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Chapter 1

Introduction

1.1 Recommendations for students

The measurement and expression of complex impedance values is extremely important in a wide
range of AC circuits, especially radio-frequency (RF) circuitry, and a special type of graphical
expression called a Smith Chart is designed to facilitate this. Unlike a standard Cartesian graphing
plane, though, the Smith Chart uses axes that extend from zero to infinity, using curves rather
than straight lines to mark major and minor divisions. The benefits of Smith Charts may not be
apparent at first, but their unique geometry makes possible graphical solutions to AC calculations
that otherwise might be quite tedious, especially during the era (1930’s) in which Phillip Smith
invented it.

In our modern era where electronic calculators have all but obsoleted graphical computing
techniques, the Smith Chart still finds wide application as a mode of displaying complex-impedance
information on the viewscreens of such instruments as impedance analyzers and vector network
analyzers (VNAs).

Important concepts related to Smith Charts include resistance, reactance, capacitance,
inductance, impedance, complex numbers, rectangular versus polar expressions of complex
quantities, Pythagorean Theorem, normalized quantities, frequency sweeps, admittance,
series versus parallel network properties, transmission lines and termination, characteristic
impedance, impedance transformation, impedance matching, standing waves, and the
Maximum Power Transfer Theorem.

Due to the heavy application of math implicit in Smith Charts, the reader is urged to apply
those mathematical principles as soon as possible. The calculation and plotting examples contained
in the tutorial serves this purpose well, as they allow you to apply the formulae discussed previously
to an example and then check your work against the completed example to see if your application
was correct. Do not simply read a quantitative example and assume you understand it just because
nothing in the presentation seemed confusing. Until you can perform the analysis yourself without
assistance, you haven’t mastered it!
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Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to mathematically plot the Smith Chart
response for an electrical network without the benefit of using a vector network analyzer
(VNA)? What hypothesis (i.e. prediction) might you pose for that experiment, and what
result(s) would either support or disprove that hypothesis?

• How do rectangular-form and polar-form complex number expressions differ from one another?

• Why is the impedance phase angle for an inductor always +90 degrees?

• Why is the impedance phase angle for a capacitor always −90 degrees?

• How does reactance differ in principle from resistance?

• What is admittance, and how does it relate to impedance?

• What is the unit of measurement for impedance, versus admittance?

• What does a phasor diagram represent?

• What mathematical operation(s) are represented when we stack phasors tip-to-tail?

• What is the Pythagorean Theorem useful in calculating?

• How do Smith Charts differ from normal Cartesian-coordinate charts?

• How is resistance represented on a Smith Chart?

• How is capacitive or inductive reactance represented on a Smith Chart?

• What does it mean to “sweep” the frequency of a signal during a test?

• How does an impedance-only Smith Chart differ from an impedance-admittance Smith Chart?

• How may the addition (i.e. series connection) of multiple impedances be shown on a Smith
Chart?

• What does it mean to say that a Smith Chart is “normalized” to a particular impedance value?

• How may the values of series- and parallel-connected impedances be combined on a Smith
Chart?

• What practical applications exist for matching impedances of different AC networks?

• What alternative solutions exist for creating impedance-matching networks?

• How may a Smith Chart be used to help design impedance-matching networks?
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1.2 Challenging concepts related to Smith charts

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Complex numbers – these are numerical values having both real and imaginary components,
or alternatively magnitudes and angles. These are useful for expressing AC quantities where
there is a shift in phase between two voltages, between two currents, or between a voltage and
a current. Since impedance is defined by Ohm’s Law as a quotient of a voltage and a current,
the phase angle of an impedance is the phase shift between that voltage and that current.

• Normalized values – Smith charts use normalization to show impedance values on a simple
scale with 1 (unity) being at the center of the chart. This means a normalizing quantity must
be specified for each chart (typically 50 Ohms), and each real impedance value must be scaled
to that normalizing factor.

• Resistance versus Reactance versus Impedance – these three terms represent different
forms of opposition to electric current. Despite the fact that they are measured in the same unit
(ohms: Ω), they are not the same concept. Resistance is best thought of as electrical friction,
whereas reactance is best thought of as electrical inertia. Whereas resistance creates a voltage
drop by dissipating energy, reactance creates a voltage drop by storing and releasing energy.
Impedance is a term encompassing both resistance and reactance, usually a combination of
both.

The Case Tutorial chapter contains a section showing frequency-sweep test results for a wide
array of passive networks. These are well worth the time to closely study, to recognize patterns and
to run “thought experiments” in your mind predicting how each network’s impedance will vary as
frequency sweeps from zero (DC) to some arbitrarily high value.



6 CHAPTER 1. INTRODUCTION

1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment – Students show how quantitative results were obtained by the author in the
Tutorial chapter’s examples.

• Outcome – Plot impedance values on a Smith chart

Assessment – Given simple RLC networks, qualitatively plot their impedances over a
range of swept frequency; e.g. pose problems in the form of the “Network frequency-sweep
tests” Conceptual Reasoning question.

Assessment – Plot single impedance values as dots on a Smith chart; e.g. pose problems in
the form of the “Plotting component impedances on a Smith Chart” Quantitative Reasoning
question.

• Outcome – Design impedance-matching networks on a Smith chart

Assessment – Use a Smith chart to assist in the design of LC impedance-matching networks
for given source and load impedances at specified frequencies; e.g. pose problems in the form
of the “Impedance-matching networks” Quantitative Reasoning question.

• Outcome – Independent research

Assessment – Locate RF device datasheets showing Smith charts and properly interpret
some of the information contained in those charts including frequency range, impedance ranges,
resonant points, etc.



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

7



8 CHAPTER 2. CASE TUTORIAL

2.1 Example: custom inductor winding and testing

In this example we see a custom inductor made by winding 19 turns of 23-gauge enamel-coated copper
wire around a Micrometals T50-66C powdered iron toroidal core. This core’s datasheet specifies an
inductance factor (AL) of 51 nanoHenrys per turn-squared, so the inductor’s value should be:

L = ALN
2

L = (51× 10−9)(192) = 18.411 µH

Micrometal’s general catalog of core materials lists the type 66 as being “well-suited from 100
kHz to 500 kHz” and so a test was conducted using a NanoVNA vector network analyzer over that
same range of signal frequencies:

Analysis from the VNA shows the measured inductance to be quite close to the predicted value
of 18.411 microHenrys over the “swept” signal range of 100 kHz to 500 kHz:

Frequency Impedance Series L Deviation from predicted

100 kHz 0.148 + j11.3 Ω 17.974 µH −2.37%

300 kHz 1.11 + j33.5 Ω 17.782 µH −3.42%

500 kHz 2.76 + j56.1 Ω 17.849 µH −3.05%

The “real” portion of the complex impedance value represents series equivalent resistance in
Ohms, equal in this case to the resistance of the wire in the inductor’s coil as well as any connection
resistances between the inductor and the VNA. This value rises slightly with signal frequency due
to the skin effect, where electric current at very high frequency becomes excluded from traveling
in the wire’s center and therefore decreases the effective cross-sectional area of the conductor. The
“imaginary” portion of the complex impedance value is the inductive reactance (XL) in Ohms,
relating to inductance by the formula XL = 2πfL where f is the signal frequency in Hertz.
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Like most vector network analyzers, the NanoVNA produces a Smith chart plot of complex
impedance (normalized to 50 Ohms). As expected for a nearly-pure inductance, the path traced
during the 100-500 kHz “sweep” closely follows the 0 Ohm resistive circle circumference while
intersecting various inductive reactance circles as frequency rises. Here the red marker signifies
100 kHz (just above the +j0.2 circle denoting +j10 Ohms), the green marker 300 kHz (between the
+j0.5 and +j1.0 circles), and the blue marker 500 kHz (just above the +j1.0 circle denoting +j50
Ohms):
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Next we see the results of winding 30 turns of 23-gauge wire around another T50-66C powdered
iron core with the same inductance factor of 51 nanoHenrys per turn-squared:

L = ALN
2

L = (51× 10−9)(302) = 45.900 µH

Analysis from the VNA shows the measured inductance to deviate more significantly from the
predicted value of 45.9 microHenrys over the “swept” signal range of 100 kHz to 500 kHz than it
did with the previous (19-turn) inductor:

Frequency Impedance Series L Deviation from predicted

100 kHz 0.827 + j26.8 Ω 42.665 µH −7.048%

300 kHz 3.86 + j80.6 Ω 42.771 µH −6.817%

500 kHz 6.29 + j135 Ω 42.941 µH −6.447%

A greater number of wire turns means an increase in two different parasitic properties: first, the
wire will have greater total resistance because there is simply more of it for current to pass through;
second, the greater number of turns packed onto the same size toroid means individual turns being
closer together to one another than before which will increase the amount of inter-turn capacitance1.

1Recall that capacitance between any two conductive surfaces is a direct function of the overlapping area of those
surfaces, and an inverse function of separation distance. Here, with 30 turns of wire being packed closer together on
the same toroid than 19 turns of wire, the inter-turn capacitance must be greater.
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Here again we see the NanoVNA’s Smith chart showing complex impedance normalized to 50
Ohms, this time for the 30-turn inductor:

As one would expect, the curve lies farther to the right due to the increased inductive reactance
of the larger inductance over the same frequency range. Increased resistance from the longer wire
drives the curve closer to the middle of the Smith chart rather than remain on the periphery as
before.
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Using an entirely different toroidal core, I performed an experiment where I tried different
numbers of turns of the same 23-gauge enameled wire and measured inductance using a different
VNA (a PicoVNA model 106) sweeping from 300 kHz to 400 kHz:

Turns 300 kHz 354 kHz 381 kHz 400 kHz

2 6.06 µH 6.31 µH 6.43 µH 6.52 µH

4 22.79 µH 23.70 µH 24.13 µH 24.45 µH

5 36.36 µH 37.82 µH 38.51 µH 38.93 µH

10 149.63 µH 156.85 µH 159.24 µH 160.16 µH

The following photograph shows this iron core with four turns of wire wrapped around it, the
bare iron core itself being wrapped in white electrical tape to prevent the enameled wire from chafing
against the bare metal and possibly creating a coil-to-core shorted fault:

If you take any two inductance values at the same test frequency but for a different number of
turns, the ratio of those two inductance values approximately equals the square of the ratio of the
turns. For example, 160.16 microHenrys and 38.93 microHenrys at 400 kHz for 10 turns and 5 turns,
respectively, makes an inductance ratio of nearly four to one (4.11405:1) for a turns ratio that is
two to one (2:1). This confirms the general principle that inductance is proportional to the square
of the number of wire turns wrapped around the core.
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Computing the average AL value at each test frequency based on the four measured inductance
values and turns values ( L

N2 ) yields the following:

Frequency Average AL

300 kHz 1.473 µH per turn2

354 kHz 1.535 µH per turn2

381 kHz 1.562 µH per turn2

400 kHz 1.579 µH per turn2

Averaging these four AL values yields an aggregate AL of 1.537 µH per turn-squared for this
particular toroidal iron core. This figure, of course, will be useful for creating custom inductors
based on this toroid as the core material.
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2.2 Example: frequency-sweeps of RLC network impedances

In this example we will use free software called Elsie to simulate the impedance of RLC networks,
plotting the impedance of those networks on Smith Charts. In each case the frequency sweep begins
at an extremely low frequency (practically DC) and ends at several megaHertz, the starting (DC)
point located on the Smith Chart by a blue dot. Each Smith Chart is normalized to 50 Ohms, and
the resistor value within every network containing a resistor is 50 Ohms.

For each of these simulated frequency sweeps, the reader is urged to perform thought experiments
on the given network to determine what the network’s impedance should be at the starting frequency
(≈0 Hz, DC) and then what the network’s impedance should be at the ending frequency (some
arbitrarily high value in the megaHertz range). At some frequencies, the network’s resistance (R)
will dominate the total impedance value, at other frequencies a reactance (either XL or XC) will
dominate the total impedance, and in the case of networks containing both L and C there will be a
resonant point where these two reactances will cancel out. Your task is to figure out why the Smith
Chart plot bends the way it does as frequency increases for each network.

Please note that neither a real-world frequency sweep test nor a computer simulation is capable
of sweeping through infinite frequency, so your f = ∞ thought experiment will never quite match
the far ends of the traces shown in these Smith Charts. Hopefully, though, the trajectory of these
sweep-tests will be plain enough to extrapolate in your mind, that you will be able to discern from
the plots where the impedance is heading should the frequency increase more.

Important Foundational Concepts to apply in these thought experiments include:

• XL = 2πfL ; inductive reactance increases with increasing frequency, and is zero at DC

• XC = 1
2πfC ; capacitive reactance decreases with increasing frequency, and is infinite at DC

• Series impedances add, so the largest impedance in a series network will dominate total
impedance

• Parallel impedances diminish, so the smallest impedance in a parallel network will dominate
total impedance ; alternatively stated, parallel admittances add, so the largest admittance in
a parallel network will dominate total admittance

• Series inductor-capacitor combinations result in nearly zero impedance (short) at resonance

• Parallel inductor-capacitor combinations result in nearly infinite impedance (open) at
resonance



2.2. EXAMPLE: FREQUENCY-SWEEPS OF RLC NETWORK IMPEDANCES 15

2.2.1 Series RL network
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2.2.2 Series RC network
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2.2.3 Series RLC network
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2.2.4 Series LC network
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2.2.5 Parallel RL network
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2.2.6 Parallel RC network
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2.2.7 Parallel RLC network
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2.2.8 Parallel LC network
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2.2.9 C in series with parallel RL network
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2.2.10 L in series with parallel RC network
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2.2.11 Series LC in parallel with R network
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2.2.12 Series LC in parallel with series RC network
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2.2.13 Series LC in parallel with series RL network
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3.1 Impedance review

When analyzing any AC circuit, it is not enough to simply quantify every voltage and current in
terms of amplitude (e.g. how many Volts or Amperes) as we do in DC circuits. Instead, we must
consider both the amplitude of each signal as well as the amount of phase shift separating them.
A mathematically elegant way of accomplishing both is to use complex numbers which may be
expressed either in rectangular form (e.g. a+ jb) or polar form (e.g. m 6 θ). When we use complex
numbers to represent any AC circuit quantity, we call that value a phasor.

An illustrative example is how we characterize the impedance of passive components. Resistors
function by dissipating energy in the form of heat, with voltage and current waveforms being perfectly
in-phase. Inductors and capacitors, however, function by absorbing and releasing energy rather than
dissipating, and as such we find voltage and current waveforms shifted by one-quarter of a cycle (i.e.
90o) for each, voltage leading current for an inductor and voltage lagging current for a capacitor:

time
P P

V

I

V I

R
V

I I

V
L

time
P

VI

I

V

time

C

ZR = R ∠ 0o ZL = XL ∠ +90o ZC = XC ∠ -90o

V leads I by 90 degreesV and I are in-phase V lags I by 90 degrees

ZR = R + j0 ZL = 0 + jXL ZC = 0 - jXC

Graphical expressions of complex-number resistance and reactance values are called phasor
diagrams. Three such diagrams illustrate the difference between a 50 Ω resistor versus an inductor
having 50 Ω of reactance and a capacitor also having 50 Ω of reactance. Each has 50 Ohms of
impedance, but each of these impedances has a different phase angle defined by the phase shift
between the component’s voltage and current:

+imag

-imag

+real-real

R = 50 Ω
ZR = 50 Ω ∠ 0o

ZR = 50 + j0 Ω

+imag

-imag

+real-real

XC = 50 Ω

ZC = 50 Ω ∠ -90o

ZC = 0 - j50 Ω

+imag

-imag

+real-real

XL = 50 Ω
ZL = 50 Ω ∠ 90o

ZL = 0 + j50 Ω
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The ratio of voltage to current in a DC network is resistance (R = V
I ), and in an AC circuit where

phase shifts exist is impedance (Z = V
I ). Both are measured in unit of the Ohm (Ω). The ratio

of current to voltage is the reciprocal of these quantities: for DC networks we call it conductance
(G = I

V ) and for AC it is known as admittance (Y = I
V ). We measure both in the unit of Siemens1

(S).

Some examples2 of component impedances and admittances are shown here:

• A 570 Ω resistor at any frequency will have the following impedance and admittance values:

Z = 570 Ω 6 0o (polar form) = 570 + j0 Ω (rectangular form)

Y = 0.0017544 S 6 0o (polar form) = 0.0017544 + j0 S (rectangular form)

• A 3.5 H inductor at a frequency of 120 Hz will have the following impedance and admittance
values:

Z = 2.639 kΩ 6 +90o (polar form) = 0 + j2.639 kΩ (rectangular form)

Y = 0.00037894 S 6 −90o (polar form) = 0 − j0.00037894 S (rectangular form)

• A 0.01 µF capacitor at a frequency of 3 kHz will have the following impedance and admittance
values:

Z = 5.305 kΩ 6 −90o (polar form) = 0 − j5.305 kΩ (rectangular form)

Y = 0.00018850 S 6 90o (polar form) = 0 + j0.00018850 S (rectangular form)

The utility of phasor representation in AC circuits is that with all signal and component values
expressed in phasor form we find most of the foundational principles learned for DC circuit analysis
still apply in AC circuits. Quantities that add in series DC networks (e.g. voltage V , resistance
R) add as phasor quantities in AC networks (e.g. voltage V , impedance Z); additive quantities
in parallel DC networks (e.g. current I, conductance G) add as phasor quantities in AC networks
(e.g. current I, admittance Y ). With phasor quantities, Ohm’s Law, Kirchhoff’s Voltage Law, and
Kirchhoff’s Current Law still hold true in AC networks just as they do for DC.

1Prior to the adoption of German engineer Werner von Siemens’ surname as the unit of measurement for
conductance and admittance, the unit of the Mho served quite well. This, of course, was a sort of pun on the
spelling of Ohm, since “mho” is “ohm” spelled backwards, intended to represent the fact that the reciprocal of any
Ohm value yields a value in Mhos.

2Try calculating these impedance and admittance values from the given component values, to check your
understanding. This is a good learning strategy to apply when reading any mathematical text: work through the
presented examples on your own to see if you achieve the same results! Please note that when you apply either the
XL = 2πfL formula or the XC = 1

2πfC
formula using your calculator to compute reactance, the result will only be a

reactance value and not a (complex) impedance value. In order to attach the desired phase angle to your computed
reactance value, you will have to perform the additional step of multiplying that reactance by a unit phasor which is
nothing more than the quantity of 1 with the correct phase angle. For example, a capacitive reactance of 5.305 kΩ
would be multiplied by 1 6

−90o to yield a capacitive impedance of 5.305 kΩ 6
−90o.
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It is equally valid to express any phasor quantity in either polar or rectangular form. However,
unless we have access to an electronic calculator capable of performing complex-number arithmetic,
we find certain arithmetic operations much easier to perform with one notation more than the
other. Specifically, addition and subtraction are simplest when phasors are in rectangular form,
while multiplication and division are simplest when phasors are in polar form.

Addition of rectangular-form complex numbers consists simply of adding their real components
together to find the real component of the sum, and doing the same with the imaginary components.
Expressing this algebraically, (a+ jb) + (x+ jy) = (a+ x) + j(b+ y). Subtraction follows much the
same pattern: (a+ jb)− (x+ jy) = (a− x) + j(b− y).

Here are some practical examples of rectangular-form phasor arithmetic where the calculations
are simple enough to perform without a calculator:

ZR = 7 + j0 Ω

ZC = 0 - j5 Ω

ZL = 0 + j4 Ω

Zseries = 7 - j1 Ω

YR = 3 + j0 S

YL = 0 - j1 Ω

Yparallel = 3 + j4 S

YC = 0 + j5 S

Series impedances Parallel admittances

Multiplication of polar-form complex numbers consists simply of multiplying their magnitudes
together to find the magnitude of the product, and adding the angles to find the angle of the product.
Expressing this algebraically, (a 6 b) × (x 6 y) = (a × x) 6 (b + y). Division follows a similar pattern:
(a 6 b)÷ (x 6 y) = (a÷ x) 6 (b− y).

Here are some practical examples of polar-form phasor arithmetic where the calculations are
simple enough to perform without a calculator:

3 R

R

4:1 voltage divider

24 V ∠ -71o

6 V ∠ -71o

6 A ∠ 30o

2 Ω ∠ -17o

12 V ∠ 13o

Voltage drop across an impedance
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When analyzing AC circuits without the use of a complex-number calculator, we invariably
must convert between rectangular and polar forms in order to prepare the phasor values for
addition/subtraction or multiplication/division, respectively. Both conversions are most easily
understood in terms of a right triangle, seeing the rectangular form’s real and imaginary components
as the adjacent and opposite sides, and the polar form’s magnitude and angle as the hypotenuse:

x
θ

(hypotenuse)

(opposite of θ)

(adjacent to θ)

jy

+imaginary

-imaginary

+real-real

M

Converting rectangular (x+ jy) into polar (A6 θ):

A =
√

x2 + y2 θ = arctan
y

x

Converting polar (A6 θ) into rectangular (x+ jy):

x = A cos θ y = A sin θ

Some cautionary notes are in order here. First, I highly recommend storing all computed values
in your calculator’s memory rather than re-entering them manually, because you will find even slight
rounding errors tend to become exaggerated with trigonometric functions. Second, when computing
the phase angle (θ) from real and imaginary quantities (x and jy) be careful to verify the angle
against your qualitative expectations. For example, 5 + j5 = 7.0716 45o and −5− j5 = 7.0716 225o,
but you’ll find arctan −5

−5 yields the same result (45o) as arctan 5
5 because −5

−5 = 5
5 . To put it simply,

the arc-tangent function does not “know” whether the phasor exists in the first or in the third
quadrant of the complex plane.

Here are some rectangular and polar equivalents, useful for practice as you master these concepts:

20− j11 = 22.836 − 28.81o 11.49 + j9.642 = 156 40o

−10 + j2 = 10.206 168.7o − 11.82− j2.084 = 126 − 170o
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3.2 Phasor diagram review

Graphical representations of complex-number AC quantities are generally known as phasor diagrams.
Simple examples showing resistive and reactive component impedances – each one having a value of
50 Ohms but with different phase angles – appears below:

+imag

-imag

+real-real

R = 50 Ω
ZR = 50 Ω ∠ 0o

ZR = 50 + j0 Ω

+imag

-imag

+real-real

XC = 50 Ω

ZC = 50 Ω ∠ -90o

ZC = 0 - j50 Ω

+imag

-imag

+real-real

XL = 50 Ω
ZL = 50 Ω ∠ 90o

ZL = 0 + j50 Ω

For such simple examples it is entirely appropriate to represent each complex quantity as a point
on the complex plane rather than a vector (i.e. an arrow symbol) like this:

+imag

-imag

+real-real

R = 50 Ω
ZR = 50 Ω ∠ 0o

ZR = 50 + j0 Ω

+imag

-imag

+real-real

XC = 50 Ω

ZC = 50 Ω ∠ -90o

ZC = 0 - j50 Ω

+imag

-imag

+real-real

XL = 50 Ω
ZL = 50 Ω ∠ 90o

ZL = 0 + j50 Ω
+50

+j50

-j50

The horizontal axis represents the real component of the complex value, while the vertical axis
represents the imaginary. This means the complex number in rectangular form plainly describes the
horizontal and vertical coordinate values, which is why 50 + j0 places the dot along the horizontal
axis to the right of center, why 0+ j50 places the dot along the vertical axis above center, and why
0− j50 places the dot along the vertical axis below center.

Vector-arrows are generally more useful than dots because the vectors allow us to easily show
addition and/or subtraction of complex-number quantities. This is rather useful for any aspect of
AC circuit analysis where addition and/or subtraction are appropriate, e.g. impedances connected
in series or admittances connected in parallel. To graphically add two vectors together, all we need
to do is stack them end-to-end, the tip of one touching the tail of the other.
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In the following example we see the phasors 4 + j1, 2 − j3, and −3 + j10 (all three shown in
blue) added to one another to produce the sum 3 + j8 (shown in red):

4 + j1

2 - j3

-3 + j10

Sum
3 + j8

+imag

-imag

+real-real

The rectangular form of these phasors makes it easy to see how the addition works. The 4 + j1
phasor’s arrow, for example, projects four units to the right and one unit up. The next phasor,
2− j3, begins at the tip of the 4+ j1 phasor and then projects two units right and three units down.
Lastly, the −3 + j10 phasor begins at the tip of the 2− j3 phasor and then projects three units left
and ten units up.

Our sum of 3+j8 is easy enough to calculate simply by summing all the phasors’ real components
and summing all the phasors’ imaginary components: 4+2−3 = 3 and j1−j3+j10 = j8. However,
it should also be clear to see that the phasor diagram provides a way for us to graphically compute
the sum as well: simply start at the origin and count how many horizontal and vertical units are
necessary to arrive at the last arrow tip. In this capacity the graph is not just a tool for displaying
quantities, but actually a calculator for determining an arithmetic result. We just need to carefully
draw each phasor’s representative arrow, and then the resulting sum may simply be read from the
graph.

Extending this principle to a non-trivial calculation, suppose we wished to know our sum of
3 + j8 as a polar -form value rather than rectangular. Of course, we could reach for an electronic
calculator to apply the Pythagorean Theorem for calculating polar magnitude (

√
32 + 82 = 8.544),

and the arc-tangent function for calculating polar phase angle (arctan 8
3 = 69.44o), but we could

just as readily reach for a ruler and a protractor to measure the length and angle (from horizontal)
for the sum’s arrow. Such analog methods of computation are conceptually simple, and for many
applications the inaccuracies incurred by sketching and measuring arrow symbols on paper are well
within acceptable tolerances for circuit analysis.
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Here we will use a phasor diagram to add impedances for a network consisting of a series-
connected capacitor, resistor, and inductor:

+R-R

+jXL

-jXC

ZC ZR ZL

0 - j9 Ω 5 + j0 Ω 0 + j6 Ω

Zseries

ZC
0 - j9 Ω

5 + j0 Ω
ZR

ZL
0 + j6 Ω

Zseries

It is clear both from simple arithmetic as well as from counting squares on the graph that Zseries

must be equal to 5− j3 Ohms. As before, we could also use a ruler and protractor to measure the
polar dimensions of Zseries as an alternative to trigonometric calculations.

Another benefit of phasor diagrams is that they make certain abstract concepts more visually
apparent, series resonance being one such example. If we imagine increasing the AC energizing
frequency until the inductor’s reactance rises to meet the capacitor’s falling reactance3, we shall see
that those two components’ imaginary (vertical) quantities will perfectly cancel each other leaving
just a horizontal phasor of 5+j0 Ohms. Seeing that those two phasors’ arrows point exactly opposite
each other (inductor up and capacitor down) makes it perfectly obvious that their sum must be zero
at some frequency where XL = XC , leaving only the resistor to contribute to total impedance.

3Recall that inductive reactance is directly proportional to frequency, XL = 2πfL and that capacitive reactance
is inversely proportional to frequency, XC = 1

2πfC
.
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Here we will use a phasor diagram to add parallel admittances4:

+G-G

YC

0 + j4 S

YR

7 + j0 S

YL

0 - j5 S

Yparallel

YC
0 + j4 S

Yparallel

YR
7 + j0 S

YL
0 - j5 S

+jBC

-jBL

Once again we see the sum is easy to determine for this network just as it is for any application
where the quantities in question are additive, either by applying simple arithmetic or by counting
squares on the graph. In this particular case, Yparallel = 7− j1 Siemens. Perhaps the only confusing
aspect of this phasor diagram is the reversal of sign and vertical direction for the capacitive and
inductive phasors: inductive admittance always has a negative value (pointing down) while capacitive
admittance is always positive (pointing up).

As with the series phasor diagram, the phenomenon of resonance becomes easy to visualize for
this parallel network. If we imagine frequency increasing such that the inductor’s admittance falls
while the capacitor’s admittance rises, there must be a particular frequency where their admittances
are equal in magnitude and exactly opposite in direction. In that instance the vertical contributions
of YC and YL will precisely cancel (i.e. zero Siemens for the LC combination, which is equivalent to
infinite Ohms between those two components) leaving only the resistor’s admittance for current to
pass through from one side of the network to the other.

4Recall that admittance is just the reciprocal of impedance (Y = 1

Z
), measured in the unit of Siemens

(or Mhos) rather than Ohms. In fact, if you apply this concept to the familiar parallel impedance formula
(Zparallel = 1

1

ZC
+ 1

ZR
+ 1

ZL

) you will see that the parallel sum of admittances (Yparallel = YC + YR + YL) is really

the same formula after reciprocating all the terms.
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3.3 The basic Smith Chart

The Smith Chart is a specialized form of graph useful for representing complex impedances in
electrical and electronic networks. At root it is just an adaptation of the standard graph used to
show phasor diagrams, where the horizontal axis is “real” and the vertical axis is “imaginary”, but
differs from that Cartesian-style graph in three principal ways:

• A Smith Chart’s axes nonlinearly span from zero to infinity

• Values plotted on a Smith Chart are typically normalized to some common standard such as
50 Ω (e.g. 50 Ω = 1.0 on the Chart, 100 Ω = 2.0 on the Chart, 10 Ω = 0.2 on the Chart, etc.)

• A Smith Chart uses circles rather than lines to form the grid

Of these differences, the last (circular grid) generally creates the most confusion when first
apprehending a Smith Chart. A simple version of a Smith Chart appears below:

0 in
f0.

2

0.
5

1 2 4
0.2

-0.2

0.5

-0.5

1

-1

2

-2

4

-4

Here we see a set of right-aligned circles situated along the horizontal axis, as well as sets of
arcs above and below that axis representing portions of circles. These circles and arcs constitute the
“grid lines” of the Smith Chart, analogous to the vertical and horizontal division lines of a Cartesian
graph.
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The full circles situated along the horizontal axis represent real-number intervals – different
degrees of resistance (R)5:

0 in
f0.

2

0.
5

1 2 4

0.2

-0.2

0.5

-0.5

1

-1

2

-2

4

-4

R

Any point falling along the outer-most circle’s circumference represents zero Ohms of resistance.
In a Cartesian graph the zero-resistance grid line would be the vertical line passing through the
graph’s origin, but here it is a circle forming the Smith Chart’s outer boundary.

As resistance increases, points move to the right of the Smith Chart until we reach infinite
resistance which is at the far-right end of the horizontal axis (i.e. a circle with a diameter of
zero). The circle whose circumference passes through the Smith Chart’s center point represents a
normalized value of 1. For example, if the Smith Chart’s normalizing value is 50 Ohms, a 50-Ohm
resistance would fall along that circle passing through “1” on the horizontal axis. Exactly where
along that circle’s circumference the point exists depends on whether or not there is any reactance
along with that resistance.

5The radius of each of these circles may be calculated by taking the radius of the entire Smith Chart and dividing
by 1 + N where N is the normalized value.
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The arcs lying above and below the horizontal axis are actually portions of whole circles,
representing imaginary-number intervals – different degrees of either inductive or capacitive
reactance (X)6:
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f0.
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0.
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1 2 4

0.2

-0.2

0.5

-0.5

1

-1

2

-2

4

-4

XL

XC

The horizontal axis itself is actually not a line, but rather a portion of a circumference for a
circle with an infinite diameter representing zero Ohms of reactance.

For those familiar with complex impedances graphed on a Cartesian plane with real (horizontal)

6The radius of each of these circles may be calculated by taking the radius of the entire Smith Chart and dividing
by the normalized value N .
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and imaginary (vertical) axes in a rectangular-shaped grid, a good way to become oriented to the
Smith Chart is to analyze side-by-side examples of each graph type for different example impedances.
This is what we will do in the following subsections of this text.

3.3.1 Plotting impedance for a 50 Ohm resistor
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5 1 2 4
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+j0.2

+j0.5

+j1

+j2

+j4

+j(inf)

-j0.2

-j0.5

-j1

-j2

-j4

-j(inf)

Z = 50 + j0 Ω

50 Ω

A pure resistance with a value of 50 Ohms results in the point (a red dot) situated along the
“real” axis at a value of 1 (normalized to 50 Ohms). This happens to be at the center of the
rectangular graph as well as at the center of the Smith Chart. It is the point at which the R = 1
resistance circle intersects the X = 0 reactance circle (the horizontal axis).

Increases in this resistance value will result in the plotted point moving toward the right (i.e.
towards infinity), while decreases in this value move the point to the left (toward zero). There is no
vertical displacement of the plotted point because in the case of a pure resistance there is no reactive
characteristic. This is a circumstance where all energy is dissipated, and none stored or released.
The location of the point should also remain fixed for any frequency value, since resistance (R) is
independent of signal frequency.



42 CHAPTER 3. TUTORIAL

3.3.2 Plotting impedance for a short
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+j(inf)

-j0.2

-j0.5

-j1

-j2

-j4

-j(inf)

(short)0 Ω

Z = 0 + j0 Ω

The guaranteed effect of a short is equipotentiality between the shorted points. This means
no voltage regardless of current, which in turn means zero resistance (R = V

I ). It also means no
capacitance because the equipotential condition ensures no electric field can exist. Since current may
exist through a short, and this will create a magnetic field which can store some energy, there may
be inductance in a short. However, if the loop area is small then this inductance will be negligible,
and therefore inductive reactance will for all practical purposes be zero (XL = 2πfL).

Short-circuits, therefore, have zero Ohms of resistance and (nearly) zero Ohms of (inductive)
reactance, placing the point fully to the left-hand end of the “real” axis. This is the point of
intersection between the R = 0 resistance circle (outer circumference of the Smith Chart) and the
X = 0 reactance circle (the horizontal axis).

As with the purely resistive example, this point’s location is unaffected by changes in signal
frequency.
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3.3.3 Plotting impedance for an open
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(inf) Ω (open)

Z = (inf) - j(inf) Ω

The guaranteed effect of an open is zero current. This in turn means infinite resistance (R = V
I ).

It also means no inductance because a condition of zero current is synonymous with zero magnetic
field created around the opened conductor. An electric field may exist between points not connected
to each other, though, and this grants the possibility of energy stored in that electric field. However,
if the end-areas of the opened conductors are small this capacitance should be negligible. With
negligible capacitance we know that capacitive reactance will for all practical purposes be infinite
(XC = 1

2πfC ).

Open circuits, therefore, have infinite resistance and (nearly) infinite (capacitive) reactance,
placing the point fully to the right-hand end of the “real” axis. This is where the two smallest (i.e.
zero-radius) resistance and reactance circles intersect.

As with the purely resistive example, this point’s location is unaffected by changes in signal
frequency.
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3.3.4 Plotting impedance for a 50 Ohm inductor
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Increasing f

Decreasing f

Increasing fDecreasing f

Inductors, of course, are rated in Henrys and as such do not have a fixed value in the unit
of the Ohm. Inductive reactance is measured in Ohms, and relates to frequency by the formula
XL = 2πfL, which means for this 50 Ohm example we must suppose an inductance value (L) and
frequency value (f) combining to make 50 Ohms of inductive reactance (XL).

With a normalizing value of 50 Ohms for the entire Smith Chart, 50 Ohms of inductive
reactance places the point at the intersection of the 0 resistance circle and the +j1 reactance circle.
Mathematically, we may express this impedance as the product of 50 Ohms and a normalized complex
value: (50)(0 + j1) Ohms.

If frequency increases, this inductor’s impedance will move clockwise along the R = 0 resistance
circle’s circumference, representing zero resistance and increasing inductive reactance. At the
extreme limit-case of infinite frequency the point will move all the way to the far-right end of
the horizontal axis where it is the same as an open circuit. Decreasing frequency moves the point
counter-clockwise, ultimately toward zero Ohms of reactance (short).
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3.3.5 Plotting impedance for a 50 Ohm capacitor
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Z = 0 - j50 Ω

Capacitors are rated in Farads and just like inductors do not have a fixed value in the unit
of the Ohm. Capacitive reactance is measured in Ohms, and relates to frequency by the formula
XC = 1

2πfC , which means for this 50 Ohm example we must suppose a capacitance value (C) and

frequency value (f) combining to make 50 Ohms of capacitive reactance (XC).
With a normalizing value of 50 Ohms for the entire Smith Chart, 50 Ohms of capacitive

reactance places the point at the intersection of the 0 resistance circle and the −j1 reactance circle.
Mathematically, we may express this impedance as the product of 50 Ohms and a normalized complex
value: (50)(0− j1) Ohms.

If frequency increases, this capacitor’s impedance will move clockwise along the R = 0 resistance
circle’s circumference, representing zero resistance and decreasing capacitive reactance. At the limit-
case of infinite frequency the point will move all the way to the far-left end of the horizontal axis
where it is equivalent to a short circuit. Decreasing frequency does the opposite, moving the point
toward infinite Ohms of reactance (open).
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3.3.6 Plotting impedance for a series RLC network

Here, we combine a capacitor, resistor, and inductor in series to make a total impedance of 25+ j40
Ohms:
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Normalizing the complex impedance 25 + j40 Ohms against a default value of 50 Ohms yields
0.5 + j0.8 on the Smith Chart. This places the point at the intersection of the 0.5 resistive circle
and an (unplotted) +j0.8 reactance circle. In other words, the impedance value of 25 + j40 Ohms
is equivalent to (50)(0.5 + j0.8) Ohms.

If frequency increases, the inductor’s reactance will increase while the capacitor’s reactance will
decrease. This combined effect moves the point clockwise along the circumference of the 0.5 resistive
circle. Decreasing frequency, of course, moves the point counter-clockwise along the same resistive
circle. At the resonant frequency point where XL = XC we will have a total series impedance
of 25 + j0 Ohms which will place the point at the intersection of the 0.5 resistive circle and the
horizontal axis (zero Ohms reactance).
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3.4 Frequency sweeps

Smith Charts are often used as a display mode on radio-frequency (RF) test instruments such as
Vector Network Analyzers (VNAs) where the instrument energizes the network with a variable-
frequency excitation signal and measures the response. Sweeping the signal frequency produces
a range of results rather than a single coordinate, due to the reactance of all inductors and/or
capacitors changing as a function of signal frequency.

The following screenshot shows the results of testing the impedance of a 20 nanoFarad capacitor
across a range of frequencies starting with 10 kHz and ending with 500 kHz using a vector network
analyzer:

Three colored markers indicate specific frequency values within the 10-500 kHz sweep range: red
at the starting frequency of 10 kHz, green at 255 kHz, and blue at the ending frequency of 500 kHz.
Note that the resulting curve remains fairly close to the outer circumference of the Smith Chart,
which is what we would expect for any component having reactance but little resistance. At 10
kHz we would expect a 20 nF capacitor to exhibit approximately 796 Ohms of reactance (i.e. 15.9
normalized to 50 Ohms), which is why the red marker appears very near the “infinite” reactance
circle. At 500 kHz that same 20 nF capacitor should exhibit close to 15.9 Ohms of reactance (i.e.
0.318 normalized to 50 Ohms), placing the blue marker between the −j0.2 and −j0.5 reactance
circles.
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Next we see a series inductor-capacitor network tested with a VNA over a range of 200 kHz
to 300 kHz. The inductor in this case has a nominal value of 20 µH and the capacitor a nominal
value of 20 nF, yielding a theoretical resonant frequency of 251.6 kHz. The blue marker rests at
the ending sweep frequency of 300 kHz, but the red and green markers have been moved away from
their original positions in order to close in on the resonant point where the sweep curve crosses the
horizontal axis of the Smith Chart (i.e. resistance with no reactance). Here the green marker is at
249 kHz and the red marker at 252.679 kHz:

In case you were wondering, the S11 Smith Chart label appearing on the display of this VNA
shows us the S-parameter perspective of this particular test. In network testing parlance, every
network has different ports into which signals may be injected and/or signals may be measured
from. “S11” simply means7 the signal was applied to port 1 and the result of that signal was
measured at port 1.

7By convention, the second subscript refers to the port where the signal is injected or applied, while the first
subscript denotes the port where the signal is measured. For example, S21 on a two-port network means the VNA
injected the excitation signal into port 1 and measured the resulting output on port 2.
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3.5 Fine-resolution Smith Charts

The simple Smith Chart format used in the previous section is suitable for conveying basic concepts,
but is generally too coarse for many practical applications. In order to provide finer resolution, we
generally find Smith Charts with many more circles, such as the following example:
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Note how many of the reactance circles do not pass through the infinite (“inf”) point at the far-
right end, solely to prevent all the curves from becoming so tightly converged that they would create
a solid mark on the page rather than individually-readable curves. As the linear scaling becomes
more compressed toward the right-hand side of the Smith Chart, we eliminate more of the circles to
create more “whitespace” on that portion of the page.
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To illustrate the utility of these finer-resolution circles, we will plot a few more complex-
impedance network values with greater precision than we could using the simpler Smith Chart
introduced earlier. As usual, all impedance values are normalized to a 50-Ohm standard:
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15 - j2.5 Ω
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70 + j55Ω
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normalized
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(50)(0.3 - j0.05) Ω

(50)(1.4 + j1.1) Ω

(50)(3.5 - j1.9) Ω
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3.6 Impedance and admittance Smith Charts

A Smith Chart, at its most basic, is nothing more than a specialized graph for plotting complex-
number coordinates. Although we usually see Smith Charts used to plot impedance (Z), they are
perfectly appropriate for plotting admittance values (Y ) as well.

Recall that admittance is nothing more than the reciprocal of impedance, and just like
conductance (the reciprocal of resistance), admittance is measured in the unit of Siemens. For
example, a 50 Ohm impedance is equivalent to 20 milliSiemens of admittance. This means that if
an impedance Smith Chart is normalized to 50 Ohms, then the corresponding admittance Smith
Chart must be normalized to 20 milliSiemens.

If we plot arbitrary impedance values on a Smith Chart, and then compute8 the corresponding
admittance values on the same Chart, we notice an interesting phenomenon:
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Z1 = 50 + j50 Ω

Z2 = 100 - j60 Ω
Y2 = 0.007353 + j0.004412 S

Z3 = 20 + j40 Ω
Y3 = 0.01 - j0.02 S

Y1 = 0.01 - j0.01 S

Step 1: normalize the given
impedance to 50 Ω

Step 2: plot the normalized
impedance on the Smith Chart

Step 3: locate the point directly
opposite the plotted impedance
(i.e. draw a line from Z to Y with
the Chart’s center at the line’s
mid-point)

Step 4: read the normalized
admittance from the Smith Chart

admittance from 20 mS
Step 5: de-normalize that

Z3 = 20 + j40 Ω

Z1 = 50 + j50 Ω

Z2 = 100 - j60 Ω

Y3 = 0.01 - j0.02 S

Y2 = 0.007353 + j0.004412 S

(50)(0.4 + j0.8) Ω

(50)(1 + j1) Ω

(50)(2 - j1.2) Ω

(0.02)(0.5 - j1) S

(0.02)(0.5 - j0.5) S

(0.02)(0.03676 + j0.02206) S

Y1 = 0.01 - j0.01 S

Note how each impedance-admittance pair has points equidistant from the Smith Chart’s center.
The Chart’s nonlinear scales and circular graduations are key to this property, allowing the Smith
Chart to be used as a graphical calculator for conversions between impedance and admittance. In
fact, the most troublesome aspect of these conversions are the normalization and de-normalization
steps. As with all demonstrations of mathematical techniques, it is highly advisable for you (the
reader) to work through these examples to make sure you can compute them yourself.

8Either use a calculator capable of complex-number arithmetic to enter and then reciprocate each impedance value;
or alternatively convert each rectangular-form impedance value into polar form, reciprocate the magnitude and reverse
the angle’s sign, and then convert back into rectangular form.



52 CHAPTER 3. TUTORIAL

Another way to manage impedances and admittances on the same Smith Chart is to superimpose
two of these Charts, one of them being flipped both horizontally and vertically such that the two
Charts are symmetrical about their shared center-point. Color-coding helps to keep the impedance
(green) distinct from the admittance (burgundy) circles and labels:
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To convert an impedance into an admittance using the Impedance-Admittance Smith Chart,
simply locate the impedance value on the green (impedance) Chart and directly read the
corresponding admittance value from the burgundy (admittance) Chart.

Note how the impedance circles of this Smith Chart (green) arc upward for positive impedance
values and downward for negative impedance values, but that the admittance circles (burgundy)
arc downward for positive admittance values and upward for negative admittance values. This is
one of the prices we must pay for the convenience of being able to read equivalent impedance and
admittance values from the exact same point: we must pay close attention to the imaginary sign
depending on which value we intend to read. At least the Z-Y Smith Chart maps all inductive
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values in the top half and all capacitive values in the bottom, unlike the Z-only Smith Chart where
capacitive admittances share the same chart space as inductive impedances, and vice-versa.

To illustrate, we will examine the same three impedance values plotted on a Z-Y Smith Chart,
shown here as both impedance and admittance values:
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Z1 = 50 + j50 Ω

Z2 = 100 - j60 Ω
Y2 = 0.007353 + j0.004412 S

Z3 = 20 + j40 Ω
Y3 = 0.01 - j0.02 S Y1 = 0.01 - j0.01 S
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A practical application of impedance-admittance equivalents is graphically determining
electrically-equivalent series versus parallel networks, because we know impedances add in series
while admittances add in parallel. For example, the complex sum Z1 = 50 + j50 Ohms describes
a 50 Ohm resistor in series with an inductor exhibiting 50 Ohms of reactance. Its mathematical
equivalent Y1 = 0.01 − j0.01 Siemens is a sum describing a resistor having a conductance of 0.01
Siemens (100 Ohms resistance) in parallel with an inductor exhibiting 0.01 Siemens of susceptance
(100 Ohms reactance). If 50+ j50 Ohms is mathematically equivalent to 0.01− j0.01 Siemens, then
a series combination of 50 Ohms resistance and 50 Ohms inductive reactance must be electrically
equivalent to a parallel combination of 100 Ohms resistance and 100 Ohms inductive reactance:

R = 50 Ω

XL = 50 Ω

R = 100 Ω XL = 100 ΩThese two networks
are electrically equivalent G = 0.01 S BL = 0.01 S

Of course, Smith Charts are not strictly necessary to convert between series and parallel
equivalent networks. All we need to do is express the impedance or admittance in question as
a complex-number value in rectangular form, and then reciprocate that value using an electronic
calculator or a computer to find the other. The utility of a basic Smith Chart would be to graphically
perform this reciprocation by locating the point directly opposite the Chart’s center, or in the case
of an Impedance-Admittance Smith Chart to simply read equivalent coordinates on the same point.
Some examples help illustrate such series-parallel equivalent network conversions given reciprocation
by any means:

• A series network comprised of an 80 Ω resistor and a 0.47 µF capacitor will have a total
impedance of 80 − j102.61 Ω at a frequency of 3.3 kHz because the resistor’s 80 + j0 Ω adds
to the capacitor’s 0 − j102.61 Ω in series. Reciprocating this total impedance value yields
a total admittance value of 0.004725 + j0.00606 S at that same frequency, representing a
parallel combination of 0.004725 S conductance and +j0.00606 S capacitive susceptance. If we
then reciprocate the real and imaginary terms individually, the conductance value of 0.004725
Siemens becomes 211.62 Ω for the parallel resistor, and the susceptance value of +j0.00606
Siemens becomes −j164.98 Ω for the parallel capacitor. At 3.3 kHz, that 164.98 Ω of capacitive
reactance translates to 0.2923 µF of parallel capacitance.

• A parallel network consisting of a 470 Ω resistor and a 10 mH inductor will have a total
admittance of 0.002128 − j0.003183 S at a frequency of 5 kHz. Reciprocating this total
admittance value yields a total impedance value of 145.14 + j217.14 Ω. The real portion of
this impedance is the equivalent series network’s resistance of 145.14 Ω. The imaginary portion
of this impedance is the equivalent series network’s inductive reactance of 217.14 Ω at 5 kHz.
Solving for inductance at that same frequency yields a series inductor value of 6.912 mH.
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3.7 Transmission lines on the Smith Chart

Smith Charts are also very useful for computing the amount of impedance seen at one end of a
transmission line, given the transmission line’s characteristic impedance, the terminating impedance,
and the transmission line’s length compared to the signal frequency’s wavelength. Ideally all
transmission lines should be terminated by impedance values precisely matching the line’s own
surge impedance, as this will prevent signal “reflections” off of the mis-matched ends and render
the line’s length irrelevant, but in practice there will always be some degree of mis-match. The
standing waves created by reflected signals interfering with incident signals along the line will create
conditions where the amount of impedance exhibited at one end of the line does not match the
amount of impedance terminating the other end of the line.

The most extreme example of a transmission line’s ability to “transform” its terminating
impedance into some other impedance value at the other end occurs when the line is precisely
one-quarter of a wavelength9 from one end to the other. In this scenario any standing wave in the
line will have a node (minimum amplitude) at one end and an anti-node (maximum amplitude) at
the other. Consider these quarter-wavelength transmission lines, terminated with an open versus
with a short:

(open)

Maximum voltage
Minimum current

λ/4

Maximum impedance

Minimum voltage
Maximum current
Minimum impedance

Maximum voltage
Minimum current

λ/4

Maximum impedance

Minimum voltage
Maximum current
Minimum impedance

(short)

From these illustrations we see that a transmission line operating at one-quarter wavelength is
able to “transform” an open-circuit termination into a short-circuit as seen by the AC source, and
vice-versa.

9This length is based on the signal frequency as well as the speed of signal propagation within the transmission
line, which may be substantially slower than the speed of light in a vacuum for plastic-insulated transmission lines.
For example, one-quarter wavelength for a 150 MHz signal is 0.49965 meters for vacuum (or air) but only 0.32977
meters for a cable with a velocity factor of 0.66.
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For less-extreme termination values, the transformed impedance at the source-end of the quarter-
wave transmission line is computed using the following equation:

Zsource =
Z2
line

Ztermination

For example, if a 50-Ohm transmission line is terminated by a 100-Ohm resistor, the source will
“see” a 25 Ohm resistive impedance at the other end of the line:

λ/4

Zterm = 100 ΩZline = 50 ΩZsource = 25 Ω

This formula does not show the full complexity of the transformation offered by the transmission
line, because it only provides polar impedance magnitude (i.e. no indication of phase angle, or real
vs. imaginary components) and also because it only applies to transmission lines that are exactly
one-quarter wavelength from end to end. A Smith Chart, however, can show us the transformed
impedance at the source-end in full complex form as well as for transmission lines of any length.

The procedure for using a Smith Chart to compute line-transformed impedance is quite simple:

1. Mark on the Smith Chart the transmission line’s characteristic impedance. This will be a
point along the horizontal axis (i.e. a real number with no imaginary portion), normalized to
50 Ohms.

2. Mark on the Smith Chart the termination impedance value. This will be a point placed at the
appropriate location on the Chart, normalized to 50 Ohms. It will be a complex quantity, and
may be entirely real, entirely imaginary, or any combination thereof.

3. Draw a circle (using a compass) where the line’s impedance point is the circle center, starting
at the termination impedance, moving in a clockwise direction. The transmission line’s length
(in wavelengths) will equate to a certain angle of rotation that you draw:, a quarter-wavelength
being 180 degrees, a half-wavelength being 360 degrees, an eighth-wavelength being 90 degrees,
etc.

4. Note where your arc terminates, and de-normalize that complex value to determine the source-
end impedance on this transmission line.
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Here we see the previous example (100 Ohm resistor at the end of a 50 Ohm line) mapped on a
Smith Chart:
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Zsource = 25 Ω Zline = 50 Ω Zterm = 100 Ω

This is a fairly trivial example because the terminating impedance is purely resistive (placing
the starting point on the real axis) and the transmission line is exactly one-quarter wavelength long
(making the arc 180o), but even in this simple case we can see some interesting possibilities. For
example, if the transmission line were half as long (i.e. one-eighth of a wavelength), the arc would
trace only 90o which would place the source-end impedance at (50)(0.8 − j0.6) Ohms, which is
40− j30 Ohms (de-normalized) or 50 Ohms 6 36.87o in polar form. As non-intuitive as it may seem,
a one-eight wavelength 50-Ohm transmission line would make the 100 Ohm terminating resistance
“look” like a series RC network with 40 Ohms of resistance and 30 Ohms of capacitive reactance.
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3.8 Series-parallel analysis using Smith Charts

Phasor diagrams are useful for any AC circuit quantities known to be additive in nature. This
would include voltages in series, currents in parallel, impedances in series, and admittances in
parallel. Impedance-Admittance Smith Charts are particularly useful for representing series-parallel
networks as we shall soon see.

Consider the following series network with its component impedances represented in a standard
phasor diagram:

+R-R

+jXL

-jXC

ZC ZR ZL

Zseries

ZC

ZR

ZL

Zseries

0 - j100 Ω 30 + j0 Ω 0 + j20 Ω

0 + j20 Ω

30 + j0 Ω

0 - j100 Ω

30 - j80 Ω

30 - j80 Ω

From an assumed starting point of zero Ohms impedance (the graph’s origin), we see the first
vector pointing down 100 units, followed by the next vector pointing right 30 units, and finally the
third vector pointing up 20 units. The result of this vector sum is the impedance 30 − j80 Ohms,
represented by the green-colored vector.
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In order to show how these same phasor quantities may be mapped on to a Smith Chart, we
must first “normalize” the given component impedances to a 50 Ohm standard:

• ZC = 0− j100 Ω = (50)(0− j2) normalized to 50 Ohms

• ZR = 30 + j0 Ω = (50)(0.6 + j0) normalized to 50 Ohms

• ZL = 0 + j20 Ω = (50)(0 + j0.4) normalized to 50 Ohms
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ZC

0 - j2

0.6 + j0
ZR

ZL

Zseries

0.6 - j1.6

0 + j0.4

Like all sums, this one begins at a starting value of zero which means a short-circuit (zero
impedance) at the far-left end of the real axis. From there we see each phasor impedance drawn as
an arc (following the Smith Chart’s circular patterns) rather than a straight arrow-shaped vector.
As with the standard phasor diagram, though, the final sum of these three component impedances
is still 30− j80, which is normalized to 50 Ohms as (50)(0.6− j1.6).
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So far it does not appear that the Smith Chart offers any advantage over a standard phasor
diagram plotted on a (rectangular) Cartesian coordinate grid. If anything, it’s more confusing
than stacking straight-arrow vectors tip-to-tail! However, the ability for Smith Charts to translate
between impedances (Z) and admittances (Y ) allows them to represent combinations of series and
parallel components much easier than a conventional phasor diagram.

Consider the following series-parallel network, using the same three components we just saw
connected in series:

ZC

ZR ZL

0 - j100 Ω

30 + j0 Ω 0 + j20 Ω

Ztotal

We cannot stack the three components’ phasor impedance vectors tip-to-tail in a phasor diagram
like we could before, because the three impedances don’t add in this series-parallel network. ZR

and ZL certainly add because those two components are connected in series, but ZC is connected in
parallel with the ZR ↔ ZL series subnetwork, and we know parallel impedances don’t add.

Parallel admittances do add, however, and so what could be done is to stack the ZR and ZL

phasor arrows tip-to-tail (because they add), then convert that phasor impedance sum into a phasor
admittance, then add to that the capacitor’s admittance to arrive at a total admittance for the
whole network, then finally convert that total admittance value (Ytotal) into a total impedance value
(Ztotal). The Smith Chart’s ability to convert between equivalent impedance and admittance values
will accomplish what a standard Cartesian-coordinate phasor diagram cannot.

Smith Charts actually provide two different strategies for this graphical series-parallel network
analysis, each with its own advantages and disadvantages:

1. Use a standard (Z) Smith Chart, converting between impedance and admittance values by
“reflecting” impedance values across from the Chart’s center-point to read admittance values
and vice-versa. This strategy uses the simple version of the Smith Chart but is complicated by
the need to occasionally located points opposite each other from the center (coordinate 1,0).

2. Use an impedance-admittance (Z/Y ) Smith Chart, converting between impedance and
admittance values simply by reading the same point’s coordinates off of the opposing Chart’s
divisions. This method is much simpler in terms of impedance-admittance translation, but it
requires the use of the relatively “cluttered” impedance-admittance version of the Smith Chart
with its opposing sets of circles rendered in different colors.

We will apply both these methods to the RLC network shown here, in the following subsections.
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3.8.1 Series-parallel network on the Z Smith Chart

First we will compute total impedance for this RLC network using an impedance-only Smith Chart.
Our first step, as always, is to normalize each component’s phasor values suitable to the Chart’s
standard value. Since the capacitor is in parallel with the series combination of the other two
components, we will need to have its value expressed as an admittance rather than an impedance.
YC may be read opposite the Chart’s center-point from the ZC point. In this case, the location
opposite 0− j2 is 0 + j0.5:

• ZR = 30 + j0 Ω = (50)(0.6 + j0) normalized to 50 Ohms

• ZL = 0 + j20 Ω = (50)(0 + j0.4) normalized to 50 Ohms

• ZC = 0− j100 Ω = (50)(0− j2) normalized to 50 Ohms ; YC = (0.02)(0 + j0.5) normalized to
20 milliSiemens
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ZC = (50)(0 - j2) Ω

YC = (0.02)(0 + j0.5) S

ZL = (50)(0 + j0.4) Ω

ZR = (50)(0.6 + j0) Ω

ZR + ZL

YC = (0.02)(0 + j0.5) S

Ztotal = (50)(0.822 + j0.192) Ω

YR↔L

Ytotal = (0.02)(1.154 - j0.269) S
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Starting at zero impedance (short) for the series ZR ↔ ZL combination, we follow the
impedance Chart (green) to plot curved arrows for ZR and ZL. At the sum of those two phasors
we must then translate that series impedance value into an admittance by locating the point
exactly opposite the Chart’s center. There, we plot another curved arrow representing YC arcing
upward +j0.5 normalized units. At this arrow’s tip we have a total normalized admittance value
(Ytotal = (0.02)(1.154 − j0.269) Siemens) for the whole series-parallel network, which we then
go across from the Chart’s center-point to find a whole-network normalized impedance value of
(Ztotal = (50)(0.822 + j0.192) Ohms). De-normalizing these, we get 0.0231 − j0.00538 Siemens for
total admittance and 41.1 + j9.59 Ohms.

It should be obvious to anyone reading this and trying to map these values on the Smith Chart
for themselves that it is impossible to achieve that many digits of precision merely by visually
inspecting the Chart, no matter how much care is taken in doing so. In full disclosure I admit
to using a calculator to compute these precise impedance and admittance values. However, even
if we round the final impedance value to the nearest divisions on the impedance (green) Chart to
(50)(0.8 + j0.2) Ohms we get a value that is fairly close to the correct result: 40 + j10 Ohms. It
should impress you, the reader, that the Smith Chart is able to graphically estimate this network’s
series-parallel impedance using nothing more than simple arithmetic to count along its divisions, and
even with access to a calculator capable of complex-number arithmetic the Smith Chart has value
in being able to check for any major calculated errors against the approximate result it provides.
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3.8.2 Series-parallel network on the Z-Y Smith Chart

Next we will compute total impedance for the same RLC network using an impedance-admittance
Smith Chart. Our first step, as always, is to normalize each component’s phasor values suitable to
the Chart’s standard value. Once again, we need to know the capacitor’s value as an admittance
rather than an impedance because of its parallel relationship to the other two components. YC may
be read directly off the Chart’s admittance (burgundy) coordinates after locating the ZC point on
the impedance (green) coordinates:

• ZR = 30 + j0 Ω = (50)(0.6 + j0) normalized to 50 Ohms

• ZL = 0 + j20 Ω = (50)(0 + j0.4) normalized to 50 Ohms

• ZC = 0− j100 Ω = (50)(0− j2) normalized to 50 Ohms ; YC = (0.02)(0 + j0.5) normalized to
20 milliSiemens
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Ztotal = (50)(0.822 + j0.192) Ω

ZR = (50)(0.6 + j0) Ω

ZL = (50)(0 + j0.4) Ω

YC = (0.02)(0 + j0.5) S



64 CHAPTER 3. TUTORIAL

Starting at zero impedance (short) for the series ZR ↔ ZL combination, we follow the
impedance Chart (green) to plot arrows for ZR and ZL. At the sum of those two phasors we
then regard that point as an admittance (on the burgundy Chart) and add to it YC by arcing
downward +j0.5 normalized units. At the final arrow’s tip we may read the network’s total
normalized admittance (Ytotal = (0.02)(1.154 − j0.269) Siemens) and total normalized impedance
(Ztotal = (50)(0.822 + j0.192) Ohms). De-normalizing these, we get 0.0231 − j0.00538 Siemens for
total admittance and 41.1 + j9.59 Ohms.

Again, it should be obvious to anyone reading this and trying to map these values on the
Smith Chart for themselves that it is impossible to achieve that many digits of precision merely
by interpreting the Chart. These figures were actually computed using a complex-number calculator
to achieve three significant digits of precision. However, even the rounded value read from the
nearest divisions on the impedance (green) Chart of (50)(0.8 + j0.2) Ohms is quite close to the
correct answer: 40+ j10 Ohms. Once again the Smith Chart proves its worth as a means to quickly
estimate series-parallel impedance.
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3.9 LC impedance-transformation networks

An interesting and useful property of inductor-capacitor networks is their ability to make the
impedance of a load “look” different to a connected source. As an example of this, consider the
following network connected between a 200 Volt AC source and a 50 Ohm resistive load. In order to
keep this example as simple as possible, we specify reactance values for the inductor and capacitor
rather than actual inductance and capacitance values (along with a specified source frequency):

XL = 50 Ω

XC = 100 Ω Rload = 50 ΩVsource = 200 V

If we perform the necessary series-parallel impedance calculations for the LC network and resistive
load, we find that the total impedance (as calculated from the perspective of the input terminal where
the source would connect) is precisely 100 Ohms resistive (i.e. 100 Ω 6 0o or 100 + j0) which is
twice the impedance of the load with the same phase angle.

XL = 50 Ω

XC = 100 Ω Rload = 50 Ω
Ztotal

100 Ω ∠ 0o

Therefore, when this circuit is energized we find the following voltage, currents, and powers at
the source and load:

XL = 50 Ω

XC = 100 Ω

2 A ∠ 0o

200 V 50 Ω

2.828 A ∠ -45o

141.421 V ∠ -45o

Psource = (200 V)(2 A) = 400 W Pload = (2.828 A)2(50 Ω) = 400 W
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Note how with the simple LC network the source “sees” a 100 Ohm load impedance even though
the actual load is 50 Ohms, and also how load power and source power are precisely equal (at least
given an ideal inductor and an ideal capacitor having no dissipative losses).

We may achieve the same load impedance transformation by exchanging the placement of the
inductor and capacitor, but maintaining the original reactance values (50 Ohms in series, 100 Ohms
in parallel). The only difference is in the phase shift of current and voltage at the 50 Ohm resistive
load:

2 A ∠ 0o

200 V 50 Ω

Psource = (200 V)(2 A) = 400 W Pload = (2.828 A)2(50 Ω) = 400 W

XL = 100 Ω

XC = 50 Ω 2.828 A ∠ 45o

141.421 V ∠ 45o

One way to view these LC impedance-transformation networks conceptually is to view the series-
connected component (with the load) as adding to the load’s impedance, and the parallel-connected
component (with the source) correcting that increased impedance to become purely resistive as seen
by the source.
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It is also possible to transform a resistive load’s impedance down rather than up, by altering the
series-parallel relationship of the reactive components and suitably altering their reactance values.
In this case, the LC network transforms the 50 Ohm resistive load into 25 Ohms as “seen” by the
AC source:

50 ΩXC = 50 Ω

XL = 25 Ω

25 Ω ∠ 0o

Ztotal

Therefore, when this circuit is energized we find the following voltage, currents, and powers at
the source and load:

200 V 50 ΩXC = 50 Ω

XL = 25 Ω8 A ∠ 0o

282.843 V ∠ -45o

5.657 A ∠ -45o

Psource = (200 V)(8 A) = 1600 W Pload = (5.657 A)2(50 Ω) = 1600 W

Again, we may conceptually understand these LC impedance-transformation networks by
considering the parallel-connected component as a means to diminish the load’s apparent impedance,
and considering the series-connected component as a means to cancel out any remaining reactance
so that the source sees a purely resistive load. The reason this network decreases the load’s apparent
impedance is because the component connected directly to the load is in parallel, while the former
network increased the load’s apparent impedance because the component connected directly to the
load was in series.

As before with the impedance-boosting network, we may swap the positions of L and C and
achieve the same effect if the reactance values remain the same (i.e. 50 Ohm inductive reactance in
parallel with the 50 Ohm load resistance and 25 Ohm capacitive reactance in series with the source).
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Impedance transformation occurs because capacitors and inductors are (ideally) non-dissipative
components. Stacking inductance and capacitance in a series-parallel network with a load obviously
alters the total impedance value, thus making the load “appear” to have a different impedance than
it does from the perspective of the source, but the non-dissipative nature of the LC network means
no energy is “wasted” therein and the resistive load must receive all of the source’s power. Just as
a transformer with a turns ratio other than 1:1 clearly presents a different voltage to the load than
what the source supplies, and given the non-dissipative nature of the transformer and the Law of
Energy Conservation this must mean current gets transformed in the inverse ratio.

A common application of this impedance-transformation method is matching the impedance of an
antenna and feedline system to the output impedance of a radio-frequency power amplifier, such as
that found in a radio transmitter system. The principle involved here is the Maximum Power Transfer
Theorem, which states the amount of power delivered to a load from a source is maximized when the
load’s impedance is adjusted to equal that of the source10. Proper impedance-matching between load
and source is also necessary to minimize signal reflections and standing waves along transmission
lines such as the feedlines connecting radio transceivers to their respective antennas. Often referred
to as transmatch networks, an example of impedance transformation by an LC network11 is found
in Lew McCoy’s “ultimate transmatch” designed for amateur radio operations:

Radio
transmitter

Feedline

Dipole
antenna

Z0

Zt

Lew McCoy’s "Ultimate Transmatch"

Adjustable capacitors and inductors are typically provided in transmatch networks so that the
radio operator may “align” the unit to the operating frequency of the transmitter as well as to the
exact impedances of the amplifier and antenna/feedline system. McCoy’s general instructions for
using this particular network (as written in his July 1970 QST magazine article “The Ultimate
Transmatch”) include setting both variable capacitors to maximum capacitance, adjusting the
variable inductor until minimum reflected power is obtained (i.e. as close to a perfect standing
wave ratio as possible), and then adjusting variable capacitors C1 and C2 by trial-and-error until
the best match is obtained, as indicated by the SWR reaching unity or reflected power decreasing

10This would be the source’s equivalent Thévenin or Norton impedance.
11In fairness, McCoy’s design also incorporates a wideband transformer at its output, accounting for a 1:4 impedance

transformation of its own.
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to zero. Although multiple combinations of C and L values are possible for matching any given
transmitter to its line and antenna at a particular frequency, McCoy recommends optimizing for a
solution using maximum capacitance12.

A photograph of an impedance-matching network for a 50 kW AM broadcast transmitter
operating at 550 kHz is shown in the following photograph, with silver-coated inductor tubes to
minimize resistance at high frequencies13. The entire network is housed inside of a small shielded
room, visible through the open door:

A caveat to this method of impedance transformation is that it only functions properly at (or
near) one frequency value. Other impedance-transformation techniques such as transformers and
amplifiers work over much broader frequency ranges.

12For example if a combination of high L and low C results in a good match, but another combination consisting
of low L and high C also happens to result in a good match, the latter combination is preferable.

13At radio frequencies, the skin effect causes the majority of the current to travel on the outside surface of the
conductor rather than the interior. Therefore, the electrical conductivity of the conductor’s surface material matters
more than its interior bulk. This is also why most RF conductors are hollow rather than solid metal: having a solid
RF conductor would just be a waste of metal since nearly all of the current travels along the exterior surface.



70 CHAPTER 3. TUTORIAL

3.10 Matching network design using Smith Charts

As described in the previous section, a very useful application of inductor-capacitor networks is to
match impedances between otherwise mis-matched sources and loads. Smith Charts are a useful tool
for designing such impedance-transformation networks. Let us begin with the first application from
the last section, an LC network intended to “transform” a 50 Ohm load impedance into a 100 Ohm
impedance for connection to a source. This time, however, we will use a Smith Chart to determine
necessary reactance values within the network to achieve the desired impedance doubling:

Rload = 50 Ω
???

Matching network

Zin = 100 Ω

Our goal is for the matching network to boost the load’s impedance value of 50 Ohms to a value
of 100 Ohms for the source to power. Thus, 50 Ohms will be the “starting point” in our Smith
Chart analysis and 100 Ohms will be our “ending point”.

A mathematically obvious way to make a 50-Ohm load “look like” 100 Ohms to a source would
be to simply make the matching network be a series 50 Ohm resistance with the load. However,
this solution would not be good for any application requiring the efficient use of energy because
that extra 50 Ohms of resistance would dissipate energy uselessly in the form of heat. This is why
we always use inductors and capacitors to perform impedance transformation rather than resistors:
inductors and capacitors are reactive components, meaning they store and release energy rather
than dissipate energy. This results in much more of the source’s energy arriving at the 50 Ohm
load where we want14 it. The task of selecting appropriate inductors and capacitors to perform this
impedance transformation is not as mathematically simple as adding resistance, however, hence the
use of a Smith Chart as a useful guide.

14In a realistic application, the load would not be a resistor either but rather something like a radio transmitting
antenna where the AC power could do useful work.
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To begin, we will plot the two known impedances, Zload (50 Ohms resistive) marked by a solid
dot, and the desired Zin (100 Ohms resistive) marked by a circle:
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Zload = (50)(1 + j0) Ω Zin = (50)(2 + j0) Ω

Somehow we need to find a pathway from the starting point (dot) to the ending point (circle) by
adding reactive impedances and/or admittances to the load’s 50 Ohm value, plotting these added
quantities as vectors following the curvature of the Chart’s resistance and conductance circles. Again,
the mathematically simplest solution would be to draw a straight-line vector from the starting point
to the ending point, but that would mean adding 50 more Ohms of resistance to the circuit, which
we already ruled out as a valid solution because it would dissipate energy wastefully. In order to not
dissipate energy needlessly, we must limit ourselves to adding inductive and capacitive reactances, in
the form of series impedances (following the Z portion of the chart) or parallel admittances (following
the Y portion of the chart).
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One solution consists of adding 50 Ohms of ZL then adding 10 milliSiemens of YC . The addition
of ZL = 0 + j50 Ohms means tracing an arc from the starting point (50 Ohms resistive) along
the circumference of the (50)(1 + j0) Ohm resistance circle until we reach the (50)(1 + j1) location
on the impedance Smith Chart. Then, we trace a second arc following the circumference of the
(0.02)(0.5 + j0) Siemens conductance circle down to our ending point of 100 Ohms (resistive). This
second arc stretches from the −j0.5 admittance curve to the j0 admittance curve, an addition of
+0.5 (normalized) admittance:
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Zload = (50)(1 + j0) Ω Zin = (50)(2 + j0) Ω

ZL = (50)(0 + j1) Ω YC = (0.02)(0 + j0.5) S

Rload = 50 Ω

Matching network

Zin = 100 Ω

ZL = 0 + j50 Ω

ZC = 0 - j100 Ω
YC = 0 + j0.01 S

In schematic form, this network consists of 50 Ohms of inductive reactance in series with the 50
Ohm load, then 100 Ohms of capacitive reactance (i.e. 10 milliSiemens of capacitive susceptance)
in parallel with that.
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A similar solution uses another two-step arc approach to reaching the 100 Ohms resistive ending
point from the 50 Ohms resistive starting point, but this time along the lower half of the Smith
Chart:
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Zload = (50)(1 + j0) Ω Zin = (50)(2 + j0) Ω

Rload = 50 Ω

Matching network

Zin = 100 Ω

ZC = (50)(0 - j1) Ω YL = (0.02)(0 - j0.5) S

ZC = 0 - j50 Ω

ZL = 0 + j100 Ω
YL = 0 - j0.01 S

Now, with either solution, determining actual component values is as simple as solving for L and
C based on the impedances obtained from the Smith Chart as well as the known signal frequency
(f). For example, at a frequency of 1 MHz the component values would be as follows:

Rload = 50 Ω

Matching network

Zin = 100 Ω ZC = 0 - j50 Ω

ZL = 0 + j100 Ω
Rload = 50 Ω

Matching network

Zin = 100 Ω
ZC = 0 - j100 Ω

7.958 µH

ZL = 0 + j50 Ω
1.592 nF 15.92 µH

3.183 nF
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Chapter 4

Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

75
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4.1 Capacitor parasitics

4.1.1 Model of a real capacitor

An ideal capacitor exhibits only capacitance, with no inductance, resistance, or other characteristics
to interfere. Real capacitors exhibit all these phenomena to varying degrees, and we collectively refer
to these undesirable traits as parasitic effects. The following diagram models some of the parasitic
effects observed in real capacitors:

LseriesRseries

Rleakage

Cideal

Rsoak1Csoak1

Rsoak2Csoak2

Capacitor model

In addition to the capacitance the capacitor is supposed to exhibit (Cideal), the capacitor also
has parasitic resistance (Rseries, also known as Equivalent Series Resistance, or ESR), parasitic
inductance (Lseries), and additional energy storage in the form of soakage (also known as dielectric
absorption) whereby the dielectric substance itself absorbs and releases energy after relatively long
periods of time compared to the main (ideal) capacitance.

Some of these parasitic effects – such as leakage resistance and soakage – affect the capacitor’s
performance in DC applications. Most of the other parasitic effects cause problems in AC and pulsed
applications. For example, the effective series capacitor-inductor combination formed by Cideal and
Lseries will cause resonance to occur at a particular AC frequency, resulting in much less reactance
at that frequency than what would be predicted by the capacitive reactance formula XC = 1

2πfC .

Next we will explore common mechanisms for each of these effects.



4.1. CAPACITOR PARASITICS 77

4.1.2 Parasitic resistance in capacitors

Wire resistance, of course, plays a part in this parasitic effect, but this is generally very small due to
the short conductor lengths we typically see with capacitors. More significant is dielectric losses –
energy dissipation caused by the stressing and relaxation of dipoles within the dielectric material –
which act like resistance because energy ends up leaving the component (in the form of heat) and not
returning to the circuit. Electrolytic capacitors have an additional source of parasitic resistance, in
the form of the electrolytic gel substance used to make electrical contact from the metal-foil “plate”
to the surface of the dielectric layer.

Another form of parasitic resistance within a capacitor behaves like a resistor connected in parallel
with the ideal capacitance (Rleakage), resulting from the dielectric not being a perfectly insulating
medium. This parasitic characteristic results in a small current passing through the capacitor even
when the voltage across the capacitor is steady (i.e. dV

dt is zero).

4.1.3 Parasitic inductance in capacitors

Any time a magnetic field forms around a current-carrying conductor, energy is stored in that
magnetic field. We call this magnetic-based energy-storing capability inductance, and of course
all capacitors must have some inductance due to the wire leads serving as connection points to
the capacitor’s metal plates. Much of a capacitor’s parasitic inductance may be minimized by
maintaining short lead lengths as it attaches to a printed-circuit board.

Parasitic inductance is a problem for capacitors in AC applications because inductive reactance
(XL) tends to cancel out capacitive reactance (XC). If we plot the impedance of a capacitor as a
function of frequency, we would expect an ideal capacitor to manifest a straight-line descent on a
logarithmic plot. However, what we see is that at a certain frequency the series parasitic inductance
resonates with the capacitance leaving only parasitic resistance (ESR), and then past that frequency
the inductive effects overshadow the capacitance:

f

Z

ZC(ideal)

ZC(real)

ESR
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4.1.4 Other parasitic effects in capacitors

Soakage is an interesting effect resulting from dipole relaxation within the dielectric material itself,
and may be modeled (as shown) by a series of resistor-capacitor subnetworks. This effect is especially
prominent in aluminum electrolytic capacitors, and may be easily demonstrated by discharging a
capacitor (by briefly connecting a shorting wire across the capacitor’s terminals) and then monitoring
the capacitor’s DC voltage slowly “recover” with no connection to an external source.



4.2. INDUCTOR PARASITICS 79

4.2 Inductor parasitics

4.2.1 Model of a real inductor

An ideal inductor exhibits only inductance, with no capacitance, resistance, or other characteristics
to interfere. Real inductors exhibit all these phenomena to varying degrees, and we collectively refer
to these undesirable traits as parasitic effects. The following diagram models some of the parasitic
effects observed in real inductors:

Rseries Lideal

Cparallel

Inductor model

Lmutual

In addition to the inductance the inductor is supposed to exhibit (Lideal), the inductor also
has parasitic resistance (Rseries, also known as Equivalent Series Resistance, or ESR), parasitic
capacitance (Cparallel), and mutual inductance (Lmutual) with nearby wires and components.

Some of these parasitic effects – such as equivalent series resistance – affect the inductor’s
performance in DC applications. Most of the other parasitic effects cause problems in AC and
pulsed applications. For example, the effective inductor-capacitor “tank circuit” formed by Lideal and
Cparallel will cause resonance to occur at a particular AC frequency, resulting in much more reactance
at that frequency than what would be predicted by the inductive reactance formula XL = 2πfL.

Next we will explore common mechanisms for each of these effects.
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4.2.2 Parasitic resistance in inductors

Wire resistance plays a dominant role in this parasitic effect due to the typically long lengths of wire
necessary to wind the coil that forms most inductors. Wire resistance is not the only dissipative
mechanism at work, though. Other losses include magnetic hysteresis of the iron core material as well
as eddy currents induced in the iron core. An “eddy” current is a circulating electric current induced
within the iron core of an inductor, made possible by the fact that iron is an electrically-conductive
material as well as being ferromagnetic. These circulating currents do no useful work, and dissipate
energy in the form of heating the iron. They may be minimized by forming the iron core from pieces
of iron that are electrically insulated from one another, e.g. forming the iron core from laminated
sheets or powdered particles of iron where each sheet or particle is electrically insulated from the
next by a layer of non-conductive material on its outer surface.

The series resistance of an inductor is always frequency-dependent. In DC conditions (i.e.
frequency of zero Hertz) there will be the basic wire resistance of the coil at play. As frequency
increases from zero, however, both the magnetic core losses from hysteresis and eddy currents also
increase which add to the DC resistance to form a larger ESR. At extremely high frequencies the
skin effect1 further adds to the inductor’s ESR.

1At high frequencies, electric current travels more toward the outer surface of a conductor rather than through the
conductor’s entire cross-section, effectively decreasing the conductor’s cross-sectional area (gauge) as frequency rises.
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4.2.3 Parasitic capacitance in inductors

Any time an electric field forms between two conductors, energy is stored in that electric field. We
call this electric-based energy-storing capability capacitance, and of course all inductors must have
some capacitance due to the insulating media between wire leads as well as between adjacent turns
of wire within the coil (and between the wire turns and the iron core).

Parasitic capacitance is a problem for inductors in AC applications because capacitive reactance
(XC) tends to cancel out inductive reactance (XL). If we plot the impedance of an inductor as
a function of frequency, we would expect an ideal inductor to manifest a straight-line ascent on
a logarithmic plot. However, what we see is that at a certain frequency the parallel parasitic
capacitance resonates with the inductance to create a nearly-infinite impedance, and then past that
frequency the capacitive effects overshadow the inductance:

f

Z

ESR

ZL(ideal)
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Precious little may be done to eliminate parasitic capacitance within any inductor, whereas
parasitic inductance is fairly easy to minimize within a capacitor. This explains why when faced with
an equivalent choice between a circuit design using capacitors and a circuit design using inductors,
capacitors nearly always win. Simply put, it is easier to make a nearly-ideal capacitor than it is to
make a nearly-ideal inductor.

This also explains why the self-resonant frequency of most inductors is much lower than the
self-resonant frequency of most capacitors: all other factors being equal, an inductor will have more
parasitic capacitance in it than an equivalent capacitor will have parasitic inductance within it,
making the LC product greater for the inductor than for the capacitor.

4.2.4 Other parasitic effects in inductors

Mutual inductance occurs whenever adjacent conductors’ magnetic fields link with one another,
which is difficult to avoid especially in physically dense circuit layouts. This parasitic effect may
be minimized by proper placement of inductive components (e.g. keeping them spaced as far apart
from each other as possible, orienting their axes perpendicular to each other rather than parallel)
as well as by core designs with strong magnetic field containment (e.g. toroidal cores contain their
magnetic fields better than rectangular cores).
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Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

83
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.



5.1. CONCEPTUAL REASONING 89

5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Simplification as a problem-solving strategy

Thought experiments as a problem-solving strategy

Limiting cases as a problem-solving strategy

Annotating diagrams as a problem-solving strategy

Interpreting intermediate results as a problem-solving strategy

Graphing as a problem-solving strategy

Converting a qualitative problem into a quantitative problem

Converting a quantitative problem into a qualitative problem

Working “backwards” to validate calculated results



90 CHAPTER 5. QUESTIONS

Reductio ad absurdum

Re-drawing schematics as a problem-solving strategy

Cut-and-try problem-solving strategy

Algebraic substitution

???
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5.1.3 Network frequency-sweep tests

Qualitatively sketch the results of frequency-sweep tests for the following networks, showing their
impedance values on the Smith Chart as the test frequency is swept from zero Hz (DC) to some
arbitrarily high frequency. Sketch a circular marker symbol at the low-frequency (DC) end of the
trace and a triangular marker symbol at the high-frequency end, assuming the Smith Chart is
normalized to 50 Ohms:
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Challenges

• Explain how the problem-solving strategy of limiting cases applies to these sweeps.
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5.1.4 Smith Chart test of a dipole antenna

Below we see the results of frequency-sweep test for a dipole antenna:
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Identify the point on this curve representing a test frequency of 0 Hz (DC), and also the point
representing the highest test frequency.

Where on this frequency sweep does the antenna resonate as it should for maximum effectiveness?

Identify the potential for this antenna to exhibit a second resonant frequency, and explain how
this is possible.

Challenges

• Explain how the problem-solving strategy of limiting cases applies to these sweeps.
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5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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5.2.3 Practice: complex number calculations

These complex-number arithmetic problems are presented to you, complete with answers (shown in
bold), for the purpose of practice, since nearly all AC circuit calculations will need to be performed
using complex numbers. Use these practice calculations to check your ability either to perform
these calculations “by hand” (using trigonometric functions) or your ability to use your calculator’s
complex-number functionality.

Note: electronic hand calculators and computer-based calculation programs use the proper
mathematical notation i to represent imaginary numbers rather than j. The letter j is used in
electrical engineering work in order to avoid confusion with i being misinterpreted as “current”.
Also note that calculators and software programs usually default to radians for angle measurement
rather than degrees, and will have to be configured (or converted) for degrees in order to handle the
polar-form complex quantities shown here. Check the “mode” options of your hand calculator to
ensure angles are in the correct unit and also that it will display in either rectangular or polar.

Addition and subtraction:

(5 + j6) + (2− j1) = 7+ j5

(10− j8) + (4− j3) = 14− j11

(−3 + j0) + (9− j12) = 6− j12

(3 + j5)− (0− j9) = 3+ j14

(25− j84)− (4− j3) = 21− j81

(−1500 + j40) + (299− j128) = −1201− j88

(256 15o) + (106 74o) = 31.356 30.87o

(10006 43o) + (12006 − 20o) = 1878.76 8.311o

(5226 71o)− (856 30o) = 461.236 77.94o

Multiplication and division:

(256 15o)× (126 10o) = 3006 25o

(16 25o)× (5006 − 30o) = 5006 − 5o

(5226 71o)× (336 9o) = 172266 80o

10 6 −80o

1 6 0o
= 106 − 80o

25 6 120o

3.5 6 −55o
= 7.1426 175o

−66 6 67o

8 6 −42o
= 8.256 − 71o

(3 + j5)× (2− j1) = 11+ j7

(10− j8)× (4− j3) = 16− j62

(3+j4)
(12−j2) = 0.1892+ j0.3649
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Reciprocation:

1
(15 6 60o)

= 0.06676 − 60o

1
(750 6 −38o)

= 0.001336 38o

1
(10+j3) = 0.0917− j0.0275

1
1

15 6 45o
+ 1

92 6 −25o

= 14.066 36.74o

1
1

1200 6 73o
+ 1

574 6 21o

= 425.76 37.23o

1
1

23k 6 −67o
+ 1

10k 6 −81o

= 7.013k 6 − 76.77o

1
1

110 6 −34o
+ 1

80 6 19o
+ 1

70 6 10

= 29.896 2.513o

1
1

89k 6 −5o
+ 1

15k 6 33o
+ 1

9.35k 6 45

= 5.531k 6 37.86o

1
1

512 6 34o
+ 1

1k 6 −25o
+ 1

942 6 −20

+ 1

2.2k 6 44o

= 256.46 9.181o
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Sign reversal:

−(456 70o) = 456 − 110o

−(906 − 20o) = 906 160o

−(5 + j8) = −5− j8

−(−3 + j9) = 3− j9

−(10− j15) = −10+ j15

Practical suggestions for using your calculator to perform these operations:

• Surround each complex-number quantity with parentheses when setting up arithmetic
operations; e.g., (3 + j5) * (4 - j2) instead of 3 + j5 * 4 - j2. This habit will
guarantee your calculator executes the desired order of operations rather than assert its own.
For instance, in the example given here the calculator may choose to multiply j5 by 4 and
then add on 3 and −j2 since multiplication typically precedes addition, if the two complex
numbers are not encapsulated in their own sets of parentheses.

• Store all calculated results in memory and then recall from memory when re-using those values,
rather than re-entering previously-calculated values by hand or sampling previously-calculated
values from the multi-line display. Manually re-entering values invites rounding errors and
keystroke errors in all cases, and I’ve found certain calculators (I’m looking at you, TI !) fail to
properly enter complex-number values when sampled from their multi-line displays. Getting
in the habit of using your calculator’s memory locations is an all-around good habit that will
serve you very well!

Some Texas Instruments brand calculators such as the TI-84 offer an exponential key and
imaginary (i) key which allows you to enter numbers in complex exponential form (i.e. eiθ). With
the TI-84, for example, the complex number 10 − j8 may be entered in either of the two following
forms:

(10 - i8) or (10 - 8i)

The result may be displayed in either rectangular or polar forms according to the complex-
number display mode the TI-84 calculator has been set to. In rectangular mode the displayed result
for 10 − j8 will be 10 - 8i, whereas in polar mode the displayed result will be 12.806 e−38.66i.
Note how the TI-84 uses exponential notation for polar display, where the angle (−38.66 degrees, in
this example) is an imaginary power of e.

If you wish to enter a complex number in polar form on a TI-84, you must unfortunately express
the angle in units of radians (even though the calculator is able to display the result in degrees). For
example, to enter the number 256 15o into a TI-84 calculator, you must type:

25 ei15π/180
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The fraction π/180 is the conversion factor from degrees to radians, since there are 2π radians to
a full circle, or π radians to every 180 degrees. Thus, writing 15π/180 multiplies the desired angle (15
degrees) by the conversion factor π/180 to yield a power in radians. The obligatory i simply makes
this power an imaginary quantity, which is mathematically necessary with exponential notation for
describing a complex number. It should be noted that the order of entry for the power matters little.
i15π/180 works just as well as 15iπ/180 or 15π/180i.

A time-saving step some students find useful is to save the imaginary quantity iπ/180 to a
memory location in the TI-84 such as Z. That way, they can recall that imaginary factor from
memory instead of typing the whole thing by hand every time they wish to enter a polar-form
complex number. Supposing the memory location Z contains iπ/180, entering the number 256 15o

becomes as simple as:

25 e15Z or 25 eZ15

It should be understood that any memory location in your calculator is suitable for storing
iπ/180, not just Z. The TI-84 calculator even provides a Θ memory location (<Alpha>-<3>) that
you may use and find easy to remember because of its common association with angles. It should
also be understood that this imaginary quantity is not the same as i or j, which the calculator
already provides a dedicated function for. The imaginary quantity we’re storing in memory for the
purpose of entering polar-notation angles contains not only i but also the π/180 conversion factor
necessary for translating your degree entry into radians.

Some calculators provide easier means of entering and displaying complex numbers in polar form.
Both the Texas Instruments TI-36X Pro and TI-89 offer an angle symbol ( 6 ) for this purpose, the
TI-36X Pro being a much less expensive and less complex calculator than the TI-89. Entering the
number 25 6 15o into one of these calculators is as easy as typing 25 6 15, and likewise the result
will be displayed in this same form when the calculator is set to “polar” complex mode.
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5.2.4 Plotting component impedances on a Smith Chart

Plot points on a Smith Chart for the following components, assuming a 50 Ohm normalizing value
for the Chart:

• 200 Ohm resistor at 55 kHz

• 270 µH inductor at 10 kHz

• 150 nF capacitor at 14 kHz
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• Identify how the real-life presence of parasitic properties would affect each of these components’
placement on the Smith Chart.



5.2. QUANTITATIVE REASONING 105

5.2.5 Frequency-sweep simulation program

Write text-based computer programs (e.g. C, C++, Python) to calculate the complex impedances
of the following RLC networks over a frequency range of DC to 100 kHz, and then trace the results
of this sweep on the corresponding Smith Charts assuming they are all normalized to 50 Ohms:

Example #1
0 in
f0.
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0.47 mH

0.01 µF
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Example #2

Frequency sweep range of DC to 3 MHz, normalized to 50 Ohms:
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10 µH

2.2 nF

50 Ω

Challenges

• At what frequency does each of these networks’ power factor values equal unity?.
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5.2.6 Frequency-sweep test modifications

Example #1

First, calculate the R and L values for this network, assuming a Smith Chart normalized to 50
Ohms and frequency sweeping from 0 Hz to 25 kHz:
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How would this frequency-sweep test curve change if the resistor were to fail open?

How would this frequency-sweep test curve change if the inductor were to fail shorted?

How would this frequency-sweep test curve change if the resistor were to fail shorted?

How would this frequency-sweep test curve change if the test were re-done to cover a range of 0
Hz to 10 kHz instead of the original range which was 0 Hz to 25 kHz?
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Example #2

First, calculate the R and C values for this network, assuming a Smith Chart normalized to 50
Ohms and frequency sweeping from 0 Hz to 2 kHz:
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How would this frequency-sweep test curve change if the resistor were to fail open?

How would this frequency-sweep test curve change if the capacitor were to fail shorted?

How would this frequency-sweep test curve change if the test were re-done to cover a range of 0
Hz to 10 kHz instead of the original range which was 0 Hz to 2 kHz?

How would this frequency-sweep test curve change if the spacing between the capacitor’s plates
were reduced without altering any other parameters for the capacitor such as dielectric permittivity
or plate area?
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Example #3

Plot the frequency-sweep curve for the RC network shown, assuming a Smith Chart normalized
to 50 Ohms, both resistors being 50 Ohms each, and frequency sweeping from DC to infinity:

0 in
f0.

1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 1.
5

2 3 4 5 10

0.1

-0.1

0.2

-0.2

0.3

-0.3

0.4

-0.4

0.5

-0.5

0.6

-0.6

0.7

-0.7

0.8

-0.8

0.9

-0.9

1

-1

1.1

-1.1

1.2

-1.2

1.3

-1.3

1.4

-1.4

1.5

-1.5

2

-2

3

-3

4

-4

5

-5

10

-10

How would this frequency-sweep test curve change if the capacitor were to fail shorted?

How would the frequency-sweep test curve change if the high-end of the frequency sweep stopped
at some finite value instead of infinity?

How would the frequency-sweep test curve change if the capacitor were replaced by an inductor?

Challenges

• What common patterns do you see among all these examples?
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5.2.7 Impedance-matching networks

Design an impedance-matching network to match a 250 Ohm resistive load to a 50 Ohm resistive
source, at a frequency of 4 MHz.

Design an impedance-matching network to match a 20 Ohm resistive load to a 50 Ohm resistive
source, at a frequency of 200 kHz.

Challenges

• For each of these, describe an alternative solution.
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5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.
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Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully



130 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

5 March 2025 – corrected a minor error in the Tutorial, where I said “standard Smith Chart”
when I meant to say “Z-Y Smith Chart”.

9 October 2024 – minor edits to the Tutorial, including a typographical error correction (the word
“again” was missing the first letter and appearing as “gain”).

26 September 2024 – divided the Introduction chapter into sections, one with recommendations for
students, one with a listing of challenging concepts, and one with recommendations for instructors.
Also divided the Tutorial into sections.

7 March 2024 – elaborated on equivalent series and parallel network conversions in the “Impedance
and admittance Smith Charts” section of the Tutorial. Also corrected a few minor typographical
errors.

5 March 2024 – added more instructor notes.

1 March 2024 – made edits to the “Plotting impedance for an open” and “Plotting impedance
for a short” subsections of “The Basic Smith Chart” section of the Tutorial to discuss the lack of
energy storage in shorts and opens, and how this affects the complex-number impedance values of
each. Also edited image 5885 to show the imaginary portion of the infinite impedance as negative
in sign. Also corrected a spelling error.

29 February 2024 – minor edits to formatting on the “Frequency-sweep simulation program”
Quantitative Reasoning question. Also added 50 Ohm normalized qualification to the “Network
frequency-sweep tests” Conceptual Reasoning question. Also added a Technical References section
with inductor and capacitor parasitics.

135



136 APPENDIX F. VERSION HISTORY

27 February 2024 – populated the Introduction chapter with questions.

11-12 February 2024 – added a new Quantitative Reasoning question challenging students to
identify how various frequency-sweep test curves would be altered by changes made to their respective
RC, RL, or RLC networks. Added a Qualitative Reasoning question about a Smith Chart’s display
of a dipole antenna’s characteristic behavior.

7-8 January 2024 – added another network to the “Frequency-sweep simulation program”
Quantitative Reasoning question. Also added a new Case Tutorial section showing frequency-sweep
impedances on Smith charts for simple RLC networks using Elsie software, and corrected some
spelling errors.

1 October 2023 – added a Quantitative Reasoning question.

29 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

18 May 2022 – placed the “Practice: complex number calculations” questions into its own file
(case complexpractice.latex) so it may be shared amongst multiple modules.

3-4 March 2022 – added more content to the Tutorial and edited some illustrations.

11-17 January 2022 – added more content to the Tutorial and also questions.

6 January 2022 – completed an Xcircuit template file for a Smith Chart (image 4874.eps). This
required hand-editing of the Xcircuit PostScript output to get the circles and arcs placed precisely
where they need to be, but the result is a compact (just over 15 kB) graphic file that may be opened
by Xcircuit and annotated at will.

4 January 2022 – created sections for the Tutorial.

21 December 2021 – document first created.
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Identify given data, 113
Identify relevant principles, 113
Impedance, 8, 65
Impedance, characteristic, 55
Inductive reactance, 8, 42
Instructions for projects and experiments, 117
Intermediate results, 113
Inverted instruction, 116

Kirchhoff’s Current Law, 31

Kirchhoff’s Voltage Law, 31
Knuth, Donald, 122

Lamport, Leslie, 122
Limiting cases, 114

Magnetic field, 42
Maximum Power Transfer Theorem, 68
Metacognition, 88
Mho, 31
Moolenaar, Bram, 121
Murphy, Lynn, 83

Ohm, 31
Ohm’s Law, 31
Open circuit, 43
Open-source, 121

Parasitic effect, 76, 79
Parasitic property, 10
Phasor, 30
Phasor diagram, 30, 34
Problem-solving: annotate diagrams, 113
Problem-solving: check for exceptions, 114
Problem-solving: checking work, 114
Problem-solving: dimensional analysis, 113
Problem-solving: graph values, 114
Problem-solving: identify given data, 113
Problem-solving: identify relevant principles, 113
Problem-solving: interpret intermediate results,

113
Problem-solving: limiting cases, 114
Problem-solving: qualitative to quantitative, 114
Problem-solving: quantitative to qualitative, 114
Problem-solving: reductio ad absurdum, 114
Problem-solving: simplify the system, 113
Problem-solving: thought experiment, 5, 14, 113
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Problem-solving: track units of measurement,
113

Problem-solving: visually represent the system,
113

Problem-solving: work in reverse, 114
Pythagorean Theorem, 35

Qualitatively approaching a quantitative
problem, 114

Reactance, 65
Reactance, capacitive, 43
Reactance, inductive, 8, 42
Reading Apprenticeship, 83
Reductio ad absurdum, 114–116
Reflected signal, 55
Resonance, parallel, 36, 37

S-parameters, 48
Schoenbach, Ruth, 83
Scientific method, 88
Short circuit, 42
Siemens, 31
Siemens, Werner von, 31
Signal reflections, 55
Simplifying a system, 113
Skin effect, 8
Smith chart, 9, 11
Soakage, capacitor, 76, 78
Socrates, 115
Socratic dialogue, 116
SPICE, 83
Stallman, Richard, 121
Standing wave, 55
Surge impedance, 55

Tank circuit, 79
Thought experiment, 5, 14, 113
Torvalds, Linus, 121
Transmission line, 55

Unit phasor, 31
Units of measurement, 113

Visualizing a system, 113

Work in reverse to solve a problem, 114
WYSIWYG, 121, 122
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