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Chapter 2

Tutorial

2.1 Types of numbers

• Natural numbers – the numbers children first learn for counting (e.g. 1, 2, 3, 4 · · ·)

• Whole numbers – all natural numbers as well as zero (e.g. 0, 1, 2, 3, 4 · · ·)

• Integers – all whole numbers and their negative counterparts (e.g. · · ·, −3, −2, −1, 0, 1, 2,
3, · · ·)

• Rational numbers – any quantity that may be expressed as a quotient (division) of integers,
which include all integers (e.g. · · ·, − 3

7
, − 1

200
, 0

5
, 3

2
, 14

7
, · · ·)

• Irrational numbers – a quantity that cannot be expressed as a quotient (division) of integers
(e.g.

√
2, π, etc.). When written in decimal form, these are the numbers whose trailing digits

go on forever without repeating any pattern.

• Real numbers – the collection of all rational and irrational numbers.

• Imaginary numbers – any quantity involving the square root of a negative number (e.g.√
−1).

• Complex numbers – the collection of real and imaginary numbers.

5
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2.2 Basic operations

The four basic operations of arithmetic are:

• Addition

• Subtraction

• Multiplication

• Division

Addition is simply the direct accumulation of values, for example: 3 + 5 = 8

Subtraction is the opposite of addition, where each subtracting quantity takes away from the
total. For example: 14 − 5 = 9. Subtraction may also be viewed as the addition of a negative
number. For example, we could alternatively express 14 − 5 = 9 as 14 + (−5) = 9

Multiplication is repeated addition. For example, 4× 5 = 4 + 4 + 4 + 4 + 4 = 20. An alternative
representation for multiplication is to place the two quantities adjacent to each other and separated
by parentheses, for example: (4)(5) = 20. Less common is to separate the two quantities by a
center-dot symbol, for example: 4 · 5 = 20. In computer programming the standard symbol for
multiplication is the star (*) character.

Division is the opposite of multiplication, where the dividing quantity splits the total into that
many pieces and the result is the size of each of those pieces. For example, 36 ÷ 12 = 3. An
alternative representation for division is to place the two quantities on top and bottom of a horizontal
line segment, for example: 36

12
= 3. In computer programming the standard symbol for division is

the forward-slash (/) character.

You should notice already a sort of symmetry between some of these operations, in that one
always works to “un-do” another. For example, subtraction un-does addition: if 3 + 5 = 8 then
8− 5 = 3. Likewise, division un-does multiplication: if 4× 5 = 20 then 20÷ 5 = 4. These are called
complementary operations, and this is a central concept in the application of algebra.

Reciprocation is a form of division, representing the quotient formed by one divided by the
given number, for example the reciprocal of 4 is 1

4
= 0.25. Reciprocation is its own complementary

function, as reciprocating a reciprocated number yields that original number. For example: if
1

4
= 0.25 then 1

0.25
= 4
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From these four elementary arithmetic operations we may build other operations as well:

• Powers

• Roots

• Exponents

• Logarithms

A power is repeated multiplication. For example, 35 = 3 × 3 × 3 × 3 × 3 = 243. Negative
powers are valid too, and simply represent the reciprocal of the positive power. For example:
2−3 = 1

23 = 1

8
= 0.125. Certain powers have common names, for example anything raised to the

second power is a square, while anything raised to the third power is a cube. For example the square
of three is nine (32 = 9) and the cube of two is eight (23 = 8).

If we divide one power by another power, the result is a power that is the difference of the

degrees. For example: 4
5

43 = 4×4×4×4×4

4×4×4
= 45−3 = 4 × 4 = 42 = 16. This logically leads to the

non-intuitive conclusion that any quantity raised to the power of zero is one, because a power of

zero simply means the quotient of two identical powers. For example: 4
3

43 = 43−3 = 40 = 1

A root is the opposite (complementary operation) of a power. Taking the root of a quantity
yields the value you would have to raise by that specified power to get the original quantity. An
unadorned “radicand” symbol implies the second root, or square root. For example, if 42 = 16 then√

16 = 4; if 23 = 8 then 3
√

8 = 2. For even-valued roots such as square roots, the result actually
takes the form of both a positive and a negative number. For example:

√
16 has two answers, 4 and

−4.

An exponent is also repeated multiplication, and indeed is the same basic concept as a power.
The major difference between powers and exponents becomes evident when we change one of the
values but keep the other constant. For example, if we vary the “base” number while keeping the
superscript constant (e.g. 22, 32, 42, 52) we refer to it as a power function, but if we keep the “base”
number constant while varying the superscript (e.g. 22, 23, 24, 25) we refer to it as an exponential
function.

A logarithm is the opposite (complementary operation) of an exponent. Taking the logarithm of
a quantity yields the exponent necessary to raise the specified base value to get that original quantity.
Two standardized types of logarithms exist: the common logarithm (log) where 10 is the assumed
base, and the natural logarithm (ln) where e is the assumed base. For example: if 103 = 1000 then
log 1000 = 3. Similarly, ln(e4) = 4.
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2.3 Names of operational objects

Addition
Addend SumAddend

3  +  5  =  8

Subtraction 3  -  5  = -2
Minuend Subtrahend Difference

Division 12  ÷  3  =  4
Dividend Divisor Quotient

Multiplication 3  ×  5  =  15
Multiplicand Multiplier Product

Base

Exponent Argument

Exponents/Powers

Logarithms
Base

ExponentArgument

Roots 8 =  2
3

RootIndex

Radicand

10 3  =  1000

log10  1000  =  3
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2.4 Properties and identities of real numbers

In the following examples, every letter represents a real number, with repeated letters representing
the same quantities.

Additive identity:

a + 0 = a

Additive inverse:

a + (−a) = 0

Multiplicative identity:

a × 1 = a

Multiplicative inverse:

a × 1

a
= 1

Transitive property
if a = b and b = c then a = c

Associative property of addition:

a + (b + c) = (a + b) + c

Associative property of multiplication:

a(bc) = (ab)c

Commutative property of addition:

a + b = b + a
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Commutative property of multiplication:

ab = ba

Distributive property:

a(b + c) = ab + bc

Properties of exponents:

axay = ax+y

ax

ay
= ax−y

(ab)x = axbx

(

a

b

)x

=
ax

bx

(ax)y = axy

Properties of roots:

( x

√
a)x = a

x

√
ax = a if a ≥ 0

x

√
ab = x

√
a

x

√
b

x

√

a

b
=

x

√
a

x

√
b
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2.5 Fractions

A fraction represents a specified portion of some base quantity. For example, the fraction 3

5
means

a proportion equal to three parts out of five. A fraction comprised of equal values in the numerator
(upper) and denominator (lower) places (e.g. 7

7
or −12

−12
) is equal to one. A fraction may also be

thought of as an un-completed division problem, e.g. 3

5
means “three divided by five” which happens

to be equal to 0.6.

Fractions may be directly added to and subtracted from each other if they all share the same
denominator. So long as there is a common denominator, the numerators simply add and subtract
like regular numbers. For example:

4

9
+

3

9
=

4 + 3

9
=

7

9
Or,

10

14
+

1

14
− 3

14
=

10 + 1 − 3

14
=

8

14

Fractions may be directly multiplied regardless of their denominators. For example:

2

3
× 4

5
=

2 × 4

3 × 5
=

8

15

If we wish to add fractions that do not share a common denominator, we may multiply one or
more of those fractions by a “unity” fraction (i.e. a fraction with equal numerator and denominator
having an over-all value of one) to make the denominators equal without changing the actual value
of the multiplied fraction(s), since any real number multiplied by one is the original value (i.e. the
multiplicative identity). For example,

2

3
+

1

6
=

(

2

3
× 2

2

)

+
1

6
=

4

6
+

1

6
=

5

6

Reciprocation of a fraction means turning it upside-down so that what was the numerator is now
the denominator and vice-versa. For example, the reciprocal of 5

2
is 2

5
.

Division by a fraction is the same thing as multiplication by its reciprocal. For example:

6

7
÷ 1

3
=

6

7
× 3

1
=

6 × 3

7 × 1
=

18

7

If a fraction comprised of products contains identical multipliers in both the numerator and
denominator, those will cancel out. For example, the fraction 3×7

2×3
simplifies to 7

2
because the “3”

multiplier present on both top and bottom cancel out. The reason why may be shown as follows:

3 × 7

2 × 3
=

7 × 3

2 × 3
=

7

2
× 3

3
=

7

2
× 1 =

7

2
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A proper fraction is one where the numerator is less than the denominator. Examples include 3

8
,

−5

19
, and 6

−11
. An improper fraction is one where the numerator exceeds the denominator (e.g. 11

4
,

−17

12
, and 13

−3
). A mixed fraction is a combination of a fraction and a whole number, for example 35

6
.

Translating from an improper fraction to a mixed fraction merely involves properties of fraction
we have already seen. For example, we see here how the improper fraction 11

4
converts to the mixed

fraction 23

4
:

11

4
=

4 + 4 + 3

4
=

4

4
+

4

4
+

3

4
= 1 + 1 +

3

4
= 2

3

4

Likewise, we may convert a mixed fraction into an equivalent (equal) improper fraction by using
the same principles shown above, just in reverse. For example, converting 35

6
into its improper form:

3
5

6
= 1 + 1 + 1 +

5

6
=

6

6
+

6

6
+

6

6
+

5

6
=

23

6

A fraction containing one or more other fractions within its numerator or denominator is called
a complex fraction. These may be simplified quite easily if we just realize that the largest fraction
bar may be treated as a division symbol. For example:

2

9

5

6

=
2

9
÷ 5

6
=

2

9
× 6

5
=

12

45
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2.6 Unit conversions

Converting physical measurements from one unit to another is a common task for technical
professionals, and it is a task that may be made simpler by using fractions. This technique involves
setting up the original quantity as a fraction, then multiplying by a series of fractions having physical
values of unity (1) so that by multiplication the original value does not change, but the units do.
Let’s take for example the conversion of quarts into gallons, an example of a fluid volume conversion:

35 qt = ??? gal

Now, most people know there are four quarts in one gallon, and so it is tempting to simply
divide the number 35 by four to arrive at the proper number of gallons. However, the purpose of
this example is to show you how the technique of unity fractions works, not to get an answer to a
problem.

To demonstrate the unity fraction technique, we will first write the original quantity as a fraction,
in this case a fraction with 1 as the denominator:

35 qt

1

Next, we will multiply this fraction by another fraction having a physical value of unity (1)
so that we do not alter1 the quantity. This means a fraction comprised of equal measures in the
numerator and denominator, but having different units of measurement. This “unity” fraction must
be arranged in such a way that the undesired unit cancels out and leaves only the desired unit(s)
in the product. In this particular example, we wish to cancel out quarts and end up with gallons,
so we must arrange a fraction consisting of quarts and gallons having equal quantities in numerator
and denominator, such that quarts will cancel and gallons will remain:

(

35 qt

1

)(

1 gal

4 qt

)

Now we see how the unit of “quarts” cancels from the numerator of the first fraction and the
denominator of the second (“unity”) fraction, leaving only the unit of “gallons” left standing:

(

35 qt

1

)(

1 gal

4 qt

)

= 8.75 gal

The reason this conversion technique is so powerful is it allows one to perform the largest range
of unit conversions while memorizing the smallest possible set of conversion factors.

Here is a set of six equal volumes, each one expressed in a different unit of measurement:

1 gallon (gal) = 231.0 cubic inches (in3) = 4 quarts (qt) = 8 pints (pt) = 128 fluid ounces (fl. oz.)
= 3.7854 liters (l)

1A basic mathematical identity is that multiplication of any quantity by 1 does not change the value of that original
quantity. If we multiply some quantity by a fraction having a physical value of 1, no matter how strange-looking
that fraction may appear, the value of the original quantity will be left intact. The goal here is to judiciously choose
a fraction with a physical value of 1 but with its units of measurement so arranged that we cancel out the original
quantity’s unit(s) and replace them with the units we desire.
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Since all six of these quantities are physically equal, it is possible to build a “unity fraction” out
of any two, to use in converting any of the represented volume units into any of the other represented
volume units. Shown here are a few different volume unit conversion problems, using unity fractions
built only from these factors (all canceled units shown using strike-out lines):

40 gallons converted into fluid ounces (using 128 fl. oz. = 1 gal in the unity fraction):

(

40 gal

1

) (

128 fl. oz.

1 gal

)

= 5120 fl. oz

5.5 pints converted into cubic inches (using 231 in3 = 8 pt in the unity fraction):

(

5.5 pt

1

) (

231 in3

8 pt

)

= 158.8 in3

1170 liters converted into quarts:

(

1170 l

1

)(

4 qt

3.7854 l

)

= 1236 qt

By contrast, if we were to try to memorize a 6 × 6 table giving conversion factors between any
two of six volume units, we would have to commit 30 different conversion factors to memory! Clearly,
the ability to set up “unity fractions” is a much more memory-efficient and practical approach.

This economy of conversion factors is very useful, and may also be extended to cases where linear
units are raised to powers to represent two- or three-dimensional quantities. To illustrate, suppose
we wished to convert 5.5 pints into cubic feet instead of cubic inches: with no conversion equivalence
between pints and cubic feet included in our string of six equalities, what do we do?

We should know the equality between inches and feet: there are exactly 12 inches in 1 foot.
This simple fact may be applied by incorporating another unity fraction in the original problem to
convert cubic inches into cubic feet. We will begin by including another unity fraction comprised of
12 inches and 1 foot,just to see how this might work:

5.5 pints converted into cubic feet (our first attempt! ):

(

5.5 pt

1

) (

231 in3

8 pt

)(

1 ft

12 in

)

= 13.23 in2 · ft

Unfortunately, this yields a non-sensical unit of square inch-feet. Even though 1 ft
12 in is a valid

unity fraction, it does not completely cancel out the unit of cubic inches in the numerator of the
first unity fraction. Instead, the unit of “inches” in the denominator of the unity fraction merely
cancels out one of the “inches” in the “cubic inches” of the previous fraction’s numerator, leaving
square inches (in2). What we need for full cancellation of cubic inches is a unity fraction relating

cubic feet to cubic inches. We can get this, though, simply by cubing the 1 ft
12 in unity fraction:
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5.5 pints converted into cubic feet (our second attempt! ):

(

5.5 pt

1

)(

231 in3

8 pt

)(

1 ft

12 in

)3

Distributing the third power to the interior terms of the last unity fraction:

(

5.5 pt

1

) (

231 in3

8 pt

)(

13 ft3

123 in3

)

Calculating the values of 13 and 123 inside the last unity fraction, then canceling units and
solving:

(

5.5 pt

1

)(

231 in3

8 pt

)(

1 ft3

1728 in3

)

= 0.0919 ft3

Now the answer makes sense: a volume expressed in units of cubic feet.

Once again, this unit conversion technique shows its power by minimizing the number of
conversion factors we must memorize. We need not memorize how many cubic inches are in a
cubic foot, or how many square inches are in a square foot, if we know how many linear inches are in
a linear foot and we simply let the fractions “tell” us whether a power is needed for unit cancellation.

Unity fractions are also useful when we need to convert more than one unit in a given quantity.
For example, suppose a flowmeter at a wastewater treatment facility gave us a flow measurement
of 205 cubic feet per minute but we needed to convert this expression of water flow into units of
cubic yards per day. Observe the following unit-fraction conversion to see how unity fractions serve
the purpose of converting cubic feet into cubic yards, and minutes into days (by way of minutes to
hours, and hours to days):

(

205 ft3

min

)(

13 yd3

33 ft3

)(

60 min

1 hr

)(

24 hr

1 day

)

= 10933.3 yd3/day

Note how the only units left un-canceled on the left-hand side of the “equals” symbol are cubic
yards (yd3) and days, which therefore become the units of measurement for the final result.
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A major caveat to this method of converting units is that the units must be directly proportional
to one another, since this multiplicative conversion method is really nothing more than an exercise
in mathematical proportions. Here are some examples (but not an exhaustive list!) of conversions
that cannot be performed using the “unity fraction” method:

• Absolute / Gauge pressures, because one scale is offset from the other by 14.7 PSI (atmospheric
pressure).

• Celsius / Fahrenheit, because one scale is offset from the other by 32 degrees.

• Wire diameter / gauge number, because gauge numbers grow smaller as wire diameter grows
larger (inverse proportion rather than direct) and because there is no proportion relating the
two.

• Power / decibels, because the relationship is logarithmic rather than proportional.

The following subsections give sets of physically equal quantities, which may be used to create
unity fractions for unit conversion problems. Note that only those quantities shown in the same line
(separated by = symbols) are truly equal to each other, not quantities appearing in different lines!
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2.7 Percentages, per-unit, ppm, and ppb

In many circumstances it is useful to express a proportionality in terms of a special kind of fraction
with a standardized denominator. A very common form of this is to represent a proportion as some
fraction of one hundred, in which case we call it a percentage. For example, 50 percent (50%) means
a proportion of 50

100
. “Percent” literally means “per cent” or “per hundred”.

Earth’s atmosphere, for example, contains approximately 20.9% oxygen gas by volume. This
means that for every 100 molecules found in a sample of air, almost 21 of those are oxygen molecules.
For extremely small proportions, however, percent becomes an awkward unit of measurement. In
such cases it is common to see low concentrations of solute expressed as parts per million (ppm) or
even parts per billion (ppb). The volumetric concentration of methane gas in Earth’s atmosphere
is a good example where parts-per-million is a more appropriate expression than percent: for every
million molecules found in a sample of air, approximately 2 of them are methane molecules (i.e.
methane has an atmospheric concentration of 2 ppm). As a percentage, this equates to only 0.0002%.

Another type of proportionality known as per-unit is used widely in the electrical power industry.
Per-unit is simply a ratio of the given quantity to a base-unit value, and is equal to percentage divided
by 100. For example, 50% is equivalent to 0.5 per-unit.

To use an example from an electric power system, suppose the measured voltage along a “230
kV” transmission line is actually 228.7 kV. We could say that the per-unit voltage of that line is
0.99435, since that is the value of the ratio 228.7

230
. Per-unit quantities simplify calculations within

power systems because those per-unit quantities remain unaffected by other mathematical ratios
in the system such as transformer ratios,

√
3 ratios for three-phase circuits, etc. For example, if

that same 228.7 kV line voltage energized a 2:1 step-down transformer to output precisely half that
amount of voltage (114.35 kV), that output voltage would have the same per-unit value of 0.99435
because that’s also the value of the ratio 114.35

115
. Thus, a power engineer or technician calculating all

the effects of a given voltage value in the system can work with the one per-unit value throughout
the system rather than have to convert whenever the voltage in question gets stepped up or stepped
down by transformers.
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2.8 Scientific notation

Our standard way of representing numerical quantities is the decimal system where we limit ourselves
to combinations of ten different characters (0 through 9) as well as a decimal point. A limitation
of the decimal system is that these quantities become clumsy to write, read, and say when they
become very large or very small.

For example, Avogadro’s number is the number of carbon atoms2 in a sample of pure 12C having
a mass of 12 grams:

602, 214, 179, 000, 000, 000, 000, 000

An example of an extremely small quantity is Boltzmann’s constant which appears many times
in the study of thermodynamics, which is even more challenging to accurately read because we don’t
use commas as separators like we do for large numbers with lots of trailing zeros:

.000000000000000000000013806504

One way to simplify the expression of such large and small quantities is to write them as values
between one and ten multiplied by some power of ten. The purpose of that power-of-ten multiplier
is to succinctly specify the placement of the decimal point, rather than using many zeros as place-
holding digits. In other words, the power tells you how many places to shift the decimal point. For
example, consider Avogadro’s number and Boltzmann’s constant re-written in this format:

6.02214179 × 1023

1.3806504 × 10−23

This is called scientific notation, and it is so popular that most computer programming
languages and software applications accepting number values have some means of expressing it. For
example, in the C, C++, and Python programming languages we could write Avogadro’s number
as 6.02214179E23, the letter “E” representing ×10.

2Or more generally, the number of entities in a mole. Think of a “mole” as being an extremely large half-dozen!
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2.9 Metric prefixes

A similar approach for representing numerical values spanning very wide ranges is that used
within the metric system of measurements, where specific powers of ten are represented by prefixes
prepended to units of measurement. A table showing common metric prefixes appears here:

Prefix Symbol Power-of-ten

Exa E 1018 = 1, 000, 000, 000, 000, 000, 000

Peta P 1015 = 1, 000, 000, 000, 000, 000

Tera T 1012 = 1, 000, 000, 000, 000

Giga G 109 = 1, 000, 000, 000

Mega M 106 = 1, 000, 000

Kilo k 103 = 1, 000

Deka da 101 = 10

Deci d 10−1 = 1

10

Centi c 10−2 = 1

100

Milli m 10−3 = 1

1,000

Micro µ 10−6 = 1

1,000,000

Nano n 10−9 = 1

1,000,000,000

Pico p 10−12 = 1

1,000,000,000,000

Femto f 10−15 = 1

1,000,000,000,000,000

Atto a 10−18 = 1

1,000,000,000,000,000,000

In order to represent very large or very small quantities all we need to do is combine the right
prefix with the unit. For example, a distance of 12,509 meters could be written as 1.2509 × 104

meters using scientific notation, or as 12.509 kilometers (12.509 km) using the closest metric prefix.
Similarly, a mass of 0.000000421 grams could be written as 0.421 micrograms (0.421 µg) or 421
nanograms (421 ng).

Just as computer programming languages and mathematical software applications generally
support scientific notation both for entry and display, electronic hand calculators additionally offer a
display mode called engineering mode where the standard scientific notation display (e.g. 1.2509E4)
is slightly modified such that all powers are integer multiples of three (e.g. 12.509E3). Once you
have committed to memory the power-of-ten associated with each common metric prefix (Mega
through Pico is usually sufficient for most electronics work) it becomes a simple matter to translate
the power-of-ten shown by a calculator in engineering mode to the corresponding metric prefix.
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2.10 Quantifying error and tolerance

An important expression in most areas of scientific study is error, which is a way of stating how far
off the expected mark a certain measurement or prediction is from its ideal value. This is usually
done using percent, or for highly precise applications ppm or ppb.

Error is typically calculated as a ratio of the difference between the actual (measured or predicted)
value and the ideal (theoretical) value divided by that same ideal value:

Error (percent) =
Actual − Theoretical

Theoretical
× 100%

Error (ppm) =
Actual − Theoretical

Theoretical
× 106

Error (ppb) =
Actual − Theoretical

Theoretical
× 109

For example, if a resistor is labeled as having a value of 2700 Ohms but after testing it we find
it actually has a resistance of 2580 Ohms, we could calculate the error as:

2580 − 2700

2700
× 100% = −4.444%

2580 − 2700

2700
× 106 = −444, 444.4 ppm

2580 − 2700

2700
× 109 = −444, 444, 444.4 ppb

The mathematical sign of the calculated error is significant, as a negative value tells you the
measured or predicted value is less than expected, while a positive value tells you it’s more than
expected.

Perfection is an unrealistic goal in any discipline of engineering, and so we commonly find
components and systems alike rated with specified margins of allowable error called tolerance. The
resistor error we just calculated was a little greater than −4%, but if we knew the resistor had
a tolerance of ± 5% we would say that error was “within tolerance” and that the component is
performing as rated.
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2.11 Measurement uncertainty

Real-world measurements are always affected to some degree by noise and other random influences.
This means, among other things, that measuring the same quantity multiple times often yields
slightly different results, but that the majority of those measurements lie near some central value.
Therefore, ultra-precise measurements are always given in terms of both that most-likely value
(called the location parameter) as well as the uncertainty of the distribution, the latter always being
a positive quantity. Uncertainty is typically given as the value of one standard deviation (σ) for the
bell-shaped “Gaussian” curve describing3 the range of measured values possible given the random
influences.

Probability
Density Function

(PDF)

0

1

Location
parameter

(x)

x+σ x+2σ x+3σx-σx-2σx-3σ

34.1% 34.1%

13.6% 13.6%
2.1% 2.1%

The area encompassed by this curve represents 100% of all possible measurement values given
the influences of random factors such as noise. The central location parameter (x) value is that
measured value having the highest probability of occurrence. The area encompassed beneath the
curve from x to x + σ (the domain of one standard deviation from center) covers approximately
34.1% of the possible measurement values, with another 34.1% of measured values encompassed
from x to x − σ.

3Such a distribution curve is actually a type of histogram, where the height of the curve at any point is proportional
to the number of identical measurements at that value on the horizontal axis.
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A practical example will help illustrate how these terms apply. Suppose we measured the height
of all employees working for a particular company, and found all the measured heights fell along this
Gaussian curve with an x height of 165 centimeters and a standard deviation of 6 centimeters. The x

value of 165 cm simply means that this particular height measurement was the most common among
all the employees. In this case, the source of height deviation is largely due to variations between the
bodies of different individuals rather than random errors or noise, but the same statistical principles
apply. This would mean 34.1% of the people working at this company measured between 165 and
171 centimeters (from x to x + σ), while another 34.1% measured between 159 and 165 centimeters
(from x − σ to x).

Applying this to physical constants, we may consult the CODATA Recommended Values of the
Fundamental Physical Constants (NIST SP 961) published by the National Institute of Standards
and Technology in May of 2019 for more examples. For instance, we find the measured mass ratio of
one proton to one electron in this document has a value of 1836.15267343 with a standard deviation
of 0.00000011. This means there is a 68.2% probability the true mass ratio value lies somewhere
between 1836.15267332 and 1836.15267354 (i.e. from x − σ to x + σ).

So far as anyone knows, all protons and all electrons are physically identical, and so the source
of deviation must be random instrument errors and noise4 rather than variations from one particle
to another. It is also entirely possible (though unlikely) that the true mass ratio values is either
higher than or lower than this −σ to +σ uncertainty interval.

A common format for expressing a measured value and its uncertainty is to append the significant
digits of its uncertainty (over one standard deviation) in parentheses to the central value. In the
case of the proton/electron mass ratio, we see it published by the NIST as 1836.15267343(11), and
we take those uncertainty digits to apply to the final digits of the base number. In other words,
the “11” uncertainty digits add to or subtract from the “43” digits at the end of the base value,
representing the x + σ and x − σ values, respectively.

4This suggests uncertainty values will likely decrease over time as scientific measurement technologies and
techniques improve with continued research and development. Uncertainty can never reach zero for empirical
measurements, however, due to the unavoidable existence of certain types of noise in the universe.
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Probability distributions for real-world measurements do not always follow the symmetrical
pattern shown by a Gaussian curve. Sometimes the sources of uncertainty are asymmetrical, causing
the probability distribution to become “lopsided”. The direction and degree of this “lopsidedness”
is called skew. An example of a probability distribution with a positive skew is shown below:
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Positive-skewed distribution

A good example of a positively-skewed probability distribution for a real-world measurement is
the measurement of electrical resistance using a two-wire ohmmeter, in which the major source of
uncertainty is extra electrical resistance stemming from the meter’s test lead wires, contact resistance
between the probe tips and the specimen being measured, and contact resistance between the test
lead plugs and the meter’s sockets (jacks). Since electrical resistances always add when in series
with each other, these unknown resistances must always work to offset the measurement in a positive
direction away from the true resistance of the specimen being measured. Other sources of error such
as electrical noise, meter calibration error, and parallax error (only with analog meters) may influence
the measured value either positively or negatively, but stray resistance in the test apparatus will
always bias the measurement positively, thus skewing the probability distribution to the right of the
highest probability (the peak location parameter).
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2.12 Significant figures

In practically every science course one of the introductory topics is significant figures, presented along
with a set of rules for truncating numerical results based on their uncertainty. These rules have a
germ of truth to them, but they are actually quite misleading and conceptually confusing with regard
to the nature of measurement uncertainty and how to practically deal with it. What I am about to
say about significant figures will no doubt be controversial to some readers. I would challenge any of
these readers to investigate metrology and notice how these commonly-taught “significant figures”
are unknown to this field where uncertainty is of the utmost importance.

A “significant figure” in any numerical representation is a decimal digit necessary to the precision
of that value. For example, the number 725 has three significant figures; the number 24000 has two
significant figures (the “24” portion); the number 0.00029 has only two significant figures as well (the
“29” portion); the number 63002 has five significant figures; etc. Place-holder zeroes representing
powers of ten aren’t “significant” in terms of precision because all they do is scale the magnitude
of the number. One easy way to identify significant figures is to express the number in scientific
notation and count the total digits to the left of the power-of-ten:

• 725 = 7.25 × 102 = three significant figures (the 7, 2, and 5)

• 24000 = 2.4 × 104 = two significant figures (the 2 and 4)

• 0.00029 = 2.9 × 10−4 = two significant figures (the 2 and 9)

• 63002 = 6.3002 × 104 = five significant figures (the 6, 3, 0, 0, and 2)

The intended purpose of significant figures is to capture all the digits of a number that are
meaningful insofar as we can accurately know that value. For example, if we measure the voltage
across a circuit component using a voltmeter with a four-digit display, and that voltage measurement
happens to be 3.992 Volts we would regard all four digits as being significant. However, if we measure
a much smaller value with that exact same meter on the same range and the measurement happens
to be 0.008 Volts we would only regard that value as having one significant figure (the “8”) because
the preceding zeroes do nothing but scale that measured value.

At first this advice would seem quite non-controversial, as it keeps us mindful of the limitations
of our measurement instruments and of our measurement techniques. However, as we saw in the
previous section a more sophisticated (and realistic!) assessment of measurement uncertainty means
not all of the displayed digits are necessarily certain. For example, if our voltage measurement had
an associated uncertainty of ±0.014 Volts it would mean the 3.992 Volt measurement represents
a possible variance of 3.978 Volts to 4.006 Volts over our standard confidence interval. This
measurement uncertainty figure of ±0.014 Volts cannot be determined by the number of displayed
digits or the placement of significant figures within its display, but rather is a function of its design,
component tolerances, external noise, and our measurement techniques.
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A simple visual will help illustrate just one way in which the concept of significant figures is
not the same as the concept of uncertainty. Take the following two distribution curves for voltage
measurements, both curves having the exact same central location parameter value but having very
different standard deviation (σ) values:

Probability

0

1

3.992 Volts
(central location value)

The red curve indicates the distribution of voltage measurements in a system having less
uncertainty than the blue curve, despite the fact that both curves share the exact same center-
point value of 3.992 Volts. In other words, there is a higher probability of the red system’s actual
voltage being 3.992 Volts than in the blue system. If both 3.992 Volt measurements were truly taken
from a large sampling of individual voltage measurements to account for noise and other uncertainty
sources, we can rest assured that all four digits of “3.992” are truly significant (i.e. important) to
the measurement, yet the actual uncertainty of the true value is quite different between the blue
curve and the red curve, the blue being the less certain of the two.

This is just one example, and not the only one, of how significance and uncertainty are
distinctly different concepts. However, the standard approach to “significant figures” taught in
many introductory science courses conflates these two concepts, attempting to employ the number
of displayed digits as an expression expression of real-world significance and uncertainty.

Rules commonly associated with significant figures are even more problematic. These rules tell
us to discard the significant figures of some measurements when we arithmetically combine them
with other measured values. For example, it is common to be told that when adding or subtracting
two or more numerical values, the final result should be truncated so as to have the same number
of digits to the right of the decimal point as the measurement having the least of these. So, 725
plus 0.00029 would simply be 725. Multiplication and division follow a similar rule in that the
result must contain the same number of significant figures as the measurement having the least of
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these. So, 725 times 0.00029 would be 0.21. Like significant figures themselves, these arithmetic
rules have a germ of truth to them – namely, that uncertainties propagate from measurement(s) to
calculated result(s) – but unfortunately are too crude to properly treat the actual uncertainties of the
measurements involved. We literally have no idea what the uncertainty of the “725” measurement
is, nor of the “0.00029” measurement, based on those values alone, and so we really cannot tell from
this data alone how many digits are truly “significant” in the computed results. Furthermore, if we
did actually have uncertainty data on those two measurements we would not follow such crude rules
as truncating entire digits (which at best is an order-of-magnitude estimation of uncertainty), and
we would actually want to express the results’ uncertainty in the same manner to the measurements’:
namely, as ± confidence intervals.

In summary, significant figures and their associated “rules” are half-truths unbecoming of their
intended applications. In cases where the associated uncertainties are too small to matter to us,
these rules only complicate. In cases where the uncertainties actually matter, these rules are far too
simple to properly handle them. The cynic in me wonders if the prevalence of significant figures in
science coursework is really just a means to force students to submit answers the same way to make
grading easier!

For the types of measurements and calculations my students (who are to be electronics
technicians) work with, I offer the following rules:

• Always record and enter into calculations all digits of any measurement. Never discard data,
ever!! This is a basic principle of scientific ethics, that we preserve every bit of data collected so
that others reviewing our data have opportunity to make discoveries we may have overlooked.
Just because we think digits might be insignificant does not necessarily mean they are, and
by recording all digits in full we permit others to discover phenomena we may have missed.

• All calculated results should be stored in the calculator/computer at full precision, never
intentionally truncating digits for any reason. Any digits maintained within the digital
calculator/computer above and beyond that necessary to capture the value and its uncertainty
are called guard digits, and can only help (not hurt) accuracy. Storing calculated results and
then recalling from the calculator/computer memory when performing subsequent calculations
also carries with it the benefit of completely avoiding keystroke errors on the part of the user,
as well as completely avoiding compounded errors resulting from repeated truncation of results
as one result is used to calculate another!

• When hand-writing, typing, or otherwise displaying the final computed result(s), never round
off those figures to a point where we will be unable to calculate deviation (error) to a degree at
least as good as what is necessary for the application. For example, if our application requires
an accuracy of ± 1%, three significant figures would be the minimum to express a value to
within that tolerance (i.e. one part in one hundred) but four or more would be better. There
is no limit to how many digits to record except convenience and readability, only a limit to
how few you should record for the sake of not introducing rounding error.
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2.13 Functions, tables, and graphs

In mathematics, a function is any process whereby one or more input values correspond to single
output values. A logarithm is a good example of a function, where a single input value (the
“argument”) results in a single corresponding output value. Functions may take in multiple variables,
but always output a single result for any given input values or combination of input values.

The input variable(s) to a function is/are called independent, while the output variable is called
dependent. The concept here is that the output depends on the input(s), which in turn are arbitrary
to the function. The span of possible values for the independent variable(s) is called the domain
while the span of possible output values is called the range.

Mathematical functions appear throughout computer programming, always taking the form of
an identifying label followed by a set of parentheses enclosing the independent variables (generally
called the “arguments” to that function). For example, here is the common logarithm function
being applied in the Python programming language, taking in an argument of 10000 and outputting
a result of 4:

>>> log10(10000)

4.0

Here is another Python programming example, this one being the “power” function where the
base and exponent are the two independent variables (i.e. arguments) to the function:

>>> pow(3,4)

81.0

A generic mathematical symbol for any function is the letter f followed by parentheses enclosing
the independent variable(s). For example, a function taking in just one argument could be written as
f(x), and a function taking in two arguments could be written as f(x, y). In the case of logarithms
we could say f(x) = log(x). In the case of the power function we could say f(b, x) = bx.

A great many physical phenomena may be represented either precisely or approximately by
mathematical functions which is why functions are so critically important to the field of engineering.
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One way to represent a function using specific numerical values is in the form of a table, with
each variable (whether dependent or independent) represented by its own column in that table. For
example, we may create a simple table showing sample input and output values for the absolute
number function, the independent variable being represented by the symbol x and the dependent
variable by |x|:

x |x|
−5 5

−4 4

−3 3

−2 2

−1 1

0 0

1 1

2 2

3 3

4 4

5 5

A major limitation of tables is that they do not represent all possibilities of the function, because
it is limited to the number of rows in the table. Here we see a domain of just −5 to 5 and a range
of 0 to 5, with all values being integers. However, it is possible to apply the absolute value function
to more than just these (e.g. | − 3.7| = 3.7 , |234| = 234, etc.).
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Another way to numerically represent a function is in the form of a graph, which is a collection
of dots where each dot is placed according to its alignment with multiple axes. The most common
form of graph is the Cartesian coordinate graph which takes a two-dimensional rectangular form.
By convention, the graph’s horizontal axis is a number line for a single independent variable while
the vertical axis is a number line for the dependent variable. For example, we may show a Cartesian
coordinate graph for the same absolute value function previously tabulated, over a domain of −5 to
5:

x

|x|

(0,0)

(1,1)

(2,2)

(3,3)

(4,4)

(5,5)

(-1,1)

(-2,2)

(-3,3)

(-4,4)

(-5,5)
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If we imagine plotting this same absolute value function for all real-number values within the
domain of −5 to 5, what we will have is an infinite number of dots placed adjacent to each other,
forming solid lines:

x

|x|

This is what most graphs look like: unbroken lines or curves tracing some shape on a two-
dimensional grid. It’s important to realize, though, that what appears to be an unbroken line or
curve is just a very densely-spaced collection of individual points representing combinations of values
satisfying the function.
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2.14 Common geometric shapes
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Circle

r

h

Right circular cylinder

h

r

Cone

Volume  V = πr2h

Surface area  A = 2πr2 + 2πrh Surface area  A = πr r2 + h2

Volume  V = πr2h
1

3

+ πr2

h

Tetrahedron

x y

Volume  V =
1

3
xyh

Note: the volume of any pyramid or cone
is one-third the product of its height (h)
and the area of its base.

One-dimensional measurements include height, width, depth, length, circumference, and
perimeter; all of these measurements quantify distance. A simple way to conceptualize distance
is to imagine measuring it with a length of string, a ruler, or a tape measure.

Two-dimensional measurements quantify area. A simple way to conceptualize area is to imagine
how much paint would be required to cover that surface.

Three-dimensional measurements quantify volume. A simple way to conceptualize volume is to
imagine how much liquid would be required to fill that space if the shape took the form of a vessel.
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3.1 Resistor labeling

Resistors dissipate electrical energy in the form of heat, dropping voltage proportional to the amount
of current passing through. This ratio of voltage to current is called resistance (R), measured in
the unit of the Ohm (Ω), and it is the primary characterstic of any resistor. A popular method of
labeling resistance values utilizes colored bands1 to represent resistance values and tolerances. An
example of this resistor style appears in the following photograph:

Four-band resistors are the most popular of the banded style, with the first and second bands
representing significant digits, the third band representing a power-of-ten multiplier, and the fourth
band representing tolerance.

Band color First digit value Second digit value Multiplier Tolerance

Black 0 0 100

Brown 1 1 101 ± 1%

Red 2 2 102 ± 2%

Orange 3 3 103 ± 0.05%

Yellow 4 4 104 ± 0.02%

Green 5 5 105 ± 0.5%

Blue 6 6 106 ± 0.25%

Violet 7 7 107 ± 0.1%

Grey 8 8 108 ± 0.01%

White 9 9 109

Gold 10−1 ± 5%

Silver 10−2 ± 10%

None ± 20%

Applying this color code to the resistor shown above, we see that yellow = 4, violet = 7, red =
2, and silver = ± 10%. Therefore, this resistor’s value is 47 × 102 Ohms (i.e. 4700 Ω) plus or minus
10%, which means it could be as low as 4230 Ω or as high as 5170 Ω.

1A useful mnemonic for associating these colors with decimal digits 0 through 9 and the percentages 5-10-20% is
as follows: “Better Be Right Or Your Great Big Venture Goes Wrong. Get Started Now.”.
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Precision resistors require more significant digits to precisely quantify their values, and so use a
five-band code where the first three bands represent digits, the fourth band represents the power-
of-ten multiplier, and the fifth band represents tolerance. Both the four-band and five-band color
codes are standardized as part of the international standard IEC 60062.

Many modern resistors are labeled with text rather than color-coded bands. For these resistors, a
letter is used in place of a decimal point, the letter either being R (unit), K (kilo), M (mega), G (giga),
T (tera), or L (milli). This is commonly referred to as the RKM code. Some labeling examples are
shown in the following list:

• R82 = 0.82 Ω

• 3R9 = 3.9 Ω

• 47R = 47 Ω

• 560R = 560 Ω

• 3K3 = 3.3 kΩ

• 27K = 27 kΩ

• 100K = 100 kΩ

• 2M2 = 2.2 MΩ

• 15M = 15 MΩ

• 2L7 = 2.7 mΩ

Tolerances for text-labeled resistors use the following letter codes, the tolerance letter always
being the last character of the resistor’s text label:

Letter code Tolerance

B ± 0.1%

C ± 0.25%

D ± 0.5%

F ± 1%

G ± 2%

H ± 3%

J ± 5%

K ± 10%

M ± 20%

N ± 30%

For example, a resistor labeled 6K8J would be 6.8 kΩ ± 5%.
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Surface-mount device (SMD) resistors are often labeled with numbers only, either a three-digit
numerical code or a four-digit numerical code. These codes follow the same pattern as four- and
five-band color codes (except with no specified tolerance, just digit-digit-multiplier or digit-

digit-digit-multiplier). For example, 473 would be 47 kΩ and 2711 would be 2.71 kΩ.
An exception to this general rule appears in the following photograph of a 5 milli-Ohm surface-

mount resistor with a tolerance of ± 1%. The 5L0 portion of the code indicates 5.0 mΩ, while the
F portion indicates the ±1% tolerance:

This particular SMD resistor happens to be useful as a high-current shunt resistor developing a
precise voltage drop proportional to current. Its low resistance value does little to impede the flow
of charge carriers to the load, while its tight tolerance ensures its voltage drop will be a fairly good
representation of current through it.
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3.2 Capacitor labeling

Capacitors store electrical energy using electric fields, the amount of energy stored being proportional
to the square of the applied voltage. The ratio of stored energy to voltage (squared) is called
capacitance (C), measured in the unit of the Farad (F), and it is the primary characterstic of any
capacitor. Unfortunately, the labeling of capacitance on many capacitors is rather confusing. Color
codes used to be popular for denoting capacitance value, following a very similar pattern to resistors,
but numerical labels are now the norm. However, these labels tend to be rather terse, and this can
cause interpretational difficulties.

Physically large capacitors having sufficient surface area to allow many characters of printed text
are the best in this regard.

The “supercapacitor” seen in the left-hand photograph is the clearest of them all: 650 Farads of
capacitance with a working voltage rating of 2.7 Volts DC. The capacitor in the center photograph
is also very unambiguous, having ratings of 3300 microFarads and 80 Volts DC (“WV” = working
voltage). However the capacitor seen in the right-hand photograph, despite being physically larger
than either of the others, is more cryptic: 16500 microFarads of capacitance with a working voltage
rating of 50 Volts DC. Here we must simply assume that the “16500” figure refers to microFarads.

Polarity is another important parameter for electrolytic-type capacitors such as these. For
the supercapacitor (left photo) we see a stripe and letter “P” denoting the positive terminal of
the capacitor; the 3300 microFarad capacitor (center photo) bears a black stripe and “−” symbol
pointing toward its negative terminal; the 16500 microFarad capacitor (right photo) has polarity
markings molded into the end-cap near its screw terminals (not visible in this photo).
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Capacitors connected to AC line (“mains”) voltage within line-powered appliances and other
electronic devices must be safety-rated, as they are exposed to routine voltage transients such as
those commonly experienced on electric power grids during lightning storms, and also because any
short-circuit failure of a line-connected component would be catastrophic. For this reason, such
capacitors often bear X and Y voltage ratings such as those seen on the following capacitor:

An X rating refers to the capacitor connected in parallel with the AC line’s “hot” and “neutral”
conductors: that is, directly across the line voltage. A Y rating refers to the capacitor connected
between an Earth-potential conductor and either the “hot” or “neutral” conductor of an AC line
source. These two different applications have their own safety concerns: a capacitor in an “X”
application is at risk of catastrophically failing and possibly igniting nearby flammable materials if
it develops an internal short-circuit, whereas a capacitor in a “Y” application is at risk of impressing
dangerous electrical potential onto a metallic surface it internally fails shorted.

Immediately following the X or Y designator is a single numerical digit representing the rating
sub-class, based on the peak impulse (transient) voltage:

Sub-class Maximum transient service voltage

X1 ± Between 2.5 kV and 4 kV

X2 ± Less than 2.5 kV

X3 ± Less than 1.2 kV

Sub-class Maximum transient test voltage

Y1 ± 8 kV

Y2 ± 5 kV

Y3 ± (none)

Y4 ± 2.5 kV

Any voltage value following an X or Y class/sub-class rating refers to the continuous AC voltage
that capacitor is rated to handle in such a safety-critical application. For example, the X1 440~ label
on the capacitor shown in the photograph tells us that capacitor is rated for continuous duty across
the poles of a 440 Volt AC source and that its service transient (impulse) rating is somewhere between
2500 Volts and 4000 Volts. This is the sort of capacitor we might find connected in parallel with
the “hot” and “neutral” conductors of a 120 Volt AC power cord for suppression of high-frequency
“noise”.
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Returning to our exploration of general capacitor labeling:

On the left we have a 2500 microFarad electrolytic capacitor rated for 50 Volts DC (positive on
left), a capital letter “U” employed to symbolize micro. On the right we have a 2 microFarad plastic-
film capacitor rated at 200 Volts DC, this time with the capital letter “M”2 representing micro. Since
plastic-film capacitors are non-polarized, the stripe on the left-hand side must represent something
other than polarity: here it represents the terminal connected to the outer-most layer of metal foil3

inside the capacitor.

Smaller capacitors become slightly more consistent, though no less confusing, in their labeling.
Consider these examples:

From left to right we have (left) a 0.082 microFarad capacitor rated for 100 Volts DC4, (center)
a 0.025 microFarad capacitor rated for 100 Volts DC, and (right) a 0.68 microFarad capacitor rated
for 160 Volts DC. The rule here is, any numerical capacitance value with a decimal point should be
read as microFarads. Note how the capacitor in the right-hand photograph uses a comma rather
than a point between the “0” and the “68” because this one is of European manufacture, and it is
conventional in European technical literature to use commas rather than points for decimal numbers.

2In the metric system a lower-case “m” is supposed to represent the prefix milli (×10−3) and an upper-case “M” is
supposed to represent the prefix mega (×106). However, since no technology yet invented is able to pack a megaFarad
of capacitance into a single component, and for some unknown reason the prefix “milli” is never used for capacitance,
we are expected to deduce that this letter “M” must represent micro. This, of course, flies in the face of standard
metric notation, but it is nevertheless common to see in capacitor labeling.

3This might be important to know for reasons of interference and signal coupling in densely-packed circuits. For
a plastic-case capacitor such as this, the outer-most metal foil layer may comprise a parasitic capacitance with some
adjacent component, and this in turn may degrade the circuit’s performance. Best practice is to connect the “stripe”
terminal of such a capacitor to ground or a power supply “rail” or some other node having a stable electrical potential.

4The second “0” of the number 100 happens to be partially rubbed off.
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For capacitors with smaller capacitance values, the default metric prefix becomes pico (×10−12)
rather than micro. We can tell the difference between a “micro” capacitor and a “pico” capacitor
by the presence or lack, respectively, of a decimal point. For example, a capacitor labeled 2.2 would
be 2.2 microFarads in size, but a capacitor labeled 22 would be 22 picoFarads in size.

For decimal values of picoFarads, a lower-case letter “p” may be used as a decimal point; e.g.
2p2 would be 2.2 picoFarads. Similarly, the lower-case letter “n” may be used as a decimal point as
well (e.g. 2n2 would be 2.2 nanoFarads). Confusingly, some manufacturers use a capital letter “R”
as a generic decimal point for the capacitance value, the default metric prefix once again being pico
(e.g. 2R2 would be 2.2 picoFarads).

A very common standard for small capacitor labeling is the use of three-digit numerical codes
following the same digit-digit-multiplier format as resistor color codes, combined with the default
assumption of picoFarads. For example, 332 would represent 33 × 102 picoFarads, which is equal
to 3.3 nanoFarads. The following photograph shows a mylar film capacitor with a “103” code
representing 10 × 103 picoFarads, which is equivalent to 10 nanoFarads:

Note the “2A” preceding the “103” capacitance rating: this is nothing but part of the
manufacturer’s part number. This is an unfortunate convention, of mixing manufacturer-specific
part numbering with standardized value coding, and we see another example of it in the following
photograph:

This Vishay capacitor also has a rating of 10 nanoFarads, but here we see the “103” capacitance
code preceded by “YV2” which is unique to Vishay’s part-numbering system. The last character
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(“M”) specifies this capacitor’s tolerance of ±20%, which is the next topic we will explore.

Capacitor tolerance, like resistor tolerance, specifies how far the particular device’s capacitance
may deviate from its advertised (nominal) value. In one of the previous examples, we saw a 0.082
microFarad capacitor with a ±10% tolerance, printed exactly as such on its body. However, for
physically small capacitors where not enough surface area exists to print percentage figures, such as
the 10 nF Vishay capacitor previously shown, we must use special letter codes to designate tolerance.
These letter codes are also used for other components such as resistors, the following table showing
several of them:

Letter code Tolerance

A ± 0.05 pF

B ± 0.1 pF

C ± 0.25 pF

D ± 0.5 pF

E ± 0.5%

F ± 1%

G ± 2%

H ± 3%

J ± 5%

K ± 10%

L ± 15%

M ± 20%

N ± 30%

P ± −0% to +100%

S ± −20% to +50%

W ± −0% to +200%

X ± −20% to +40%

Z ± −20% to +80%

Note how the first four of these codes refer to absolute tolerances in picoFarads, while the rest
represent tolerances in percent. When printed on a capacitor’s body, the tolerance code typically
follows the numerical capacitance code. For example, the photograph on the previous page showed
a green-colored capacitor with “103K” on its body, which is 10 × 103 picoFarads ± 10%.
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3.3 Inductor labeling

Inductors store electrical energy using magnetic fields, the amount of energy stored being
proportional to the square of the applied current. The ratio of stored energy to current (squared) is
called inductance (L), measured in the unit of the Henry (H), and it is the primary characterstic of
any inductor. Color codes used to be popular for denoting inductance value, following a very similar
pattern to resistors, but numerical labels are now the norm.

The color code used to mark inductors follows the same chromatic and numerical sequence
used for resistors5, with the first and second bands representing significant digits, the third band
representing a power-of-ten multiplier, and the fourth band representing tolerance. However, rather
than directly indicating inductance in Henrys, the implied metric prefix is micro.

Band color First digit value Second digit value Multiplier Tolerance

Black 0 0 100 ± 20%

Brown 1 1 101 ± 1%

Red 2 2 102 ± 2%

Orange 3 3 103 ± 3%

Yellow 4 4 104 ± 4%

Green 5 5 105

Blue 6 6 106

Violet 7 7 107

Grey 8 8 108

White 9 9 109

Gold 10−1 ± 5%

Silver 10−2 ± 10%

None ± 20%

For example, an inductor marked with colored bands Yellow, Violet, Orange, and Gold would
be 47 × 103 microHenrys, or 47 mH.

Inductors labeled with numerical markings follow the same digit-digit-multiplier pattern as the
color code: two significant digits followed by a power-of-ten multiplier, with an assumed base prefix
of micro. For example, 331 would represent 33 × 101 microHenrys, which is 330 µH or 0.33 mH.
If a decimal point is required for a numerically-labeled inductor, a capital letter “R” is used. For
example, instead of labeling a 0.01 µH inductor as 0.01, it would be shown as R01.

5A useful mnemonic for associating these colors with decimal digits 0 through 9 and the percentages 5-10-20% is
as follows: “Better Be Right Or Your Great Big Venture Goes Wrong. Get Started Now.”.



3.3. INDUCTOR LABELING 43

Very small inductors are sometimes numerically labeled on the basis of nanoHenrys rather than
microHenrys. In such cases a capital letter “N” represents the decimal point for the nanoHenry
value: for example, 3N9 represents 3.9 nH and 27N represents 27 nH.

Inductor tolerance is another important parameter which is often printed on the body of the
inductor. For physically small inductors where not enough surface area exists to print percentage
figures, we must resort to other means for expressing tolerance. To this end, a system of letter-codes
has been developed, shown here in the following table:

Letter code Tolerance

B ± 0.15 nH

C ± 0.2 nH

S ± 0.3 nH

D ± 0.5 nH

F ± 1%

G ± 2%

H ± 3%

J ± 5%

K ± 10%

L ± 15%

M ± 20%

V ± 25%

N ± 30%

Note how the first four of these codes refer to absolute tolerances in nanoHenrys, while the rest
represent tolerances in percent. When printed on a inductor’s body, the tolerance code typically
follows the numerical inductance code. For example, an inductor with “821J” on its body would be
820 µH ± 5%.
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3.4 IEC standard component values

Components such as resistors, inductors, and capacitors are manufactured in several standard values,
described by IEC standard 60063. Rather than having a single series of standard values, the IEC
publishes lists called E series based on the number of unique values spanning a single decade (i.e. a
10:1 range).

The shortest of these series, called E3 contains just three values: 10, 22, and 47. The next series
is called E6 with six unique values: 10, 15, 22, 33, 47, and 68. These values represent significant
values for components, meaning the decimal point may be freely moved to create values spanning
multiple decades. For example, “33” simply means one can expect to find components manufactured
in values of 33, 3.3, 0.33, and 0.033 as well as 330, 3.3 k, 33 k, etc.

Although this may seem like a strange standard for component manufacturers to follow, there
is a compelling logic to it. The terms of each series are closer-spaced at the low end than at the
high end, and this allows for series and/or parallel combinations of components to achieve most any
desired value. For example, in the E6 series we only have values with the significant figures 10, 15,
22, 33, 47, and 68, but this doesn’t mean we are limited to total values with these significant figures.
For example, if we needed 80 Ohms of resistance we could connect a 33 Ohm and 47 Ohm resistor
together in series. 50 Ohms could be made from two 68 Ohm resistors in parallel (making 34 Ohms)
plus a 15 Ohm and 1 Ohm resistor in series.

On the next page is a table showing the four most common E-series specified by IEC standard
60063.
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E3 E6 E12 E24

10 10 10 10

11

12 12

13

15 15 15

16

18 18

20

22 22 22 22

24

27 27

30

33 33 33

36

39 39

43

47 47 47 47

51

56 56

62

68 68 68

75

82 82

91

E48, E96, and E192 series are also found in the IEC 60063 standard, used for components with
tighter tolerance ratings than typical.
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Chapter 4

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.
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4.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.
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Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments
to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point
variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x

or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.
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After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.
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learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.
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4.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.
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More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.
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Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC 6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.
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assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.
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If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.



Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should
read these educational resources closely, write their own outline and reflections on the reading, and
discuss in detail their findings with classmates and instructor(s). You should be able to do all of the
following after reading any instructional text:

√
Briefly OUTLINE THE TEXT, as though you were writing a detailed Table of Contents. Feel

free to rearrange the order if it makes more sense that way. Prepare to articulate these points in
detail and to answer questions from your classmates and instructor. Outlining is a good self-test of
thorough reading because you cannot outline what you have not read or do not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Simplification as a problem-solving strategy

Thought experiments as a problem-solving strategy

Limiting cases as a problem-solving strategy

Annotating diagrams as a problem-solving strategy

Interpreting intermediate results as a problem-solving strategy

Graphing as a problem-solving strategy

Converting a qualitative problem into a quantitative problem

Converting a quantitative problem into a qualitative problem

Working “backwards” to validate calculated results
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Reductio ad absurdum

Re-drawing schematics as a problem-solving strategy

Cut-and-try problem-solving strategy

Algebraic substitution

???

5.1.3 First conceptual question

Challenges

• ???.

• ???.

• ???.

5.1.4 Second conceptual question

Challenges

• ???.

• ???.

• ???.
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5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 × 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx + c:

x =
−b ±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 + 5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x

2 +5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b ± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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5.2.3 Plain, metric, and scientific notations

Complete the following table with equivalent values in each row:

Plain Metric prefix Scientific notation

34,000 grams (g) 34 kilograms (kg) 3.4 ×104 grams (g)

932,500 meters (m)

1.422 ×103 Volts (V)

0.328 milliAmperes (mA)

4.7 ×10−6 Farads (F)

0.0357 Henrys (H)

1.570814 ×106 Hertz (Hz)

10.7 microseconds (µs)

5.231 ×10−7 Coulombs (C)

29.5 milliSiemens (mS)

0.000097 calories (c)

Challenges

• What purpose does scientific notation serve?

• Is there any advantage to expressing a quantity as 0.7325 milliVolts versus 732.5 microVolts?

5.2.4 Second quantitative problem

Challenges

• ???.

• ???.

• ???.
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5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

5.3.1 First diagnostic scenario

Challenges

• ???.

• ???.

• ???.
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5.3.2 Second diagnostic scenario

Challenges

• ???.

• ???.

• ???.
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Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.



Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;



88 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

2-3 February 2024 – added more discussion to the “Significant figures” section of the Tutorial,
and also added comments regarding asymmetrical probability distributions.

22 June 2023 – added some comments about “significant figures” rules and how they confuse the
real concept of uncertainty.

7 June 2023 – corrected a quantitative error where I showed the power-of-ten for the metric prefix
Exa as 15 rather than 18 as it should have been.

30 August 2022 – corrected a quantitative error regarding the expression of uncertainty for the
mass of a proton, and also elaborated slightly on the practical example of a Gaussian distribution.

24 June 2022 – added questions to the module.

9 June 2022 – minor additions to the Tutorial chapter, mostly dealing with ppm and ppb
measurements. Also added a Tutorial section on measurement uncertainty.
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