
Series and parallel AC circuits

This worksheet and all related files are licensed under the Creative Commons Attribution License,
version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed works by
the general public.

Resources and methods for learning about these subjects (list a few here, in preparation for your
research):
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Questions

Question 1

Doorbell circuits connect a small lamp in parallel with the doorbell pushbutton so that there is light
at the button when it is not being pressed. The lamp’s filament resistance is such that there is not enough
current going through it to energize the solenoid coil when lit, which means the doorbell will ring only when
the pushbutton switch shorts past the lamp:

60 Hz
18 V

Doorbell switch

Solenoid 

Lamp

Suppose that such a doorbell circuit suddenly stops working one day, and the home owner assumes the
power source has quit since the bell will not ring when the button is pressed and the lamp never lights.
Although a dead power source is certainly possible, it is not the only possibility. Identify another possible
failure in this circuit which would result in no doorbell action (no sound) and no light at the lamp.

file 03447

Question 2

Calculate the total impedance offered by these two inductors to a sinusoidal signal with a frequency of
60 Hz:

L1

L2

750 mH

350 m
H

Ztotal @ 60 Hz = ???

Show your work using two different problem-solving strategies:

• Calculating total inductance (Ltotal) first, then total impedance (Ztotal).
• Calculating individual impedances first (ZL1 and ZL2), then total impedance (Ztotal).

Do these two strategies yield the same total impedance value? Why or why not?
file 01832

2



Question 3

Calculate the total impedance offered by these two capacitors to a sinusoidal signal with a frequency of
3 kHz:

C1

C2

0.01 µF

0.022 µF

Ztotal @ 3 kHz = ???

Show your work using two different problem-solving strategies:

• Calculating total capacitance (Ctotal) first, then total impedance (Ztotal).
• Calculating individual impedances first (ZC1 and ZC2), then total impedance (Ztotal).

Do these two strategies yield the same total impedance value? Why or why not?
file 01834

Question 4

Write an equation that solves for the impedance of this series circuit. The equation need not solve for
the phase angle between voltage and current, but merely provide a scalar figure for impedance (in ohms):

Ztotal = ???

R

X

file 00850
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Question 5

Write an equation that solves for the impedance of this series circuit. The equation need not solve for
the phase angle between voltage and current, but merely provide a scalar figure for impedance (in ohms):

Ztotal = ???

R

X

file 01844
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Question 6

A student measures voltage drops in an AC circuit using three voltmeters and arrives at the following
measurements:

COMA

V

V A

A
OFF

COMA

V

V A

A
OFF

COMA

V

V A

A
OFF

Upon viewing these measurements, the student becomes very perplexed. Aren’t voltage drops supposed
to add in series, just as in DC circuits? Why, then, is the total voltage in this circuit only 10.8 volts and not
15.74 volts? How is it possible for the total voltage in an AC circuit to be substantially less than the simple
sum of the components’ voltage drops?

Another student, trying to be helpful, suggests that the answer to this question might have something
to do with RMS versus peak measurements. A third student disagrees, proposing instead that at least one
of the meters is badly out of calibration and thus not reading correctly.

When you are asked for your thoughts on this problem, you realize that neither of the answers proposed
thus far are correct. Explain the real reason for the ”discrepancy” in voltage measurements, and also explain
how you could experimentally disprove the other answers (RMS vs. peak, and bad calibration).

file 01566

5



Question 7

Draw a phasor diagram showing the trigonometric relationship between resistance, reactance, and
impedance in this series circuit:

5 V RMS
350 Hz

2.2 kΩ

680 mH

R

L

Show mathematically how the resistance and reactance combine in series to produce a total impedance
(scalar quantities, all). Then, show how to analyze this same circuit using complex numbers: regarding
component as having its own impedance, demonstrating mathematically how these impedances add up to
comprise the total impedance (in both polar and rectangular forms).

file 01827

Question 8

Calculate the magnitude and phase shift of the current through this inductor, taking into consideration
its intrinsic winding resistance:

Vin

10 VAC

Inductor

1.5 H

65 Ω

135 Hz

file 00639
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Question 9

Calculate the necessary size of the capacitor to give this circuit a total impedance (Ztotal) of 4 kΩ, at a
power supply frequency of 100 Hz:

100 Hz

2k2

C = ???

file 04042

Question 10

Draw a phasor diagram showing the trigonometric relationship between resistance, reactance, and
impedance in this series circuit:

5 V RMS
350 Hz

2.2 kΩ

R

C

0.22 µF

Show mathematically how the resistance and reactance combine in series to produce a total impedance
(scalar quantities, all). Then, show how to analyze this same circuit using complex numbers: regarding each
of the component as having its own impedance, demonstrating mathematically how these impedances add
up to comprise the total impedance (in both polar and rectangular forms).

file 01828

7



Question 11

Which component, the resistor or the capacitor, will drop more voltage in this circuit?

5k1

725 Hz

47n

Also, calculate the total impedance (Ztotal) of this circuit, expressing it in both rectangular and polar
forms.

file 03784

Question 12

Calculate the total impedance of this series LR circuit and then calculate the total circuit current:

3 kHz
34 V RMS

250m

5k1

Also, draw a phasor diagram showing how the individual component impedances relate to the total
impedance.

file 02103
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Question 13

A quantity sometimes used in DC circuits is conductance, symbolized by the letter G. Conductance is
the reciprocal of resistance (G = 1

R
), and it is measured in the unit of siemens.

Expressing the values of resistors in terms of conductance instead of resistance has certain benefits in
parallel circuits. Whereas resistances (R) add in series and ”diminish” in parallel (with a somewhat complex
equation), conductances (G) add in parallel and ”diminish” in series. Thus, doing the math for series circuits
is easier using resistance and doing math for parallel circuits is easier using conductance:

R1

R2

R3

R1 R2 R3

Rtotal = R1 + R2 + R3 Gtotal = G1 + G2 + G3

Rtotal =
1

R1

+
1

+
1

R2 R3

1

Gtotal =
1

+
1

+
1

1

G1 G2 G3

In AC circuits, we also have reciprocal quantities to reactance (X) and impedance (Z). The reciprocal
of reactance is called susceptance (B = 1

X
), and the reciprocal of impedance is called admittance (Y = 1

Z
).

Like conductance, both these reciprocal quantities are measured in units of siemens.
Write an equation that solves for the admittance (Y ) of this parallel circuit. The equation need not

solve for the phase angle between voltage and current, but merely provide a scalar figure for admittance (in
siemens):

G B

Ytotal = ???

file 00853
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Question 14

A quantity sometimes used in DC circuits is conductance, symbolized by the letter G. Conductance is
the reciprocal of resistance (G = 1

R
), and it is measured in the unit of siemens.

Expressing the values of resistors in terms of conductance instead of resistance has certain benefits in
parallel circuits. Whereas resistances (R) add in series and ”diminish” in parallel (with a somewhat complex
equation), conductances (G) add in parallel and ”diminish” in series. Thus, doing the math for series circuits
is easier using resistance and doing math for parallel circuits is easier using conductance:

R1

R2

R3

R1 R2 R3

Rtotal = R1 + R2 + R3 Gtotal = G1 + G2 + G3

Rtotal =
1

R1

+
1

+
1

R2 R3

1

Gtotal =
1

+
1

+
1

1

G1 G2 G3

In AC circuits, we also have reciprocal quantities to reactance (X) and impedance (Z). The reciprocal
of reactance is called susceptance (B = 1

X
), and the reciprocal of impedance is called admittance (Y = 1

Z
).

Like conductance, both these reciprocal quantities are measured in units of siemens.
Write an equation that solves for the admittance (Y ) of this parallel circuit. The equation need not

solve for the phase angle between voltage and current, but merely provide a scalar figure for admittance (in
siemens):

G B

Ytotal = ???

file 01845
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Question 15

Calculate the total impedance offered by these three resistors to a sinusoidal signal with a frequency of
10 kHz:

• R1 = 3.3 kΩ
• R2 = 10 kΩ
• R3 = 5 kΩ

R1 R2 R3 Ztotal @ 10 kHz = ???

Surface-mount resistors
on a printed-circuit board

State your answer in the form of a scalar number (not complex), but calculate it using two different
strategies:

• Calculate total resistance (Rtotal) first, then total impedance (Ztotal).
• Calculate individual admittances first (YR1, YR2, and YR3), then total impedance (Ztotal).

file 01836

Question 16

Calculate the total impedance offered by these three capacitors to a sinusoidal signal with a frequency
of 4 kHz:

• C1 = 0.1 µF
• C2 = 0.047 µF
• C3 = 0.033 µF

on a printed-circuit board

C1 C2 C3 Ztotal @ 4 kHz = ???

Surface-mount capacitors

State your answer in the form of a scalar number (not complex), but calculate it using two different
strategies:

• Calculate total capacitance (Ctotal) first, then total impedance (Ztotal).
• Calculate individual admittances first (YC1, YC2, and YC3), then total impedance (Ztotal).

file 01846
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Question 17

Calculate the total impedance of these parallel-connected components, expressing it in polar form
(magnitude and phase angle):

on a printed-circuit board

C1 R1

Surface-mount components

33n Ztotal @ 7.9 kHz = ???510

Also, draw an admittance triangle for this circuit.
file 02108

Question 18

Calculate the total impedance of this LR circuit, once using nothing but scalar numbers, and again
using complex numbers:

R1

L150m

1k5

Ztotal @ 8 kHz = ???

file 01837
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Question 19

Calculate the total impedance offered by these two inductors to a sinusoidal signal with a frequency of
120 Hz:

L1

L2

Ztotal @ 120 Hz = ???

500 mH

1.8 H

Show your work using three different problem-solving strategies:

• Calculating total inductance (Ltotal) first, then total impedance (Ztotal).
• Calculating individual admittances first (YL1 and YL2), then total admittance (Ytotal), then total

impedance (Ztotal).
• Using complex numbers: calculating individual impedances first (ZL1 and ZL2), then total impedance

(Ztotal).

Do these two strategies yield the same total impedance value? Why or why not?
file 01833

Question 20

Calculate the total impedance of this RC circuit, once using nothing but scalar numbers, and again
using complex numbers:

R1

C1

Ztotal @ 400 Hz = ???

7.9 kΩ 0.047 µF

file 01838
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Question 21

Calculate the total impedance offered by these two capacitors to a sinusoidal signal with a frequency of
900 Hz:

C1

C2Ztotal @ 900 Hz = ???

0.33 µF

0.1 µF

Show your work using three different problem-solving strategies:

• Calculating total capacitance (Ctotal) first, then total impedance (Ztotal).
• Calculating individual admittances first (YC1 and YC2), then total admittance (Ytotal), then total

impedance (Ztotal).
• Using complex numbers: calculating individual impedances first (ZC1 and ZC2), then total impedance

(Ztotal).

Do these two strategies yield the same total impedance value? Why or why not?
file 01835

Question 22

Calculate the total impedance for these two 100 mH inductors at 2.3 kHz, and draw a phasor diagram
showing circuit impedances (Ztotal, R, and X):

L1

L2

100m

100m

Ztotal @ 2.3 kHz = ???

Now, re-calculate impedance and re-draw the phasor impedance diagram supposing the second inductor
is replaced by a 1.5 kΩ resistor:

L1

100m
Ztotal @ 2.3 kHz = ???

R1

1k5

file 02080
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Question 23

Calculate the total impedance for these two 100 mH inductors at 2.3 kHz, and draw a phasor diagram
showing circuit admittances (Ytotal, G, and B):

L1 L2 Ztotal @ 2.3 kHz = ???

100m 100m

Now, re-calculate impedance and re-draw the phasor admittance diagram supposing the second inductor
is replaced by a 1.5 kΩ resistor:

L1 Ztotal @ 2.3 kHz = ???

100m 1k5

R1

file 02079

Question 24

Calculate the individual currents through the inductor and through the resistor, the total current, and
the total circuit impedance:

3 kHz

250m

5k1

2.5 V RMS

Also, draw a phasor diagram showing how the individual component currents relate to the total current.
file 02104
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Question 25

Due to the effects of a changing electric field on the dielectric of a capacitor, some energy is dissipated
in capacitors subjected to AC. Generally, this is not very much, but it is there. This dissipative behavior is
typically modeled as a series-connected resistance:

Equivalent Series Resistance (ESR)

Ideal capacitor

Real
capacitor

Calculate the magnitude and phase shift of the current through this capacitor, taking into consideration
its equivalent series resistance (ESR):

Vin

10 VAC

0.22 µF

5 Ω
Capacitor

270 Hz

Compare this against the magnitude and phase shift of the current for an ideal 0.22 µF capacitor.
file 01847

Question 26

Solve for all voltages and currents in this series LR circuit:

175 mH

15 V RMS
1 kHz

710 Ω

file 01830
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Question 27

Solve for all voltages and currents in this series LR circuit, and also calculate the phase angle of the
total impedance:

5 kΩ

24 V RMS
50 Hz

10.3 H

file 01831

Question 28

Solve for all voltages and currents in this series RC circuit:

15 V RMS
1 kHz

0.01 µF

4.7 kΩ

file 01848

Question 29

Solve for all voltages and currents in this series RC circuit, and also calculate the phase angle of the
total impedance:

48 V peak
30 Hz

3k3

220n

file 01849
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Question 30

One way to vary the amount of power delivered to a resistive AC load is by varying another resistance
connected in series:

Rload

Rseries

A problem with this power control strategy is that power is wasted in the series resistance (I2Rseries).
A different strategy for controlling power is shown here, using a series inductance rather than resistance:

Rload

Lseries

Explain why the latter circuit is more power-efficient than the former, and draw a phasor diagram
showing how changes in Lseries affect Ztotal.

file 01829
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Question 31

A technician needs to know the value of a capacitor, but does not have a capacitance meter nearby. In
lieu of this, the technician sets up the following circuit to measure capacitance:

A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

Hz

FUNCTION GENERATOR

1 10 100 1k 10k 100k 1M

outputDCfinecoarse

Cx

R

You happen to walk by this technician’s workbench and ask, ”How does this measurement setup work?”
The technician responds, ”You connect a resistor of known value (R) in series with the capacitor of unknown
value (Cx), then adjust the generator frequency until the oscilloscope shows the two voltage drops to be
equal, and then you calculate Cx.”

Explain how this system works, in your own words. Also, write the formula you would use to calculate
the value of Cx given f and R.

file 02114
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Question 32

A large AC electric motor under load can be considered as a parallel combination of resistance and
inductance:

AC motor

240 VAC
60 Hz

Leq Req

Calculate the current necessary to power this motor if the equivalent resistance and inductance is 20 Ω
and 238 mH, respectively.

file 01839

Question 33

A large AC electric motor under load can be considered as a parallel combination of resistance and
inductance:

AC motor

60 Hz
Leq Req

277 VAC

Calculate the equivalent inductance (Leq) if the measured source current is 27.5 amps and the motor’s
equivalent resistance (Req) is 11.2 Ω.

file 01840
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Question 34

Calculate the total impedances (complete with phase angles) for each of the following inductor-resistor
circuits:

100 Hz

0.5 H

470 Ω 290 Hz

1 H

200 mH

1.5 kΩ

100 Hz 0.5 H 470 Ω 290 Hz 1 H 1.5 kΩ
0.2 H

file 02106

Question 35

A doorbell ringer has a solenoid with an inductance of 63 mH connected in parallel with a lamp (for
visual indication) having a resistance of 150 ohms:

60 Hz
18 V

Doorbell switch

Solenoid 

Lamp

Calculate the phase shift of the total current (in units of degrees) in relation to the total supply voltage,
when the doorbell switch is actuated.

file 02105
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Question 36

If the dielectric substance between a capacitor’s plates is not a perfect insulator, there will be a path for
direct current (DC) from one plate to the other. This is typically called leakage resistance, and it is modeled
as a shunt resistance to an ideal capacitance:

Ideal capacitor

Real
capacitor

Leakage resistance

Calculate the magnitude and phase shift of the current drawn by this real capacitor, if powered by a
sinusoidal voltage source of 30 volts RMS at 400 Hz:

30 V RMS
400 Hz0.75 µF 1.5 MΩ

Rleakage =

Compare this against the magnitude and phase shift of the current for an ideal capacitor (no leakage).
file 01850

Question 37

Voltage divider circuits may be constructed from reactive components just as easily as they may be
constructed from resistors. Take this capacitive voltage divider, for instance:

0.1 µF

0.47 µFVout

Vin

10 VAC
250 Hz

C1

C2

Calculate the magnitude and phase shift of Vout. Also, describe what advantages a capacitive voltage
divider might have over a resistive voltage divider.

file 00638
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Question 38

A student is asked to calculate the phase shift for the following circuit’s output voltage, relative to the
phase of the source voltage:

C

R

Vsource

Vout

He recognizes this as a series circuit, and therefore realizes that a right triangle would be appropriate
for representing component impedances and component voltage drops (because both impedance and voltage
are quantities that add in series, and the triangle represents phasor addition):

R , VR

XC , VC
Z

total  , V
total

θ

Φ

The problem now is, which angle does the student solve for in order to find the phase shift of Vout? The
triangle contains two angles besides the 90o angle, Θ and Φ. Which one represents the output phase shift,
and more importantly, why?

file 03748

Question 39

Calculate the output voltage of this phase-shifting circuit, expressing it in polar form (magnitude and
phase angle relative to the source voltage):

0.47 µF

Vout

Vin

10 VAC
250 Hz

1.5 kΩ

file 02620
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Question 40

Calculate the output voltage of this phase-shifting circuit, expressing it in polar form (magnitude and
phase angle relative to the source voltage):

Vout

Vin

1.2 kHz

2.2 kΩ

0.033 µF

5.4 VAC

file 02621

Question 41

In this circuit, a series resistor-capacitor network creates a phase-shifted voltage for the ”gate” terminal
of a power-control device known as a TRIAC. All portions of the circuit except for the RC network are
”shaded” for de-emphasis:

AC
source

Lamp
330 kΩ

0.068 µF
TRIAC

DIAC

Calculate how many degrees of phase shift the capacitor’s voltage is, compared to the total voltage
across the series RC network, assuming a frequency of 60 Hz, and a 50% potentiometer setting.

file 00637

Question 42

Determine the input frequency necessary to give the output voltage a phase shift of 70o:

VoutVin

f = ???

0.022 µF

3.3 kΩ

file 02623
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Question 43

Determine the input frequency necessary to give the output voltage a phase shift of 40o:

VoutVin

0.01 µF

2.9 kΩ
f = ???

file 02622

Question 44

Determine the input frequency necessary to give the output voltage a phase shift of -38o:

VoutVin

f = ???

8.1 kΩ

33 nF

file 02626

Question 45

Determine the input frequency necessary to give the output voltage a phase shift of -25o:

VoutVin

f = ??? 0.047 µF

1.7 kΩ

file 02625
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Question 46

Determine the input frequency necessary to give the output voltage a phase shift of 75o:

Vout

L
R

47m

12k5
Vin

f = ???

Also, write an equation that solves for frequency (f), given all the other variables (R, L, and phase
angle θ).

file 03282

Question 47

Determine the necessary resistor value to give the output voltage a phase shift of 44o:

Vout

L75 m
3.5 V

15 kHz

R = ???

Also, write an equation that solves for this resistance value (R), given all the other variables (f , L, and
phase angle θ).

file 03283

Question 48

Determine the input frequency necessary to give the output voltage a phase shift of -40o:

VoutVin

f = ???

100m

2k1

L

R

Also, write an equation that solves for frequency (f), given all the other variables (R, L, and phase
angle θ).

file 03280
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Question 49

Determine the necessary resistor value to give the output voltage a phase shift of -60o:

Vout

100m

L

R = ???
10 V
8 kHz

Also, write an equation that solves for this resistance value (R), given all the other variables (f , L, and
phase angle θ).

file 03281

Question 50

Determine the input frequency necessary to give the output voltage a phase shift of 25o:

VoutVin

f = ???

27n

C

R5k9

Also, write an equation that solves for frequency (f), given all the other variables (R, C, and phase
angle θ).

file 03284

Question 51

Determine the necessary resistor value to give the output voltage a phase shift of 58o:

Vout
C

9 V
4.5 kHz

R = ???

33n

Also, write an equation that solves for this resistance value (R), given all the other variables (f , C, and
phase angle θ).

file 03285
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Question 52

Determine the necessary resistor value to give the output voltage a phase shift of -64o:

Vout

C

R = ???

15n11 V
1.3 kHz

Also, write an equation that solves for this resistance value (R), given all the other variables (f , C, and
phase angle θ).

file 03287

Question 53

Use algebraic substitution to generate an equation expressing the output voltage of the following circuit
given the input voltage, the input frequency, the capacitor value, and the resistor value:

Vout

Vin

C

R

Vout =
file 03818

Question 54

Use algebraic substitution to generate an equation expressing the output voltage of the following circuit
given the input voltage, the input frequency, the capacitor value, and the resistor value:

Vout

Vin R

C2C1

Vout =
file 03819
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Question 55

Determine the total current and all voltage drops in this circuit, stating your answers the way a
multimeter would register them:

L1 L2

R1 R2

Vsupply

• L1 = 250 mH
• L2 = 60 mH
• R1 = 6.8 kΩ
• R2 = 1.2 kΩ
• Vsupply = 13.4 V RMS
• fsupply = 6.5 kHz

Also, calculate the phase angle (Θ) between voltage and current in this circuit, and explain where and
how you would connect an oscilloscope to measure that phase shift.

file 01841
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Question 56

Determine the total current and all component currents in this circuit, stating your answers the way a
multimeter would register them:

L1 L2

R1 R2

Vsupply

• L1 = 1.2 H
• L2 = 650 mH
• R1 = 33 kΩ
• R2 = 27 kΩ
• Vsupply = 19.7 V RMS
• fsupply = 4.5 kHz

Also, calculate the phase angle (Θ) between voltage and current in this circuit, and explain where and
how you would connect an oscilloscope to measure that phase shift.

file 01842
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Question 57

Determine the total current and all voltage drops in this circuit, stating your answers the way a
multimeter would register them:

C1

C2
R1

R2

• C1 = 125 pF
• C2 = 71 pF
• R1 = 6.8 kΩ
• R2 = 1.2 kΩ
• Vsupply = 20 V RMS
• fsupply = 950 kHz

Also, calculate the phase angle (Θ) between voltage and current in this circuit, and explain where and
how you would connect an oscilloscope to measure that phase shift.

file 01851

Question 58

Calculate the voltage drops across all components in this circuit, expressing them in complex (polar)
form with magnitudes and phase angles each:

C1

C2

R1

0.15 µF

0.01 µF

7.1 kΩ

1.5 V
180 Hz

file 01852
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Question 59

Determine the phase angle (Θ) of the current in this circuit, with respect to the supply voltage:

R1
C1

COMA

V

V A

A
OFF

COMA

V

V A

A
OFF

Hz

FUNCTION GENERATOR

1 10 100 1k 10k 100k 1M

outputDCfinecoarse

file 01853
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Question 60

Calculate the total (source) current in this parallel RC circuit, based on the readings taken by the
dual-trace oscilloscope (both of the inductive current probes show branch currents in units of 1 amp per
division):

A

B

A

B

Itotal =

file 04065

Question 61

Calculate the total impedances (complete with phase angles) for each of the following capacitor-resistor
circuits:

100 Hz 470 Ω 290 Hz 1.5 kΩ

100 Hz 470 Ω 290 Hz 1.5 kΩ

3.3 µF

3.3 µF

0.1 µF

0.22 µF

0.1 µF 0.22 µF

file 02109

33



Question 62

Complete the table of values for this circuit, representing all quantities in complex-number form (either
polar or rectangular, your choice):

R1 Total

R1 C13.3 µF

C1

17 V

V

I

Z

470 Ω 60 Hz

17 V ∠  0o

file 03611

Question 63

Determine the size of capacitor (in Farads) necessary to create a total current of 11.3 mA in this parallel
RC circuit:

C
5.2 V

500 Hz

11.3 mA

790

file 02110
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Question 64

The input impedance of an electrical test instrument is a very important parameter in some applications,
because of how the instrument may load the circuit being tested. Oscilloscopes are no different from
voltmeters in this regard:

A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

Input impedance

(how much impedance the
tested circuit "sees" from

the oscilloscope)

Zinput

Typical input impedance for an oscilloscope is 1 MΩ of resistance, in parallel with a small amount of
capacitance. At low frequencies, the reactance of this capacitance is so high that it may be safely ignored.
At high frequencies, though, it may become a substantial load to the circuit under test:

To circuit
under test 1 MΩ 20 pF

Oscilloscope input (typical)

Calculate how many ohms of impedance this oscilloscope input (equivalent circuit shown in the above
schematic) will impose on a circuit with a signal frequency of 150 kHz.
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Question 65

If the source voltage in this circuit is assumed to be the phase reference (that is, the voltage is defined
to be at an angle of 0 degrees), determine the relative phase angles of each current in this parallel circuit:

ICIR

Itotal

• ΘI(R) =
• ΘI(C) =
• ΘI(total) =

file 02112

Question 66

Capacitors and inductors are complementary components – both conceptually and mathematically,
they seem to be almost exact opposites of each other. Calculate the total impedance of this series-connected
inductor and capacitor network:

Ztotal = ???

XL = 45 Ω

XC = 58 Ω

file 00851
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Question 67

Write an equation that solves for the impedance of this series circuit. The equation need not solve for
the phase angle between voltage and current, but merely provide a scalar figure for impedance (in ohms):

Ztotal = ???

XL

XC

R

file 00852

Question 68

Is this circuit’s overall behavior capacitive or inductive? In other words, from the perspective of the AC
voltage source, does it ”appear” as though a capacitor is being powered, or an inductor?

15 V
1.8 kHz

85 mH

0.1 µF

Now, suppose we take these same components and re-connect them in parallel rather than series. Does
this change the circuit’s overall ”appearance” to the source? Does the source now ”see” an equivalent
capacitor or an equivalent inductor? Explain your answer.

15 V
1.8 kHz85 mH 0.1 µF

file 01554
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Question 69

Calculate the voltage dropped across the inductor, the capacitor, and the 8-ohm speaker in this sound
system at the following frequencies, given a constant source voltage of 15 volts:

Amplifier

8 Ω

8 Ω

47 µF 2 mH

15 VAC

• f = 200 Hz
• f = 550 Hz
• f = 900 Hz

Regard the speaker as nothing more than an 8-ohm resistor.
file 00640

Question 70

Suppose you are building a circuit and you need an impedance of 1500 Ω 6 -41o at a frequency of 600 Hz.
What combination of components could you connect together in series to achieve this precise impedance?

file 00644
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Question 71

Write an equation that solves for the admittance of this parallel circuit. The equation need not solve for
the phase angle between voltage and current, but merely provide a scalar figure for admittance (in siemens):

BL BC G

Ytotal = ???

file 00854

Question 72

Calculate the total impedance of this parallel network, given a signal frequency of 12 kHz:

Ztotal = ???

1n 10k 105m

file 01541

Question 73

An AC electric motor operating under loaded conditions draws a current of 11 amps (RMS) from the
120 volt (RMS) 60 Hz power lines. The measured phase shift between voltage and current for this motor is
34o, with voltage leading current.

Determine the equivalent parallel combination of resistance (R) and inductance (L) that is electrically
equivalent to this operating motor.

file 01542

Question 74

Calculate the impedance of a 145 mH inductor connected in series with 750 Ω resistor at a frequency of
1 kHz, then determine the necessary resistor and inductor values to create the exact same total impedance
in a parallel configuration.
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Question 75

Don’t just sit there! Build something!!

Learning to mathematically analyze circuits requires much study and practice. Typically, students
practice by working through lots of sample problems and checking their answers against those provided by
the textbook or the instructor. While this is good, there is a much better way.

You will learn much more by actually building and analyzing real circuits, letting your test equipment
provide the ”answers” instead of a book or another person. For successful circuit-building exercises, follow
these steps:

1. Carefully measure and record all component values prior to circuit construction.
2. Draw the schematic diagram for the circuit to be analyzed.
3. Carefully build this circuit on a breadboard or other convenient medium.
4. Check the accuracy of the circuit’s construction, following each wire to each connection point, and

verifying these elements one-by-one on the diagram.
5. Mathematically analyze the circuit, solving for all voltage and current values.
6. Carefully measure all voltages and currents, to verify the accuracy of your analysis.
7. If there are any substantial errors (greater than a few percent), carefully check your circuit’s construction

against the diagram, then carefully re-calculate the values and re-measure.

For AC circuits where inductive and capacitive reactances (impedances) are a significant element in
the calculations, I recommend high quality (high-Q) inductors and capacitors, and powering your circuit
with low frequency voltage (power-line frequency works well) to minimize parasitic effects. If you are on
a restricted budget, I have found that inexpensive electronic musical keyboards serve well as ”function
generators” for producing a wide range of audio-frequency AC signals. Be sure to choose a keyboard ”voice”
that closely mimics a sine wave (the ”panflute” voice is typically good), if sinusoidal waveforms are an
important assumption in your calculations.

As usual, avoid very high and very low resistor values, to avoid measurement errors caused by meter
”loading”. I recommend resistor values between 1 kΩ and 100 kΩ.

One way you can save time and reduce the possibility of error is to begin with a very simple circuit and
incrementally add components to increase its complexity after each analysis, rather than building a whole
new circuit for each practice problem. Another time-saving technique is to re-use the same components in a
variety of different circuit configurations. This way, you won’t have to measure any component’s value more
than once.
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Answers

Answer 1

• Solenoid coil failed open
• Wire broken anywhere in circuit

Answer 2

First strategy:

Ltotal = 1.1 H
Xtotal = 414.7 Ω
Ztotal = 414.7 Ω 6 90o or Ztotal = 0 + j414.7 Ω

Second strategy:

XL1 = 282.7 Ω ZL1 = 282.7 Ω 6 90o

XL2 = 131.9 Ω ZL2 = 131.9 Ω 6 90o

Ztotal = 414.7 Ω 6 90o or Ztotal = 0 + j414.7 Ω

Follow-up question: draw a phasor diagram showing how the two inductors’ impedance phasors
geometrically add to equal the total impedance.

Answer 3

First strategy:

Ctotal = 6.875 nF
Xtotal = 7.717 kΩ
Ztotal = 7.717 kΩ 6 − 90o or Ztotal = 0 − j7.717 kΩ

Second strategy:

XC1 = 5.305 kΩ ZC1 = 5.305 kΩ 6 − 90o

XC2 = 2.411 kΩ ZC1 = 2.411 kΩ 6 − 90o

Ztotal = 7.717 kΩ 6 − 90o or Ztotal = 0 − j7.717 kΩ

Answer 4

Ztotal =
√

R2 + X2

Follow-up question: algebraically manipulate this equation to produce two more; one solving for R and
the other solving for X.

Answer 5

Ztotal =
√

R2 + X2

Answer 6

AC voltages still add in series, but phase must also be accounted for when doing so. Unfortunately,
multimeters provide no indication of phase whatsoever, and thus do not provide us with all the information
we need. (Note: just by looking at this circuit’s components, though, you should still be able to calculate
the correct result for total voltage and validate the measurements.)

I’ll let you determine how to disprove the two incorrect explanations offered by the other students!

Challenge question: calculate a set of possible values for the capacitor and resistor that would generate
these same voltage drops in a real circuit. Hint: you must also decide on a value of frequency for the power
source.
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Answer 7

R = 2.2 kΩ

XL = 1.495 kΩZ total =
 2.66 kΩ

Scalar calculations

R = 2.2 kΩ XL = 1.495 kΩ

Zseries =
√

R2 + XL
2

Zseries =
√

22002 + 14952 = 2660 Ω

Complex number calculations

ZR = 2.2 kΩ 6 0o ZL = 1.495 kΩ 6 90o (Polar form)
ZR = 2.2 kΩ + j0 Ω ZL = 0 Ω + j1.495 kΩ (Rectangular form)

Zseries = Z1 + Z2 + · · ·Zn (General rule of series impedances)
Zseries = ZR + ZL (Specific application to this circuit)

Zseries = 2.2 kΩ 6 0o + 1.495 kΩ 6 90o = 2.66 kΩ 6 34.2o

Zseries = (2.2 kΩ + j0 Ω) + (0 Ω + j1.495 kΩ) = 2.2 kΩ + j1.495 kΩ

Answer 8

I = 7.849 mA 6 -87.08o

Answer 9

C = 0.476 µF
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Answer 10

R = 2.2 kΩ

XC = 2.067 kΩ

Z
total  = 3.019 kΩ

Scalar calculations

R = 2.2 kΩ XC = 2.067 kΩ

Zseries =
√

R2 + XC
2

Zseries =
√

22002 + 20672 = 3019 Ω

Complex number calculations

ZR = 2.2 kΩ 6 0o ZC = 2.067 kΩ 6 − 90o (Polar form)
ZR = 2.2 kΩ + j0 Ω ZC = 0 Ω − j2.067 kΩ (Rectangular form)

Zseries = Z1 + Z2 + · · ·Zn (General rule of series impedances)
Zseries = ZR + ZC (Specific application to this circuit)

Zseries = 2.2 kΩ 6 0o + 2.067 kΩ 6 − 90o = 3.019 kΩ 6 − 43.2o

Zseries = (2.2 kΩ + j0 Ω) + (0 Ω − j2.067 kΩ) = 2.2 kΩ − j2.067 kΩ

Answer 11

The resistor will drop more voltage.

Ztotal (rectangular form) = 5100 Ω - j4671 Ω

Ztotal (polar form) = 6916 Ω 6 -42.5o

Answer 12

Ztotal = 6.944 kΩ
I = 4.896 mA RMS

Answer 13

Ytotal =
√

G2 + B2

Follow-up question #1: draw a phasor diagram showing how Y , G, and B relate.

Follow-up question #2: re-write this equation using quantities of resistance (R), reactance (X), and
impedance (Z), instead of conductance (G), susceptance (B), and admittance (Y ).

Answer 14

Ytotal =
√

G2 + B2

Follow-up question #1: draw a phasor diagram showing how Y , G, and B relate.

Follow-up question #2: re-write this equation using quantities of resistance (R), reactance (X), and
impedance (Z), instead of conductance (G), susceptance (B), and admittance (Y ).
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Answer 15

First strategy:

Rtotal = 1.658 kΩ
Ztotal = 1.658 kΩ

Second strategy:

YR1 = 303 µS
YR2 = 100 µS
YR3 = 200 µS
Ytotal = 603 µS
Ztotal = 1.658 kΩ

Answer 16

First strategy:

Ctotal = 0.18 µF
Ztotal = 221 Ω

Second strategy:

YC1 = 2.51 mS
YC2 = 1.18 mS
YC3 = 829 µS
Ytotal = 4.52 mS
Ztotal = 221 Ω

Answer 17

Ztotal = 391.4 Ω 6 -39.9o

YR1 = 1.961 mS

YC1 = 1.638 mS
Ytotal = 2.555 mS

39.9o

Answer 18

Scalar calculations

R1 = 1.5 kΩ GR1 = 666.7 µS
XL1 = 2.513 kΩ BL1 = 397.9 µS
Ytotal =

√
G2 + B2 = 776.4 µS

Ztotal = 1
Ytotal

= 1.288 kΩ

Complex number calculations

R1 = 1.5 kΩ ZR1 = 1.5 kΩ 6 0o

XL1 = 2.513 kΩ ZL1 = 2.513 kΩ 6 90o

Ztotal = 1
1

ZR1
+ 1

ZL1

= 1.288 kΩ 6 30.83o
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Answer 19

First strategy:

Ltotal = 391.3 mH
Xtotal = 295.0 Ω
Ztotal = 295.0 Ω 6 90o or Ztotal = 0 + j295.0 Ω

Second strategy:

ZL1 = XL1 = 377.0 Ω

YL1 = 1
ZL1

= 2.653 mS

ZL1 = XL2 = 1.357 kΩ

YL2 = 1
ZL2

= 736.8 µS

Ytotal = 3.389 mS

Ztotal = 1
Ytotal

= 295 Ω

Third strategy: (using complex numbers)
XL1 = 377.0 Ω ZL1 = 377.0 Ω 6 90o

XL2 = 1.357 kΩ ZL2 = 1.357 kΩ 6 90o

Ztotal = 295.0 Ω 6 90o or Ztotal = 0 + j295.0 Ω

Follow-up question: draw a phasor diagram showing how the two inductors’ admittance phasors
geometrically add to equal the total admittance.

Answer 20

Scalar calculations

R1 = 7.9 kΩ GR1 = 126.6 µS
XC1 = 8.466 kΩ BC1 = 118.1 µS
Ytotal =

√
G2 + B2 = 173.1 µS

Ztotal = 1
Ytotal

= 5.776 kΩ

Complex number calculations

R1 = 7.9 kΩ ZR1 = 7.9 kΩ 6 0o

XC1 = 8.466 kΩ ZC1 = 8.466 kΩ 6 − 90o

Ztotal = 1
1

ZR1
+ 1

ZC1

= 5.776 kΩ 6 − 43.02o

Answer 21

First strategy:

Ctotal = 0.43 µF
Xtotal = 411.3 Ω
Ztotal = 411.3 Ω 6 − 90o or Ztotal = 0 − j411.3 Ω

Second strategy:

ZC1 = XC1 = 535.9 Ω

YC1 = 1
ZC1

= 1.866 mS

ZC1 = XC2 = 1.768 kΩ

YC2 = 1
ZC2

= 565.5 µS

Ytotal = 2.432 mS

Ztotal = 1
Ytotal

= 411.3 Ω

45



Third strategy: (using complex numbers)
XC1 = 535.9 Ω ZC1 = 535.9 Ω 6 − 90o

XC2 = 1.768 kΩ ZC1 = 1.768 kΩ 6 − 90o

Ztotal = 411.3 Ω 6 − 90o or Ztotal = 0 − j411.3 Ω

Answer 22

L1

L2

100m

100m

Ztotal = 2.890 kΩ

Phasor diagram

XL1 = 1.445 kΩ

XL2 = 1.445 kΩ

L1

100m

R1

1k5

Phasor diagram

Ztotal = 2.083 kΩ XL1 = 1.445 kΩ

R1 = 1.5 kΩ
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Answer 23

L1 L2

100m 100m

Ztotal = 722.6 Ω

BL1 = 692 µS

BL2 = 692 µS

Ytotal = 1.384 mS

Phasor diagram

L1

100m 1k5

Ztotal = 1.041 kΩ BL1 = 692 µS

GR1 = 666.7 µS

Ytotal = 960.9 µS

Phasor diagram

R1

Challenge question: why are the susceptance vectors (BL1 and BL2) pointed down instead of up as
impedance vectors for inductances typically are?

Answer 24

IL = 530.5 µA RMS
IR = 490.2 µA RMS
Itotal = 722.3 µA RMS
Ztotal = 3.461 kΩ

Answer 25

I = 3.732206 mA 6 89.89o for the real capacitor with ESR.

I = 3.732212 mA 6 90.00o for the ideal capacitor.

Follow-up question #1: can this ESR be detected by a DC meter check of the capacitor? Why or why
not?

Follow-up question #2: explain how the ESR of a capacitor can lead to physical heating of the
component, especially under high-voltage, high-frequency conditions. What safety concerns might arise
as a result of this?

Answer 26

VL = 12.60 volts RMS
VR = 8.137 volts RMS
I = 11.46 milliamps RMS
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Answer 27

VL = 13.04 volts RMS
VR = 20.15 volts RMS
I = 4.030 milliamps RMS
ΘZ = 32.91o

Answer 28

VC = 14.39 volts RMS
VR = 4.248 volts RMS
I = 903.9 µA RMS

Follow-up question: identify the consequences of a shorted capacitor in this circuit, with regard to circuit
current and component voltage drops.

Answer 29

VC = 47.56 volts peak
VR = 6.508 volts peak
I = 1.972 milliamps peak
ΘZ = −82.21o

Follow-up question: what would we have to do to get these answers in units RMS instead of units
”peak”?

Answer 30

Inductors are reactive rather than resistive components, and therefore do not dissipate power (ideally).

Ztotal

Rload

XL(series)

Rload

XL(series)

Ztotal

Follow-up question: the inductive circuit is not just more energy-efficient – it is safer as well. Identify
a potential safety hazard that the resistive power-control circuit poses due to the energy dissipation of its
variable resistor.
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Answer 31

I’ll let you figure out how to explain the operation of this test setup. The formula you would use looks
like this:

Cx =
1

2πfR

Follow-up question: could you use a similar setup to measure the inductance of an unknown inductor
Lx? Why or why not?

Challenge question: astute observers will note that this setup might not work in real life because the
ground connection of the oscilloscope is not common with one of the function generator’s leads. Explain why
this might be a problem, and suggest a practical solution for it.

Answer 32

Isupply = 12.29 A

Answer 33

Leq = 61.11 mH

Answer 34

100 Hz

0.5 H

470 Ω 290 Hz

1 H

200 mH

1.5 kΩ

100 Hz 0.5 H 470 Ω 290 Hz 1 H 1.5 kΩ

Ztotal = 565.3 Ω ∠  33.76o

Ztotal = 261.2 Ω ∠  56.24o

Ztotal = 2.652 kΩ ∠  55.55o

Ztotal = 297.6 Ω ∠  78.55o

0.2 H

Answer 35

Θ = 81 degrees

Suppose the lamp turned on whenever the pushbutton switch was actuated, but the doorbell refused to
ring. Identify what you think to be the most likely fault which could account for this problem.
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Answer 36

I = 56.548671 mA 6 89.98o for the real capacitor with leakage resistance.
I = 56.548668 mA 6 90.00o for the ideal capacitor.

Answer 37

Vout = 1.754 V 6 0o

Follow-up question #1: explain why the division ratio of a capacitive voltage divider remains constant
with changes in signal frequency, even though we know that the reactance of the capacitors (XC1 and XC2)
will change.

Follow-up question #2: one interesting feature of capacitive voltage dividers is that they harbor the
possibility of electric shock after being disconnected from the voltage source, if the source voltage is high
enough and if the disconnection happens at just the right time. Explain why a capacitive voltage divider
poses this threat whereas a resistive voltage divider does not. Also, identify what the time of disconnection
from the AC voltage source has to do with shock hazard.

Answer 38

The proper angle in this circuit is Θ, and it will be a positive (leading) quantity.

Answer 39

Vout = 6.7 V 6 -47.9o

Answer 40

Vout = 2.593 V 6 61.3o

Answer 41

EC phase shift = -76.7o

Challenge question: what effect will a change in potentiometer setting have on this phase angle?
Specifically, will increasing the resistance make the phase shift approach -90o or approach 0o?

Answer 42

f = 798 Hz

Answer 43

f = 6.54 kHz

Answer 44

f = 465 Hz

Answer 45

f = 929 Hz

Answer 46

f = 11.342 kHz

f =
R

2πL tan θ
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Answer 47

R = 6.826 kΩ

R = 2πfL tan θ

Answer 48

f = 2.804 kHz

f = −
R tan θ

2πL

Answer 49

R = 2.902 kΩ

R = −
2πfL

tan θ

Answer 50

f = 2.143 kHz

f =
1

2πRC tan θ

Answer 51

R = 669.7 Ω

R =
1

2πfC tan θ

Answer 52

R = 16.734 kΩ

R = −
tan θ

2πfC

Answer 53

Vout =
R Vin

√

(

1
2πfC

)2

+ R2

Answer 54

Vout =
R Vin

√

(

C1+C2

2πfC1C2

)2

+ R2

51



Answer 55

• Itotal = 0.895 mA
• VL1 = 9.14 V
• VL2 = 2.19 V
• VR1 = 6.08 V
• VR2 = 1.07 V
• Θ = 57.71o

I suggest using a dual-trace oscilloscope to measure total voltage (across the supply terminals) and
voltage drop across resistor R2. Theoretically, measuring the voltage dropped by either resistor would be
fine, but R2 works better for practical reasons (oscilloscope input lead grounding). Phase shift then could
be measured either in the time domain or by a Lissajous figure analysis.

Answer 56

• Itotal = 2.12 mA
• IL1 = 581 µA
• IL2 = 1.07 mA
• IR1 = 597 µA
• IR2 = 730 µA
• Θ = 51.24o

Measuring Θ with an oscilloscope requires the addition of a shunt resistor into this circuit, because
oscilloscopes are (normally) only able to measure voltage, and there is no phase shift between any voltages
in this circuit because all components are in parallel. I leave it to you to suggest where to insert the shunt
resistor, what resistance value to select for the task, and how to connect the oscilloscope to the modified
circuit.

Answer 57

• Itotal = 2.269 mA
• VC1 = 3.041 V
• VC2 = 5.354 V
• VR1 = 15.43 V
• VR2 = 2.723 V
• Θ = −24.82o (voltage lagging current)

I suggest using a dual-trace oscilloscope to measure total voltage (across the supply terminals) and
voltage drop across resistor R2. Theoretically, measuring the voltage dropped by either resistor would be
fine, but R2 works better for practical reasons (oscilloscope input lead grounding). Phase shift then could
be measured either in the time domain or by a Lissajous figure analysis.

Answer 58

VC1 = 0.921 V 6 − 52.11o

VC2 = 0.921 V 6 − 52.11o

VR1 = 1.184 V 6 37.90o

Follow-up question: how much phase shift is there between the capacitors’ voltage drop and the resistor’s
voltage drop? Explain why this value is what it is.
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Answer 59

Θ = 26.51o

Challenge question: explain how the following phasor diagram was determined for this problem:

4.17 V

2.08 V

4.66 V

26.51o

Answer 60

Itotal = 3.61 amps peak or 2.55 amps RMS

Answer 61

100 Hz 470 Ω 290 Hz 1.5 kΩ

100 Hz 470 Ω 290 Hz 1.5 kΩ

3.3 µF

3.3 µF

0.1 µF

0.22 µF

0.1 µF 0.22 µF

Ztotal = 673.4 Ω ∠  -45.74o

Ztotal = 336.6 Ω ∠  -44.26o

Ztotal = 8.122 kΩ ∠  -79.36o

Ztotal = 1.129 kΩ ∠  -41.17o
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Answer 62

R1 Total

R1 C13.3 µF

C1

17 V

V

I

Z

470 Ω 60 Hz

17 V ∠  0o

470 Ω ∠  0o 803.8 Ω ∠  -90o

41.9 mA ∠  30.3o

405.7 Ω ∠  -30.3o

17 V ∠  0o 17 V ∠  0o

21.15 mA ∠  90o36.17 mA ∠  0o

Answer 63

C = 562.2 nF

Answer 64

Zinput = 52.98 kΩ at 150 kHz

Follow-up question: what are the respective input impedances for ideal voltmeters and ideal ammeters?
Explain why each ideal instrument needs to exhibit these impedances in order to accurately measure voltage
and current (respectively) with the least ”impact” to the circuit under test.

Answer 65

• ΘI(R) = 0o

• ΘI(C) = 90o

• ΘI(total) = some positive angle between 0o and 90o, exclusive

Answer 66

Ztotal = 13 Ω 6 -90o

Follow-up question: does this circuit ”appear” to be inductive or capacitive from the source’s point of
view?

Answer 67

Ztotal =
√

R2 + (XL − XC)2

Answer 68

Overall, the first (series) circuit’s behavior is inductive. The second (parallel) circuit’s behavior, though,
is capacitive.

Follow-up question: which component ”dominates” the behavior of a series LC circuit, the one with the
least reactance or the one with the greatest reactance? Which component ”dominates” the behavior of a
parallel LC circuit, the one with the least reactance or the one with the greatest reactance?
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Answer 69

• f = 200 Hz ; VL = 1.750 V ; VC = 11.79 V ; Vspeaker = 5.572 V
• f = 550 Hz ; VL = 6.472 V ; VC = 5.766 V ; Vspeaker = 7.492 V
• f = 900 Hz ; VL = 9.590 V ; VC = 3.763 V ; Vspeaker = 6.783 V

This circuit is known as a midrange crossover in stereo system design.

Answer 70

A 1132.1 Ω resistor connected in series with a 269.6 nF capacitor would suffice.

Answer 71

Ytotal =
√

G2 + (BL − BC)2

Answer 72

Ztotal = 8.911 kΩ 6 26.98o

Answer 73

Rparallel = 13.16 Ω

Lparallel = 51.75 mH

Challenge question: in the parallel LR circuit, the resistor will dissipate a lot of energy in the form
of heat. Does this mean that the electric motor, which is electrically equivalent to the LR network, will
dissipate the same amount of heat? Explain why or why not.

Answer 74

Ztotal = 1.18 kΩ 6 50.54o

If connected in parallel: R = 1.857 kΩ ; L = 243.3 mH.

Hint: if you are having difficulty figuring out where to start in answering this question, consider the fact
that these two circuits, if equivalent in total impedance, will draw the exact same amount of current from a
common AC source at 1 kHz.

Answer 75

Let the electrons themselves give you the answers to your own ”practice problems”!
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Notes

Notes 1

After discussing alternative possibilities with your students, shift the discussion to one on how likely

any of these failures are. For instance, how likely is it that the solenoid coil has developed an ”open” fault
compared to the likelihood of a regular wire connection going bad in the circuit? How do either of these
possibilities compare with the likelihood of the source failing as a result of a tripped circuit breaker or other
power outage?

Notes 2

The purpose of this question is to get students to realize that any way they can calculate total impedance
is correct, whether calculating total inductance and then calculating impedance from that, or by calculating
the impedance of each inductor and then combining impedances to find a total impedance. This should be
reassuring, because it means students have a way to check their work when analyzing circuits such as this!

Notes 3

A common misconception many students have about capacitive reactances and impedances is that they
must interact ”oppositely” to how one would normally consider electrical opposition. That is, many students
believe capacitive reactances and impedances should add in parallel and diminish in series, because that’s
what capacitance (in Farads) does! This is not true, however. Impedances always add in series and diminish
in parallel, at least from the perspective of complex numbers. This is one of the reasons I favor AC circuit
calculations using complex numbers: because then students may conceptually treat impedance just like they
treat DC resistance.

The purpose of this question is to get students to realize that any way they can calculate total impedance
is correct, whether calculating total capacitance and then calculating impedance from that, or by calculating
the impedance of each capacitor and then combining impedances to find a total impedance. This should be
reassuring, because it means students have a way to check their work when analyzing circuits such as this!

Notes 4

Ask your students if this equation looks similar to any other mathematical equations they’ve seen before.
If not, square both sides of the equation so it looks like Z2 = R2 + X2 and ask them again.

Notes 5

Ask your students if this equation looks similar to any other mathematical equations they’ve seen before.
If not, square both sides of the equation so it looks like Z2 = R2 + X2 and ask them again.

Notes 6

This question has two different layers: first, how to reconcile the ”strange” voltage readings with
Kirchhoff’s Voltage Law; and second, how to experimentally validate the accuracy of the voltmeters and the
fact that they are all registering the same type of voltage (RMS, peak, or otherwise, it doesn’t matter). The
first layer of this question regards the basic concepts of AC phase, while the second exercises troubleshooting
and critical thinking skills. Be sure to discuss both of these topics in class with your students.
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Notes 7

I want students to see that there are two different ways of approaching a problem such as this: with
scalar math and with complex number math. If students have access to calculators that can do complex-
number arithmetic, the ”complex” approach is actually simpler for series-parallel combination circuits, and
it yields richer (more informative) results.

Ask your students to determine which of the approaches most resembles DC circuit calculations.
Incidentally, this is why I tend to prefer complex-number AC circuit calculations over scalar calculations:
because of the conceptual continuity between AC and DC. When you use complex numbers to represent
AC voltages, currents, and impedances, almost all the rules of DC circuits still apply. The big exception, of
course, is calculations involving power.

Notes 8

Inductors are the least ”pure” of any reactive component, due to significant quantities of resistance in
the windings. Discuss this fact with your students, and what it means with reference to choosing inductors
versus capacitors in circuit designs that could use either.

Notes 9

Nothing special to note here, just practice with the impedance triangle (and the capacitive reactance
formula).

Notes 10

I want students to see that there are two different ways of approaching a problem such as this: with
scalar math and with complex number math. If students have access to calculators that can do complex-
number arithmetic, the ”complex” approach is actually simpler for series-parallel combination circuits, and
it yields richer (more informative) results.

Ask your students to determine which of the approaches most resembles DC circuit calculations.
Incidentally, this is why I tend to prefer complex-number AC circuit calculations over scalar calculations:
because of the conceptual continuity between AC and DC. When you use complex numbers to represent
AC voltages, currents, and impedances, almost all the rules of DC circuits still apply. The big exception, of
course, is calculations involving power.

Notes 11

Ask your students how they were able to make the determination of greater voltage drop. Which method
yields the fastest solution (i.e. requires the fewest steps)?

Notes 12

This would be an excellent question to have students present methods of solution for. Sometimes I have
students present nothing but their solution steps on the board in front of class (no arithmetic at all), in order
to generate a discussion on problem-solving strategies. The important part of their education here is not to
arrive at the correct answer or to memorize an algorithm for solving this type of problem, but rather how to
think like a problem-solver, and how to methodically apply the math they know to the problem(s) at hand.

Notes 13

Ask your students if this equation looks familiar to them. It should!

The answer to the second follow-up question is a matter of algebraic substitution. Work through this
process with your students, and then ask them to compare the resulting equation with other equations
they’ve seen before. Does its form look familiar to them in any way?
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Notes 14

Ask your students if this equation looks familiar to them. It should!

The answer to the challenge question is a matter of algebraic substitution. Work through this process
with your students, and then ask them to compare the resulting equation with other equations they’ve seen
before. Does its form look familiar to them in any way?

Notes 15

This question is set up to be more complex than it has to be. Its purpose is to get students thinking in
terms of parallel admittances, in a manner similar to parallel conductances.

Notes 16

This question is another example of how multiple means of calculation will give you the same answer
(if done correctly!). Make note to your students that this indicates an answer-checking strategy!

Notes 17

Some students may wonder why every side of the triangle is represented by a Y term, rather than Y for
the hypotenuse, G for the adjacent, and B for the opposite. If students ask about this, remind them that
conductance (G) and susceptance (B) are simple two different types of admittances (Y ), just as resistance
(R) and reactance (X) are simply two different types of impedances (Z).

Notes 18

Some electronics textbooks (and courses) tend to emphasize scalar impedance calculations, while others
emphasize complex number calculations. While complex number calculations provide more informative
results (a phase shift given in every variable!) and exhibit conceptual continuity with DC circuit analysis
(same rules, similar formulae), the scalar approach lends itself better to conditions where students do not
have access to calculators capable of performing complex number arithmetic. Yes, of course, you can do
complex number arithmetic without a powerful calculator, but it’s a lot more tedious and prone to errors
than calculating with admittances, susceptances, and conductances (primarily because the phase shift angle
is omitted for each of the variables).

Notes 19

The purpose of this question is to get students to realize that any way they can calculate total impedance
is correct, whether calculating total inductance and then calculating impedance from that, or by calculating
the impedance of each inductor and then combining impedances to find a total impedance. This should be
reassuring, because it means students have a way to check their work when analyzing circuits such as this!

Notes 20

Some electronics textbooks (and courses) tend to emphasize scalar impedance calculations, while others
emphasize complex number calculations. While complex number calculations provide more informative
results (a phase shift given in every variable!) and exhibit conceptual continuity with DC circuit analysis
(same rules, similar formulae), the scalar approach lends itself better to conditions where students do not
have access to calculators capable of performing complex number arithmetic. Yes, of course, you can do
complex number arithmetic without a powerful calculator, but it’s a lot more tedious and prone to errors
than calculating with admittances, susceptances, and conductances (primarily because the phase shift angle
is omitted for each of the variables).
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Notes 21

A common misconception many students have about capacitive reactances and impedances is that they
must interact ”oppositely” to how one would normally consider electrical opposition. That is, many students
believe capacitive reactances and impedances should add in parallel and diminish in series, because that’s
what capacitance (in Farads) does! This is not true, however. Impedances always add in series and diminish
in parallel, at least from the perspective of complex numbers. This is one of the reasons I favor AC circuit
calculations using complex numbers: because then students may conceptually treat impedance just like they
treat DC resistance.

The purpose of this question is to get students to realize that any way they can calculate total impedance
is correct, whether calculating total capacitance and then calculating impedance from that, or by calculating
the impedance of each capacitor and then combining impedances to find a total impedance. This should be
reassuring, because it means students have a way to check their work when analyzing circuits such as this!

Notes 22

Phasor diagrams are powerful analytical tools, if one knows how to draw and interpret them. With
hand calculators being so powerful and readily able to handle complex numbers in either polar or rectangular
form, there is temptation to avoid phasor diagrams and let the calculator handle all the angle manipulation.
However, students will have a much better understanding of phasors and complex numbers in AC circuits if
you hold them accountable to representing quantities in that form.

Notes 23

Phasor diagrams are powerful analytical tools, if one knows how to draw and interpret them. With
hand calculators being so powerful and readily able to handle complex numbers in either polar or rectangular
form, there is temptation to avoid phasor diagrams and let the calculator handle all the angle manipulation.
However, students will have a much better understanding of phasors and complex numbers in AC circuits if
you hold them accountable to representing quantities in that form.

Notes 24

This would be an excellent question to have students present methods of solution for. Sometimes I have
students present nothing but their solution steps on the board in front of class (no arithmetic at all), in order
to generate a discussion on problem-solving strategies. The important part of their education here is not to
arrive at the correct answer or to memorize an algorithm for solving this type of problem, but rather how to
think like a problem-solver, and how to methodically apply the math they know to the problem(s) at hand.

Notes 25

Although capacitors do contain their own parasitic effects, ESR being one of them, they still tend to
be much ”purer” components than inductors for general use. This is another reason why capacitors are
generally favored over inductors in applications where either will suffice.
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Notes 26

Nothing special here – just a straightforward exercise in series AC circuit calculations.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 27

Nothing special here – just a straightforward exercise in series AC circuit calculations.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.
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Notes 28

Nothing special here – just a straightforward exercise in series AC circuit calculations.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 29

Bring to your students’ attention the fact that total voltage in this circuit is given in ”peak” units rather
than RMS, and what effect this has on our answers.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 30

If appropriate, you may want to mention devices called saturable reactors, which are used to control
power in AC circuits by the exact same principle: varying a series inductance.

Notes 31

This method of measuring capacitance (or inductance for that matter) is fairly old, and works well if
the unknown component has a high Q value.

61



Notes 32

This is a practical example of a parallel LR circuit, as well as an example of how complex electrical devices
may be ”modeled” by collections of ideal components. To be honest, a loaded AC motor’s characteristics
are quite a bit more complex than what the parallel LR model would suggest, but at least it’s a start!

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 33

Here is a case where scalar calculations (R, G, X, B, Y) are much easier than complex number calculations
(all Z) would be.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 34

Have your students explain how they solved for each impedance, step by step. You may find different
approaches to solving the same problem(s), and your students will benefit from seeing the diversity of solution
techniques.
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Notes 35

This would be an excellent question to have students present methods of solution for. Sometimes I have
students present nothing but their solution steps on the board in front of class (no arithmetic at all), in order
to generate a discussion on problem-solving strategies. The important part of their education here is not to
arrive at the correct answer or to memorize an algorithm for solving this type of problem, but rather how to
think like a problem-solver, and how to methodically apply the math they know to the problem(s) at hand.

Notes 36

Discuss with your students the fact that electrolytic capacitors typically have more leakage (less Rleakage)
than most other capacitor types, due to the thinness of the dielectric oxide layer.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 37

Capacitive voltage dividers find use in high-voltage AC instrumentation, due to some of the advantages
they exhibit over resistive voltage dividers. Your students should take special note of the phase angle for the
capacitor’s voltage drop. Why it is 0 degrees, and not some other angle?

Notes 38

Too many students blindly use impedance and voltage triangles without really understand what they
are and why they work. These same students will have no idea how to approach a problem like this. Work
with them to help them understand!

Notes 39

This is a very practical application of resistor-capacitor (RC) circuits: to introduce a phase shift to an
AC signal. Examples of where a circuit such as this may be used include oscillators (to introduce phase shift
into a feedback network for a total phase shift of 360o) and thyristor firing control circuits (phase-shifting
the triggering voltage in relation to the source voltage).

Notes 40

This is a very practical application of resistor-capacitor (RC) circuits: to introduce a phase shift to an
AC signal. Examples of where a circuit such as this may be used include oscillators (to introduce phase shift
into a feedback network for a total phase shift of 360o) and thyristor firing control circuits (phase-shifting
the triggering voltage in relation to the source voltage).
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Notes 41

In this question, I purposely omitted any reference to voltage levels, so the students would have to set
up part of the problem themselves. The goal here is to build problem-solving skills.

Notes 42

Phase-shifting circuits are very useful, and important to understand. They are particularly important
in some types of oscillator circuits, which rely on RC networks such as this to provide certain phase shifts
to sustain oscillation.

Notes 43

Phase-shifting circuits are very useful, and important to understand. They are particularly important
in some types of oscillator circuits, which rely on RC networks such as this to provide certain phase shifts
to sustain oscillation.

Notes 44

Phase-shifting circuits are very useful, and important to understand. They are particularly important
in some types of oscillator circuits, which rely on RC networks such as this to provide certain phase shifts
to sustain oscillation.

Notes 45

Phase-shifting circuits are very useful, and important to understand. They are particularly important
in some types of oscillator circuits, which rely on RC networks such as this to provide certain phase shifts
to sustain oscillation.

Notes 46

Discuss with your students what a good procedure might be for calculating the unknown values in this
problem, and also how they might check their work.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them.

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.
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Notes 47

Discuss with your students what a good procedure might be for calculating the unknown values in this
problem, and also how they might check their work.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them.

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 48

Discuss with your students what a good procedure might be for calculating the unknown values in this
problem, and also how they might check their work.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them.

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 49

Discuss with your students what a good procedure might be for calculating the unknown values in this
problem, and also how they might check their work.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them.

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.
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Notes 50

Discuss with your students what a good procedure might be for calculating the unknown values in this
problem, and also how they might check their work.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them.

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 51

Discuss with your students what a good procedure might be for calculating the unknown values in this
problem, and also how they might check their work.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them.

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 52

Discuss with your students what a good procedure might be for calculating the unknown values in this
problem, and also how they might check their work.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them.

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.
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Notes 53

Discuss with your students what a good procedure might be for calculating the unknown values in this
problem, and also how they might check their work.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them.

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 54

Discuss with your students what a good procedure might be for calculating the unknown values in this
problem, and also how they might check their work.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them.

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.
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Notes 55

Some students many wonder what type of numerical result best corresponds to a multimeter’s readings,
if they do their calculations using complex numbers (”do I use polar or rectangular form, and if rectangular
do I use the real or the imaginary part?”). The answers given for this question should clarify that point.

It is very important that students know how to apply this knowledge of AC circuit analysis to real-world
situations. Asking students to determine how they would connect an oscilloscope to the circuit to measure
Θ is an exercise in developing their abstraction abilities between calculations and actual circuit scenarios.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.
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Notes 56

Some students many wonder what type of numerical result best corresponds to a multimeter’s readings,
if they do their calculations using complex numbers (”do I use polar or rectangular form, and if rectangular
do I use the real or the imaginary part?”). The answers given for this question should clarify that point.

It is very important that students know how to apply this knowledge of AC circuit analysis to real-world
situations. Asking students to determine how they would connect an oscilloscope to the circuit to measure
Θ is an exercise in developing their abstraction abilities between calculations and actual circuit scenarios.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.
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Notes 57

Some students many wonder what type of numerical result best corresponds to a multimeter’s readings,
if they do their calculations using complex numbers (”do I use polar or rectangular form, and if rectangular
do I use the real or the imaginary part?”). The answers given for this question should clarify that point.

It is very important that students know how to apply this knowledge of AC circuit analysis to real-world
situations. Asking students to determine how they would connect an oscilloscope to the circuit to measure
Θ is an exercise in developing their abstraction abilities between calculations and actual circuit scenarios.

It is noteworthy that the low capacitances shown here approach parasitic capacitances between circuit
board traces. In other words, whoever designs a circuit to operate at 950 kHz cannot simply place components
at will on the board, but must consider the traces themselves to be circuit elements (both capacitive and
inductive in nature!). The calculations used to obtain the given answers, of course, assume ideal conditions
where the PC board is not considered to possess capacitance or inductance.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.
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Notes 58

The first challenge of this question is for students to figure out how to reduce this series-parallel
combination to something simpler. Fortunately, this is very easy to do if one remembers the properties
of parallel capacitances.

Students may be surprised to discover the phase shift between VC and VR is the value it is. However,
this should not remain a mystery. Discuss this with your class, taking time for all of them to understand
why the voltage phasors of a resistor and a capacitor in a simple series circuit will always be orthogonal.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 59

This is an interesting question for a couple of reasons. First, students must determine how they will
measure phase shift with just the two voltage indications shown by the meters. This may present a significant
challenge for some. Discuss problem-solving strategies in class so that students understand how and why it
is possible to determine Θ.

Secondly, this is an interesting question because it shows how something as abstract as phase angle can
be measured with just a voltmeter – no oscilloscope required! Not only that, but we don’t even have to know
the component values either! Note that this technique works only for simple circuits.

A practical point to mention here is that multimeters have frequency limits which must be considered
when taking measurements on electronic circuits. Some high-quality handheld digital meters have frequency
limits of hundred of kilohertz, while others fail to register accurately at only a few thousand hertz. Unless
we knew these two digital voltmeters were sufficient for measuring at the signal frequency, their indications
would be useless to us.

Notes 60

This is a really simple trigonometry problem, disguised by the necessity of having to interpret the
oscilloscope display.

Notes 61

Have your students explain how they solved for each impedance, step by step. You may find different
approaches to solving the same problem(s), and your students will benefit from seeing the diversity of solution
techniques.
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Notes 62

Ask your students to share their problem-solving techniques for this question: how they solved for each
parameter and in what order they performed the calculations.

Notes 63

Have your students explain how they solved for each impedance, step by step. You may find different
approaches to solving the same problem(s), and your students will benefit from seeing the diversity of solution
techniques.

Notes 64

Mention to your students that this capacitive loading effect only gets worse when a cable is attached to
the oscilloscope input. The calculation performed for this question is only for the input of the oscilloscope
itself, not including whatever capacitance may be included in the test probe cable!

This is one of the reasons why ×10 probes are used with oscilloscopes: to minimize the loading effect
on the tested circuit.

Notes 65

Some students will be confused about the positive phase angles, since this is a capacitive circuit and
they have learned to associate negative angles with capacitors. It is important for these students to realize,
though, that the negative angles they immediately associate with capacitors are in reference to impedance

and not necessarily to other variables in the circuit!

Notes 66

Here, the complementary nature of inductive and capacitive reactances is plain to see: they subtract in
series. Challenge your students by asking them what the total impedance of this circuit would be if the two
reactances were equal.

Notes 67

Ask your students why one of the reactance terms under the radicand is positive and the other is
negative. The way this equation is written, does it matter which term is negative? As your students if we
would obtain the same answer if it were written as Ztotal =

√

R2 + (XC − XL)2 instead. Challenge them to
answer this question without using a calculator!
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Notes 68

As usual, the real point of this question is to get students to think about the analytical procedure(s)
they use, and to engage their minds in problem-solving behavior. Ask them why they think the circuits
behave inductively or capacitively.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 69

This is an interesting circuit to analyze. Note how, out of the three frequency points we performed
calculations at, the speaker’s voltage is greatest at the middle frequency. Note also how the inductor and
capacitor drop very disparate amounts of voltage at the high and low frequencies. Discuss this circuit’s
behavior with your students, and ask them what practical function this circuit performs.

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.
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Notes 70

As usual, the most important part of your students’ answers is not the figures themselves, but rather
their methods of solution. Students should be very familiar with how to calculate the impedance of a
series-connected group of components, but calculating component values from an impedance figure may be
a challenge to some.

Notes 71

Ask your students why one of the reactance terms under the radicand is positive and the other is
negative. The way this equation is written, does it matter which term is negative? Ask your students
if we would obtain the same answer if the equation were written as Ytotal =

√

G2 + (BC − BL)2 instead.
Challenge them to answer this question without using a calculator!

Notes 72

Ask your students how they obtained the phase angle for this circuit. There is more than one way to
calculate this!

Students often have difficulty formulating a method of solution: determining what steps to take to get
from the given conditions to a final answer. While it is helpful at first for you (the instructor) to show them,
it is bad for you to show them too often, lest they stop thinking for themselves and merely follow your lead.
A teaching technique I have found very helpful is to have students come up to the board (alone or in teams)
in front of class to write their problem-solving strategies for all the others to see. They don’t have to actually
do the math, but rather outline the steps they would take, in the order they would take them. The following
is a sample of a written problem-solving strategy for analyzing a series resistive-reactive AC circuit:

Step 1: Calculate all reactances (X).
Step 2: Draw an impedance triangle (Z ; R ; X), solving for Z

Step 3: Calculate circuit current using Ohm’s Law: I = V
Z

Step 4: Calculate series voltage drops using Ohm’s Law: V = IZ

Step 5: Check work by drawing a voltage triangle (Vtotal ; V1 ; V2), solving for Vtotal

By having students outline their problem-solving strategies, everyone gets an opportunity to see multiple
methods of solution, and you (the instructor) get to see how (and if!) your students are thinking. An
especially good point to emphasize in these ”open thinking” activities is how to check your work to see if
any mistakes were made.

Notes 73

If students get stuck on the challenge question, remind them that an electric motor does mechanical
work, which requires energy.

Notes 74

This is an interesting question, requiring the student to think creatively about how to convert one
configuration of circuit into another, while maintaining the same total effect. As usual, the real purpose of
a question like this is to develop problem-solving strategies, rather than to simply obtain an answer.
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Notes 75

It has been my experience that students require much practice with circuit analysis to become proficient.
To this end, instructors usually provide their students with lots of practice problems to work through, and
provide answers for students to check their work against. While this approach makes students proficient in
circuit theory, it fails to fully educate them.

Students don’t just need mathematical practice. They also need real, hands-on practice building circuits
and using test equipment. So, I suggest the following alternative approach: students should build their
own ”practice problems” with real components, and try to mathematically predict the various voltage and
current values. This way, the mathematical theory ”comes alive,” and students gain practical proficiency
they wouldn’t gain merely by solving equations.

Another reason for following this method of practice is to teach students scientific method: the process
of testing a hypothesis (in this case, mathematical predictions) by performing a real experiment. Students
will also develop real troubleshooting skills as they occasionally make circuit construction errors.

Spend a few moments of time with your class to review some of the ”rules” for building circuits before
they begin. Discuss these issues with your students in the same Socratic manner you would normally discuss
the worksheet questions, rather than simply telling them what they should and should not do. I never
cease to be amazed at how poorly students grasp instructions when presented in a typical lecture (instructor
monologue) format!

An excellent way to introduce students to the mathematical analysis of real circuits is to have them first
determine component values (L and C) from measurements of AC voltage and current. The simplest circuit,
of course, is a single component connected to a power source! Not only will this teach students how to set
up AC circuits properly and safely, but it will also teach them how to measure capacitance and inductance
without specialized test equipment.

A note on reactive components: use high-quality capacitors and inductors, and try to use low frequencies
for the power supply. Small step-down power transformers work well for inductors (at least two inductors
in one package!), so long as the voltage applied to any transformer winding is less than that transformer’s
rated voltage for that winding (in order to avoid saturation of the core).

A note to those instructors who may complain about the ”wasted” time required to have students build
real circuits instead of just mathematically analyzing theoretical circuits:

What is the purpose of students taking your course?

If your students will be working with real circuits, then they should learn on real circuits whenever
possible. If your goal is to educate theoretical physicists, then stick with abstract analysis, by all means!
But most of us plan for our students to do something in the real world with the education we give them.
The ”wasted” time spent building real circuits will pay huge dividends when it comes time for them to apply
their knowledge to practical problems.

Furthermore, having students build their own practice problems teaches them how to perform primary

research, thus empowering them to continue their electrical/electronics education autonomously.
In most sciences, realistic experiments are much more difficult and expensive to set up than electrical

circuits. Nuclear physics, biology, geology, and chemistry professors would just love to be able to have their
students apply advanced mathematics to real experiments posing no safety hazard and costing less than a
textbook. They can’t, but you can. Exploit the convenience inherent to your science, and get those students

of yours practicing their math on lots of real circuits!
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