energy level than they enter, as is the case with all electrical loads:

Energy leaving

current currentlosing energy
Charge carriers

Electrical resistance
Higher Lower
energy energy

(heat, light)

Resistance is not the only form of opposition electric charge carriers. Some electrical components
are able to alternately store and release energy, and they too oppose electric charge carrier motion.
Opposition to charge carrier motion based on energy storage and release is called reactance rather
than resistance. This distinction may be clearly understood by analogy to a wheeled push-cart:

• Resistance is akin to a light-weight cart on a muddy road: moving the cart requires an
expenditure of energy to overcome the rolling resistance of the wheels turning through mud.
As soon as you stop pushing, the cart comes to a halt. Friction dominates the cart’s behavior.

• Reactance is akin to a heavy-weight cart on a hard road: accelerating the cart requires an
investment of energy that is returned upon deceleration. The cart continues to coast when
you stop pushing, and acts as an energy source (i.e. pulling you along with it) when you try
to slow it back down. Inertia dominates the cart’s behavior.

25
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Energizing an electrical component with an alternating (“AC”) voltage is akin to alternately
pushing and pulling on a hand cart, but the timing of the cart’s motion versus the applied force
depends entirely on whether friction or inertia dominates. The light-weight cart mired in mud moves
in time with the applied force; the heavy-weight cart rolling freely on hard pavement moves out-of-
sync with the applied force. The following graphs of force (F ) and velocity (v) compare these two
carts’ behavior:

F

v

F
v

time

F

v
time

F
v

Cart’s motion is in-phase
with the applied force

Cart’s motion is out-of-phase
with the applied force

Light cart in mud Heavy cart on pavement

Exploring this concept in more detail, we may graph the power (P ) transferred to and from
these two carts. When applied force and cart motion are in the same direction, the person is doing
work on the cart (i.e. transferring energy to the cart) and power is a positive quantity. When force
and motion are opposed, the cart is doing work on the person (i.e. releasing energy) and power is
negative:

F

v

F
v

time

F

v
time

F
v

Light cart in mud Heavy cart on pavement

to the cart
Energy transfers to and

from the cart
Energy always transfers

P P

The light-weight cart mired in mud always requires work done by the person because applied force
and motion are always in the same directions: the person does work pushing the cart through the
mud, and also does work pulling the cart through the mud. That energy gets dissipated in the mud,
ultimately as heat. The heavy-weight cart rolling freely on hard pavement, however, alternately
requires work from the person and does work on the person: the person does work on the cart when
force and motion are aligned, but the cart does work on the person when force and motion are
opposite. Energy is exchanged back and forth, but never dissipated.
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The difference between resistance and reactance (friction and inertia) is fundamentally a matter of
energy transfer. Resistance (friction) always results in energy dissipation, while reactance (inertia)
results in energy absorption and return. Resistance always functions as a load, while reactance
alternately functions as a load and then a source. Resistance “spends” energy while reactance
“borrows” and “returns” energy.

Returning to electrical circuits, we may graph voltage (V ), current (I), and power (P ) for three
different types of components: a resistor (R), an inductor (L), and a capacitor (C). Resistors are
dissipative devices, with voltage drop proportional to current (Ohm’s Law, V = IR). Inductors are
reactive devices, with voltage proportional to rate-of-change of current (V = LdI

dt
). Capacitors are

also reactive devices, with current proportional to rate-of-change of voltage (I = C dV
dt

).

time

Energy transfers to andEnergy always transfers

P P

V

I

V I

R
V

I

to the resistor from the inductor

I

V
L

time

Energy transfers to and

P

VI

I

V

time

C

from the capacitor

The resistor circuit is analogous to the light-weight cart mired in mud: it only ever dissipates
energy, usually in the form of heat. Both the inductor and capacitor circuits are analogous to the
heavy-weight cart rolling on hard pavement, each in their own way: energy transfers to and from
these reactive components but never leaves the circuit. With inductors the voltage waveform leads
90o ahead of the current waveform; for capacitors the current waveform leads 90o ahead of the
voltage waveform.

Resistance and reactance both relate current to voltage, and so both quantities are expressed in
the unit of the Ohm (Ω). To distinguish resistance from reactance, we use different mathematical
symbols: R for resistance and X for reactance. We may further distinguish types of reactance using
subscripts: XL for inductive reactance and XC for capacitive reactance.

Resistance is unaffected by frequency (f), but reactance varies linearly with frequency:

• Inductive reactance is directly proportional to frequency: XL = 2πfL

• Capacitive reactance is inversely proportional to frequency: XC = 1
2πfC

Impedance (Z) is the combined effect of resistance and reactance, usually expressed as a
complex number where resistance is the “real” portion and reactance is the “imaginary1” portion.

1In mathematics, an imaginary number is the square root of any negative real number. The symbol i or j is
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Combinations of resistance and inductive reactance are expressed as Z = R + jXL, while
combinations of resistance and capacitive reactance are expressed as Z = R − jXC . Impedance
is typically expressed in polar form (Z 6 θ) rather than rectangular form (R ± jX).

Impedance is a more universal expression of opposition to charge carrier motion than either
resistance or reactance. In fact, pure resistance and pure reactance alike are just special cases of
impedances. Resistance is impedance with a phase angle of 0o because with a resistor there is zero
phase shift between voltage and current. Inductive reactance is impedance with a phase angle of
+90o because with an inductor voltage leads current by +90o. Capacitive impedance is reactance
with a phase angle of −90o because voltage lags current by −90o for a capacitor:

time
P P

V

I

V I

R
V

I I

V
L

time
P

VI

I

V

time

C

ZR = R ∠  0o ZL = XL ∠  +90o ZC = XC ∠  -90o

V leads I by 90 degreesV and I are in-phase V lags I by 90 degrees

ZR = R + j0 ZL = 0 + jXL ZC = 0 - jXC

Graphical expressions of complex-number resistance and reactance values may be shown in
phasor diagrams, where the length of a vector arrow represents the phasor’s magnitude and its angle
represents phase shift, the horizontal axis representing the real number line and the vertical axis
representing the imaginary number (j) line. Three such diagrams illustrate the difference between
a 50 Ω resistor versus an inductor having 50 Ω of reactance and a capacitor also having 50 Ω of
reactance:

+imag

-imag

+real-real

R = 50 Ω
ZR = 50 Ω ∠  0o

ZR = 50 + j0 Ω

+imag

-imag

+real-real

XC = 50 Ω

ZC = 50 Ω ∠  -90o

ZC = 0 - j50 Ω

+imag

-imag

+real-real

XL = 50 Ω
ZL = 50 Ω ∠  90o

ZL = 0 + j50 Ω

used to express
√
−1. This abstract concept may seem far removed from the practicalities of AC circuits, but it is

quite relevant. Specifically, imaginary numbers are key to simplifying what would otherwise be an enormously tedious
process of regarding every AC quantity as a sinusoidal (trigonometric) function. Euler’s Relation (ejx = cos x+j sin x)
is the link joining imaginary numbers to sinusoids, and is the mathematical foundation of phasors.
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Some examples2 of component impedances expressed as complex quantities are shown here:

• A 33 kΩ resistor at any frequency will have an impedance of:

33 kΩ 6 0o (polar form)

33 k + j0 Ω (rectangular form)

• A 250 mH inductor at a frequency of 6 kHz will have an impedance of:

9.425 kΩ 6 +90o (polar form)

0 + j9.425 kΩ (rectangular form)

• A 2.2 µF capacitor at a frequency of 150 Hz will have an impedance of:

482.3 Ω 6 −90o (polar form)

0 − j482.3 Ω (rectangular form)

With all passive component values expressed as complex-number impedances and all voltage
and current quantities also expressed as complex numbers, all the fundamental rules regarding
voltage and current learned in DC circuit theory still apply to AC circuits: all the properties of
series and parallel networks remain true, as well as Ohm’s Law (V = IZ, using impedance rather
than resistance), Kirchhoff’s Laws, and network theorems. Several example circuits are analyzed
in the Full Tutorial, and you are encouraged to work through those examples yourself (using a
calculator capable of performing arithmetic functions on complex numbers) to gain familiarity with
the procedures.

2Try calculating these impedance values from the given component values, to check your understanding of how
reactances related to impedances. This is a good learning strategy to apply when reading any mathematical text:
work through the presented examples on your own to see if you achieve the same results! Please note that when you
apply either the XL = 2πfL formula or the XC = 1

2πfC
formula using your calculator to compute reactance, the

result will only be a reactance value and not a (complex) impedance value. In order to attach the desired phase angle
to your computed reactance value, you will have to perform the additional step of multiplying that reactance by a
unit phasor which is nothing more than the quantity of 1 with the correct phase angle. For example, an inductive
reactance of 9.425 kΩ would be multiplied by 1 6 90o to yield an inductive impedance of 9.425 kΩ 6 90o.
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Electrical quantities that are known to add may be graphically summed in any AC circuit by
stacking their representative vectors tip-to-tail, the sum being the resultant vector from the first
vector’s tail (starting point) to the last vector’s tip (ending point). The impedances of resistive and
reactive impedances in a series AC circuit, for example, form a right triangle when summed. Since
resistive impedance has a phase angle of zero degrees its vector points to the right, while inductive
impedance with its 90o phase angle points up and capacitive impedance with its −90o phase angle
points down.

To illustrate, we will compute the total impedance for a series network consisting of a single
resistor and a single inductor:

R L

2.2 kΩ 4 H
ZR = 2200 Ω ∠  0o

ZL = 1508 Ω ∠  90o

Z ser
ies

RL
 = 2667 Ω ∠  34.4

o60 Hz15 V

We see how the 2.2 kΩ resistor forms a vector pointed to the right, and the 4 H inductor forms a
vector (with length equal to 1508 Ω from the XL = 2πfL formula) pointed up, together forming a
total impedance of 2667 Ω having a phase angle of 34.4o. If the reactance happened to be capacitive
rather than inductive, the only graphical difference it would make is that the capacitor’s impedance
vector would be pointed down rather than up as for the inductor.

Using any scientific calculator, we may compute the total impedance’s magnitude using the
Pythagorean Theorem (Z =

√
R + X) and the angle using the arc-tangent function θ = arctan

(

X
R

)

.
Using a scientific calculator with the additional capability of complex-number arithmetic, the task
is simpler: just enter ZR and ZL as complex quantities, and then directly add them together3.

Current in this circuit follows Ohm’s Law, where I = V
Ztotal

. In this case, the current will be
15 V
2667 Ω = 5.624 mA. This current produces voltage drops across the resistor and inductor as predicted
by Ohm’s Law (V = IZ), 12.37 Volts across the resistor and 8.481 Volts across the inductor.

Again, it is important to emphasize that this use of the Pythagorean Theorem to stack two vectors
together at right angles to each other in order to find the resultant vector length only applies to circuit
quantities known to add. For a series circuit such as this, representing each component’s impedance
as a vector and stacking them tip-to-tail to find total impedance works because we know impedance
(just like resistance) adds in series. Voltages also add in series, and so we could just as appropriately
do the same for two vectors representing component voltages to find total (source) voltage. If the
circuit were parallel, however, our use of the Pythagorean Theorem to find resultant vector length
would be limited to current vectors rather than voltage or impedance, because while branch currents
do indeed add to equal total source current in parallel circuits, voltages and impedances do not.

3Such a calculator will be able to display the sum in either polar (2667 6 34.4o) or rectangular (2200 + j1508)
format.
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Full Tutorial

Ohm’s Law is one of the foundational principles applied in the analysis of DC (Direct Current)
circuits, and for good reason: it gives resistance a mathematical definition, showing it to be the
ratio of voltage to current, R = V

I
. In this tutorial we will expand upon the concept of resistance

to include the relationships of voltage to current for other phenomena such as inductance and
capacitance. This conceptual expansion will equip us with mathematical tools for analyzing AC
(Alternating Current) circuits where capacitance and inductance find many practical applications.

4.1 Purely resistive circuit

To begin, we will review the behavior of electrical resistance in a very simple DC circuit. Suppose
we connect a constant-voltage DC generator to a resistor, a voltmeter, and an ammeter as shown:

+
− RV

V Ω

COMA

V Ω

COMA

I

I

Being a complete circuit, we would expect current to flow in a clockwise direction (exiting the
generator’s positive terminal and entering the resistor’s positive terminal) at a rate predicted by
Ohm’s Law (I = V

R
). Electric charge carriers passing upward through the generator gain potential

energy, which is why the entering terminal of the generator is labeled with a negative symbol (−)
and the exiting terminal of the generator is labeled with a positive terminal (+). Those same charge
carriers passing downward through the resistor lose potential energy, giving up that energy in the
form of heat, which is why they enter on the (+) terminal at high energy and exit on the (−) terminal

31
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at low energy. This is why we classify the resistor as a load : it drawn energy from passing charge
carriers and converts that energy into some other form where it exits the circuit never to return.
The generator, by contrast, is classified as a source: it infuses energy into the passing charges from
the external energy source (e.g. mechanical driver).

Joule’s Law predicts that the rate of energy transfer at the resistive load, from electric charge
potential energy into heat energy, will be the mathematical product of voltage and current: P = IV .

This is simple enough in the case of simple DC (Direct Current) circuit such as this, where
quantities of voltage and current remain relatively stable over time. What happens if we replace
the DC (Direct Current) generator with an AC (Alternating Current) generator? The following
diagram shows such a circuit, using a dual-trace oscilloscope equipped with a current probe1 to
measure voltage and current:
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The oscilloscope displays a graphical representation of resistor voltage and resistor current over
time. If the generator’s output voltage is sinusoidal, both voltage and current waveforms will appear
as sine waves on the oscilloscope’s screen:

I

V

1Oscilloscopes are essentially graphical voltmeters, and so they do not naturally accept current signals as inputs.
Therefore, some form of current probe is necessary to detect current and translate that into a voltage signal the
oscilloscope can interpret. The current probe shown in this illustration works by sensing the magnetic field produced
around the wire by current, outputting a voltage signal to the oscilloscope proportional to the strength of that magnetic
field.
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Note how both the voltage (V ) and current (I) waveforms are completely in-phase with each
other: crossing zero at the same points of time and reaching their peak values at the same points
in time. Positive values on this graph refer to voltage polarity with + on top and − on bottom,
current flowing clockwise. Negative values refer to voltage polarity with − on top and + on bottom,
current counter-clockwise. Ohm’s Law (I = V

R
) applies to each and every moment.

Power (P ) is a more challenging quantity to calculate, since voltage and current are both
continuously changing over time. Joule’s Law (P = IV ) still holds true at any given instant,
so we may illustrate power in this circuit by configuring the oscilloscope to plot the product of
current and voltage (IV ) as a third waveform2:

I

V

IV

Note how the power waveform never dips down below the zero line. The amount of power in this
circuit at any point in time is either power is positive or zero. This positive sign for power refers
to the resistor’s constant function as a load : always converting electric charge potential into heat.
This must mean the generator constantly functions as a source: drawing energy from its mechanical
driver to infuse into passing electric charge carriers. The fact that the generator outputs AC rather
than DC has no effect on the roles of source and load in this circuit.

At this point, one might pose the question: “What would negative power mean, anyway?” This
is easy to answer mathematically: the only way to obtain a negative product of two real numbers is
to multiply a positive quantity by a negative quantity. This would mean current would have to flow
“backwards” during a part of the cycle where voltage polarity was still “forwards”, or vice-versa.
In other words, the only way for a resistance to experience negative power would be it to somehow
behave as a source: the resistor would have to have current exiting its positive terminal and entering
its negative terminal. We know for a fact that resistance can never be a source, since it is essentially
“friction”3 to the movement of electrical charge carriers and therefore may only rob energy from

2Instead of using an oscilloscope to generate this plot, I used a computer to mathematically calculate the
instantaneous product of two sine waves (sin t × sin t). However, modern digital oscilloscopes typically offer “math”
channels where you may configure the instrument to plot some mathematical function of the measured variables, for
example the product of two input signals. Please note the lack of any scaling in these plots. Waveform amplitude is
scaled only for esthetics, so that the waveforms do not cross each other unnecessarily and thereby hinder legibility.

3A more scientifically accurate description of electrical resistance is the conversion of charge carrier energy into
heat by means of collisions. This is why voltage is proportional to current for any given resistance: the faster charge
carriers try to move through a resistance, the more energetic their collisions and therefore the more energy each one
loses (voltage) while passing through.
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them, and never infuse energy into them. Consequently, negative power is an impossibility for any
purely resistive component.

This also makes sense if we view the current directions and voltage polarities during each half-
cycle of the generator’s sine wave. During both half-cycles the generator acts as a source and the
resistor acts as a load4:

RV
Charges enter at low energy (-)

Charges exit at high energy (+) Charges enter at high energy (+)

Charges exit at low energy (-)

(Source) (Load)

RV

Charges enter at low energy (-)

Charges exit at high energy (+) Charges enter at high energy (+)

Charges exit at low energy (-)

(Source) (Load)

Energy in Energy out

Energy in Energy out

No matter which direction charge carriers circulate, the resistor terminal they enter must be the
positive (+) and the resistor terminal they exit must be the negative (−) because that properly
expresses the energy lost by those charge carriers as they pass through the resistor and encounter
friction.

Whatever mechanism turns this generator’s shaft experiences this unidirectional power flow as a
constant mechanical burden. If the generator were turned by a hand crank, the person spinning the
crank would definitely feel this burden as laborious, unrelenting work. Practically5 all of the energy
imparted to the generator by the person becomes converted into heat at the resistor. The Law of
Energy Conservation tells us all the heat dissipated in this circuit must be matched by work done
turning the generator shaft, for energy cannot appear from nowhere.

4Returning to the concept of positive and negative power, it is fair to say that an electrical load exhibits positive
power while an electrical source exhibits negative power. One way to relate this mathematical sign to the real world is
to see it as an indication of energy direction: positive power (load) refers to energy entering the outside world from the
circuit, while negative power (source) refers to energy entering the circuit from the outside world. For example, from
the perspective of an external observer, an electric lamp is a provider of positive power because it provides heat and
light; an electromechanical generator, on the other hand, imposes a demand for power (negative) because something
must do work to turn its shaft.

5Due to resistance intrinsic to the generator’s wiring and to the wires connecting the generator to the resistor,
some energy will be converted into heat at those locations as well.
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4.2 Purely inductive circuit

Let us now consider the same circuit, but with a perfect6 inductance replacing the resistance:
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Unlike resistance where voltage is proportional to current, an inductance’s voltage is proportional
to how quickly current varies over time. Instead of Ohm’s Law where V = IR for a resistance, we
have the following formula describing an inductance’s relation of voltage to current:

V = L
dI

dt

Where,
V = Voltage across the inductance’s terminals (Volts)
L = Inductance (Henrys)
dI
dt

= Rate-of-change of current over time (Amperes per second)

An oscilloscope plot of voltage and current for this purely inductive circuit shows the relationship
between voltage and the rate-of-change of current:

V I

We see voltage (V ) reaching its peak values when current (I) is at its maximum rate-of-change
(steepness) crossing the zero line. We also see voltage at zero whenever current levels off (at the

6By “perfect” we mean an inductance with no energy losses whatsoever. Such an inductance would have
superconducting wires to avoid losses there, as well as a core material lacking any magnetic hysteresis.
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current waveform’s peaks). For perfect sinusoidal waveshapes, the phase shift between voltage and
current for an inductance will always be 90o, with current lagging and voltage leading.

If we plot the product of current and voltage (P = IV ) as a third waveform on the oscilloscope
display, we see something very interesting:

V I

IV

Unlike the resistive circuit where power (P ) varied between positive and zero values, this power
waveform completely alternates between positive and negative values. This means the inductance
alternately experiences positive power and negative power. As discussed previously, positive power
is when the generator acts as a source and the other component acts as a load; negative power is
when those roles reverse and the component sends energy back to the generator.

This should make sense to us based on our understanding of inductance. While resistance is
simply a form of electrical “friction” dissipating energy in the form of heat, inductance stores and
releases energy by means of a magnetic field. Those periods of positive power are when the inductance
acts as a load, and those periods of negative power are when the inductance acts as a source.

Any person turning a crank to spin the generator’s shaft would notice a profound difference
between this and the resistive circuit. Continual effort was required in the resistive circuit because
the resistor caused energy to leave the circuit in the form of heat, and this persistent out-flow of
energy required a continuous in-flow of energy into the circuit from the person laboring to turn
the crank. Here, though, the inductance alternately receives and gives energy in the circuit, which
means part of each cycle the generator requires energy to turn and an equal duration of each cycle
the generator runs like a motor on the energy returned from the inductance. The net effect of this
perfectly balanced back-and-forth energy exchange is that the generator requires no effort to turn
even though AC voltage and current are both present in the circuit. In other words, the generator
requires no work because the inductance does no work. This is in agreement with the Law of Energy
Conservation, since with no heat dissipated in this circuit or other electrical work being done, no
work should be required to turn the generator shaft.

Power that leaves a circuit and does not return is called true power. Power that transfers back
and forth between circuit components while never leaving is called reactive power. All power in the
resistive circuit was true because it left the circuit never to return. All power in this inductive circuit
is reactive, because it merely shuttles back and forth between the two components and never leaves
the circuit.
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4.3 Purely capacitive circuit

Now we will consider the same circuit, but with a perfect7 capacitance replacing the inductance:
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Unlike resistance where current is proportional to voltage, a capacitance’s current is proportional
to how quickly voltage varies over time. Instead of Ohm’s Law where I = V

R
for a resistance, we

have the following formula describing the relationship between voltage and current for a capacitance:

I = C
dV

dt

Where,
I = Current through the capacitance’s terminals (Amperes)
C = Capacitance (Farads)
dV
dt

= Rate-of-change of voltage over time (Volts per second)

An oscilloscope plot of voltage and current for this purely capacitive circuit shows the relationship
between current and the rate-of-change of voltage:

I V

We see current (I) reaching its peak values when voltage (V ) is at its maximum rate-of-change
(steepness) crossing the zero line. We also see current at zero whenever voltage levels off (at the

7By “perfect” we mean a capacitance having no energy losses whatsoever. Such a capacitance would have
superconducting conductors to avoid losses there, as well as a lossless (i.e. non-heating) dielectric material.
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voltage waveform’s peaks). For perfect sinusoidal waveshapes, the phase shift between voltage and
current for a capacitance will always be −90o, with voltage lagging and current leading.

As you might have already reasoned, if we plot the product of current and voltage (P = IV ) as
a third waveform on the oscilloscope display we see an effect similar to the inductive circuit:

VI

IV

The fact that it is current leading voltage this time rather than voltage leading current makes
little difference for power – the 90o phase shift is what makes power alternate equally between positive
and negative values. As with the purely inductive circuit, this purely capacitive circuit performs
no work and therefore all of its power is reactive (exchanged back and forth between components)
rather than real (leaving the circuit). Similarly, no mechanical energy is required8 to maintain the
generator’s shaft rotation (i.e. the generator is effortless to turn) because no energy ever leaves the
capacitive circuit.

By this point, hopefully, the lesson is clear: resistive AC circuits exhibit no phase shift between
voltage and current waveforms, and this results in power leaving the circuit never to return (i.e.
true power); reactive AC circuits (either inductive or capacitive) exhibit a 90o phase shift between
voltage and current resulting in power exchanged equally back and forth between components and
never leaving the circuit (i.e. reactive power). The fundamental difference between inductive and
capacitive circuits is the leading or lagging nature of that 90o phase shift: in an inductive circuit,
voltage leads current by +90o; in a capacitive circuit, voltage lags current by −90o9

8For this purely capacitive circuit, as with the purely inductive circuit, there would actually be some energy
required to initially set the generator shaft in motion and thereby invest energy in the reactive component, but
once that energy is returned to the generator (forcing it to act as a motor, investing that energy kinetically in the
generator’s spinning mass) no additional work would be necessary. In either the inductive or the capacitive case, such
perfect energy exchange would require zero resistance throughout the circuit, frictionless bearings in the generator,
zero hysteresis losses in the magnetic core material of the generator, etc. In actual practice there would be some small
amount of mechanical power required to maintain the generator’s motion in order to satisfy these power losses, but
this would certainly be far less than the amount of mechanical power necessary to drive the generator in a resistive
circuit with the same AC voltage and current values.

9A simple memory trick often taught to students of AC circuits is the phrase “Eli the Ice man”, where the word
“Eli” is supposed to remind you that voltage (E – representing electromotive force) comes before current (I) for
inductive (L) circuits, and the word “Ice” is supposed to remind you that current (I) comes before voltage (E) for
capacitive (C) circuits.
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4.4 Realistic circuits

The previous few sections all began with the word “Purely” in their titles, which ought to tell you
something about real components in AC circuits. In reality, there is no such thing as a purely resistive
resistor, nor a purely inductive inductor, nor a purely capacitive capacitor. Real components may
approach these ideals, but never perfectly embody them.

Resistors, for example, exhibit trace quantities of inductance and capacitance that are impossible
to completely eliminate. Inductance is simply the storage of energy in a magnetic field, and since
any current-carrying conductor forms a magnetic field around it (i.e. electromagnetism) this means
any current-carrying component will harbor some inductance. Likewise for capacitance, being the
storage of energy in an electric field formed between two or more conductors at differing potentials,
which means any component experiencing a voltage between two or more terminals will form an
electric field between those terminals and therefore will harbor some capacitance. Techniques10 exist
to minimize these “parasitic” effects, and so the phase shift between voltage and current for most
resistors will be very nearly zero degrees, and therefore resistor power will be very nearly 100% real
and 0% reactive.

Capacitors are never 100% reactive, mostly due to energy losses in their dielectric material. When
an alternating electric field is applied across the plates of a capacitor from an applied AC voltage, the
molecules of that material experience alternating physical stresses. These stresses cause vibration
on a molecular level, which raises the temperature of the dielectric material. As that material
warms, heat energy dissipates from it to the surrounding environment, and this constitutes real (not
reactive) power. Modern capacitor dielectric materials are chemically engineered to minimize this
energy dissipation, and so the phase angle between AC voltage and current for any capacitor will
be very nearly −90o, and power will be very nearly 100% reactive, but not perfectly so.

Inductors tend to be least-perfect form of reactive component, with phase shift between voltage
and current approaching +90o but not quite achieving that ideal. They experience energy dissipation
in multiple ways, most notably in the resistance of their wire coils and in various losses within their
ferrous cores11. Wire resistance is a fairly obvious mechanism of energy loss in an inductor: any
device requiring long lengths of wire to form electromagnetic coils will exhibit electrical resistance
unless those wires are superconducting. Less obvious are energy losses in the magnetic core: like
capacitor dielectrics, ferrous magnetic materials experience alternating physical stresses as their
magnetic domains are forced to switch polarity with each cycle of the AC magnetic field. These
alternating stresses cause some amount of temperature rise, which leads to energy being permanently
drawn away from the circuit. Another loss mechanism within inductor cores is the inducing of AC
electric currents within the ferrous core material, and since ferrous metals tend to be poor conductors
it means these “eddy currents” may dissipate substantial amounts of energy passing through. These
inductor imperfections can me minimized – copper losses minimized by using wires of larger diameter,
and iron losses minimized by making the core’s cross-section large to reduce magnetic field density
as well as making the core laminated to reduce eddy currents – but both design strategies make the
inductor bulkier and more massive.

10One such design technique applied to wire-wound resistors – which use a coil of fine wire as the resistive element
– is to wrap that wire coil as many turns clockwise as counter-clockwise so that it will generate two self-canceling
magnetic fields when current passes through, and therefore will not possess substantial inductance.

11These two loss mechanisms are generally referred to as copper losses and iron losses, respectively, by electrical
power engineers.
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So far we have referred to energy dissipation in inductive or capacitive components as being an
imperfection, with the ideal inductor or capacitor being purely reactive and completely non-resistive.
There do exist, however, a great many electrical components based on the actions of electric or
magnetic fields that are actually designed to be dissipative in their behavior. These components
utilize electric or magnetic fields to do useful work, and the performance of work necessitates energy
leaving a circuit (i.e. true power).

Perhaps the most obvious example of such a component is the electric motor. An electric motor
functions on the basis of magnetic fields produced by electric currents through coils of wire, those
magnetic fields attracting and repelling each other to produce torque (i.e. twisting force) to spin a
shaft. The whole purpose of an electric motor is to do mechanical work – to move matter. As matter
is given potential and/or kinetic energy by means of a motor, the energy invested in that matter must
come from the circuit powering the motor, and that energy generally does not return to the circuit
which makes the motor a dissipative element even though it appears to be a collection of inductive
coils. AC motors certainly exhibit inductive reactance, but here the reactance is the imperfection
because the whole purpose of a motor is to translate all the given energy into mechanical work.

An audio loudspeaker is another example of an inductive component designed to dissipate energy,
this time in the form of sound. Like an electric motor, a loudspeaker uses coils of wire to generate
magnetic fields with the passage of AC electric current, those fields working to shake a paper
“cone” to impart kinetic energy to air molecules which we perceive as sound. Here again, any
inductance exhibited by a loudspeaker’s coil is considered an imperfection, because it is the purpose
of a loudspeaker to translate all of the electrical energy it’s been given into sound, without returning
any of the energy back to the rest of the circuit. In this next photograph, we see a small loudspeaker
of the size one might find in a personal computer:

Here we see two photographs, one of an electric motor (colored black) powering a water pump
(colored blue), and the other of a small speaker salvaged from an alarm-clock radio:
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Another dissipative application of fields takes the form of heating, where we may use oscillating
magnetic and/or electric fields to impart thermal energy to objects. Induction heating works by
wrapping a coil of wire around some electrically conductive object and passing high-frequency
alternating current through that coil. The oscillating magnetic field produced by the coil induces AC
“eddy currents” in the conductive object, which then dissipate heat through that object’s electrical
resistance. Dielectric heating is the capacitive version of induction heating, where a non-conducting
object is placed between two metal plates and subjected to an oscillating electric field by the
application of a high-frequency AC voltage between those plates. In either case, the whole point of
the assembly is to deliver thermal energy to some object from a circuit, with that thermal energy
remaining in the object and never returning to the circuit. Thus, both inductive and dielectric
heaters are dissipative devices, and any reactance they exhibit is undesired.

The following photographs show two examples of induction hearing. On the left is Dr. Harvey
Rentschler of the Westinghouse Corporation in 1927 holding a glass bulb containing a sample of
metal being inductively heated by the AC magnetic field of the wire coils surrounding the bulb. On
the right is a section of large-diameter pipe being inductively heated by alternating current passed
through loops of thick cable from an arc welding machine:

Special metal-melting furnaces called induction furnaces work on this same principle, heating
metal to its melting temperature without the need for flame or any direct contact with any heat
source. Some induction furnaces operate in a state of high vacuum so that the melted metal will
not chemically react with oxygen or nitrogen in the air, the vacuum presenting no impediment to
the transfer of energy from the induction coils to the melt.



42 CHAPTER 4. FULL TUTORIAL

Yet another example of a device using electric and magnetic fields in a dissipative fashion is a
radio transmitting antenna. The Scottish physicist James Clerk Maxwell mathematically predicted
in 1873 the existence of oscillating magnetic and electric fields that would support one another in
empty space, akin to ripples in the surface of a pond, but propagating at the speed of light in all
directions. Professor Heinrich Hertz demonstrated this fact in 1887 using an apparatus illustrated
below. The “radiator” is the transmitting antenna and the “resonator” is the receiving antenna,
a weak electric spark developing at the resonator’s spark gap whenever the radiator’s circuit is
energized:

Spark gap

Metal plate

Metal plate

Small
spark gap

Wire loopA few meters’
distance

Resonator

Radiator

Induction coil

A modern microwave antenna appears in this photograph:

Close inspection of any antenna reveals nothing but short lengths of conductive metal having
no moving parts. Those short lengths of metal tube comprising the antenna possess inductance (by
virtue of their length) and capacitance (by virtue of their separation from each other), and these two
properties allow the electromagnetic field to be generated when the antenna’s elements are energized
by an AC source. From this, and one might be tempted to conclude that an antenna ought to be
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purely reactive, but the arrangement of those pieces facilitates radiation of electromagnetic waves
in the desired direction(s) and this fact makes an antenna dissipative.
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4.5 Applying phasors

After seeing how inductance and capacitance both react to the application of sinusoidal AC
(Alternating Current), we may explore these concepts further by applying our knowledge of phasors.
Sinusoidal waveforms are merely the projections of a circle’s radius line as that line is rotated
about the center. Thus, any sinusoidal wave may be described mathematically in terms of a radius
line (called a phasor) rotating at a particular angular velocity. Complex numbers work well to
express the dimensions of phasors: “polar form” representing the radius line length and angle, and
“rectangular form” representing the respective positions on the corresponding cosine (“real”) and
sine (“imaginary”) waves:
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The equations V = LdI
dt

and I = C dV
dt

relate values of voltage and current at instantaneous
moments in time, but not as complete waveforms. Phasors, however, do succinctly describe entire
waves, and so if we use phasors to express voltage and current waveforms in these reactive circuits
we should be able to apply these quantities in a manner similar to their application in Ohm’s Law,
and by doing so we may define a quantity similar to resistance but more universal in scope. If a
phasor is given a fixed angle, that angle will represent the degree to which that AC quantity is
phase-shifted from some other AC quantity in that same circuit (i.e. the amount that the waveform
leads or lags another as both waveforms’ phasors continually rotate).

First, let us consider the case of a purely inductive circuit. In this case, voltage leads current by
90o. If we arbitrarily choose current as the “reference” waveform, we would say that I has a polar
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angle of 0o while V has a polar angle of 90o. We could have just as easily chosen voltage as the
reference waveform, in which case V would have a polar angle of 0o and I would have a polar angle
of −90o (since voltage still leads current). Either way, the ratio of voltage to current, expressed in
phasor form, is a quantity with a constant angle of 90o. We will call this quantity impedance and
use Z as its symbol.

Suppose the oscilloscope in our purely inductive circuit measured 21 Volts AC and 3 Amperes AC.
The impedance of that inductance would be calculated as follows, setting current as the reference
waveform for phasor angles:

ZL =
21 V6 90o

3 A6 0o
= 7 Ω6 90o

If we happened to set voltage as the phasor angle reference waveform, the impedance would be
calculated just the same:

ZL =
21 V6 0o

3 A6 − 90o
= 7 Ω6 90o

In fact, the choice of phasor angle reference waveform is completely arbitrary because the phase
shift between voltage and current for any pure inductance must be 90o as a direct consequence of the
V = LdI

dt
equation. Any quotient of two phasors 90 degrees apart (numerator leading denominator)

must be 90o. It is worthy of note that the impedance phase angle for a pure resistance will always
be 0o because there is no phase shift between voltage and current for a resistance.

The magnitude of this impedance (7 Ohms) is called reactance, and may be computed12 as a
function of frequency (f) and inductance (L):

XL = 2πfL or XL = ωL

Where,
XL = Reactance of the inductance (Ohms)
f = Frequency of the waveforms (Hertz, or cycles per second)
ω = Angular velocity or natural frequency of the waveforms (radians per second)
L = Inductance (Henrys)

12This involves some calculus, and is shown in section 5.1 on page 78.
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Next, let us consider the case of a purely capacitive circuit. In this case, current leads voltage by
90o. If we arbitrarily choose current as the “reference” waveform, we would say that I has a polar
angle of 0o while V has a polar angle of −90o. We could have just as easily chosen voltage as the
reference waveform, in which case V would have a polar angle of 0o and I would have a polar angle
of 90o (since current still leads voltage). Either way, the ratio of voltage to current, expressed in
phasor form, is a quantity with a constant angle of −90o. We refer to this quantity as impedance
just as we did in the inductive case, and continue to use Z as its symbol.

Suppose the oscilloscope in our purely capacitive circuit measured 18 Volts AC and 2 Amperes
AC. The impedance of that capacitance would be calculated as follows, setting current as the
reference waveform for phasor angles:

ZC =
18 V6 − 90o

2 A6 0o
= 9 Ω6 − 90o

If we happened to set voltage as the phasor angle reference waveform, the impedance would be
calculated just the same:

ZC =
18 V6 0o

2 A6 90o
= 9 Ω6 − 90o

As before, the choice of phasor angle reference waveform is completely arbitrary because the phase
shift between voltage and current for any pure capacitance must be −90o as a direct consequence
of the I = C dV

dt
equation. Any quotient of two phasors 90 degrees apart (numerator lagging

denominator) must be −90o.

The magnitude of this impedance (9 Ohms) is called reactance, and may be computed13 as a
function of frequency (f) and capacitance (C):

XC =
1

2πfC
or XC =

1

ωC

Where,
XC = Reactance of the capacitance (Ohms)
f = Frequency of the waveforms (Hertz, or cycles per second)
ω = Angular velocity or natural frequency of the waveforms (radians per second)
C = Capacitance (Farads)

13This involves some calculus, and is shown in section 5.2 on page 81.
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4.6 Converting reactance into impedance

As we have seen in the previous examples, the fundamental difference between reactance and
impedance for either a pure capacitance or a pure inductance is that reactance is a scalar quantity
(having magnitude but no direction) while impedance is a phasor quantity (i.e. expressed as a
complex number). Thus, when you calculate reactance using either the XL = 2πfL formula for
inductive reactance or the XC = 1

2πfC
formula for capacitive reactance, the result provided by your

calculator is a scalar quantity and not a complex (phasor) quantity. We need to perform one more
step in order to represent that reactance as an impedance, and that is to include the proper phase
angle (either 90o for an ideal inductive impedance or −90o for an ideal capacitive impedance). How
does one add a polar angle to a scalar number on an electronic calculator?

Let’s work through a practical example to fully understand the problem and its solution. Suppose
we are faced with computing the phasor impedance of a 0.22 µF capacitor at a frequency of 60 Hz.
The first step, of course, is to calculate this capacitor’s reactance value at that frequency:

XC =
1

2πfC
=

1

(2π)(60 Hz)(0.22 × 10−6 F)
= 12.057 kΩ

This value of 12.057 kΩ is just a reactance and not an impedance because it is not (yet) a complex
number. We know that the proper complex expression of this as an impedance will be either 12.057
kΩ 6 −90o (polar form) or 0 - j12.057 kΩ (rectangular form), and so the obvious solution to the
problem is to simply re-type 12.057E3 into our calculator with the phase angle or as a −j quantity,
and the calculator will now regard this as a complex number. However, re-typing computed values
into a calculator is never a good idea: first, it invites keystroke errors; second, it unnecessarily
truncates (rounds) the quantity because the calculator stores more significant digits in its memory
than what it displays on the screen, which leads to unnecessary errors in later calculations using
that quantity.

A simple solution for any calculator capable of performing complex-number arithmetic is to
simply multiply the reactance value by a unit phasor having a magnitude of 1 (unity) and the
desired phase angle. Thus, we could take our computed capacitive reactance value of 12.057 kΩ and
multiply it either by 1 6 −90o (polar) or multiply it by −j (rectangular) and the result will be the
correct impedance value as a phasor quantity, without suffering from unnecessary rounding or risking
keystroke errors from having to re-enter the reactance value. If we were given an inductive reactance
instead of a capacitive reactance, our unit phasor would be 1 6 90o (polar) or j (rectangular) to
grant the computed reactance value a +90o impedance phase angle.
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4.7 Natural frequency, reactance, and impedance

Most students of electronics learn the formulae XL = 2πfL and XC = 1
2πfC

when first encountering
the concepts of inductive and capacitive reactance, and some of them wonder where the 2π coefficient
comes from. This is actually a conversion factor for frequency, to convert the common unit of Hertz
(i.e. cycles per second) into the more mathematically “natural” unit of radians per second. Angular
velocity or natural frequency expressed in radians per second is always symbolized by the lower-case
Greek letter omega (ω) rather than f which implies frequency in cycles per second (Hertz). Both,
however, describe how rapidly a waveform such as an alternating voltage or an alternating current
repeatedly cycles over time.

Re-writing both of these reactance formulae to use ω instead of f , we immediately see just how
much simpler they appear:

XL = ωL XC =
1

ωC

Extending these just one step further to represent impedance rather than merely reactance by
including the imaginary operator j =

√
−1:

ZL = jωL ZC =
1

jωC
or ZC =

−j

ωC

Refer to section 5.1 beginning on page 78 for inductance and section 5.2 beginning on page
81 for capacitance to see calculus-based derivations of these formulae. The simple justification for
using ω as frequency is that the calculus operations of differentiation and integration are relatively
easy to implement on imaginary-exponential functions (i.e. any function based on ej), but more
difficult to implement on trigonometric functions such as sine and cosine. Therefore, when starting
with the “Ohm’s Law” relations of voltage versus current for inductors (VL = LdI

dt
) and capacitors

(IC = C dV
dt

) as a basis for deriving impedance, it makes practical sense to cast the waveform
functions in imaginary-exponential terms because the ensuing calculus will be easier14. However,
imaginary-exponential expressions of sinusoidal waveforms assume angles in radians rather than
degrees (or complete cycles). Since there are exactly 2π radians in one complete cycle, one cycle per
second (1 Hz) is equivalent to 2π radians per second.

Let’s compare reactance calculations using f versus using ω. Applying 800 Hertz to a 47
milliHenry inductor yields 236.248 Ohms of reactance using the f -based formula:

XL = 2πfL = 2π(800 Hz)(0.047 H) = 236.248 Ω

If we convert 800 Hertz into radians per second (ω = 2πf = 5026.548 radians per second) we
arrive at the exact same 236.248 Ohms of inductive reactance using the ω-based formula:

XL = ωL = (5026.548 rad/s)(0.047 H) = 236.248 Ω

14For example, the current through a capacitor energized by a voltage ejωt is C d
dt

(

ejωt
)

which is equal to jωCejωt.

Impedance is the ratio of voltage to current (Z = V
I

), and so dividing that voltage (ejωt) by the capacitor’s current

(jωCejωt) simply results in ZC = 1

jωC
.
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Here we have a table comparing common mathematical expressions of electrical quantities, f -
based versus ω-based:

Concept f-based ω-based

Inductive reactance XL = 2πfL XL = ωL

Capacitive reactance XC = 1
2πfC

XC = 1
ωL

Inductive impedance ZL = j2πfL ZL = jωL

Capacitive impedance ZC = 1
j2πfC

ZC = 1
jωC

Resonance f = 1
2π

√
LC

ω = 1√
LC

Clearly, formulae written in terms of ω instead of f are more compact and therefore preferred
whenever the impedance of AC networks containing many inductors, capacitors, and/or resistors
must be expressed in concise mathematical form.

One final note regarding capacitive impedance and the sign of j. While it is true that ZC = 1
jωC

,

it is equally true that ZC = −j
ωC

. Showing the −j term makes it more clear that the phase angle of
a pure capacitance’s impedance will be −90o, but placing the j term in the denominator actually
means the same thing. The following steps prove this mathematical equivalence:

ZC =
1

jωC

ZC =

(

j

j

) (

1

jωC

)

ZC =
j

j2ωC

ZC =
j

(−1)ωC

ZC =
−j

ωC
or ZC = −j

1

ωC

When writing complicated formulae describing networks containing capacitance it is customary
to leave j as a positive quantity in the denominator, if for no other reason than to avoid inserting
mathematically-unnecessary negative signs which make the resulting formulae easier to manipulate
and solve. However, it is good to know that doing so still leaves the capacitive impedance with a
negative phase angle even if that is not immediately apparent by inspection.

As we have seen, expressing the reactance and/or impedance of capacitors and inductors in
terms of natural frequency (ω) is mathematically elegant, as the ω-based expressions have no need
for the 2π conversion factor necessary to convert cycles per second (Hz) of conventional frequency
into radians per second of natural frequency.
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4.8 Complex frequency, reactance, and impedance

Natural frequency (ω) expressed in units of radians per second may seem unecessarily complicated
when ordinary frequency (f) expressed in units of cycles per second (Hz) seems most intuitive.
The mathematical justification for ω, however, it its utility when used with imaginary-exponential
functions. To understand why, we must review a very important and foundational equation in
mathematics known as Euler’s Relation:

ejx = cos x + j sinx

Where,
e = Euler’s number (approximately equal to 2.718281828)
j = The “imaginary operator” equal to

√
−1

x = Angle expressed in radians

This Relation shows the fundamental equivalence between two seemingly unrelated functions
– exponential functions and trigonometric functions. However, it is true only when the angle in
question x is cast in units of radians. If we wish to describe the evolution of a sinusoidal wave in
terms of frequency and time, we must use natural frequency in units of radians per second, multiplied
ω by time (t, in seconds):

ejωt = cos(ωt) + j sin(ωt)

Where,
ω = Natural frequency in radians per second
t = Time in seconds

Exponential functions (ex) are useful for describing things other than cosine and sine waves,
however. Notably, they are also used to describe natural growth and decay processes by using real
numbers rather than imaginary numbers as the exponential terms:

eσt

Where,
σ = Growth/decay rate in time constants per second ( 1

sec)
t = Time in seconds

As every student of electronics learns, the decay of DC voltage and/or current for a de-energizing

capacitor or inductor follows e
−t

τ where t is time and τ is the time-constant of the circuit, both
measured in seconds. If we look at this familiar formula closely we will see that τ is really nothing
more than the reciprocal of the growth/decay rate labeled by the lower-case Greek letter “sigma” (σ)
shown above. In other words, τ = 1

σ
which makes eσt equivalent to e

t

τ . In fact, we may legitimately
apply the unit of time constants per second to this rate. Thus, eσt more generally describes anything
growing exponentially in magnitude over time if σ is positive in value, or decaying toward zero over
time if σ is negative. A zero value for σ means the quantity is stable over time, neither growing nor
decaying.
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If σ as a real number describes growth/decay rate in “time-constants per second” units and ω as
an imaginary number (jω) describes the natural frequency of a sinusoid in “radians per second” units,
we may combine these two values into a single complex-number sum called complex frequency which
is able to describe a growing or decaying or stable sinusoid. By convention we use the variable s to
represent σ+jω, with e(σ+jω)t or simply est being the time-based function for that growing/decaying
sinusoid.

Some time-domain graphs of sinusoids help illustrate the meaning of both σ and ω. Note the
inclusion of the coefficient A describing the amplitude of the waveform at the starting time (t = 0):

timetime
Decaying sinusoidSteady sinusoidGrowing sinusoid

t=0

A

A

time

t=0

A

t=0

Ae(σ + jω)tAe(σ + jω)tAe(σ + jω)t

where σ = 0 and ω > 0 where σ < 0 and ω > 0where σ > 0 and ω > 0

timetime

t=0

A

time

t=0 t=0

Ae(σ + jω)tAe(σ + jω)tAe(σ + jω)t

A A

Zero frequency Low frequency High frequency

where σ = 0 and ω = 0 where σ = 0 and ω > 0 where σ = 0 and ω >> 0

time

t=0

Ae(σ + jω)t

A

where σ = 0 and ω = 0

time

t=0

Ae(σ + jω)t

A

time

t=0

Ae(σ + jω)t

A

Growing DC Steady DC Decaying DC

where σ > 0 and ω = 0 where σ < 0 and ω = 0

Simple frequency, whether f or ω, merely describes the rate at which an AC signal oscillates.
Complex frequency, by contrast, is additionally able to describe growth, decay, or stability. As such
it is a more general and indeed more useful way to describe signals.

A practical example of a decaying sinusoid is a passive tank circuit gradually losing energy over
time after being momentarily excited by an external energy source. A practical example of a growing
sinusoid is an oscillator circuit starting up from an unpowered condition. The decaying DC graph
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illustrates the behavior of a de-energizing inductor or capacitor network as mentioned previously,
while a practical example of a growing DC signal is current through a transistor experiencing thermal
runaway.

Calculations of impedance also benefit from the use of complex frequency. Instead of simply
computing the number of Ohms and the phase angle of impedance for an inductor or capacitor, we
may now additionally compute the number of Ohms offered by that component to the exponential
growth or decay of that waveform.

ZL = (σ + jω)L ZC =
1

(σ + jω)C

The expression σ + jω is a bit cumbersome to write, and so the variable s is commonly used to
represent the complex frequency as a single complex-valued quantity. With s = σ + jω the previous
expressions become even more compact:

ZL = sL ZC =
1

sC

ω-based expressions of impedance are now seen as special cases of s-based impedances where
σ = 0, as proven by the following algebraic substitutions where we expand s into σ + jω and then
set σ equal to zero. These special cases assume AC signals of constant magnitude that neither grow
nor decay over time:

ZL = sL ZC =
1

sC

ZL = (σ + jω)L ZC =
1

(σ + jω)C

ZL = (0 + jω)L ZC =
1

(0 + jω)C

ZL = jωL ZC =
1

jωC
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Numerical examples serve well to clarify abstract concepts, so let’s apply some complex-frequency
values to inductors and capacitors to see what happens.

First, let’s consider a 150 Hz signal applied to a 22 milliHenry inductor. This is a natural
frequency of 942.48 radians per second15. If this signal is stable in magnitude, its σ value will be
zero, and so the impedance offered by this inductor will be:

ZL = sL = (σ + jω)L

ZL = (0 + j942.48 s−1)(0.022 H)

ZL = 0 + j20.735 Ω = 20.735 Ω6 90o

Next, let’s make this 150 Hz signal grow exponentially at a rate of 1000 time constants per
second. Re-calculating the inductor’s impedance:

ZL = (1000 + j942.48 s−1)(0.022 H)

ZL = 22 + j20.735 Ω = 30.231 Ω6 43.304o

Our first calculation with a steady 150 Hz signal yielded an impedance of 20.735 Ohms at the
customary phase angle of +90 degrees for an inductor. However, our second calculation using the
exponentially growing 150 Hz signal gave us an impedance phase angle of only 43.304 degrees.
Why is this the case? To answer this question we must recall the distinction between real and
imaginary impedance values: real impedance values represent a net exchange of energy into or out
of the circuit while imaginary impedance values represent energy alternately absorbed and released
in equal measure. In a “steady-state AC” condition the inductor releases precisely as much energy
as it earlier absorbed, which makes its impedance purely imaginary. However, when energized by a
growing AC stimulus each successive cycle of that waveform is stronger than the last, which means
the inductor is always absorbing more energy than it released at the close of the previous cycle. This
means the inductor exhibits a net absorption of energy over time as the waveform grows stronger and
stronger. Unlike a resistor which dissipates energy into heat where it never returns to the circuit,
here the inductor’s net intake of energy will eventually result in a release of that accumulated energy
if and when the waveform decays in value.

If we were to take this inductor and energize it instead with a 150 Hz signal decaying at a rate
of −440 time constants per second, we would see its impedance phase angle surpass 90 degrees:

ZL = (−440 + j942.48 s−1)(0.022 H)

ZL = −9.680 + j20.735 Ω = 22.883 Ω6 115.03o

15A common way of expressing “per second” as a unit of measurement is to abbreviate “seconds” using the letter
“s” and then apply a −1 power to that unit abbreviation. Therefore, 942.48 radians per second is typically written as
942.48 s−1. Please note that the letter “s” here is a symbol for the unit seconds, not to be confused with the variable
s which is complex frequency. It is customary to use different fonts to distinguish variables from unit abbreviations.
Here, the variable is s while the unit is s.
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Plotting these three inductive impedances on a phasor diagram divided into “Energy absorbed”
and “Energy released” halves, we see the effect of the signal’s growth and decay rate on the inductor’s
impedance:

Energy absorbedEnergy released

ZgrowingZdecaying
Zsteady

j20.735 Ω

+j

-j

In all three cases the imaginary portion of the impedance is the same (j20.735 Ohms), but the
growth or decay of the signal over time contributes a net absorption or net release, respectively, of
energy by the inductor.
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Continuing our quantitative exploration of complex frequency, let us now consider a capacitor
subjected to a similar treatment of stable, growing, and decaying signals. For the sake of illustration,
let’s assume a frequency of 2.3 kHz (14451.3 radians per second) and a capacitance of 0.01
microFarads.

First, the stable signal neither growing nor decaying over time:

ZC =
1

sC
=

1

(σ + jω)C

ZC =
1

(0 + j14451.3 s−1)(0.01 × 10−6 F)

ZC = 0 − j6919.8 Ω = 6919.8 Ω6 − 90o

Next, calculating capacitive impedance for a signal growing at a rate of 13000 time constants per
second at the same frequency of 2.3 kHz:

ZC =
1

(13000 + j14451.3 s−1)(0.01 × 10−6 F)

ZC = 3440.6 − j3824.7 Ω = 5144.5 Ω6 − 48.026o

Lastly, calculating capacitive impedance for a signal decaying at a rate of −9000 time constants
per second at the same frequency of 2.3 kHz:

ZC =
1

(−9000 + j14451.3 s−1)(0.01 × 10−6 F)

ZC = −3105.2 − j4986.0 Ω = 5873.8 Ω6 − 121.91o

Plotting these three capacitive impedances on a phasor diagram divided into “Energy absorbed”
and “Energy released” halves:

Energy absorbedEnergy released

ZgrowingZdecaying

Zsteady

+j

-j
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Once again we see how an AC signal of constant magnitude over time results in an impedance
phase angle precisely one-quarter cycle, which means the component absorbs and releases energy in
equal measure with each cycle. However, when the AC signal’s oscillations grow in strength over
time the reactive component accepts more energy than it releases; when the oscillations decay the
component releases more energy than it accepts.
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4.9 Concept review

So far this tutorial has covered a lot of ground, and it is a good idea to stop here and review what
we’ve learned so far:

• Resistance (R) always functions as a load in a circuit, converting the potential energy of charge
carriers passing through into heat. This energy leaves the circuit never to return, and its rate
of dissipation over time is called true power.

• Both inductance (L) and capacitance (C) react to changing quantities of current and voltage,
respectively. When energized by AC, they exchange energy (alternately absorbing and releasing
energy), while dissipating none. The rate over time at which energy exchanges in this manner
is called reactive power.

• Voltage drops or rises across an inductance in proportion to the rate that current through
it varies over time: V = LdI

dt
. This mathematical relationship results in a pure inductance’s

voltage leading its current by 90o when energized by sinusoidal AC.

• Current flows through a capacitance in proportion to the rate that voltage across it varies over
time: I = C dV

dt
. This mathematical relationship results in a pure capacitance’s current leading

its voltage by 90o when energized by sinusoidal AC.

• No inductor or capacitor is purely reactive, but capacitors tend to be purer reactances than
inductors.

• Some components such as electric motors and radio transmitting antennae exploit magnetic
and/or electric fields, but are nevertheless dissipative rather than reactive because the energy
invested in those fields leaves the circuit to do useful work.

• Impedance (Z) is the phasor ratio of voltage to current (Z = V
I
), measured in Ohms (Ω).

Inductive impedance (ZL) always has a polar angle of 90o while capacitive impedance (ZC)
always has a polar angle of −90o. Resistive impedance (ZR) always has a polar angle of 0o

because voltage and current are in-phase for a resistance.

• Reactance (X) is the magnitude of a pure inductance’s or capacitance’s opposition to current.
It is measured in Ohms just like resistance, the difference being reactance only exchanges
energy back and forth while resistance dissipates energy.

• Inductive reactance is a function of inductance and frequency: XL = 2πfL

• Capacitive reactance is a function of capacitance and frequency: XC = 1
2πfC

• Any reactance value may be converted into a phasor impedance value by multiplying by a
unit phasor : 1 6 90o for inductive impedance and 1 6 −90o for a capacitive impedance. This
operation will attach the proper phase angle to the reactance value to make it a complex-
number phasor impedance.
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It is also a good idea at this juncture to pose the question: “Why does any of this matter to us?”
The answer to this very valid question is quite simple: if we express all resistances and reactances as
phasor impedance (Z) values, and all voltages and currents in phasor form as well, we may analyze
any sinusoidal AC circuit as readily as a similar DC circuit. With the availability of electronic
calculators16 capable of performing complex-number arithmetic as easily as real-number arithmetic,
AC circuit analysis becomes very straightforward.

Throughout the rest of this tutorial we will gain a more thorough understanding of these principles
through application to example circuits. Over and over again we will follow these rules: express all
passive component values as impedances, regard all impedances in the same manner we would regard
resistances in a DC circuit, apply Ohm’s Law and Kirchhoff’s Laws as we would in a DC circuit.
The only difference between DC circuit analysis and AC circuit analysis for us is the use of complex
numbers rather than real numbers: all impedances must be expressed in complex (phasor) form, as
well as all voltages and all currents. All computations using Ohm’s and Kirchhoff’s Laws must be
done with complex numbers.

As with all textbook examples, a good reading strategy is to follow along with the example,
performing each and every computation as you read the text and then returning to the text to
check that your numerical results agree. This ensures you can properly use your calculator, and
that you correctly understand the steps being explained. The same reading strategy applies to non-
mathematical explanations as well: when the text describes a thought experiment, try imagining
that thought experiment on your own, then return to the text to see if your result agrees. Technical
reading is very different from recreational reading: it is “hands-on” in that the text describes some
real thing (or at least a simulated thing) that you can experience for yourself. Avail yourself of this
capability, and be an active reader of the text!

16As an aid to performing these computations it is strongly advised that you obtain a scientific calculator capable
of performing complex-number arithmetic. The alternative is ugly. Complex numbers are best added and subtracted
in rectangular form, and best multiplied and divided in polar form. Since circuit analysis calculations involve all
these arithmetic operations, performing complex-number arithmetic without the help of a calculator designed to do
that task involves many trigonometric conversions back and forth between rectangular and polar forms, a tedious
and error-prone task to say the least. I speak from years of experience when I say that such analysis of even simple
series-parallel AC circuits can necessitate pages of written notes, and a far greater number of calculations than any
comparable DC circuit would deserve. If you truly desire to perfect this skill, and/or your instructor demands you
perform AC circuit calculations using nothing more than a trigonometric calculator, I still recommend obtaining a
calculator capable of managing this tedium if only to relieve your mind of these computational details so that you
may quickly gain proficiency in the conceptual analysis of AC circuits. Then, when necessary, abandon the helpful
calculator and perform the arithmetic “the hard way” after you have familiarized yourself with the application of
fundamental laws and principles to AC circuit analysis. At least this way, you will divide the problem of learning
AC circuits into two smaller sub-problems: (1) mastering the principles, and (2) mastering the arithmetic. I have
encountered far too many students of electricity and electronics who know #2 (the math) but never learned #1 (how
and why to consistently apply it).
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4.10 Example circuit #1

Our first example circuit will be a circuit consisting of a capacitor, inductor, and resistor connected
in series. The source is 120 VAC17 at a frequency of 400 Hertz:

C L R

V

120 VAC 400 Hz

730 Ω220 mH3.3 µF

The very first thing we should do is calculate the impedance of the three passive components. The
resistor’s impedance is the simplest to determine: ZR = 730Ω 6 0o, being the given resistance value in
Ohms with a phase angle of zero18. In order to calculate impedances for the other two components,
we must first calculate their reactances from their given values and the circuit’s frequency:

XC =
1

2πfC
=

1

(2π)(400 Hz)(3.3 µF)
= 120.57 Ω

XL = 2πfL = (2π)(400 Hz)(220 mH) = 552.92 Ω

Please note that these two reactance values merely express the degrees to which these components
oppose the passage of charge carriers by means of storing and releasing energy. In order to be fully
useful to us in our analysis, we need to express them as complex phasor values, which means attaching
phase angles to them. Since we know purely inductive impedance always has a phase angle of 90o

and purely capacitive impedance always has a phase angle of −90o, our next step is as simple as
attaching19 these angle values to their respective reactance values:

ZC = 120.57 Ω 6 − 90o ZL = 552.92 Ω 6 90o

17Presumably, this is an RMS value. Whatever qualifier it may be (e.g. peak, peak-to-peak, or RMS), all subsequent
results will bear the same qualifier. It is customary in engineering to use RMS values unless otherwise specified, so
we will assume this is 120 Volts RMS, which means all calculated values of voltage and current in this circuit will also
be Volts RMS.

18When entering this phasor value into an electronic calculator capable of handling complex numbers, there is
actually no need to enter the zero degree angle, since a polar complex number with an angle of zero degrees is entirely
real with no “imaginary” component.

19Performing this “attachment” in a calculator capable of handling complex-number arithmetic is as simple as
multiplying each of the computed reactance values by a unit phasor having a polar magnitude of 1 and the required
angle. For example, 120.57×(1 6 −90o) = 120.57 6 −90o. Once this complex value is shown on the calculator’s display,
store it in one of the calculator’s memory locations for future retrieval. I recommend against typing 120.576 − 90o

because this introduces an unnecessary rounding error, as well as invites keystroke errors. Immediately manipulating
the reactance value into a complex impedance value and then storing it in memory is a great labor-saving and
error-avoiding strategy!
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Just to track our progress and clarify the meaning of our work thus far, I will document this new
information in the circuit diagram:

C L R

V

120 VAC 400 Hz

730 Ω220 mH3.3 µF
120.57 Ω ∠  -90o 730 Ω ∠  0o552.92 Ω ∠  90o

If this were a DC circuit, our next steps would be obvious: add all the resistance values together
(because series resistances add to make the total resistance), then divide that total resistance into
the total source voltage to solve for current (applying Ohm’s Law), then multiply that shared current
value (since series components experience equal current) by each of the resistances individually to
compute voltage drops (applying Ohm’s Law). Phasor representation of impedances, voltages, and
currents makes this AC analysis just that simple. The only difference is, we perform all calculations
using complex numbers instead of using regular (“real”) numbers.

Finding total impedance by applying the principle that series impedances add:

ZT = ZC + ZL + ZR = (120.57 Ω 6 − 90o) + (552.92 Ω 6 90o) + (730 Ω 6 0o)

ZT = 848.43 Ω 6 30.64o

Note the total impedance’s phase angle: being neither 0o nor 90o nor −90o means this circuit’s
power will be partially dissipative and partially exchanged (i.e. part resistive and part reactive). This
stands to reason, as only the resistor dissipates energy, while the capacitor and inductor alternately
absorb and release energy.

Next, finding the circuit’s current by applying Ohm’s Law using total voltage and total
impedance. For this we must arbitrarily choose a phase angle for the source, since it is the only
source in the circuit. By convention we will set the source’s phase angle at 0o (i.e. we will use the
circuit’s source voltage as the phase reference for our calculations):

I =
V

Z
=

120 VAC 6 0o

848.43 Ω 6 30.64o
= 141.44 mA 6 − 30.64o

Note the −30.64o angle for this circuit’s current phasor. This means current is phase-shifted
30.64o lagging behind the source voltage at 0o.
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Lastly, finding individual component voltages by applying Ohm’s Law using total current and
individual impedances:

VC = IZC = (141.44 mA 6 − 30.64o)(120.57 Ω 6 − 90o) = 17.05 V 6 − 120.64o

VL = IZL = (141.44 mA 6 − 30.64o)(552.92 Ω 6 90o) = 78.20 V 6 59.36o

VR = IZR = (141.44 mA 6 − 30.64o)(730 Ω 6 0o) = 103.25 V6 − 30.64o

As a final check of our work, we may add all three component voltages together to see if the sum
indeed is equal to the source voltage (applying Kirchhoff’s Voltage Law):

VT = VC + VL + VR

120 V 6 0o = (17.05 V6 − 120.64o) + (78.20 V6 59.36o) + (103.25 V6 − 30.64o)

Please note how the results are all fairly non-intuitive. It may not seem like 120.57 Ohms and
552.92 Ohms and 730 Ohms should sum to a total of 848.43 Ohms, but they do because these
are phasors with their own directions as well as magnitudes. Likewise, it may not seem correct
that 17.05 Volts and 78.20 Volts and 103.25 Volts add up to 120 Volts, but they do because these
three voltages are out of phase with each other. We simply aren’t accustomed to mentally summing
complex numbers, and so these sums appear quite strange. However, they are all mathematically
correct. Intuition is better served when we represent these complex-number values in the form of
phasor diagrams, where addition is equivalent to graphically stacking phasors end-to-end:

Phasor diagram of series impedances

730 Ω ∠  0o

120.57 Ω ∠  -90o
552.92 Ω ∠  90o

120.57 Ω ∠  -90o

552.92 Ω ∠  90o

730 Ω ∠  0o

848.43 Ω ∠  30.64o

Individual impedances Phasor sum of series-
connected impedancesshown as vectors

Phasor diagram of series voltage drops

Individual voltage drops Phasor sum of series
voltage drops

103.25 V ∠  -30.64o

17.05 V ∠  -120.64o

78.20 V ∠  59.36o
78.20 V ∠  59.36o

103.25 V ∠  -30.64o

17.05 V ∠  -120.64o

120 V ∠  0o

shown as vectors
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4.11 Example circuit #2

Our second example circuit consists of a capacitor, inductor, and resistor connected in parallel. The
source is 240 VAC at a frequency of 60 Hertz:

L R C
40 Ω0.25 H

240 VAC
60 Hz 70 µF

We will follow the same general procedure as last time: convert all passive component values into
phasor impedances, then apply the same principles of parallel circuits, Ohm’s Law, and Kirchhoff’s
Laws we would use if this were a DC circuit.

First, computing impedance values for the resistor, inductor, and capacitor. For the resistor this
is as simple as attaching a 0 degree angle to the given value in Ohms. For the inductor and capacitor
we must use the respective reactance formula to calculate magnitude and then attach the correct
phase angle:

ZR = 40 Ω 6 0o

ZL = 2πfL 6 90o = (2π)(60 Hz)(0.25 H) 6 90o = 94.248 Ω 6 90o

ZC =
1

2πfC
6 − 90o =

1

(2π)(60 Hz)(70 µF)
6 − 90o = 37.894 Ω 6 − 90o

Next, finding total impedance by applying the principle that parallel impedances diminish:

ZT =
1

1
ZC

+ 1
ZL

+ 1
ZR

ZT =
1

1
37.894 Ω 6 −90o

+ 1
94.248 Ω 6 90o

+ 1
40 Ω 6 0o

ZT = 33.826 Ω 6 − 32.259o

Total current is simply the quotient of source voltage over total impedance, as per Ohm’s Law.
We will assume a source voltage phase angle of 0 degrees unless otherwise stated, using that voltage
as the circuit’s “phase reference” for our calculations:

IT =
V

ZT

=
240 VAC 6 0o

33.826 Ω 6 − 32.259o
= 7.0952 A 6 32.259o
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Lastly, finding individual component (branch) currents using Ohm’s Law, based on the knowledge
that these are connected in parallel with the source and that parallel-connected components share
the same voltage:

IL =
V

ZL

=
240 VAC 6 0o

94.248 Ω 6 90o
= 2.5465 A 6 − 90o

IC =
V

ZC

=
240 VAC 6 0o

37.894 Ω 6 − 90o
= 6.3335 A 6 90o

IR =
V

ZR

=
240 VAC 6 0o

40 Ω 6 0o
= 6.000 A 6 0o

A good way to check our work is to verify the phasor sum of all parallel branch currents equals
the total current, based on the principle that parallel branch currents add to equal total current:

IT = IL + IC + IR

7.0952 A 6 32.259o = (2.5465 A 6 − 90o) + (6.3335 A 6 90o) + (6.000 A 6 0o)

As with example circuit #1, the results are fairly non-intuitive. It may not seem like 2.5465
Amperes and 6.3335 Amperes and 6.000 Amperes should sum to a total of 7.0952 Amperes, but
they do because these are phasors with their own directions as well as magnitudes.

Phasor diagram of parallel currents

Individual currents Phasor sum of
parallel currents

2.5465 A ∠  -90o

6.3335 A ∠  90o
6.000 A ∠  0o

2.5465 A ∠  -90o

6.3335 A ∠  90o

6.000 A ∠  0o

7.0952 A ∠  32.259o

shown as vectors
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4.12 Example circuit #3

In this third example we will apply the concepts of resistance, reactance, and impedance to a practical
AC circuit called an audio filter. The purpose of a “filter” circuit is to attenuate (diminish) signals of
certain frequency. For example, a high pass filter circuit allows signals having high frequency values
to “pass through” with minimum attenuation, while significantly attenuating signals having low
frequency values. High pass filters are used as the basis for “treble” adjustments in audio systems,
allowing high-pitched sounds to be heard more than low-pitched sounds. A very simple form of
high pass filter used to screen out low frequency sounds from reaching a loudspeaker is seen in the
following schematic diagram:

Loudspeaker8 Ω

C 20 µF

100 Hz
to

10 kHz
2 VAC

The loudspeaker consists of a moving wire coil, a stationary permanent magnet, and a paper
cone attached to the coil. Alternating current passing through the coil causes it to thrust to and
fro, driving the paper cone in such a way as to create sound waves in the air. Despite the fact that
the electrical element of a loudspeaker is a coil, a loudspeaker behaves more like a resistor than an
inductor. The reason for this is the fact that work is required to shake air molecules, this work
constitutes energy leaving the electrical circuit in the form of sound just as a resistor causes energy
to leave a circuit in the form of heat. A well-designed loudspeaker translates nearly all of its energy
into sound, and for this reason we will model the loudspeaker as an 8 Ω resistor and not an 8 Ω
inductor.

Before we apply any arithmetic to this problem, let us qualitatively analyze this circuit’s
operation. The impedance offered by the loudspeaker (as a dissipative component) should remain
constant at 8 Ω (at an angle of 0 degrees). The capacitor’s impedance magnitude, however, will vary
with frequency according to the capacitive reactance formula XC = 1

2πfC
. As frequency increases,

capacitive reactance decreases, and vice-versa. If we consider two extremes20 of frequency (zero and
infinite), we may readily perceive why this is circuit functions as a high pass filter. At zero frequency
(DC), the capacitor’s impedance becomes infinite which means it blocks all signal from reaching the
loudspeaker in the same manner that an open fault would block the signal. At infinite frequency,
the capacitor’s impedance diminishes to zero which means it passes the signal in the same manner
that a direct short would pass the signal. With zero output at zero Hertz and full output at infinite
Hertz, this circuit clearly acts to block low frequencies and pass high frequencies.

Now that we have confirmed the frequency-filtering behavior of this simple circuit, we shall
proceed with quantitative analysis. The diagram shows us a source whose signal frequency varies

20I like to refer to this analytical strategy as limiting cases, which means we consider cases that are as extreme as
possible. For frequency, nothing can be less than zero and nothing can be greater than infinity. Considering these
two extremes on the frequency spectrum often causes the circuit being analyzed to simplify. In this case we see the
capacitor being reduced to either an open fault or a shorted fault.
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from 100 Hertz to 10,000 Hertz (a factor of 100 to 1, or 2 orders of magnitude21). A sensible
analysis over this large of a frequency span would be to calculate output (loudspeaker) voltage
values at order-of-magnitude intervals: at 100 Hertz, at 1,000 Hertz, and at 10,000 Hertz.

Capacitive impedance is the only component value that will vary as a function of frequency, so
we will calculate ZC at these three frequencies:

ZC at 100 Hz =
1

(2π)(100 Hz)(20 µF)
6 − 90o = 79.577 Ω 6 − 90o

ZC at 1, 000 Hz =
1

(2π)(1000 Hz)(20 µF)
6 − 90o = 7.9577 Ω 6 − 90o

ZC at 10, 000 Hz =
1

(2π)(10000 Hz)(20 µF)
6 − 90o = 0.79577 Ω 6 − 90o

A simple way for us to calculate loudspeaker voltage is to use an AC version of our familiar (DC)
voltage divider formula, where output voltage is equal to input voltage multiplied by the ratio of
load impedance to total series impedance. In our case the load is the 8 Ω (resistive) loudspeaker,
and the total impedance will be the phasor sum of that loudspeaker resistance plus the capacitor’s
impedance. The source voltage is a constant 2 Volts:

Vload = Vsource

(

Zload

Zload + ZC

)

Vload at 100 Hz = 2 V

(

8 Ω 6 0o

(8 Ω 6 0o) + (79.577 Ω 6 − 90o)

)

= 0.20005 V 6 84.259o

Vload at 1, 000 Hz = 2 V

(

8 Ω 6 0o

(8 Ω 6 0o) + (7.9577 Ω 6 − 90o)

)

= 1.41795 V 6 44.848o

Vload at 10, 000 Hz = 2 V

(

8 Ω 6 0o

(8 Ω 6 0o) + (0.79577 Ω 6 − 90o)

)

= 1.99018 V 6 5.6806o

From these results we see two trends evident as signal frequency increases: the loudspeaker’s
driving voltage increases toward the source voltage value (2 Volts), and the phase shift decreases
toward zero. If we imagine signal frequency increasing toward infinity, we would expect the load
voltage to equal the source voltage (2 Volts) while the phase angle equals zero degrees: as if we
had replaced the capacitor by a short length of wire. Phase shift is not particularly important for a
simple audio speaker system such as this, but the increased driving voltage tells us the loudspeaker
will become louder as pitch (frequency) increases, which is precisely what a high pass (treble) filter
should do.

21An “order of magnitude” refers to a power of ten. For example, a ten-fold ratio is a single order of magnitude
because 10 = 101. Likewise, a hundred-fold ratio represents two orders of magnitude because 100 = 102. Similarly, a
thousand-fold ratio represents three orders of magnitude (1000 = 103), and so on.
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4.13 Example circuit #4

In this fourth example we will apply the concepts of resistance, reactance, and impedance to another
practical AC circuit, the purpose of this one being to minimize the amount of current passing through
power lines. Consider the following circuit consisting of an AC voltage source, long length of power
lines, and an electric motor with its impedance expressed in phasor form:

Z = 
12 Ω ∠  38o50 Hz

200 VAC

power line

power line

Motor

Calculating the amount of current in these two power lines is a simple matter of applying Ohm’s
Law. Once again we will assume a zero degree phase angle for the voltage source because there is
no other waveform given as a phase angle reference:

I =
V

Z
=

200 V 6 0o

12 Ω 6 38o
= 16.667 A 6 − 38o

The fact that the motor’s impedance phase angle is not zero degrees, and consequently neither
is the line current’s phase angle equal to the source’s angle, tells us that not all of the current in
this circuit goes into doing useful work. An impedance phase angle of zero degrees would mean the
motor was entirely dissipative in nature, meaning all of the electrical energy delivered to the motor
through the power lines would leave the circuit in the form of mechanical work. An impedance phase
angle of either +90 or −90 degrees would mean none of the energy at that motor was dissipated,
but rather it was all alternately absorbed and returned. An impedance phase angle between 0 and
±90 exclusive means some energy is dissipated at the motor but the rest is stored and released. The
fact that this particular motor’s phase angle has a positive rather than a negative value suggests its
mechanism of energy storage is inductive22 rather than capacitive.

In electric power distribution systems, reactive power is generally undesirable because it
constitutes a greater amount of current in the power lines than what is actually necessary to do
useful work at the loads. Power lines are thermally limited in how much current they may safely
carry, and so too much reactive power in a power system leads to unnecessarily overloaded power
lines.

A solution to this problem is to add another component to the circuit, situated as close to the
motor as possible. This other component must have the opposite type of reactance (i.e. capacitive
versus inductive) in order to cancel out the reactive power of the motor. In a case like this where the
motor has a slightly inductive nature, we will need to connect a capacitor in parallel to satisfy its
reactive needs. Energy alternately exchanged between the motor’s inductance and the capacitor’s
capacitance will result in high current only between those two components, while the power lines
connecting them both to the source need only carry as much current as necessary to satisfy the
motor’s dissipation.

22Since electric motors are constructed of wire coils wrapped around iron poles, it makes perfect sense that an
electric motor would exhibit at least some inductive characteristics.
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The challenge, of course, is calculating the correct size of capacitor to connect to this motor.
A capacitor that is too small won’t satisfy enough of the motor’s reactive power demand, while a
capacitor that is too large will create its own excessive reactive power problem. In order to do this,
we must analyze the total current value to see just how much of that current is reactive and how
much is resistive.

If we use a calculator to convert the polar-form current value of 16.667 A 6 −38o into rectangular
form, we shall get a clearer view of reactive versus resistive current at the motor:

16.667 A 6 − 38o = 13.134 A − j10.261 A

While polar form shows us the total magnitude of the current (16.667 Amperes) and the phase-
shift between its waveform and the source’s voltage waveform (−38o lagging behind the source
voltage), rectangular form shows us the real current (13.134 Amperes) doing useful work at the
motor versus the imaginary current (−j10.261 Amperes) merely exchanged back and forth between
the motor and the source. It is as if two different AC currents exist on the same power lines: one
current which is 13.134 Amperes at an angle of 0 degrees and another AC current which is 10.261
Amperes at an angle of −90 degrees.

One way to illustrate this is to model the motor as a network of two parallel-connected
components, one resistive23 with a current of 13.134 A 6 0o and one inductive with a current
of 10.261 A 6 −90o. The power line current is simply the sum of these parallel branch currents:

50 Hz
200 VAC

power line

power line

13.134 A
∠  0o

10.261 A
∠  -90o

(13.134 A)

motor equivalent

(-j10.261 A)

16.667 A ∠  -38o = 13.134 A - j10.261 A

Capacitors are almost purely reactive devices by nature. As such, their impedance values are
practically equal to their reactance values, with an impedance phase angle almost exactly equal to
−90o. Thus, current passing through a capacitor connected to the AC source will have a phase angle
of nearly +90o. A capacitor connected in parallel with the motor and drawing 10.261 A 6 90o of
current will satisfy the motor’s reactive current requirement of 10.261 A 6 −90o, canceling that out
in the power lines to leave only the 13.134 A 6 0o of current doing useful work.

23We are using a resistor symbol here only to represent the dissipative nature of the motor’s mechanical function.
An actual resistor would dissipate all its energy in the form of heat, whereas a motor converts this electrical energy
into mechanical work. All we mean to show here is that the 13.134 Amperes of current are involved with energy
leaving the circuit, without specifying exactly what form that dissipated energy takes as it leaves.
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We may use Ohm’s Law to calculate the necessary capacitive impedance (ZC) based on source
voltage (V ) and our necessary capacitor current (IC), then use the magnitude of that impedance as
the capacitor’s reactance value (XC), from which we may calculate the necessary capacitance (C):

ZC =
V

IC

=
200 V 6 0o

10.261 6 90o
= 19.491 Ω 6 − 90o

Therefore, XC = 19.491 Ω

C =
1

2πfXC

=
1

(2π)(50 Hz)(19.491 Ω)
= 163.31 µF

As a final check of our work, we may compute total (parallel) impedance for the capacitor and
the motor, to ensure that the ZT phase angle is equal to 0 degrees:

Z = 
12 Ω ∠  38o50 Hz

200 VAC

power line

power line

Motor C = 163.31 µF
ZC = 19.491 Ω ∠  -90o

ZT =
1

1
Zmotor

+ 1
ZC

=
1

1
12 Ω 6 38o

+ 1
19.491 Ω 6 −90o

= 15.228 Ω 6 0o

Calculating power line current with this new total impedance value:

I =
V

ZT

=
200 V 6 0o

15.228 Ω 6 0o
= 13.134 A 6 0o

Sure enough, the inclusion of the capacitor in parallel with the motor brought the power line
current down from 16.667 Amperes to 13.134 Amperes, which is the value shown earlier passing
through the dissipative “component” within the motor (modeled as a parallel-connected resistance
and inductance). The motor does precisely the same amount of useful mechanical work as it did
before, but with less current through the power lines because the motor’s reactive current needs are
being supplied by the capacitor rather than being supplied by the source.
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4.14 Example circuit #5

In the previous examples we have assumed the use of an electronic calculator capable of performing
arithmetic operations on complex numbers. This is a great labor-saving tool for beginning students,
as the use of a such a tool frees their minds to focus on the circuit concepts (e.g. laws and principles)
without getting bogged down by the sheer work of the arithmetic. In this example, however, we will
demonstrate how to perform all the complex-number arithmetic without this tool.

The following schematic diagram shows the circuit for consideration. Our task is to calculate all
component voltages and currents:

R

L

V

0.33 H

4.7 kΩ
90 VAC
2 kHz

If this were a DC resistor circuit, we would begin by calculating total (series) resistance, then
use Ohm’s Law to determine circuit current (I = V

R
), then use Ohm’s Law again to compute each

resistor’s voltage drop (VR1 = IR1 ; VR2 = IR2). Our approach for this circuit will be much the
same, except we will need to first determine each component’s impedance (in complex form, as a
phasor) before applying any properties of series circuits or Ohm’s Law.

Beginning with impedances, the resistor’s impedance is as follows. We will write this phasor
impedance value in both polar and rectangular forms, because each will be useful to us later:

ZR = 4700 Ω 6 0o or 4700 Ω + j0 Ω

The inductor’s impedance magnitude must be determined from its reactance value (XL):

XL = 2πfL = (2π)(2000 Hz)(0.33 H) = 4146.9 Ω

Expressing this reactance as a phasor impedance, in both polar and rectangular forms just like
the resistor’s:

ZL = 4146.9 Ω 6 90o or 0 Ω + j4146.9 Ω

Now we are ready to begin our actual analysis of the circuit, following the same steps we would
if it were DC rather than AC.
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Our first analytical step is to compute total (series) impedance, by adding ZR with ZL. Since
rectangular notation lends itself best to addition, we will use 4700Ω+j0Ω for the resistor’s impedance
and 0 Ω + j4146.9 Ω for the inductor’s impedance. Adding two complex numbers together in
rectangular form is as simple as adding the real portions together, then adding the imaginary portions
together, then combining real and imaginary sums into one rectangular-form complex number:

ZT = ZR + ZL

ZT = (4700 Ω + j0 Ω) + (0 Ω + j4146.9 Ω)

ZT = 4700 Ω + j4146.9 Ω

Our next step is to divide source voltage by total impedance. Division is best performed with
complex numbers expressed in polar notation, which means we must convert 4700 Ω + j4146.9 Ω
into polar form before we proceed any further. Polar magnitude is calculated using the Pythagorean
Theorem, treating the polar magnitude as the hypotenuse of a right triangle, with the real portion
of the rectangular form representing the adjacent side length and the imaginary portion of the
rectangular form representing the opposite side length:

Z(mag) =
√

(4700 Ω)2 + (4146.9 Ω)2 = 6267.9 Ω

We’re not done with the conversion yet! The next sub-step is to calculate the polar phase angle.
This is done using a trigonometric function, either the arc-sine of the opposite over hypotenuse, the
arc-cosine of the adjacent over the hypotenuse, or the arc-tangent of the opposite over the adjacent.
I choose the latter approach:

Z(ang) = tan−1

(

4146.9 Ω

4700 Ω

)

= 41.423o

Now we have the total impedance converted from rectangular form into polar form, ready to use
in the next step:

ZT = 4700 Ω + j4146.9 Ω = 6267.9 Ω 6 41.423o

Our next step, of course, is dividing total source voltage by total impedance to calculate current.
To perform this division, we must express the source voltage (90 Volts AC) as a complex number
as well, and will assign to it an angle of 0 degrees since no other phase reference has been given
to us. Dividing two complex numbers in polar form is as simple as dividing the magnitudes, then
subtracting the angles, then combining the magnitude quotient and angle difference into one polar-
form complex number:

I =
V

ZT

=
90 V 6 0o

6267.9 Ω 6 41.423o
= 14.359 mA 6 − 41.423o
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Finally, calculating voltages for the resistor and inductor, we take the common current value
we just calculated and multiply it by each of the component impedance values, respectively.
Multiplication with complex numbers, like division, is best performed in polar notation. This is
as simple as multiplying the magnitudes, then adding the angles, then combining the magnitude
product and angle sum into one polar-form number:

VR = IZR = (14.359 mA 6 − 41.423o)(4700 Ω 6 0o) = 67.487 V 6 − 41.423o

VL = IZL = (14.359 mA 6 − 41.423o)(4146.9 Ω 6 90o) = 59.545 V 6 48.577o

At this point we have computed all voltage and current values, and stand ready to check our work.
A good way to verify our calculations are correct is to add the two component voltages together
to ensure their sum equals the total (source) voltage, in accordance with the properties of series
circuits and Kirchhoff’s Voltage Law. Unfortunately, though, since addition of complex numbers
is best performed in rectangular form, this means converting both of the polar-form voltage values
into rectangular form before we may proceed with our check.

To convert a polar-form complex number into rectangular form, multiply the polar magnitude
by the cosine of the angle to compute the real portion and multiply the polar magnitude by the sine
of the angle to compute the imaginary portion. Beginning with the resistor’s voltage:

(67.487 V) cos(−41.423o) = 50.605 V

(67.487 V) sin(−41.423o) = −j44.650 V

Therefore, VR = 50.605 V − j44.650 V

Next, converting the inductor’s voltage value from polar form into rectangular form:

(59.545 V) cos(48.577o) = 39.395 V

(59.545 V) sin(48.577o) = j44.650 V

Therefore, VL = 39.395 V + j44.650 V

Now, finally, we may check our work by verifying that the source voltage equals the sum of our
calculated resistor and inductor voltages:

Vsource = VR + VL = (50.605 V − j44.650 V) + (39.395 V + j44.650 V)

Vsource = 90 V + j0 V

Indeed this proves true: 90 Volts + j0 Volts is the same as 90 Volts 6 0o.
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As you can see, performing all the necessary complex-number calculations for even a very simple
AC circuit such as this is rather laborious, and error-prone24. This is why I strongly recommend
the use of an electronic calculator to manage the complex-number arithmetic, especially when first
learning how to analyze AC circuits. The sheer amount of work involved with converting between
polar and rectangular forms, and then performing multiple real calculations for each complex-number
calculation, invites error and frustration. This is especially true when one considers the fact that
students and professionals alike are expected to use an electronic calculator to compute trigonometric
functions, squares, and square-roots anyway25. Why not just use a more capable calculator and avoid
a lot of tedium?

Just for fun, let’s see this same circuit analysis done in polar form, using a calculator:

ZR = 4700 Ω 6 0o

ZL = (2πfL) 6 90o = (2π)(2000 Hz)(0.33 H) 6 90o = 4146.9 Ω 6 90o

ZT = ZR + ZL = (4700 Ω 6 0o) + (4146.9 Ω 6 90o) = 6267.9 Ω 6 41.423o

I =
V

ZT

=
90 V 6 0o

6267.9 Ω 6 41.423o
= 14.359 mA 6 − 41.423o

VR = IZR = (14.359 mA 6 − 41.423o)(4700 Ω 6 0o) = 67.487 V 6 − 41.423o

VL = IZL = (14.359 mA 6 − 41.423o)(4146.9 Ω 6 90o) = 59.545 V 6 48.577o

Vsource = VR + VL = (67.487 V 6 − 41.423o) + (59.545 V 6 48.577o) = 90 V 6 0o

24Working through this example, I ended up using all seven memory locations on my TI-36X Pro calculator just so I
would avoid any rounding errors and/or keystroke errors otherwise incurred by re-entering intermediate results. This
is a noteworthy point as well: rounding errors tend to accumulate in a really bad way when performing arithmetic
operations such as squares, square roots, and trigonometric functions. I have learned the hard way that neglecting to
store and then recall those values using the calculator’s memory is a recipe for significant error!

25I am just old enough to remember learning simple trigonometric functions in grade school through the use of trig

tables, since electronic hand calculators were not yet affordable for elementary-level students. Some time prior to high
school I taught myself how to calculate square roots by hand, from an old textbook. As soon as I owned my first
electronic calculator, all that was pushed aside and I never went back. One would literally be considered foolish, or
perhaps just masochistic, to compute square roots and trig functions without a calculator of some sort. I will say,
however, that I think there is still merit in teaching the use of a slide rule (a type of analog mechanical calculator),
because that particular obsolete tool very powerfully demonstrates how logarithms transform multiplication and
division problems into simpler addition and subtraction problems, and it also teaches the user to manage decimal
points on their own.
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4.15 Example circuit #6

Once again we will approach the analysis of an AC reactive circuit without the use of an electronic
calculator capable of performing arithmetic operations on complex numbers, this time for a parallel
circuit rather than series. Here is our sample circuit, with our task being to calculate all component
voltages and currents within:

R L V
35 VAC
800 HzC 470 Ω 150 mH0.62 µF

As usual, a good first step is to express each component value as a complex impedance. For the
resistor, this is elementary:

ZR = 470 Ω 6 0o or 470 Ω + j0 Ω

For the inductor, we first calculate inductive reactance, and then express that as an impedance:

XL = 2πfL = (2π)(800 Hz)(0.15 H) = 753.98 Ω

ZL = 753.98 Ω 6 90o or 0 Ω + j753.98 Ω

We also do the same for the capacitor, first calculating capacitive reactance and then expressing
that as a complex impedance:

XC =
1

2πfC
=

1

(2π)(800 Hz)(0.62 µF)
= 320.88 Ω

ZC = 320.88 Ω 6 − 90o or 0 Ω − j320.88 Ω

Now that we know how each component will react at the source frequency of 800 Hz, we may
begin to apply foundational principles of parallel networks. Perhaps the most directly-applicable
principle of parallel networks to utilize here is the fact that all parallel-connected components share
the same voltage, in this case 35 Volts AC. Then, with each component having a known impedance
and a known voltage, we may apply Ohm’s Law (dividing voltage by impedance) to calculate current
through each.
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As we saw previously, dividing two complex numbers in polar form is as simple as dividing the
magnitudes, then subtracting the angles, then combining the magnitude quotient and angle difference
into one polar-form complex number. Calculating each component’s current in this manner:

IR =
V

ZR

=
35 V 6 0o

470 Ω 6 0o
= 74.468 mA 6 0o

IL =
V

ZL

=
35 V 6 0o

753.98 Ω 6 90o
= 46.420 mA 6 − 90o

IC =
V

ZC

=
35 V 6 0o

320.88 Ω 6 − 90o
= 109.08 mA 6 90o

The next parallel-network principle to apply is the fact that currents add in parallel to make total
(source) current. In order to add these complex-number current values, we must translate each one
into rectangular form, then simply add all their real portions together and add all their imaginary
portions together:

IR = 74.468 mA 6 0o = 74.468 + j0 mA

IL = 46.420 mA 6 − 90o = 0 − j46.420 mA

IC = 109.08 mA 6 90o = 0 + j109.08 mA

Itotal = (74.468 mA ) + j(109.08 mA − 46.420 mA) = 74.468 mA + j62.656 mA

In order to determine how much current an AC ammeter would register if connected in series
with the source, we must convert this rectangular-form expression of Itotal into polar form using the
Pythagorean Theorem to find the polar magnitude and the arc-tangent function to find the polar
angle:

Itotal(mag) =
√

(74.468 mA)2 + (62.656 mA)2 = 97.320 mA

Itotal(ang) = tan−1

(

62.656 mA

74.468 mA

)

= 40.077o

Therefore, total (source) current in this circuit is 97.320 mA 6 40.077o, which means an ammeter
connected in series with one of the source terminals should register 97.320 milliAmperes.

Something else we may do with this total current value is to calculate the network’s total
impedance using Ohm’s Law (Ztotal = Vtotal

Itotal
). As usual, polar form works well for division in

that we simply divide magnitudes and subtract angles:

Ztotal =
Vtotal

Itotal

=
35 V 6 0o

97.320 mA 6 40.077o
= 359.64Ω6 − 40.077o
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Since this is a parallel network, one might be inclined to try calculating total impedance as the
first analytical step following the determination of all component impedances, rather than calculate
component currents as previously shown. While a calculation of total impedance is certainly possible,
it ends up being fairly laborious because of the sheer number of arithmetic operations necessary to
evaluate the 1

1

ZR
+ 1

ZL
+ 1

ZC

formula. These operations may be enumerated as follows:

1. Reciprocate all impedances in polar form: reciprocate each polar magnitude, and reverse the
sign of each angle. The resulting quantity in each case is called an admittance (Y ), and
is analogous to conductance being the reciprocal of resistance (G = 1

R
). Like conductance,

admittance is measured in the unit of Siemens.

2. Convert each of these admittances into rectangular form in preparation for addition. Each real
component is the magnitude times the cosine of the angle; each imaginary component is the
magnitude times the sine of the angle.

3. Add the three rectangular-form admittances together to compute total (parallel) admittance.
This involves adding together all real components, and then adding together all imaginary
components. At this point in the process you now know the value of the large fraction’s
denominator, in rectangular form.

4. Convert this total admittance from rectangular form into polar form in preparation for final
reciprocation. Polar magnitude is found using the Pythagorean Theorem, and the polar angle
using the arc-tangent function.

5. Finally, reciprocate this total (parallel) admittance value to arrive at total impedance. This
means reciprocating the polar magnitude and reversing the sign of the angle.

As one might guess, this lengthy set of calculations is fraught with potential for error. A single
dropped sign, rounded result, or keystroke error is sufficient to corrupt the final result.
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Chapter 5

Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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5.1 Derivation of inductive impedance

The relationship between voltage (V ) and current (I) for a pure1 inductance (L) is based on rates
of change, specifically the rate-of-change of current over time (dI

dt
). One might think of the following

equation as being the inductive equivalent of Ohm’s Law, because it fundamentally relates voltage
and current for any inductance:

V = L
dI

dt

Where,
V = Voltage across the inductance’s terminals (Volts)
L = Inductance (Henrys)
dI
dt

= Rate-of-change of current over time (Amperes per second)

If we pass a sinusoidal AC current through an inductance, the voltage at any given point in time
will be proportional to the current’s instantaneous rate-of-change. This means the voltage will be
zero at those points in time when the current waveform is level (i.e. zero slope, at every peak) and
maximum when the current waveform crosses the zero line (i.e. at maximum steepness). These
notable points in time are marked on the following plot by dashed lines:

V I

Therefore, when we apply a sinusoidal current through a pure inductor, the voltage waveform is
also a sinusoid but phase-shifted by 90 degrees leading. In other words, voltage leads current by 90
degrees for a pure inductance.

1By “pure” it is meant that the inductance in question dissipates no energy whatsoever, but losslessly absorbs and
releases energy. This is nearly impossible to achieve in practice, but superconducting inductors come very close to
this ideal.
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This same conclusion may be reached symbolically through the application of simple calculus, if
we substitute a time-based sine function for I:

V = L
dI

dt
and I = sin t

V = L
d

dt
(sin t)

V = L cos t

Since the derivative ( d
dt

) of a sine function is a cosine function, the voltage waveform must be a
cosine wave, and we know cosine waves lead sine waves by 90 degrees.

We may use a more sophisticated approach of defining the AC current as a complex exponential
function2 of time rather than merely as a trigonometric function of time:

V = L
dI

dt
and I = ejωt

V = L
d

dt
(ejωt)

V = jωLejωt

Just as electrical resistance is mathematically defined as the ratio of voltage to current (R = V
I
),

impedance is also defined as the ratio of voltage to current. Taking the voltage and current
exponential functions together as a ratio, we see that inductive impedance reduces to a simple
expression lacking any exponential term:

Z =
V

I

Z =
jωLejωt

ejωt

Z = jωL

Unlike V and I which are both rotating phasors having both real and imaginary components
alternating over time, Z is a constant imaginary quantity. The magnitude of Z depends on both
frequency (ω) and inductance (L): the higher the frequency, the greater the impedance; the greater
the inductance, the greater the impedance. The positive imaginary “direction” of Z (i.e. a phasor
angle of 90o) reflects the constant 90 degree phase shift between voltage (leading) and current
(lagging) for an inductance. Expressed in non-phasor form, ωL is the reactance (X) of the inductor.
When expressing frequency in Hertz rather than radians per second, it is more common to see
reactance computed as XL = 2πfL.

2Recall Euler’s Relation, where eix = cos x + i sin x. Using j rather than i to signify the imaginary unit quantity,
and using ω to signify the angular velocity (frequency) of the waveform, the time-domain wave function will be ejωt

which is equal to cos ωt + j sin ωt. This is the phasor expression of the current waveform, having both a real and an
imaginary component each of which varies over time. The advantage of this approach is that exponential functions
are extremely simple to differentiate, as d

dx
ekx = kekx.
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An even more sophisticated and versatile expression of an AC voltage uses complex frequency
represented by the variable s, where s is the complex sum of a real growth/decay rate (σ) and an
imaginary natural frequency (jω):

s = σ + jω

Where,
s = Complex frequency in 1

seconds
σ = Growth/decay rate in time constants per second
ω = Natural frequency in radians per second

Applying this complex frequency as a current through the inductor and differentiating the
inductive “Ohm’s Law” formula:

V = L
dI

dt
and I = est

V = L
d

dt
(est)

V = sLest

Defining inductive impedance as the ratio of inductor voltage to inductor current:

Z =
V

I

Z =
sLest

est

Z = sL

The impedance (in Ohms) is now a function of complex frequency, varying with growth/decay
rate as well as with plain frequency. The real growth/decay rate dictates whether the component
will experience a net absorption or a net release of energy over time (i.e. behaving as a load versus
as a source) while the imaginary frequency dictates how often energy gets absorbed and released.
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5.2 Derivation of capacitive impedance

The relationship between voltage (V ) and current (I) for a pure3 capacitance (C) is based on rates
of change, specifically the rate-of-change of voltage over time (dV

dt
). One might think of the following

equation as being the capacitive equivalent of Ohm’s Law, because it fundamentally relates voltage
and current for any capacitance:

I = C
dV

dt

Where,
I = Current through the capacitance’s terminals (Amperes)
C = Capacitance (Farads)
dV
dt

= Rate-of-change of voltage over time (Volts per second)

If we impress a sinusoidal AC voltage across a capacitance, the current at any given point in
time will be proportional to the voltage’s instantaneous rate-of-change. This means the current will
be zero at those points in time when the voltage waveform is level (i.e. zero slope, at every peak)
and maximum when the voltage waveform crosses the zero line (i.e. at maximum steepness). These
notable points in time are marked on the following plot by dashed lines:

I V

Therefore, when we apply a sinusoidal voltage across a pure capacitance, the current waveform
is also a sinusoid but phase-shifted by 90 degrees leading. In other words, current leads voltage by
90 degrees for a pure capacitance.

3By “pure” it is meant that the capacitance in question dissipates no energy whatsoever, but losslessly absorbs
and releases energy. Real capacitors come remarkably close to this ideal.
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This same conclusion may be reached symbolically through the application of simple calculus, if
we substitute a time-based sine function for V :

I = C
dV

dt
and V = sin t

I = C
d

dt
(sin t)

I = C cos t

Since the derivative ( d
dt

) of a sine function is a cosine function, the current waveform must be a
cosine wave, and we know cosine waves lead sine waves by 90 degrees.

We may use a more sophisticated approach of defining the AC voltage as a complex exponential
function4 of time rather than merely as a trigonometric function of time:

I = C
dV

dt
and V = ejωt

I = C
d

dt
(ejωt)

I = jωCejωt

Just as electrical resistance is mathematically defined as the ratio of voltage to current (R = V
I
),

impedance is also defined as the ratio of voltage to current. Taking the voltage and current
exponential functions together as a ratio, we see that capacitive impedance reduces to a simple
expression lacking any exponential term:

Z =
V

I

Z =
ejωt

jωCejωt

Z =
1

jωC
or Z = −j

1

ωC

Unlike V and I which are both rotating phasors having both real and imaginary components
alternating over time, Z is a constant imaginary quantity. The magnitude of Z depends on both
frequency (ω) and capacitance (C): the higher the frequency, the less the impedance; the greater the
capacitance, the less the impedance. The negative imaginary “direction” of Z (i.e. a phasor angle
of −90o) reflects the constant 90 degree phase shift between voltage (lagging) and current (leading)
for a capacitance. Expressed in non-phasor form, 1

ωC
is the reactance (X) of the capacitance. When

4Recall Euler’s Relation, where eix = cos x + i sin x. Using j rather than i to signify the imaginary unit quantity,
and using ω to signify the angular velocity (frequency) of the waveform, the time-domain wave function will be ejωt

which is equal to cos ωt + j sin ωt. This is the phasor expression of the current waveform, having both a real and an
imaginary component each of which varies over time. The advantage of this approach is that exponential functions
are extremely simple to differentiate, as d

dx
ekx = kekx.
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expressing frequency in Hertz rather than radians per second, it is more common to see capacitive
reactance computed as XC = 1

2πfC
.

An even more sophisticated and versatile expression of an AC voltage uses complex frequency
represented by the variable s, where s is the complex sum of a real growth/decay rate (σ) and an
imaginary natural frequency (jω):

s = σ + jω

Where,
s = Complex frequency in 1

seconds
σ = Growth/decay rate in time constants per second
ω = Natural frequency in radians per second

Applying this complex frequency as a voltage across the capacitor and differentiating the
capacitive “Ohm’s Law” formula:

I = C
dV

dt
and V = est

I = C
d

dt
(est)

I = sCest

Defining capacitive impedance as the ratio of capacitor voltage to capacitor current:

Z =
V

I

Z =
est

sCest

Z =
1

sC

The impedance (in Ohms) is now a function of complex frequency, varying with growth/decay
rate as well as with plain frequency. The real growth/decay rate dictates whether the component
will experience a net absorption or a net release of energy over time (i.e. behaving as a load versus
as a source) while the imaginary frequency dictates how often energy gets absorbed and released.
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5.3 Capacitor parasitics

5.3.1 Model of a real capacitor

An ideal capacitor exhibits only capacitance, with no inductance, resistance, or other characteristics
to interfere. Real capacitors exhibit all these phenomena to varying degrees, and we collectively refer
to these undesirable traits as parasitic effects. The following diagram models some of the parasitic
effects observed in real capacitors:

LseriesRseries

Rleakage

Cideal

Rsoak1Csoak1

Rsoak2Csoak2

Capacitor model

In addition to the capacitance the capacitor is supposed to exhibit (Cideal), the capacitor also
has parasitic resistance (Rseries, also known as Equivalent Series Resistance, or ESR), parasitic
inductance (Lseries), and additional energy storage in the form of soakage (also known as dielectric
absorption) whereby the dielectric substance itself absorbs and releases energy after relatively long
periods of time compared to the main (ideal) capacitance.

Some of these parasitic effects – such as leakage resistance and soakage – affect the capacitor’s
performance in DC applications. Most of the other parasitic effects cause problems in AC and pulsed
applications. For example, the effective series capacitor-inductor combination formed by Cideal and
Lseries will cause resonance to occur at a particular AC frequency, resulting in much less reactance
at that frequency than what would be predicted by the capacitive reactance formula XC = 1

2πfC
.

Next we will explore common mechanisms for each of these effects.
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5.3.2 Parasitic resistance in capacitors

Wire resistance, of course, plays a part in this parasitic effect, but this is generally very small due to
the short conductor lengths we typically see with capacitors. More significant is dielectric losses –
energy dissipation caused by the stressing and relaxation of dipoles within the dielectric material –
which act like resistance because energy ends up leaving the component (in the form of heat) and not
returning to the circuit. Electrolytic capacitors have an additional source of parasitic resistance, in
the form of the electrolytic gel substance used to make electrical contact from the metal-foil “plate”
to the surface of the dielectric layer.

Another form of parasitic resistance within a capacitor behaves like a resistor connected in parallel
with the ideal capacitance (Rleakage), resulting from the dielectric not being a perfectly insulating
medium. This parasitic characteristic results in a small current passing through the capacitor even
when the voltage across the capacitor is steady (i.e. dV

dt
is zero).

5.3.3 Parasitic inductance in capacitors

Any time a magnetic field forms around a current-carrying conductor, energy is stored in that
magnetic field. We call this magnetic-based energy-storing capability inductance, and of course
all capacitors must have some inductance due to the wire leads serving as connection points to
the capacitor’s metal plates. Much of a capacitor’s parasitic inductance may be minimized by
maintaining short lead lengths as it attaches to a printed-circuit board.

Parasitic inductance is a problem for capacitors in AC applications because inductive reactance
(XL) tends to cancel out capacitive reactance (XC). If we plot the impedance of a capacitor as a
function of frequency, we would expect an ideal capacitor to manifest a straight-line descent on a
logarithmic plot. However, what we see is that at a certain frequency the series parasitic inductance
resonates with the capacitance leaving only parasitic resistance (ESR), and then past that frequency
the inductive effects overshadow the capacitance:

f

Z

ZC(ideal)

ZC(real)

ESR



86 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.3.4 Other parasitic effects in capacitors

Soakage is an interesting effect resulting from dipole relaxation within the dielectric material itself,
and may be modeled (as shown) by a series of resistor-capacitor subnetworks. This effect is especially
prominent in aluminum electrolytic capacitors, and may be easily demonstrated by discharging a
capacitor (by briefly connecting a shorting wire across the capacitor’s terminals) and then monitoring
the capacitor’s DC voltage slowly “recover” with no connection to an external source.
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5.4 Inductor parasitics

5.4.1 Model of a real inductor

An ideal inductor exhibits only inductance, with no capacitance, resistance, or other characteristics
to interfere. Real inductors exhibit all these phenomena to varying degrees, and we collectively refer
to these undesirable traits as parasitic effects. The following diagram models some of the parasitic
effects observed in real inductors:

Rseries Lideal

Cparallel

Inductor model

Lmutual

In addition to the inductance the inductor is supposed to exhibit (Lideal), the inductor also
has parasitic resistance (Rseries, also known as Equivalent Series Resistance, or ESR), parasitic
capacitance (Cparallel), and mutual inductance (Lmutual) with nearby wires and components.

Some of these parasitic effects – such as equivalent series resistance – affect the inductor’s
performance in DC applications. Most of the other parasitic effects cause problems in AC and
pulsed applications. For example, the effective inductor-capacitor “tank circuit” formed by Lideal and
Cparallel will cause resonance to occur at a particular AC frequency, resulting in much more reactance
at that frequency than what would be predicted by the inductive reactance formula XL = 2πfL.

Next we will explore common mechanisms for each of these effects.
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5.4.2 Parasitic resistance in inductors

Wire resistance plays a dominant role in this parasitic effect due to the typically long lengths of wire
necessary to wind the coil that forms most inductors. Wire resistance is not the only dissipative
mechanism at work, though. Other losses include magnetic hysteresis of the iron core material as well
as eddy currents induced in the iron core. An “eddy” current is a circulating electric current induced
within the iron core of an inductor, made possible by the fact that iron is an electrically-conductive
material as well as being ferromagnetic. These circulating currents do no useful work, and dissipate
energy in the form of heating the iron. They may be minimized by forming the iron core from pieces
of iron that are electrically insulated from one another, e.g. forming the iron core from laminated
sheets or powdered particles of iron where each sheet or particle is electrically insulated from the
next by a layer of non-conductive material on its outer surface.

The series resistance of an inductor is always frequency-dependent. In DC conditions (i.e.
frequency of zero Hertz) there will be the basic wire resistance of the coil at play. As frequency
increases from zero, however, both the magnetic core losses from hysteresis and eddy currents also
increase which add to the DC resistance to form a larger ESR. At extremely high frequencies the
skin effect5 further adds to the inductor’s ESR.

5At high frequencies, electric current travels more toward the outer surface of a conductor rather than through the
conductor’s entire cross-section, effectively decreasing the conductor’s cross-sectional area (gauge) as frequency rises.
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5.4.3 Parasitic capacitance in inductors

Any time an electric field forms between two conductors, energy is stored in that electric field. We
call this electric-based energy-storing capability capacitance, and of course all inductors must have
some capacitance due to the insulating media between wire leads as well as between adjacent turns
of wire within the coil (and between the wire turns and the iron core).

Parasitic capacitance is a problem for inductors in AC applications because capacitive reactance
(XC) tends to cancel out inductive reactance (XL). If we plot the impedance of an inductor as
a function of frequency, we would expect an ideal inductor to manifest a straight-line ascent on
a logarithmic plot. However, what we see is that at a certain frequency the parallel parasitic
capacitance resonates with the inductance to create a nearly-infinite impedance, and then past that
frequency the capacitive effects overshadow the inductance:

f

Z

ESR

ZL(ideal)

ZL(real)

Precious little may be done to eliminate parasitic capacitance within any inductor, whereas
parasitic inductance is fairly easy to minimize within a capacitor. This explains why when faced with
an equivalent choice between a circuit design using capacitors and a circuit design using inductors,
capacitors nearly always win. Simply put, it is easier to make a nearly-ideal capacitor than it is to
make a nearly-ideal inductor.

This also explains why the self-resonant frequency of most inductors is much lower than the
self-resonant frequency of most capacitors: all other factors being equal, an inductor will have more
parasitic capacitance in it than an equivalent capacitor will have parasitic inductance within it,
making the LC product greater for the inductor than for the capacitor.

5.4.4 Other parasitic effects in inductors

Mutual inductance occurs whenever adjacent conductors’ magnetic fields link with one another,
which is difficult to avoid especially in physically dense circuit layouts. This parasitic effect may
be minimized by proper placement of inductive components (e.g. keeping them spaced as far apart
from each other as possible, orienting their axes perpendicular to each other rather than parallel)
as well as by core designs with strong magnetic field containment (e.g. toroidal cores contain their
magnetic fields better than rectangular cores).
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Chapter 6

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.

91
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6.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.
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Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments
to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point
variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x

or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.
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After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.
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learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.



96 CHAPTER 6. PROGRAMMING REFERENCES

6.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.



6.2. PROGRAMMING IN PYTHON 97

More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.
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Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC 6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.
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assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.



100 CHAPTER 6. PROGRAMMING REFERENCES

If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.



Chapter 7

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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7.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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7.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should
read these educational resources closely, write their own outline and reflections on the reading, and
discuss in detail their findings with classmates and instructor(s). You should be able to do all of the
following after reading any instructional text:

√
Briefly OUTLINE THE TEXT, as though you were writing a detailed Table of Contents. Feel

free to rearrange the order if it makes more sense that way. Prepare to articulate these points in
detail and to answer questions from your classmates and instructor. Outlining is a good self-test of
thorough reading because you cannot outline what you have not read or do not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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7.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Limiting cases as a problem-solving strategy

Power

Electrical source

Electrical load

Direct Current (DC)

Alternating Current (AC)

Resistance

Ohm’s Law

Joule’s Law

Inductance
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Capacitance

True power

Reactive power

Reactance

Impedance

Phasor

Phase angle

Properties of series AC circuits

Properties of parallel AC circuits

Kirchhoff’s Voltage Law for AC circuits

Kirchhoff’s Current Law for AC circuits
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7.1.3 Parasitic inductance and capacitance

Not only do reactive components unavoidably possess some parasitic (“stray”) resistance, but they
also exhibit parasitic reactance of the opposite kind. For instance, inductors are bound to have a
small amount of capacitance built-in, and capacitors are bound to have a small amount of inductance
built-in. These effects are not intentional, but they exist anyway. Such unintentional effects are called
parasitic.

Describe how a small amount of capacitance comes to exist within an inductor, and how a small
amount of inductance comes to exist within a capacitor. Explain what it is about the construction
of these two reactive components that allows the existence of “opposite” characteristics.

Additionally, small amounts of inductance and capacitance exist based on how components
are mounted to circuit boards when constructing real circuits. Give examples of both parasitic
inductance and parasitic capacitance existing as a function of component mounting.

Challenges

• In some circuits these parasitic effects are undesirable. Identify methods to minimize them.

7.1.4 Parasitic reactance between parallel wires

Parasitic inductance and capacitance is present any time wires are other over significant distances.
Suppose two wires are run parallel to each other, carrying current in opposite directions. Explain
what happens to their parasitic inductance and parasitic capacitance when moved closer to each
other.

Challenges

• When students first learn about electricity and how to build electric circuits, they ignore
parasitic effects. Explain how it is possible for a beginning student to ignore these effects, yet
construct and test working circuits that perform as expected without consideration to these
effects.
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7.1.5 Solenoid valve maintenance

A solenoid valve is a mechanical shutoff device actuated by electricity. An electromagnet coil
produces an attractive force on an iron “armature” which then either opens or closes a valve
mechanism to control the flow of some fluid. Shown here are two different types of illustrations,
both showing a solenoid valve:

Plug

Wire coil

Iron "armature"

Water in

PipePipe

Functional diagram
Pictorial diagram

Coil

Valve bodyWater out

Some solenoid valves are constructed in such a way that the coil assembly may be removed from
the valve body, separating these two pieces so that maintenance work may be done on one without
interfering with the other. Of course, this means the valve mechanism will no longer be actuated by
the magnetic field, but at least one piece may be worked upon without having to remove the other
piece from whatever it may be connected to:

PipePipe

Coil

Valve body

This is commonly done when replacement of the valve mechanism is needed. First, the coil is
lifted off the valve mechanism, then the maintenance technician is free to remove the valve body
from the pipes and replace it with a new valve body. Lastly, the coil is re-installed on the new valve
body and the solenoid is once more ready for service, all without having to electrically disconnect
the coil from its power source.
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However, if this is done while the coil is energized, it will overheat and burn up in just a few
minutes. To prevent this from happening, the maintenance technicians have learned to insert a steel
screwdriver through the center hole of the coil while it is removed from the valve body, like this:

PipePipe Valve body

Coil

With the steel screwdriver shank taking the place of the iron armature inside the valve body, the
coil will not overheat and burn up even if continually powered. Explain the nature of the problem
(why the coil tends to burn up when separated from the valve body) and also why a screwdriver put
in place of the iron armature works to prevent this from happening.

Challenges

• What do you suppose the screwdriver would feel like when inserted into the energized solenoid
coil?



112 CHAPTER 7. QUESTIONS

7.1.6 Substation power line reactors

A common fixture of electrical power substations is the so-called line reactor, which is just an air-
core inductor connected in series with the power line. A simplified schematic diagram shows where
this “reactor” is located in the circuit, in series with the circuit breaker4:

Load
(customer)

Circuit
breakerLine

reactor

An actual photograph showing three substation line reactors appears here:

The purpose of line reactors in a power system is to make the circuit breaker’s job easier. In
other words, the circuit breaker will be able to more reliably “trip” and isolate power from a fault
with line reactors in place. Based on what you know about inductance, explain why this is.

It is technically possible to replace line reactors with series resistors and achieve a similar effect.
Explain why reactors are preferable to resistors in this application.

Challenges

• Would a capacitor fulfill the same practical function as a line reactor, if substituted? Explain
why or why not.

4A circuit breaker is a special switch designed to open very quickly in the event of a fault where line current
suddenly becomes very large. An example of such a fault would be a tree branch falling down and shorting across two
conductors of a power line: sensors would detect the abnormally high current in this circuit, and the circuit breaker
would quickly open to shut off the flow of current. Fault currents tend to be extremely large (tens of thousands

of Amperes are typical for faults, in a power conductor that might normally carry less than a hundred Amperes of
current!), and this causes wear and tear within the circuit breaker as the contacts open and a powerful arc develops
between them.
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7.1.7 Electromagnetic frequency meter

The following illustration and text came from page 52 of Cassier’s Magazine, Volume 42, issued in
the year 1912. In this article (“New Types of Frequency Meters” by William Smith), multiple designs
are presented for meters measuring the frequency of AC in early power systems. This particular
design uses a pair of electromagnets (labeled A and B) to produce opposing torques5 on a disk (G)
made of thin aluminum metal, which is connected to a pointer (the vertical line and arrowhead)
indicating frequency:

Coil A imparts a clockwise torque to the disk, while coil B imparts a counter-clockwise torque.
Component “H” is a resistor, and component “I” is an inductor. Based on this knowledge, as well
as the brief description given in the magazine’s text, explain how this mechanism serves to measure
frequency of the applied AC.

Which direction of the pointer’s movement indicates a greater frequency, clockwise or counter-
clockwise?

How would this mechanism behave if the inductor (I) were replaced by a resistor equal in value

5“Torque” simply refers to a twisting force. For those who are interested, the means by which an AC-excited
electromagnet is able to create a torque on an aluminum disk is called a shaded-pole structure. The concept of shaded
poles goes well beyond the scope of this tutorial, but for the time being it is sufficient to know that it produces a
lateral force on any electrically conductive material placed between the poles of the electromagnet.
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to H?

How would this mechanism behave if the inductor (I) were replaced by a capacitor?

The two electromagnet coils themselves behave more like resistors than inductors. Explain why
this is.

Challenges

• What factor(s) influence frequency in an AC power system?

• Explain the impact of inserting a large(r) iron core inside of inductor I.
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7.1.8 Phantom voltage measurements

A technician uses a digital multimeter to check for the presence of dangerous voltage between
conductor #3 and Earth ground prior to touching that conductor. This safety check is done as a
matter of precaution, even though the technician has reason to believe that conductor is electrically
distinct (i.e. not electrically common to any other conductors) and should not be “live”. To this
technician’s surprise, he measures 43 Volts AC between conductor #3 and ground!

Multi-conductor cable
1

2

3

4

5

1

2

3

4

5

OFF

COMA

V A

V A

Lamp

120 VAC

Puzzled, this technician consults another technician to ask how it is possible to measure a possibly
dangerous voltage level between a conductor and ground when the conductor in question is not
connected to anything else. “Oh,” says the other technician, “That’s probably just a phantom
voltage. Don’t worry about it!”

Explain this phenomenon. Exactly how is the AC voltmeter registering a voltage on what should
be a “dead” wire?

Should you be concerned about the safety hazard of so-called “phantom voltages”? Why or why
not?

Some voltmeters made for general electrical use (rather than precision electronic use) are specially
built to have less input impedance than typical: tens of kiloOhms instead of megaOhms. This
design helps minimize “phantom” voltage measurements. Explain how a voltmeter with less input
impedance (also known as insertion resistance) than usual is less liable to be “fooled” when taking
measurements on an unattached conductor such as this.
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Challenges

• Are “phantom” voltages strictly an AC phenomenon, or may they manifest in DC circuits as
well?

• Identify some parameters of the multi-conductor cable which could be modified (e.g. length,
wire gauge, insulation thickness, etc.) to exacerbate the “phantom” voltages effect.
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7.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases6” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely7 on an answer key!

6In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

7This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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7.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 × 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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7.2.2 Resistances and reactances expressed as impedances

Express the impedance (Z) in both polar and rectangular mathematical forms for each of the
following components, and also sketch a phasor diagram representing each impedance value:

• A resistor with 500 Ω of resistance

• An inductor with 1.2 kΩ of reactance

• A capacitor with 950 Ω of reactance

• A resistor with 22 kΩ of resistance

• A capacitor with 50 kΩ of reactance

• An inductor with 133 Ω of reactance

Challenges

• Explain the conceptual distinction between resistance and reactance.

7.2.3 Imperfect inductor

Real inductors and capacitors are never purely reactive. There will inevitably be some resistance
intrinsic to these devices as well.

Suppose an inductor has 57 Ω of winding resistance, and 1500 Ω of reactance at a particular
frequency. How would this combination be expressed as a single impedance? State your answer in
both polar and rectangular forms.

Challenges

• Wire resistance is the dominant form of resistance within real inductors, but not the only form.
Identify at least one other form of energy dissipation contributing to the resistance of a real
inductor.
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7.2.4 Simple AC circuits

Calculate the unknown quantities in the following circuits, expressing your answers in both
rectangular and polar form, assuming the source in each case is the phase reference (i.e. its phase
angle is zero):

40 VAC
250 Hz

30 mHI = ???
230 VAC

60 Hz
22 µFI = ???

2.5 AAC
400 Hz

12 mAAC
2.8 kHz

2 mH 150 nFV = ??? V = ???

• Upper-left:

• Upper-right:

• Lower-left:

• Lower-right:

Challenges

• Sketch phasor diagrams showing each circuit’s voltage, current, and impedance values in
graphical form.

• Predict the effect in each of these circuits of the frequency increasing.
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7.2.5 Series RC circuit with AC voltage source

Suppose an AC voltage source outputs 48 Volts RMS at a frequency of 60 Hertz, and powers a
simple series circuit consisting of a 230 Ohm resistor and a 10 microFarad capacitor. Express the
circuit current and all component voltages as complex numbers in polar form.

Challenges

• How would an increase in frequency affect these parameters?

7.2.6 Capacitive voltage divider

Calculate the voltage output by this capacitive voltage divider circuit:

22 µF

15 VAC
140 Hz

33 µF Vout

Challenges

• Explain why altering the frequency of the voltage source has no effect on the voltage division
ratio.
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7.2.7 Protective relay burdens

A type of instrument used in electric power systems called a protective relay receives a current input
signal from the power system. That AC current passes through a set of electromagnetic coils, called
restraint coils, which helps the relay perform its intended function. Those restraint coils within the
relay impose a certain amount of impedance (called “burden”) upon the current signal, the value of
which depending on the system frequency and the relay’s configuration. The following is a screenshot
from the instruction manual for a General Electric model CFD22A high-speed differential relay:

Express the impedance of the restraint coils for this model of protective relay assuming a system
frequency of 60 Hertz and the relay being configured for a continuous current rating of 5.0 Amperes.
Write your answer in two different forms: polar and rectangular.

Express the impedance of the restraint coils for this model of protective relay assuming a system
frequency of 50 Hertz and the relay being configured for a continuous current rating of 1.0 Amperes.
Write your answer in two different forms: polar and rectangular.

Calculate the voltage dropped by the 5.0 Ampere-rated restraint coils at a signal current value
of 3.0 Amperes 6 24o and a frequency of 60 Hz.

Calculate the inductance (L) of the 5.0 Ampere-rated restraint coil based on the information you
see here in the table.

Challenges

• Since this protective relay is designed to measure a current signal, one might think of it as
being a special form of ammeter. What should the ideal “burden” of an ammeter be?

• Why would the resistance (R) value of a restraint coil vary with frequency, as it appears based
on the 0.040 Ω value at 60 Hz and the 0.034 Ω value at 50 Hz?



7.2. QUANTITATIVE REASONING 123

7.2.8 Parallel RC circuit with AC voltage source

Suppose an AC voltage source outputs 30 Volts RMS at a frequency of 60 Hertz, and powers a
simple parallel circuit consisting of a 410 Ohm resistor and a 22 microFarad capacitor. Express all
current values as complex numbers in polar form.

Challenges

• How would an increase in frequency affect these parameters?
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7.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

7.3.1 Identifying an unmarked component

Suppose you were given a component and told it was either a resistor, an inductor, or a capacitor.
The component is unmarked, and impossible to visually identify. Explain what steps you would
take to electrically identify what type of component it was, and what its value was, without the use
of any test equipment except a signal generator, a multimeter (capable of measuring nothing but
voltage, current, and resistance), and some miscellaneous passive components (resistors, capacitors,
inductors, switches, etc.). Demonstrate your technique if possible.

Challenges

• Explain how you could use similar (or identical?) techniques to test a component suspected
as being damaged.
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7.3.2 Incorrect voltage calculation

A student measures voltage drops in an AC circuit using two AC voltmeters and arrives at the
following measurements:

COMA

V

V A

A
OFF

COMA

V

V A

A
OFF

Knowing that voltages add in series circuits, the student sums 7.24 Volts and 8.50 Volts to arrive
at 15.74 Volts. However, this result is incorrect. Explain what the student did wrong, and then
calculate the proper series-total voltage in this circuit.

Challenges

• Calculate a set of possible values for the capacitor and resistor that would generate these same
voltage drops in a real circuit. Hint: you must also decide on a value of frequency for the
power source.
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Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

129



130 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.



132 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

139



140 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix E

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

31 January 2024 – emphasized in the Simplified Tutorial that the Pythagorean Theorem applied
to phasor diagrams only works for representing quantities that add in the circuit.

21-22 December 2023 – expanded the angular velocity Full Tutorial section to include the s

variable, and replaced “angular velocity” with “natural frequency” throughout that section.

18 December 2023 – added more references to XL = jωL and XC = 1
jωC

to the Full Tutorial.
Also ensured that every instance of ω was referred to as “angular velocity” rather than “frequency”.

13 September 2023 – added index references to scalar versus phasor quantities.

28 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

23 June 2022 – editing some instructor answers.

22 May 2022 – added one more comment in the Simplified Tutorial section regarding the use
of calculators capable of complex-number arithmetic, and also added a “Programming References”
chapter to include instructions on how to use Python as a scientific calculator capable of complex-
number arithmetic.

18 May 2022 – added a Case Tutorial section with complex-number arithmetic practice problems.

16 May 2022 – added a Case Tutorial section showing the effective use of a triangle-wave signal
generator rather than a sine-wave signal generator to provide AC excitatin in simple RLC network
experiments. It’s not “perfect” like a sine-wave signal generator would (ideally) be, but the results
are quite close to what they ought to be, usually within the tolerances of the components.
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3 March 2022 – corrected a typographical error (XC mistakenly shown as XL). This error was
pointed out to me courtesy of Ron Felix.

20 December 2021 – added another Tutorial example solution, showing a parallel network
calculated “longhand” rather than using a complex-number calculator. Also made some minor
formatting changes in Example #5 and corrected a few typographical errors in the rest of the text.

8 December 2021 – added a Case Tutorial section on testing custom-wound inductors.

8 May 2021 – commented out or deleted empty chapters.

21 February 2021 – added content to the Simplified Tutorial showing the R-X-Z triangle as a
means to relate resistance, reactance, and impedance trigonometrically rather than by the use of
complex numbers.

3 February 2021 – added content to the Introduction, and made minor edits to the Simplified
Tutorial. Also added notes about the “phase reference” for an AC circuit’s calculations into the
example problems in the Full Tutorial.

2 February 2021 – added a Case Tutorial chapter.

30 January 2021 – minor edit to “Simple AC circuits” Quantitative question, specifying that the
source in each case was the 0o phase reference.

10 January 2021 – added new Quantitative question on simple AC circuits.

2 November 2020 – corrected typographical error in instructor notes for the “Protective relay
burdens” question.

1 November 2020 – added photograph of a metal pipe being heated by induction.

5 October 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

15 September 2020 – minor edits to Full Tutorial chapter.

5 April 2020 – included the term “insertion resistance” in Conceptual Reasoning question about
phantom voltage measurement.

5 June 2019 – minor edits. Most significant was an edit to the final paragraph of the Simplified
Tutorial, where I expanded the commonality between DC and AC circuit analysis from just series
and parallel network principles, to any principle of voltage or current. This includes Ohm’s Law,
Kirchhoff’s Laws, and network theorems.

26 May 2019 – added combinations of R and X to the Simplified Tutorial, as well as added some
questions.

11 May 2019 – minor clarifying edits to Simplified Tutorial.
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October 2018 – replaced “reactor” with “inductor” in one paragraph, plus numerous edits
throughout the Full Tutorial made for the sake of clarity. Corrected a number of errors resulting
from copy-and-pasting similar paragraphs, mostly confusing inductance and capacitance (thanks to
Ron Felix for locating these errors).

August 2018 – added content to the Introduction.

July 2018 – added discussion of unit phasors to both the Simplified and Full Tutorial chapters.
This lets readers know how to convert a scalar reactance value in their electronic calculator to a
complex (phasor) impedance value without having to re-enter the reactance quantity.

May 2018 – added a Simplified Tutorial chapter, as well as added some phasor diagrams to the
worked example circuits in the Full Tutorial.

October 2017 – document first created.
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Tank circuit, 87
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Time constant, 50
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Visualizing a system, 127
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Whitespace, C++, 92, 93
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