Animation: differentiation and integration (calculus)

This question consists of a series of images (one per page) that form an animation. Flip the pages with your fingers to view this animation (or click on the “next” button on your viewer) frame-by-frame.

The following animation shows two variables graphed over time, one being the derivative of the other and the other being the integral of the first.
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time:
\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time:
\[V = \int Q \, dt \]
Flow rate (Q) is the derivative of volume with respect to time

\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time

\[V = \int Q \, dt \]
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$
Flow rate (\(Q\)) is the derivative of volume with respect to time,

\[Q = \frac{dV}{dt} \]

Volume (\(V\)) is the integral of flow rate with respect to time,

\[V = \int Q \, dt \]
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time:

\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time:

\[V = \int Q \, dt \]
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate \((Q) \) is the derivative of volume with respect to time
\[Q = \frac{dV}{dt} \]

Volume \((V) \) is the integral of flow rate with respect to time
\[V = \int Q \, dt \]
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate \((Q) \) is the derivative of volume with respect to time:

\[Q = \frac{dV}{dt} \]

Volume \((V) \) is the integral of flow rate with respect to time:

\[V = \int Q \, dt \]
Flow rate \(Q \) is the derivative of volume with respect to time:

\[Q = \frac{dV}{dt} \]

Volume \(V \) is the integral of flow rate with respect to time:

\[V = \int Q \, dt \]
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time

\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time

\[V = \int Q \, dt \]
Flow rate (Q) is the derivative of volume with respect to time.

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time.

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time:

$$ Q = \frac{dV}{dt} $$

Volume (V) is the integral of flow rate with respect to time:

$$ V = \int Q \, dt $$
Flow rate (\(Q \)) is the derivative of volume with respect to time:

\[Q = \frac{dV}{dt} \]

Volume (\(V \)) is the integral of flow rate with respect to time:

\[V = \int Q \, dt \]
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time

\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time

\[V = \int Q \, dt \]
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate \(Q \) is the derivative of volume with respect to time:

\[
Q = \frac{dV}{dt}
\]

Volume \(V \) is the integral of flow rate with respect to time:

\[
V = \int Q \, dt
\]
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time

\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time

\[V = \int Q \, dt \]
Flow rate \(Q \) is the derivative of volume with respect to time:

\[Q = \frac{dV}{dt} \]

Volume \(V \) is the integral of flow rate with respect to time:

\[V = \int Q \, dt \]
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate \((Q) \) is the derivative of volume with respect to time:

\[
Q = \frac{dV}{dt}
\]

Volume \((V) \) is the integral of flow rate with respect to time:

\[
V = \int Q \, dt
\]
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (Q) is the derivative of volume with respect to time:

\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time:

\[V = \int Q \, dt \]
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$
Flow rate (\(Q\)) is the derivative of volume with respect to time:
\[Q = \frac{dV}{dt} \]

Volume (\(V\)) is the integral of flow rate with respect to time:
\[V = \int Q \, dt \]
Flow rate \(Q \) is the derivative of volume with respect to time:
\[Q = \frac{dV}{dt} \]

Volume \(V \) is the integral of flow rate with respect to time:
\[V = \int Q \, dt \]
Flow rate \(Q \) is the derivative of volume with respect to time

\[
Q = \frac{dV}{dt}
\]

Volume \(V \) is the integral of flow rate with respect to time

\[
V = \int Q \, dt
\]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time $Q = \frac{dV}{dt}$

Volume (V) is the integral of flow rate with respect to time $V = \int Q \, dt$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph...
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate \((Q) \) is the derivative of volume with respect to time

\[
Q = \frac{dV}{dt}
\]

Volume \((V) \) is the integral of flow rate with respect to time

\[
V = \int Q \, dt
\]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time:

\[V = \int Q \, dt \]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate \(Q \) is the derivative of volume with respect to time:
\[
Q = \frac{dV}{dt}
\]

Volume \(V \) is the integral of flow rate with respect to time:
\[
V = \int Q \, dt
\]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time:
\[Q = \frac{dV}{dt} \]
Volume (V) is the integral of flow rate with respect to time:
\[V = \int Q \, dt \]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph...
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time
\[Q = \frac{dV}{dt} \]
Volume (V) is the integral of flow rate with respect to time
\[V = \int Q \, dt \]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time
\[Q = \frac{dV}{dt} \]
Volume (V) is the integral of flow rate with respect to time
\[V = \int Q \, dt \]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time

\[V = \int Q \, dt \]

Note how the height of the flow graph directly relates to the slope of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate \(Q \) is the derivative of volume with respect to time
\[
Q = \frac{dV}{dt}
\]
Volume \(V \) is the integral of flow rate with respect to time
\[
V = \int Q \, dt
\]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the height of the flow graph directly relates to the slope of the volume graph . . .
Flow rate \((Q)\) is the derivative of volume with respect to time \(\frac{dV}{dt}\) .

Volume \((V)\) is the integral of flow rate with respect to time \(\int Q \, dt\) .

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time
$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time
$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph...
Flow rate \((Q) \) is the derivative of volume with respect to time \(Q = \frac{dV}{dt} \).

Volume \((V) \) is the integral of flow rate with respect to time \(V = \int Q \, dt \).

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate \((Q) \) is the derivative of volume with respect to time
\[
Q = \frac{dV}{dt}
\]
Volume \((V) \) is the integral of flow rate with respect to time
\[
V = \int Q \, dt
\]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time:
$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:
$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time:
$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:
$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time

\[V = \int Q \, dt \]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate \((Q) \) is the derivative of volume with respect to time:

\[
Q = \frac{dV}{dt}
\]

Volume \((V) \) is the integral of flow rate with respect to time:

\[
V = \int Q \, dt
\]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate \(Q \) is the derivative of volume with respect to time:

\[
Q = \frac{dV}{dt}
\]

Volume \(V \) is the integral of flow rate with respect to time:

\[
V = \int Q \, dt
\]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate \(Q \) is the derivative of volume with respect to time
\[
Q = \frac{dV}{dt}
\]
Volume \(V \) is the integral of flow rate with respect to time
\[
V = \int Q \, dt
\]

Note how the \textbf{height} of the flow graph directly relates to the \textbf{slope} of the volume graph . . .
Flow rate \((Q) \) is the derivative of volume with respect to time

\[Q = \frac{dV}{dt} \]

Volume \((V) \) is the integral of flow rate with respect to time

\[V = \int Q \, dt \]

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate \((Q) \) is the derivative of volume with respect to time
\[
Q = \frac{dV}{dt}
\]
Volume \((V) \) is the integral of flow rate with respect to time
\[
V = \int Q \, dt
\]

Note how the **height of the flow graph directly relates to the **slope** of the volume graph . . .**
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time.

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time.

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height** of the flow graph directly relates to the **slope** of the volume graph...
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph...
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$ Q = \frac{dV}{dt} $$

Volume (V) is the integral of flow rate with respect to time:

$$ V = \int Q \, dt $$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time
$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time
$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \((Q) \) is the derivative of volume with respect to time

\[
Q = \frac{dV}{dt}
\]

Volume \((V) \) is the integral of flow rate with respect to time

\[
V = \int Q \, dt
\]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \((Q)\) is the derivative of volume with respect to time \(Q = \frac{dV}{dt}\).

Volume \((V)\) is the integral of flow rate with respect to time \(V = \int Q \, dt\).

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time
$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time
$$V = \int Q \, dt$$

Note how the **height increase of the volume graph** directly relates to the area accumulated by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time
\[Q = \frac{dV}{dt} \]
Volume (V) is the integral of flow rate with respect to time
\[V = \int Q \, dt \]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \(Q \) is the derivative of volume with respect to time
\[Q = \frac{dV}{dt} \]

Volume \(V \) is the integral of flow rate with respect to time
\[V = \int Q \, dt \]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \((Q) \) is the
derivative of volume
with respect to time
\[Q = \frac{dV}{dt} \]

Volume \((V) \) is the
integral of flow rate
with respect to time
\[V = \int Q \, dt \]

Note how the **height increase** of
the volume graph directly relates
to the **area accumulated** by the
flow graph . . .
Flow rate \(Q \) is the derivative of volume with respect to time

\[
Q = \frac{dV}{dt}
\]

Volume \(V \) is the integral of flow rate with respect to time

\[
V = \int Q \, dt
\]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Q is the derivative of volume with respect to time
\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time
\[V = \int Q \, dt \]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \(Q \) is the derivative of volume with respect to time:

\[
Q = \frac{dV}{dt}
\]

Volume \(V \) is the integral of flow rate with respect to time:

\[
V = \int Q \, dt
\]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time:
$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:
$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \((Q) \) is the derivative of volume with respect to time

\[
Q = \frac{dV}{dt}
\]

Volume \((V) \) is the integral of flow rate with respect to time

\[
V = \int Q \, dt
\]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \(Q \) is the derivative of volume with respect to time

\[
Q = \frac{dV}{dt}
\]

Volume \(V \) is the integral of flow rate with respect to time

\[
V = \int Q \, dt
\]

Note how the height increase of the volume graph directly relates to the area accumulated by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height increase of the volume graph directly relates to the area accumulated by the flow graph** . . .
Flow rate (Q) is the derivative of volume with respect to time
\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time
\[V = \int Q \, dt \]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .

Max.

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \((Q) \) is the derivative of volume with respect to time

\[Q = \frac{dV}{dt} \]

Volume \((V) \) is the integral of flow rate with respect to time

\[V = \int Q \, dt \]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time
\[Q = \frac{dV}{dt} \]
Volume (V) is the integral of flow rate with respect to time
\[V = \int Q \, dt \]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \((Q) \) is the derivative of volume with respect to time
\[
Q = \frac{dV}{dt}
\]
Volume \((V) \) is the integral of flow rate with respect to time
\[
V = \int Q \, dt
\]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time:

\[V = \int Q \, dt \]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time

\[Q = \frac{dV}{dt} \]

Volume (V) is the integral of flow rate with respect to time

\[V = \int Q \, dt \]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \((Q) \) is the derivative of volume with respect to time

\[Q = \frac{dV}{dt} \]

Volume \((V) \) is the integral of flow rate with respect to time

\[V = \int Q \, dt \]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \(Q \) is the derivative of volume with respect to time
\[
Q = \frac{dV}{dt}
\]
Volume \(V \) is the integral of flow rate with respect to time
\[
V = \int Q \, dt
\]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \((Q)\) is the derivative of volume with respect to time
\[Q = \frac{dV}{dt} \]
Volume \((V)\) is the integral of flow rate with respect to time
\[V = \int Q \, dt \]

Note how the height increase of the volume graph directly relates to the area accumulated by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate \(Q \) is the derivative of volume with respect to time.
\[
Q = \frac{dV}{dt}
\]
Volume \(V \) is the integral of flow rate with respect to time.
\[
V = \int Q \, dt
\]

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time:
$$ Q = \frac{dV}{dt} $$

Volume (V) is the integral of flow rate with respect to time:
$$ V = \int Q \, dt $$

Note how the height increase of the volume graph directly relates to the area accumulated by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time
$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time
$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time:

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time:

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Flow rate (Q) is the derivative of volume with respect to time

$$Q = \frac{dV}{dt}$$

Volume (V) is the integral of flow rate with respect to time

$$V = \int Q \, dt$$

Note how the **height increase** of the volume graph directly relates to the **area accumulated** by the flow graph . . .
Answer 1

Nothing to note here.
Notes

Notes 1

The purpose of this animation is to let students study the generation of characteristic curves and reach their own conclusions. Similar to experimentation in the lab, except that here all the data collection is done visually rather than through the use of test equipment, and the students are able to “see” things that are invisible in real life.