
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Shift Registers

c© 2019-2023 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 30 November 2023

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

2 Tutorial 5

2.1 Latch and flip-flop review . 5
2.2 Registers . 10
2.3 Shift register variations . 12
2.4 Ring counters . 16
2.5 Auto-initialization . 20

3 Derivations and Technical References 21

3.1 Digital pulse criteria . 22

4 Animations 25

4.1 Animation of serial-in, parallel-out shift register . 26
4.2 Animation of parallel-in, serial-out shift register . 45

5 Questions 65

5.1 Conceptual reasoning . 69
5.1.1 Reading outline and reflections . 70
5.1.2 Foundational concepts . 71
5.1.3 Conveyor belt analogies . 73
5.1.4 Timing diagram for a simple shift register . 75
5.1.5 Timing diagram for another simple shift register 77
5.1.6 Timing diagram for yet another simple shift register 78
5.1.7 Schematic diagram for a five-bit shift register 79
5.1.8 Altering shift direction . 79
5.1.9 Switch debouncer . 80
5.1.10 Sequenced water fountain . 81

5.2 Quantitative reasoning . 82
5.2.1 Miscellaneous physical constants . 83
5.2.2 Introduction to spreadsheets . 84
5.2.3 Shifting binary integers . 87
5.2.4 Frequency divider design . 87

5.3 Diagnostic reasoning . 88

iii

CONTENTS 1

5.3.1 Faulty LED sequencer design . 89
5.3.2 Sequential tail-light blinker . 91
5.3.3 Troubleshooting a failed stepper motor drive 92

A Problem-Solving Strategies 93

B Instructional philosophy 95

C Tools used 101

D Creative Commons License 105

E References 113

F Version history 115

Index 116

2 CONTENTS

Chapter 1

Introduction

Shift registers are very useful digital circuits, especially for converting between parallel (all bits at
once) and serial (one bit at a time) forms of digital data. These circuits “shift” data bits from input
to output lines on flip-flops, using the flip-flop units as single-bit memory devices. Combinational
logic, usually in the form of AND and OR gates, may be added to the flip-flops to selectively “steer”
discrete signals in different directions, thus giving more functionality to the shift register. The
ultimate realization of this is the universal shift register, able to serially shift in either direction as
well as shift data in parallel form.

Important concepts related to shift registers include logic functions, truth tables, set

versus reset states, flip-flops versus latches, edge-triggering, timing diagrams, registers,
stacks, serial versus parallel data, steering network, ring counter, frequency division, and
asynchronous inputs.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to measure the minimum necessary set-
up time for a flip-flop? What hypothesis (i.e. prediction) might you pose for that experiment,
and what result(s) would either support or disprove that hypothesis?

• How might an experiment be designed and conducted to measure the minimum necessary hold
time for a flip-flop? What hypothesis (i.e. prediction) might you pose for that experiment,
and what result(s) would either support or disprove that hypothesis?

• How might an experiment be designed and conducted to test the proper operation of a shift
register IC? What hypotheses (i.e. predictions) might you pose for that experiment, and what
result(s) would either support or disprove those hypotheses?

• What distinguishes a flip-flop from a latch?

• What distinguishes a JK flip-flop from an SR flip-flop?

• What does a “register” circuit do?

• How do multiple flip-flops work together to form a register?

3

4 CHAPTER 1. INTRODUCTION

• What are some different types of registers?

• What does it mean to communicate digital data in serial fashion as opposed to parallel?

• What does it mean to shift data inside of a register?

• What does it mean to load data into a register?

• How may a register be used as a ring counter?

• What are some different types of ring counter circuits?

• How do AND and OR gates work to “steer” digital signals in certain types of shift register
circuits?

• How may a ring counter be used as a frequency divider?

• How may multiple frequency dividers be cascaded to achieve large division ratios?

• What do the Preset and Clear inputs do on a flip-flop or latch?

Chapter 2

Tutorial

2.1 Latch and flip-flop review

Latch circuits are an important category of digital logic. A “latch” is a logic function designed to
retain its last output state under certain input conditions. Like a toggle switch able to remain in
either of its two possible states in the absence of any motivating force, latch circuits do the same at
the command of electrical input signals.

The critical feature of latch circuits granting them their ability to “remember” previous states is
feedback1: where the output of one or more logic gates is “fed back” to one or more inputs of other
logic gates so that the circuit has a natural tendency to drive itself into one of two different states.
Feedback is clearly evident in the logic gate diagrams of the Set-Reset latch, two versions of which
are shown in the following illustration, along with a truth table describing the latch’s function:

S

R

Q

Q

Set-Reset (SR) latch

S

R

Q

Q

S R Q Q

0

1

0

0

01

1 1

Latch

0 1

01

0 0

S R Q Q

0

1

0

0

01

1 1 Latch

0 1

01

11

SR latches based on NOR gates latch whenever both inputs are low, whereas SR latches based

1Specifically, latch circuits employ positive (a.k.a. regenerative) feedback, so named because the effect of the
fed-back signal is to reinforce the system’s existing condition.

5

6 CHAPTER 2. TUTORIAL

on NAND gates latch whenever both inputs are high. A latch is considered to be “set” when Q is
high and Q is low. The “reset” state is just the opposite: Q low and Q high. If ever a latch’s two
outputs are found in the same state, it is considered invalid.

When packaged as integrated circuits (rather than built up from individual logic gates) SR latches
are typically represented by “box” symbols, as shown in the following illustration. Note how the
NOR-based SR latch has active-high inputs while the NAND-based SR latch has active-low inputs2:

S Q

QR Q

QS

R

NOR-based NAND-based

A more useful variation of the SR latch is the enabled SR latch with a third input line (E). This
additional input line’s state either enables or disables the set (S) and reset (R) inputs’ functions.
When enabled, this latch behaves as any normal SR latch; when disabled, this latch circuit remains
in its “latched” state regardless of either the S or R input states:

S Q

QR

E

S

R

Q

Q

S R Q Q

0

1

0

0

01

1 1

Latch

Enabled SR latch internal schematic Enabled SR latch symbolE

0

0

0

0

0

1

0

0

01

1 1

Latch

0 1

01

0 0

1

1

1

1

Latch

Latch

Latch
E

2An input’s “active” state is the logical state necessary for that input to force a certain output condition. An SR
latch’s inputs are considered to both be inactive when the circuit is in its “latch” state. If you examine the truth table
on the previous page, you will see how the NOR-based SR latch requires a 1 (high) input state to either set or reset,
while the NAND-based SR latch requires the input to be 0 (low) to force either a set or reset state. This, in turn, is
based on the truth tables of NOR and NAND gates, respectively. Any 1 (high) state input to a NOR gate forces its
output low regardless of the other input state(s). Likewise, with NAND gates it is a 0 (low) input state which forces
the output high regardless of the other input condition(s).

2.1. LATCH AND FLIP-FLOP REVIEW 7

Another variation on this theme is to equip the latch circuit with a “one-shot”3 circuit designed
to detect either the rising or falling edge of a square-wave pulse signal, enabling the latch only during
that brief transition from low to high (positive edge) or from high to low (negative edge) depending
on the detection network. With this addition, the latch becomes a flip-flop. An internal diagram of
a NOR-based SR flip-flop appears in the following diagram:

S

R

Q

Q

S R Q Q

0

1

0

0

01

1 1

Latch

0

1

0

0

01

1 1

Latch

0 1

01

0 0

Latch

Latch

Latch

One-shot

SR flip-flop internal schematic SR flip-flop symbol

S Q

QR

C

C

C

The D-type latch and D-type flip-flop are simplified versions of the SR latch and flip-flop,
respectively, having just a single “data” (D) input rather than separate set (S) and reset (R)
inputs. With this alteration, the device no longer has an “invalid” state:

Q

Q

Q QE

0

1

0

0

01

1 1

Latch

0

E

D latch internal schematic D latch symbol

D
D

Q

QD

ELatch

0

1

1

Q

Q

Q Q

1

0

0

1

Latch

0

D
D

Latch

0

1

1

One-shotC

C
D

C

Q

Q

D flip-flop internal schematic D flip-flop symbol

3The term “one-shot” refers to the fact that the edge-detecting circuit outputs a single pulse for each transition of
the input signal. Even if the input signal transitions to its new state and remains in that new state for a long time,
the one-shot responds only with a pulse at the transition time and nothing afterward.

8 CHAPTER 2. TUTORIAL

Perhaps the most useful type of flip-flop is the JK form. This uses an additional layer of feedback
to give it a novel mode called toggle. When both J and K inputs are simultaneously active, and
the clock pulse signal transitions, the “toggle” mode results in the Q and Q output states reversing.
This feature is very useful for creating larger-scale digital circuits such as frequency dividers and
counters:

Q

Q

Q Q

1

0 Latch

Latch

One-shotC

CJK flip-flop internal schematic
JK flip-flop symbol

J Q

Q

C

K

0

0

1 Latch

Latch

0

1 1

J

K
1

0

0

0

1 0

1 1

J K

Latch

10

1 0

Toggle

As with other flip-flops, JK flip-flops are designed in both positive-edge- and negative-edge-

triggered versions. If a flip-flop’s clock input happens to be a negative-edge style, an inversion
“bubble” will be shown at that input terminal of the device. Both versions of a JK flip-flop appear
in the following illustration:

J Q

Q

C

K

J

C

K Q

Q

Positive edge-triggering Negative edge-triggering

J and K input states are
recognized by the flip-flop
only when the clock signal
rises

J and K input states are
recognized by the flip-flop
only when the clock signal
falls

Latches and flip-flops alike require their input states to be stable for a certain amount of time
prior to the reception of a clock (or enable) pulse, and for a certain amount of time following. These
minimum signal times are called set-up time and hold time, respectively. Failure to abide by these
limits may result in inconsistent operation. In some applications these set-up and hold times are
viewed as limiting factors, particularly in high-speed digital logic circuitry where clock frequencies are
so high that achieving the necessary set-up and hold times may be challenging. In other applications
these minimum times are an exploitable feature, particularly in the case of synchronous counter and
shift register circuits where the need for set-up time in particular halts the progression of data from
one cascaded flip-flop to the next even though all the flip-flops receive the exact same clock pulse at
the exact same times.

2.1. LATCH AND FLIP-FLOP REVIEW 9

Some flip-flops provide one or more additional inputs designed to force the output lines to
particular states, overriding the other input(s). These additional inputs are called Preset and Clear,
the purpose of the Preset input being to force the flip-flop to a “set” state (Q = 1 and Q = 0) and the
purpose of the Clear input being to force the flip-flop to a “reset” state (Q = 0 and Q = 1). Below
we see schematic diagram symbols of a D-type flip-flop that happens to have active-high Preset and
Clear inputs, as well as a JK flip-flop that happens to have active-low Preset and Clear inputs:

J Q

Q

C

K

D

C

Q

Q

PRE

CLR

PRE

CLR

D-type flip-flop with
active-high Preset
and Clear inputs

JK-type flip-flop with
active-low Preset
and Clear inputs

In the case of the D flip-flop, an active Preset or Clear input will override the state of the D
input. In the case of the JK flip-flop, an active Preset or Clear input will override both J and K
inputs.

In addition to active-high versus active-low varieties for Preset and Clear inputs, another
important distinction is synchronous versus asynchronous Preset and Clear inputs. The term
“synchronous” refers to events happening at the same time, and so a synchronous Preset or Clear
input will not have any effect until the clock pulse arrives – i.e. its effect is always synchronized with
the clock signal. In contrast, an asynchronous Preset or Clear input effects the Q and Q outputs
immediately without waiting for a clock pulse. In other words, asynchronous Preset or Clear inputs
function like the S and R inputs on a plain (non-enabled) SR latch, affecting the output states
immediately when activated. One cannot tell whether Preset and/or Clear inputs are synchronous
or asynchronous from the schematic symbols – only the datasheet for that particular integrated
circuit will show you!

10 CHAPTER 2. TUTORIAL

2.2 Registers

Latches and flip-flops alike function as single-bit memory devices, retaining discrete logic states
representative of past input conditions when disabled (or unclocked). If we examine the response
of a rapidly-clocked D-type flip-flop to a random stream of data, we see that the Q output of the
flip-flop represents the input logic state during the last clock pulse:

D

C

Q

Q

D

C

(from other circuit)

Q

Another way to think of this is to consider Q as being an older version of D: the data appearing
at Q reflects what the data at D used to be one clock cycle ago. It is as though the flip-flop
repeats the data given to it at the D input, shifting that data over time to appear at the Q output.
Yet another way to think of this flip-flop’s behavior is as a sampling system, periodically taking a
“sample” of the data at D and holding that sampled data state until the next clock pulse when it
samples again.

The amount of time delay separating data at Q from data at D depends entirely on the timing
of the clock pulse. Note in the timing diagram shown for the single flip-flop circuit that the data
at Q never lags the data at D by more than one clock cycle. The exact amount of time lag is not
consistent, either: if you carefully compare the D and Q waveforms you will see how the width of
each pulse on Q does not always match the width of respective pulses on D, and this is due to Q
only being able to change state at the rising edge of the clock signal waveform while D (as an input)
is free to change states at any time and thus is not dependent upon this circuit’s clock pulse.

2.2. REGISTERS 11

A more complex (and useful) variation on this theme is to cascade multiple D-type flip-flops so
that each successive stage receives the time-shifted data from the one previous:

D

C

Q

Q

D

C

(from other circuit) D

C

Q

Q

Q0 Q1

D

C

Q

Q

Q2

Q0

Q1

Q2

If Q0 could be considered an “older” version of D, then Q1 is an older version of Q0, and Q2 is
an older version of Q1. The utility of such a circuit becomes clear if the sequence of logical states
sent to the D input is not random but instead has some meaning. In such a case, the states retained
at the Q outputs become a record of D over time.

A digital circuit designed to retain a set of bit states is called a register. Register design typically
exploits the retentive behavior of latches or flip-flops to achieve this purpose. Specifically, we refer
to this circuit as a shift register because each pulse of the clock signal causes the logical states to
shift position (e.g. from Q0 to Q1, from Q1 to Q2).

One practical application of such a circuit is to convert serial digital data into parallel digital
data. “Serial” data is a set of bits conveyed one at a time over the same data line, whereas “parallel”
data is a set of bits conveyed over individual lines (one line per bit). If the clock pulse frequency
matches4 the serial data’s bit rate (i.e. the number of bits per second), then each Q output – over
time – will come to represent those serially-communicated bits. A flip-book animation in section 4.1
(starting on page 26) demonstrates how this might work for a serially-coded set of eight bits, shifted
one at a time into the register and finally presented in parallel form at the Q output lines.

4This is a critically important criterion, as without some degree of synchronism between the serial data rate and
the shift register’s clock the task of reliably translating data from serial into parallel form becomes impossible. Various
methods exist to achieve this synchronization of clock and data rates, some more sophisticated than others, and is
one of the topics of consideration in any study of serial data communication.

12 CHAPTER 2. TUTORIAL

2.3 Shift register variations

Likewise, we may use a set of flip-flops to take digital data in parallel form and then “shift” the bits
out of the register to create a stream of serial data: one bit at a time from the original data “word”
transmitted by the shift register at a rate established by the clock pulse. The following shift register
circuit performs this very function:

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Shift/Load

D1D2 D0

Serial out

Clock in

The AND/OR gate combinational networks feeding each flip-flop’s D input act to steer data
from either the preceding flip-flop or from one of the parallel data input lines (D0 through D2).
When the Shift/Load input is made high, the left-hand AND gates become “enabled” to pass data
through to each flip-flop D input in serial form, that data becoming “shifted” from left to right
with every clock pulse. In other words, while in “Shift” mode this digital circuit acts as a serial-in,

serial-out shift register. However, if the Shift/Load input goes low, the right-hand AND gates are
now “enabled” to pass data from the parallel D0-D2 input lines through to all flip-flops as soon as
a clock pulse arrives. Proper parallel-to-serial data conversion with this circuit, therefore, requires a
short “load” period (just one clock cycle in duration) to read the parallel data followed by a longer
“shift” period (as many clock cycles as there are bits stored in the register) to send that data out
in serial form.

A flip-book animation in section 4.2 (starting on page 45) demonstrates how this might work for
a parallel-coded set of eight bits, shifted once into the register in parallel format and then shifted
one at a time out of the register in serial format.

A feature of this shift register is its “serial in” line. Left in the “shift” state, this register will
simply shift serial data in at the “serial in” line and send it out the “serial out” line, functioning as
a serial-in, serial-out shift register. At first this may not seem particularly useful, until you consider
the fact that this is precisely the kind of feature we would need if this shift register were packaged
as its own integrated circuit and we wished to cascade more than one to form a longer shift register

2.3. SHIFT REGISTER VARIATIONS 13

array. In that case, the “serial in” line of this shift register would need to connect to the “serial out”
line of the preceding shift register.

Similar AND/OR “steering” networks may be employed to switch the register’s shift direction,
allowing it to shift right or shift left on command:

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Clock in

Right/Left

Q0 Q1 Q2

right
Serial in

left

Maintaining the Right/Left input in the high state and pulsing the clock input line causes any
logic states present at the Serial in right input to be shifted to Q0, then to Q1, and so on in a
rightward direction. Switching Right/Left to the low state causes data present at the Serial in left
line to be shifted to Q2, then to Q1, then to Q0 (i.e. leftward) with each clock pulse. In each case,
the “enabled” AND gate steers signals from either the source on the left or the source on the right
to the input of each flip-flop.

A further extension of shift register design is to combine parallel input and output with reversible
shift direction to form a universal shift register. Instead of a single mode-control line called
Shift/Load or Right/Left, universal shift registers typically have two mode-control lines providing
four different shift options (e.g. 00 = hold ; 01 = shift right ; 10 = shift left ; 11 = parallel load)5.

5The way this works internal to the shift register is to use a 2-line to 4-line decoder to decode the two mode-control
inputs into one of four active lines. These four lines then control an enhanced array of AND/OR gates (three two-input
AND gates feeding into a three-input OR gate, one such array per flip-flop) to steer signals either rightward, leftward,
or from parallel input lines to the D inputs of the flip-flops. When the “hold” mode simply disables all flip-flop clock
inputs to prevent any shifting.

14 CHAPTER 2. TUTORIAL

Another type of shift register, much simpler than the serial-shifting designs, is the parallel-in,

parallel-out shift register. Its purpose is to capture and retain all bit-states of a parallel data “word”
at the active edge of every clock pulse:

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Clock in

Q0 Q1 Q2

D0 D2D1

Such shift registers are very useful for “staging” a set of binary bits for the input of some other
digital circuit such as a memory array or an arithmetic logic unit or a digital-to-analog converter,
to ensure the states of those bits remain stable between clock pulses.

Just as individual D-type flop-flops may be “paralleled” in this manner to produce a parallel-
in, parallel-out shift register, banks of serial-shifting registers may also be paralleled to form shift
registers operating on multi-bit words instead of operating on single bits. Schematic diagrams are
almost too detailed to be helpful here, and so block diagrams work well to illustrate the concept:

Clock

S
hift register

S
hift register

S
hift register

S
hift register

D0 D1 D2 D3

Q0 Q1 Q2 Q3

At each clock pulse, all four D data bits are read by the register array, and with each successive
clock pulse those data bits propagate through the steps of the register array. This idea – of digital
words stored in a shiftable memory array – is called a stack, and finds wide application in digital
computing. Every time the array shifts data “down” (from the D inputs toward the Q outputs),
data is being “pushed” onto the stack. If the shift direction is reversible, data may be “popped” off

2.3. SHIFT REGISTER VARIATIONS 15

of the stack in reverse order from that in which it was pushed, so that the last entry to the stack
becomes the first entry read back from it6.

6This idea of last-in-first-out (LIFO) stack is particularly useful in microprocessor programming, where the normal
operation of a program must be interrupted to perform some other task. When the microprocessor receives an
“interrupt” request, it pushes data for its current operation onto the stack before it switches to service the interrupt.
Then, after the interrupt has been serviced, it “pops” the data off the stack to receive direction on how to resume
normal operation from where it left off. This is analogous to a person being frequently interrupted by requests from
other people, but just before acting on the latest request the person writes a note to themselves explaining where
they left off in the last task, then places that note on top of a pile of other notes. As soon as each task is complete,
the person reads the top note on the pile, discards it, and then proceeds to complete the task described by that note,
eventually depleting the pile of notes and returning to their original work. The beauty of a multi-layer stack is that
this process of interruption may occur several times (called nested interrupts) before returning to the original flow of
execution, and so long as the stack is “deep” enough to remember all those points where it left off, the LIFO protocol
ensures each of the tasks is picked up in the proper order.

16 CHAPTER 2. TUTORIAL

2.4 Ring counters

An interesting application of serial-in, serial-out shift registers is to generate pulse sequences based
on the “recirculation” of shifted bits into and out of the register. Such a digital circuit is called
a ring counter. Consider the following ring counter circuit, where the serial output line connects
around to the register’s own serial input line. The timing diagram below the schematic shows how
this circuit would respond if the “Initialize” button were pressed prior to the first clock pulse:

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q

feedback

PRE

Vdd
Initialize

Q0 Q1 Q2 Q3

Ring counter

Clock

PRE

Q0

Q1

Q2

Q3

As we have seen elsewhere, adding feedback to any system generally results in interesting new
properties. Shift registers are no exception to this rule, and what we see in this case is that the
shift register will circulate any pattern of high and low states entered serially via the “Initialize”
pushbutton switch as the clock pulse continues its oscillations. If the register happens to hold a single
“high” state (i.e. one flip-flop at a time is set while all others in the register are reset, sometimes
referred to as a one-hot ring counter) as shown by the example timing diagram, then the pulse
sequence measured at any Q output will have a frequency of n times slower than the clock, where n
is the number of flip-flops in the serial shift register. Thus, a “one-hot” ring counter may serve as
a digital frequency divider, the divisor limited only by the practicality of building a circuit with n
number of flip-flops.

2.4. RING COUNTERS 17

A significant limitation of the simple ring counter previously shown is that it must be “initialized”
at every power-up by someone pressing the pushbutton switch for just the right amount of time.
This is obviously not practical for anything but a demonstration circuit.

One solution to the initialization problem is to make the feedback more complex. Instead of
coupling the shift register’s serial output line directly to its serial input line, we drive the input with
a NOR gate set up to output a high state only when outputs Q0 through Q2 are all low:

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q

feedback

Q0 Q1 Q2 Q3

No matter what states these flip-flops happen to be in immediately following power-up, by the
time four clock pulses have elapsed the circuit will have settled to a “one-hot” condition where only
one flip-flop is set and all others are reset. Once a “one-hot” pattern is established, the frequency-
division ratio for this ring counter will be 1

n
just like any other “one-hot” ring counter containing n

flip-flops: i.e. the frequency of any Q or Q flip-flop output will be precisely 1

n
the frequency of the

clock signal driving the entire counter.

18 CHAPTER 2. TUTORIAL

A special type of ring counter called a Johnson counter works by feeding back the complement

of the serial output. It is extremely simple to implement given the fact that every flip-flop in the
shift register has both Q and Q outputs:

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q

feedback

Q0 Q1 Q2 Q3

Johnson counter

Clock

Q0

Q1

Q2

Q3

The frequency of any output signal (i.e. sensed at any Q output) is slower than the clock’s
frequency by a factor of 2n, where n is the number of flip-flops. Furthermore, the frequency-divided
signal has a nice symmetrical duty cycle of 50%, unlike the “narrow” pulses output by a standard
ring counter.

2.4. RING COUNTERS 19

If extremely large divisions of frequency are desired, multiple ring counters may be cascaded:
connecting the clock pulse input of one ring counter to the serial output line of the preceding counter.
The result of this cascading will be that the over-all frequency division ratio is the product of the
numbers of flip-flop stages within each ring counter. For example, a ring counter with 6 flip-flops
cascading its output signal to the clock input of another ring counter having 5 flip-flops would create
a 30:1 frequency reduction ratio, as shown in the schematic below:

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Output

Input

20 CHAPTER 2. TUTORIAL

2.5 Auto-initialization

Initializing a Johnson counter is a simpler task than initializing a regular ring counter which requires
one of its flip-flop be set and all others reset. To initialize a Johnson counter, we merely need to
set or clear all flip-flops simultaneously. One easy method for doing so automatically upon power-
up uses a resistor-capacitor network and Schmitt trigger7 gate to generate a momentary pulse on
power-up, suitable for connection to the asynchronous8 Preset or Clear inputs of all flip-flops inside
the shift register:

Vdd
To active-low Preset
or Clear inputs on all
shift register flip-flops

C

R

If the shift register in question is built of individual flip-flops, the output of this initializing-pulse
network will need to connect to every PRE or CLR input. If an integrated-circuit shift register is
used instead of individual flip-flops, there is usually a master “clear” or “preset” input available to
do the same. Incidentally, this same power-up initialization circuit may be used to ensure a reliable
start-up condition for any form of state-based digital logic (e.g. latches, flip-flops, shift registers,
counters, etc.).

7To review, a Schmitt trigger is a special type of digital gate input designed to exhibit hysteresis: it does not
register a “high” state until the input voltage rises above a certain threshold, and does not register a “low” state until
the voltage falls below another (lower) threshold. This hysteretic action eliminates problems which might otherwise
arise from a logic gate receiving a decaying (analog) voltage signal from the RC network. An ordinary logic gate may
act erratically if the input voltage falls between the standard “low” and “high” threshold values. A Schmitt trigger
will not be erratic: its output remains solidly at its last state until the input voltage clears either of the threshold
values.

8An “asynchronous” input is one that has immediate effect on the circuit’s output state(s) even when the other
inputs are disabled by virtue of the clock pulse not transitioning at that time. In other words, the Preset and Clear
inputs do not have to wait for the clock pulse to take effect.

Chapter 3

Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

21

22 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

3.1 Digital pulse criteria

Clock-synchronized digital logic circuits such as counters, shift registers, and microprocessors require
their input signals to be at stable states immediately before and immediately after the clock pulse
arrives. For example, the following timing diagram shows input and output states for a D-type
flip-flop circuit (positive-edge triggered), showing the effects of some signal timing violations:

Clk

Q

D Adequate set-up time

Inadequate set-up time

Low state "clocked in"
one cycle too late due
to set-up time violation

High state "clocked in"
on time

Inadequate hold time

High state "clocked in"
on time

High state not "clocked
in" at all due to hold

time violation

Datasheets for digital circuits often provide timing diagrams showing criteria related to pulse
signal timing and logic states. These diagrams don’t typically show ideal square-edged pulses, but
rather trapezoidal pulse profiles intended to exaggerate realistic features such as rise and fall times,
propagation delays, and minimum set-up/hold times. Such diagrams usually confuse students who
are accustomed to seeing square-edged pulses in their textbook timing diagrams. This technical
reference will show some typical timing diagrams and explain what they represent.

3.1. DIGITAL PULSE CRITERIA 23

For example, consider this timing diagram for a positive-edge-triggered JK flip-flop having both
its J and K inputs tied high so as to maintain the circuit in its “toggle” mode. As such we would
expect its output (Q) to change state with every rising edge of the clock pulse:

Clk

Q

trise tfall

90%

10%

VS

VS

tPLH

VS

VS

tPHL

10%

90%

tTLH tTHL

Each of the labels found in this diagram is defined as follows:

• trise = Rise time of input signal, typically measured from 10% of signal amplitude to 90% of
signal amplitude

• tfall = Fall time of input signal, typically measured from 90% of signal amplitude to 10% of
signal amplitude

• tTLH = Low-to-High transition time of output signal, typically measured from 10% of signal
amplitude to 90% of signal amplitude (the same concept as rise time, but applied to the output
signal instead of the input signal)

• tTHL = High-to-Low transition time of output signal, typically measured from 90% of signal
amplitude to 10% of signal amplitude (the same concept as fall time, but applied to the output
signal instead of the input signal)

• tPLH = Propagation delay time of output signal when switching from low to high

• tPHL = Propagation delay time of output signal when switching from high to low

• VS = Switching threshold voltage, typically defined as 50% of signal amplitude

This timing diagram shows how a digital logic circuit reacts to a single input signal, in this case
the clock pulse. Although this example happens to be for a JK flip-flop in toggle mode, the same
type of timing diagram with its exaggerated rise/fall times and propagation delays could be applied
to any digital logic gate whose output state depended solely on the state of a single input.

24 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

For synchronous digital logic circuits where input signals must coordinate with the clock pulse
signal in order to be properly accepted by the circuit, we typically find timing diagrams comparing
these input states to each other, often without showing the output(s) at all. Instead of showing us
how the digital logic circuit will react to an input signal, this sort of timing diagram shows what the
digital logic circuit expects of its multiple input signals.

The example is shown here for a positive-edge-triggered D register1 having multiple data lines
(D0 through Dn), one asynchronous2 reset line (RST), and one clock input. The arbitrary logic
levels of the multiple data lines are shown as a pair of complementary-state pulse waveforms, the
only relevant features being the timing of the data and not the particular voltage levels of the data
signals:

VS

VS

VS

RST VS VS

VS

tW
Data valid

Clk

D0 - Dn

tSU
tH

tREM

Labels shown in this diagram refer to minimum time durations the logic circuit requires for
reliable operation:

• tSU = Minimum set-up time before the arrival of the next clock pulse

• tH = Minimum hold time following the last clock pulse

• tW = Minimum width (duration) of the asynchronous reset pulse

• tREM = Minimum removal time before the arrival of the next clock pulse

Violations of any of these minimum times may result in unexpected behavior from the logic
circuit, and is an all-too-common cause of spurious errors in high-speed digital circuit designs. The
assessment of digital pulse signals with regard to reliable circuit operation is generally known as
digital signal integrity.

1In this case, a “D register” is synonymous with multiple D-type flip-flops sharing a common clock input, passing
data through from each D input to each corresponding Q output synchronously with each clock pulse.

2To review, a synchronous input depends on a clock pulse while an asynchronous input is able to affect the circuit
independent of the clock pulse.

Chapter 4

Animations

Some concepts are much easier to grasp when seen in action. A simple yet effective form of animation
suitable to an electronic document such as this is a “flip-book” animation where a set of pages in the
document show successive frames of a simple animation. Such “flip-book” animations are designed
to be viewed by paging forward (and/or back) with the document-reading software application,
watching it frame-by-frame. Unlike video which may be difficult to pause at certain moments,
“flip-book” animations lend themselves very well to individual frame viewing.

25

26 CHAPTER 4. ANIMATIONS

4.1 Animation of serial-in, parallel-out shift register

The following animation shows an eight-bit serial-in, parallel-out shift register accepting a serial
stream of eight bits and one-by-one shifting them to its eight output lines for parallel reading.

4.1. ANIMATION OF SERIAL-IN, PARALLEL-OUT SHIFT REGISTER 27

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

0101 11 1 0

Data entered
serially

0 0 0 0 0 0 0 0

0

28 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

0101 11 1 0

Data entered
serially

0 0 0 0 0 0 0 0

1

4.1. ANIMATION OF SERIAL-IN, PARALLEL-OUT SHIFT REGISTER 29

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

0101 11 1 0

Data entered
serially

0 0 0 0 0 0 0

1

1

30 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

0101 11 1 0

Data entered
serially

0 0 0 0 0 0 01

0

4.1. ANIMATION OF SERIAL-IN, PARALLEL-OUT SHIFT REGISTER 31

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

0101 11 1 0

Data entered
serially

0 0 0 0 0 0 01

0

32 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

0101 11 1 0

Data entered
serially

0 0 0 0 0 0 01

1

4.1. ANIMATION OF SERIAL-IN, PARALLEL-OUT SHIFT REGISTER 33

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

0101 11 1 0

Data entered
serially

0 0 0 0 0 01

1

1

34 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

0101 111 0

Data entered
serially

0 0 0 0 0 01

1

1

4.1. ANIMATION OF SERIAL-IN, PARALLEL-OUT SHIFT REGISTER 35

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

0101 111 0

Data entered
serially

0 0 0 0 01

1

11

36 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

0101 11 0

Data entered
serially

0 0 0 0 0111
1

0

4.1. ANIMATION OF SERIAL-IN, PARALLEL-OUT SHIFT REGISTER 37

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

0101 11 0

Data entered
serially

0 0 0 0111
1

0

0

38 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

101 11 0

Data entered
serially

0 0 0 0111
1

0
0

1

4.1. ANIMATION OF SERIAL-IN, PARALLEL-OUT SHIFT REGISTER 39

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

101 11 0

Data entered
serially

0 0 0111
1

0
0

1

1

40 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

101 11 0

Data entered
serially

0 0 0111
1

0
0

1

0

4.1. ANIMATION OF SERIAL-IN, PARALLEL-OUT SHIFT REGISTER 41

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

101 11 0

Data entered
serially

0 0111
1

0
0

1

0

0

42 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

101 11 0

Data entered
serially

0 0111
1

0
0

10

1

4.1. ANIMATION OF SERIAL-IN, PARALLEL-OUT SHIFT REGISTER 43

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

101 11 0

Data entered
serially

0 111
1

0
0

10

1

1

44 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q
Vdd

101 11 0

Data entered
serially

0 111
1

0
0

10

1

1

Data presented in parallel format

4.2. ANIMATION OF PARALLEL-IN, SERIAL-OUT SHIFT REGISTER 45

4.2 Animation of parallel-in, serial-out shift register

The following animation shows an eight-bit parallel-in, serial-out shift register accepting a parallel
batch of of eight bits and one-by-one shifting them to its eight output lines for serial transmission
to some other digital circuit.

46 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0 0 0 0 0 0 0

4.2. ANIMATION OF PARALLEL-IN, SERIAL-OUT SHIFT REGISTER 47

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0 0 0 0 0 0 0

Load
1 0 1 0 1 1 0 1

48 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0 0

Load
1 0 1 0 1 1 0 1

1 1 1 1 1

4.2. ANIMATION OF PARALLEL-IN, SERIAL-OUT SHIFT REGISTER 49

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0 0

1 0 1 0 1 1 0 1

1 1 1 1 1

Shift

1

50 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0 0

1 0 1 0 1 1 0 1

1 1 1 1

Shift

10
0

4.2. ANIMATION OF PARALLEL-IN, SERIAL-OUT SHIFT REGISTER 51

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0 0

1 0 1 0 1 1 0 1

1 1 1 1

Shift

10
0

52 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0

1 0 1 0 1 1 0 1

1 1 1 1

Shift

10
0

1
0

4.2. ANIMATION OF PARALLEL-IN, SERIAL-OUT SHIFT REGISTER 53

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0

1 0 1 0 1 1 0 1

1 1 1 1

Shift

10
0

1
0

54 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0

1 0 1 0 1 1 0 1

1 1 1

Shift

10
0

1
0 0

1

4.2. ANIMATION OF PARALLEL-IN, SERIAL-OUT SHIFT REGISTER 55

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0

1 0 1 0 1 1 0 1

1 1 1

Shift

10
0

1
0 0

1

56 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0

1 0 1 0 1 1 0 1

1 1

Shift

10
0

1
0 0

1
0

0

4.2. ANIMATION OF PARALLEL-IN, SERIAL-OUT SHIFT REGISTER 57

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0 0

1 0 1 0 1 1 0 1

1 1

Shift

10
0

1
0 0

1
0

0

58 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0

1 0 1 0 1 1 0 1

1 1

Shift

10
0

1
0 0

1
0

0
0

1

4.2. ANIMATION OF PARALLEL-IN, SERIAL-OUT SHIFT REGISTER 59

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0

1 0 1 0 1 1 0 1

1 1

Shift

10
0

1
0 0

1
0

0
0

1

60 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0

1 0 1 0 1 1 0 1

1

Shift

10
0

1
0 0

1
0

0
0

1
0

0

4.2. ANIMATION OF PARALLEL-IN, SERIAL-OUT SHIFT REGISTER 61

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

0

1 0 1 0 1 1 0 1

1

Shift

10
0

1
0 0

1
0

0
0

1
0

0

62 CHAPTER 4. ANIMATIONS

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

1 0 1 0 1 1 0 1

1

Shift

10
0

1
0 0

1
0

0
0

1
0

0
0

1

4.2. ANIMATION OF PARALLEL-IN, SERIAL-OUT SHIFT REGISTER 63

D

C

Q

Q D

C

Q

Q D

C

Q

Q

Serial in

Serial out

Vdd Vdd Vdd

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

D

C

Q

Q

Vdd

Data entered in parallel form 1 0 1 0 1 1 0 1

1 0 1 0 1 1 0 1

1

Shift

10
0

1
0 0

1
0

0
0

1
0

0
0

1

64 CHAPTER 4. ANIMATIONS

Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

65

66 CHAPTER 5. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

67

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

68 CHAPTER 5. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

5.1. CONCEPTUAL REASONING 69

5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

70 CHAPTER 5. QUESTIONS

5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should
read these educational resources closely, write their own outline and reflections on the reading, and
discuss in detail their findings with classmates and instructor(s). You should be able to do all of the
following after reading any instructional text:

√
Briefly OUTLINE THE TEXT, as though you were writing a detailed Table of Contents. Feel

free to rearrange the order if it makes more sense that way. Prepare to articulate these points in
detail and to answer questions from your classmates and instructor. Outlining is a good self-test of
thorough reading because you cannot outline what you have not read or do not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

5.1. CONCEPTUAL REASONING 71

5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Truth table

Logic function

NOR function

NAND function

Positive feedback

Active-low versus Active-high

Latch behavior

Flip-flop behavior

Set-up time

Hold time

Memory

Register

72 CHAPTER 5. QUESTIONS

Bit-shifting

Serial versus Parallel data

Stack

Frequency division

Initialization

Schmitt trigger

5.1. CONCEPTUAL REASONING 73

5.1.3 Conveyor belt analogies

A helpful analogy for a shift register is a conveyor belt. Examine the following illustrations, each
one showing a single conveyor belt at four different times, and determine which of the following shift
register operations (e.g. serial-in, serial-out, serial-in, parallel-out, etc.) these sequences represent:

Conveyor #1

Step 1 Step 2 Step 3 Step 4

Conveyor #2

Step 1 Step 2 Step 3 Step 4

Conveyor #3

Step 1 Step 2 Step 3 Step 4

• Parallel-in, serial-out

74 CHAPTER 5. QUESTIONS

• Parallel-in, parallel-out

• Serial-in, serial-out

• Serial-in, parallel-out

Challenges

• Identify a practical purpose for serial data transmission, in lieu of parallel.

5.1. CONCEPTUAL REASONING 75

5.1.4 Timing diagram for a simple shift register

Complete the timing diagram for this circuit, assuming all Q outputs begin in the low state:

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q

Clock

VDD Q0 Q1 Q2 Q3

Gnd

VDD

Gnd

VDD

Gnd

VDD

Gnd

VDD

Gnd

VDD

Q0

Q1

Q2

Q3

Clock

Challenges

• How would the timing diagram differ if all flip-flops began in the set state?

76 CHAPTER 5. QUESTIONS

• Explain why the “high” state at the D input of the first flip-flop does not ripple through all

the flip-flops at the first clock pulse.

5.1. CONCEPTUAL REASONING 77

5.1.5 Timing diagram for another simple shift register

Complete the timing diagram for this circuit, assuming all Q outputs begin in the low state:

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q

Clock

Q0 Q1 Q2 Q3

Gnd

VDD

Gnd

VDD

Gnd

VDD

Gnd

VDD

Gnd

VDD

Q0

Q1

Q2

Q3

Clock

Challenges

• How would the timing diagram differ if all flip-flops began in the set state?

78 CHAPTER 5. QUESTIONS

5.1.6 Timing diagram for yet another simple shift register

Complete the timing diagram for this circuit, showing propagation delays for all flip-flops (delay
times much less than the width of a clock pulse), assuming all Q outputs begin in the low state:

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q

Clock

Q0 Q1 Q2 Q3

Gnd

VDD

Gnd

VDD

Gnd

VDD

Gnd

VDD

Gnd

VDD

Q0

Q1

Q2

Q3

Clock

Challenges

• How would the timing diagram differ if all flip-flops began in the set state?

5.1. CONCEPTUAL REASONING 79

• Explain how this circuit is similar to, yet not exactly the same as, a Johnson counter.

5.1.7 Schematic diagram for a five-bit shift register

Draw the schematic diagram for a five-bit serial-in/serial-out shift register circuit, and be prepared
to give a brief explanation of how it functions.

Challenges

• If we wished to output data from this shift register circuit in parallel form, where would we
make the connections?

• Identify how this shift register circuit could be equipped with a master clear pushbutton.

5.1.8 Altering shift direction

Draw the necessary connecting wires between flip-flops so that serial data is shifted from right to

left instead of left to right as you may be accustomed to seeing in a shift register schematic:

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q

Clock

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q

Be sure to also note where data enters this shift register, and where data exits.

Challenges

• If we wished to output data from this shift register circuit in parallel form, where would we
make the connections?

• Identify how this shift register circuit could be equipped with a master clear pushbutton.

80 CHAPTER 5. QUESTIONS

5.1.9 Switch debouncer

Describe the phenomenon of switch bounce, and then explain how this circuit eliminates it:

D

C

Q

Q D

C

Q

Q D

C

Q

Q D

C

Q

Q

Clock

VDD

RST

VDD

Rpulldown

RST RST RST

"Debounced" output

Challenges

• How would you empirically test an appropriate clock frequency for this circuit?

• How could you predict an appropriate clock frequency for this circuit prior to building it?

5.1. CONCEPTUAL REASONING 81

5.1.10 Sequenced water fountain

A mechanically inclined friend of yours wishes to build an automated water fountain, where ten
water jets are turned on in sequence, one at a time, for artistic effect. Each water jet is controlled
by a solenoid valve, energized by 120 volt AC line power.

Your friend understands how to wire up the solenoid valves and build all the plumbing to make
the fountain work. He also understands how to interpose power to the solenoid valve coils using
small relays, so a digital control circuit operating at a low DC supply voltage will be able to energize
the valves. The only problem is, this friend of yours does not know how to build a circuit to do the
sequencing. How do you turn on one out of ten outputs at a time, in sequence?

Challenges

• Suppose the solenoid valves were rated for 24 VDC instead of 120 VAC. How would this alter
your design, if at all?

• Explain how to obtain more than one sequence pattern with your sequencing circuit.

82 CHAPTER 5. QUESTIONS

5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

5.2. QUANTITATIVE REASONING 83

5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 × 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

84 CHAPTER 5. QUESTIONS

5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

5.2. QUANTITATIVE REASONING 85

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx + c:

x =
−b ±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 + 5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2 +5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

86 CHAPTER 5. QUESTIONS

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b ± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

5.2. QUANTITATIVE REASONING 87

5.2.3 Shifting binary integers

Suppose a binary integer number is parallel-loaded into a shift register. The shift register is then
commanded to “shift right” for one clock pulse. How does the value of the shifted integer compare
to the number originally loaded in, assuming that the MSB is on the far-left flip-flop of the shift
register?

Challenges

• Explain how a shift register could be used to quadruple the value of a binary integer.

• Microprocessors typically offer an instruction to shift the contents of a register either right or
left. Explain how this operation might prove useful in programming arithmetic functions.

5.2.4 Frequency divider design

Design a shift register circuit to divide the frequency of a clock signal by a factor of 15.

Challenges

• Explain why a Johnson counter could not be used for this purpose.

88 CHAPTER 5. QUESTIONS

5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

5.3. DIAGNOSTIC REASONING 89

5.3.1 Faulty LED sequencer design

This shift register circuit energizes one LED at a time (beginning with the bottom LED at power-up),
in a rotating pattern that moves at the pace of the clock:

Vdd

Clock

D0 D1 D2 D3

Q0 Q1 Q2 Q3

74HC194
DSR

DSLS0

S1

MR

Clk

C1

R1

R2

R3

R4

R5

A technician decides to reverse the direction of pattern motion, and alters the circuit as such:

Vdd

Clock

D0 D1 D2 D3

Q0 Q1 Q2 Q3

74HC194
DSR

DSLS0

S1

MR

Clk

C1

R1

R2

R3

R4

R5

Unfortunately, this does not work as planned. Now, the bottom LED blinks once upon power-up,
then all LEDs remain off. What did the technician do that was incorrect? What needs to be done

90 CHAPTER 5. QUESTIONS

to fix the problem?

Challenges

• Modify this circuit design to drive 120 VAC incandescent lamps instead of LEDs.

5.3. DIAGNOSTIC REASONING 91

5.3.2 Sequential tail-light blinker

This shift register circuit produces a sequential light pattern reminiscent of the old Mercury Cougar
tail-lights: first one LED energizes, then two LEDs energize, and then all three LEDs energize
before all de-energizing and repeating the sequence. The 74HC194 shift register circuit is set to
always operate in the “shift right” mode with the shift-right serial input (DSR) tied high, the
master reset (MR) input used to set all output lines to a low state at the end of each cycle:

Vdd

Q0 Q1 Q2 Q3

74HC194

DSR

DSL

S0 S1

MR

Clk

R3

R4

R5

Disch

Thresh

Trig

Out
555

Vdd

Trigger

R1

R2

C1

The sequential light pattern is supposed to begin whenever the “Trigger” input momentarily goes
high. Unfortunately, something has failed in this circuit which is preventing any of the LEDs from
energizing. No blinking light sequence ensues, no matter what the state of the “Trigger” input.

Identify some likely failures in this circuit that could cause this to happen, other than a lack of
power supply voltage. Explain why each of your proposed faults would cause the problem, and also
identify how you would isolate each fault using test equipment.

Challenges

• Identify multiple ways to speed up the LED’s blinking sequence.

• Modify this circuit design to drive 120 VAC incandescent lamps instead of LEDs.

92 CHAPTER 5. QUESTIONS

5.3.3 Troubleshooting a failed stepper motor drive

This shift register circuit drives the four coils of a unipolar stepper motor, one at a time, in a rotating
pattern that moves at the pace of the clock. The drive transistor circuitry (Q1, Q2, and resistors
R2 through R6) are shown only for one of the four coils. The other three shift register outputs have
identical drive circuits connected to the respective motor coils:

R2

. . .

. . .

. . .

+Vmotor

. . .

. . .

. . .

Stepper motor

R3

R4

R5

R6Q1

Q2

Vdd

Clock

D0 D1 D2 D3

Q0 Q1 Q2 Q3

74HC194
DSR

DSLS0

S1

MR

Clk

C1

R1

Drive transistors typical
for each motor coil

D1

Suppose this stepper motor circuit worked just fine for several years, then suddenly stopped
working. Explain where you would take your first few measurements to isolate the problem, and
why you would measure there.

Challenges

• Identify the purpose of D1.

• Identify multiple ways to speed up the stepper motor’s rotation.

• Modify this circuit design to incorporate a start/stop toggle switch.

• Modify this circuit design to incorporate MOSFETs instead of BJTs.

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

93

94 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

95

96 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

97

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

98 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn

to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

99

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize

and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

100 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

101

102 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word

processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

103

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

104 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

105

106 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

107

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

108 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

109

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

110 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

111

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

112 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

Bogart, Theodore F. Jr., Introduction to Digital Circuits, Glencoe division of Macmillan/McGraw-
Hill, 1992.

113

114 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

30 November 2023 – added a comment about all one-hot counters dividing frequency by n (the
number of D-type flip-flops) to the Tutorial, and also added a schematic showing two ring counters
cascaded to form a larger frequency-division ratio. Also added some instructor notes to one of the
Diagnostic Reasoning questions. Also fixed an error in image 2471 courtesy of Galen Bennett, David
Mitchell, and Trent Johnson.

28 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

28 July 2022 – minor edits to the Tutorial and Introduction chapters.

7 December 2021 – divided the Tutorial chapter into sections.

9 May 2021 – commented out or deleted empty chapters.

19 October 2020 – minor edits.

5 October 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

12 March 2020 – minor edits to the Tutorial.

7 March 2020 – added Technical Reference section on digital pulse criteria.

28 January 2020 – added Foundational Concepts to the list in the Conceptual Reasoning section.

23 December 2019 – renamed “Failed LED sequencing circuit” to “Sequential tail-light blinker”.

115

116 APPENDIX F. VERSION HISTORY

18 November 2019 – added Introduction chapter. Also added ring counters to the Tutorial.

17 November 2019 – document first created.

Index

Active-high input, 6
Active-low input, 6
Adding quantities to a qualitative problem, 94
Annotating diagrams, 93
Asynchronous, 24
Asynchronous input, 20

Block diagram, 14

Checking for exceptions, 94
Checking your work, 94
Clear, 9
Code, computer, 101
Counter, ring, 16

Data, parallel, 11
Data, serial, 11
Digital signal integrity, 24
Dimensional analysis, 93

Edwards, Tim, 102
Enabled SR latch, 6

Fall time, 23
Feedback, 5
Flip-flop, 7
Frequency division, 16

Graph values to solve a problem, 94
Greenleaf, Cynthia, 65

Hold time, 8, 22
How to teach with these modules, 96
Hwang, Andrew D., 103

Identify given data, 93
Identify relevant principles, 93
Instructions for projects and experiments, 97

Integrity, signal, 24
Intermediate results, 93
Invalid state, 6
Inverted instruction, 96

JK flip-flop, 8
Johnson counter, 18

Knuth, Donald, 102

Lamport, Leslie, 102
Latch, 5
Limiting cases, 94

Metacognition, 70
Moolenaar, Bram, 101
Murphy, Lynn, 65

NAND function, 6
NOR function, 6

One-hot ring counter, 16
One-shot, 7
Open-source, 101

Parallel data, 11
Pop, stack, 15
Positive edge triggering, 23
Preset, 9
Problem-solving: annotate diagrams, 93
Problem-solving: check for exceptions, 94
Problem-solving: checking work, 94
Problem-solving: dimensional analysis, 93
Problem-solving: graph values, 94
Problem-solving: identify given data, 93
Problem-solving: identify relevant principles, 93
Problem-solving: interpret intermediate results,

93

117

118 INDEX

Problem-solving: limiting cases, 94
Problem-solving: qualitative to quantitative, 94
Problem-solving: quantitative to qualitative, 94
Problem-solving: reductio ad absurdum, 94
Problem-solving: simplify the system, 93
Problem-solving: thought experiment, 93
Problem-solving: track units of measurement, 93
Problem-solving: visually represent the system,

93
Problem-solving: work in reverse, 94
Propagation delay, 23
Push, stack, 15

Qualitatively approaching a quantitative
problem, 94

Reading Apprenticeship, 65
Reductio ad absurdum, 94–96
Register, 11, 24
Reset, 9
Ring counter, 16
Rise time, 23

Schmitt trigger, 20
Schoenbach, Ruth, 65
Scientific method, 70
Serial data, 11
Set, 9
Set-reset latch, 5
Set-up time, 8, 22
Shift register, 11
Signal integrity, 24
Simplifying a system, 93
Socrates, 95
Socratic dialogue, 96
SPICE, 65
SR flip-flop, 7
SR latch, 5
Stack, 15
Stallman, Richard, 101
Synchronous, 24

Thought experiment, 93
Toggle mode, 8, 23
Torvalds, Linus, 101
Transition time, 23

Units of measurement, 93

Visualizing a system, 93

Work in reverse to solve a problem, 94
WYSIWYG, 101, 102

	Introduction
	Tutorial
	Latch and flip-flop review
	Registers
	Shift register variations
	Ring counters
	Auto-initialization

	Derivations and Technical References
	Digital pulse criteria

	Animations
	Animation of serial-in, parallel-out shift register
	Animation of parallel-in, serial-out shift register

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Conveyor belt analogies
	Timing diagram for a simple shift register
	Timing diagram for another simple shift register
	Timing diagram for yet another simple shift register
	Schematic diagram for a five-bit shift register
	Altering shift direction
	Switch debouncer
	Sequenced water fountain

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	Shifting binary integers
	Frequency divider design

	Diagnostic reasoning
	Faulty LED sequencer design
	Sequential tail-light blinker
	Troubleshooting a failed stepper motor drive

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	References
	Version history
	Index

