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Preface

I did not want to write this book . . . honestly.

My first book project began in 1998, titled Lessons In Electric Circuits, and I didn’t call “quit” until
six volumes and five years later. Even then it was not complete, but being an open-source project
it gained traction on the Internet to the point where other people took over its development and
it grew fine without me. The impetus for writing this first tome was a general dissatisfaction with
available electronics textbooks. Plenty of textbooks exist to describe things, but few really ezplain
things well for students, and the field of electronics is no exception. I wanted my book(s) to be
different, and so they were. No one told me how time-consuming it was going to be to write them,
though!

The next few years’ worth of my spare time went to developing a set of question-and-answer
worksheets designed to teach electronics theory in a Socratic, active-engagement style. This project
proved quite successful in my professional life as an instructor of electronics. In the summer of 2006,
my job changed from teaching electronics to teaching industrial instrumentation, and I decided to
continue the Socratic mode of instruction with another set of question-and-answer worksheets.

However, the field of industrial instrumentation is not as well-represented as general electronics,
and thus the array of available textbooks is not as vast. I began to re-discover the drudgery of
trying to teach with inadequate texts as source material. The basis of my active teaching style was
that students would spend time researching the material on their own, then engage in Socratic-style
discussion with me on the subject matter when they arrived for class. This teaching technique
functions in direct proportion to the quality and quantity of the research sources at the students’
disposal. Despite much searching, I was unable to find a textbook adequately addressing my students’
learning needs. Many textbooks I found were written in a shallow, “math-phobic” style well below
the level I intended to teach to. Some reference books I found contained great information, but
were often written for degreed engineers with lots of Laplace transforms and other mathematical
techniques well above the level I intended to teach to. Few on either side of the spectrum actually
made an effort to explain certain concepts students generally struggle to understand. I needed a
text giving good, practical information and theoretical coverage at the same time.

In a futile effort to provide my students with enough information to study outside of class, I
scoured the Internet for free tutorials written by others. While some manufacturer’s tutorials were
nearly perfect for my needs, others were just as shallow as the textbooks I had found, and/or were
little more than sales brochures. I found myself starting to write my own tutorials on specific topics
to “plug the gaps,” but then another problem arose: it became troublesome for students to navigate
through dozens of tutorials in an effort to find the information they needed in their studies. What
my students really needed was a book, not a smorgasbord of tutorials.

3
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So here I am again, writing another textbook. This time around I have the advantage of wisdom
gained from the first textbook project. For this project, I will not:

. attempt to maintain a parallel book in HTML markup (for direct viewing on the Internet).
I had to go to the trouble of inventing my own quasi-XML markup language last time in an
effort to generate multiple format versions of the book from the same source code. Instead,
this time I will use stock ITEX as the source code format and regular Adobe PDF format for
the final output, which anyone may read thanks to its ubiquity. If anyone else desires the book
in a different format, I will gladly let them deal with issues of source code translation. Not
that this should be a terrible problem for anyone technically competent in markup languages,
as IATEX source is rather easy to work with.

use a GNU GPL-style copyleft license. Instead, I will use the Creative Commons
Attribution-only license, which is far more permissive for anyone wishing to incorporate my
work into derivative works. My interest is maximum flexibility for those who may adapt my
material to their own needs, not the imposition of certain philosophical ideals.

. start from a conceptual state of “ground zero.” I will assume the reader has certain
familiarity with electronics and mathematics, which I will build on. If a reader finds they need
to learn more about electronics, they should go read Lessons In Electric Clircuits.

. avoid using calculus to help explain certain concepts. Not all my readers will understand
these parts, and so I will be sure to explain what I can without using calculus. However,
I want to give my more mathematically adept students an opportunity to see the power of
calculus applied to instrumentation where appropriate. By occasionally applying calculus and
explaining my steps, I also hope this text will serve as a practical guide for students who might
wish to learn calculus, so they can see its utility and function in a context that interests them.

There do exist many fine references on the subject of industrial instrumentation. I only wish I
could condense their best parts into a single volume for my students. Being able to do so would
certainly save me from having to write my own! Listed here are some of the best books I can
recommend for those wishing to explore instrumentation outside of my own presentation:

Instrument Engineers’ Handbook series (Volumes I, II, and III), edited by Béla Liptak — by
far my favorite modern references on the subject. Unfortunately, there is a fair amount of
material within that lies well beyond my students’ grasp (Laplace transforms, etc.), and the
volumes are incredibly bulky and expensive (nearly 2000 pages, and at a cost of nearly $200.00,
apiece!). These texts also lack some of the basic content my students do need, and I don’t
have the heart to tell them to buy yet another textbook to fill the gaps.

Handbook of Instrumentation and Controls, by Howard P. Kallen. Perhaps the best-written
textbook on general instrumentation I have ever encountered. Too bad it is both long out of
print — my copy dates 1961 — and technologically dated. Like most American textbooks written
during the years immediately following Sputnik, it is a masterpiece of practical content and
conceptual clarity. I consider books like this useful for their presentations of “first principles,”
which of course are timeless.

Industrial Instrumentation Fundamentals, by Austin E. Fribance. Another great post-Sputnik
textbook — my copy dates 1962.
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e [nstrumentation for Process Measurement and Control, by Norman A. Anderson. An inspiring
effort by someone who knows the art of teaching as well as the craft of instrumentation. Too
bad the content doesn’t seem to have been updated since 1980.

o Applied Instrumentation in the Process Industries (Volume I), edited by William G. Andrew.
A very clear and fairly comprehensive overview of industrial instrumentation. Sadly, this fine
book is out of print, and much of the material is quite dated (second edition written in 1979).

e Practically anything written by Francis Greg Shinskey.

Whether or not I achieve my goal of writing a better textbook is a judgment left for others to
make. One decided advantage my book will have over all the others is its openness. If you don’t
like anything you see in these pages, you have the right to modify it to your liking! Delete content,
add content, modify content — it’s all fair game thanks to the Creative Commons licensing. My
only condition is declared in the license: you must give me credit for my original authorship. What
you do with it beyond that is wholly up to you?. This way, perhaps I can spare someone else from
having to write their own textbook from scratch!

2This includes selling copies of it, either electronic or print. Of course, you must include the Creative Commons
license as part of the text you sell (see Section 4, subsection 1 of the license for details), which means anyone will be
able to tell it is an open text and can probably figure out how to download an electronic copy off the Internet for free.
The only way you're going to make significant money selling this text is to add your own value to it, either in the
form of expansions or bundled product (e.g. simulation software, learning exercises, etc.), which of course is perfectly
fair — you must profit from your own labors. All my work does for you is give you a starting point.
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Chapter 1

Calculus

Mathematics is the investigation of an artificial world: a universe populated by abstract entities
and rigid rules governing those entities. Mathematicians devoted to the study and advancement of
pure mathematics have an extremely well-developed respect for these rules, for the integrity of this
artificial world depends on them. In order to preserve the integrity of their artificial world, their
collective work must be rigorous, never allowing for sloppy handling of the rules or allowing intuitive
leaps to be left unproven.

However, many of the tools and techniques developed by mathematicians for their artificial
world happen to be extremely useful for understanding the real world in which we live and work,
and therein lies a problem. In applying mathematical rules to the study of real-world phenomena,
we often take a far more pragmatic approach than any mathematician would feel comfortable with.

The tension between pure mathematicians and those who apply math to real-world problems is
not unlike the tension between linguists and those who use language in everyday life. All human
languages have rules (though none as rigid as in mathematics!), and linguists are the guardians
of those rules, but the vast majority of human beings play fast and loose with the rules as they
use language to describe and understand the world around them. Whether or not this “sloppy”
adherence to rules is good depends on which camp you are in. To the purist, it is offensive; to the
pragmatist, it is convenient.

I like to tell my students that mathematics is very much like a language. The more you understand
mathematics, the larger “vocabulary” you will possess to describe principles and phenomena you
encounter in the world around you. Proficiency in mathematics also empowers you to grasp
relationships between different things, which is a powerful tool in learning new concepts.

This book is not written for (or by!) mathematicians. Rather, it is written for people wishing
to make sense of industrial process measurement and control. This chapter of the book is devoted
to a very pragmatic coverage of certain mathematical concepts, for the express purpose of applying
these concepts to real-world systems.

Mathematicians, cover your eyes for the rest of this chapter!
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1.1 Introduction to calculus

Few areas of mathematics are as powerfully useful in describing and analyzing the physical world as
calculus: the mathematical study of changes. Calculus also happens to be tremendously confusing
to most students first encountering it. A great deal of this confusion stems from mathematicians’
insistence on rigor! and denial of intuition.

Look around you right now. Do you see any mathematicians? If not, good — you can proceed in
safety. If so, find another location to begin reading the rest of this chapter. I will frequently appeal to
practical example and intuition in describing the basic principles of single-variable calculus, for the
purpose of expanding your mathematical “vocabulary” to be able to describe and better understand
phenomena of change related to instrumentation.

Silvanus P. Thompson, in his wonderful book Calculus Made Simple originally published in 1910,
began his text with a short chapter entitled, “To Deliver You From The Preliminary Terrors®.” I
will follow his lead by similarly introducing you to some of the notations frequently used in calculus,
along with very simple (though not mathematically rigorous) definitions.

When we wish to speak of a change in some variable’s value (let’s say ), it is common to precede
the variable with the capital Greek letter “delta” as such:

Ax = “Change in 2"

An alternative interpretation of the “delta” symbol (A) is to think of it as denoting a difference
between two values of the same variable. Thus, Az could be taken to mean “the difference between
two values of 7. The cause of this difference is not important right now: it may be the difference
between the value of z at one point in time versus another point in time, it may be the difference
between the value of x at one point in space versus another point in space, or it may simply be
the difference between values of = as it relates to some other variable (e.g. y) in a mathematical
function. If we have some variable such as z that is known to change value relative to some other
variable (e.g. time, space, y), it is nice to be able to express that change using precise mathematical
symbols, and this is what the “delta” symbol does for us.

1In mathematics, the term rigor refers to a meticulous attention to detail and insistence that each and every step
within a chain of mathematical reasoning be thoroughly justified by deductive logic, not intuition or analogy.

2The book’s subtitle happens to be, Being a very-simplest introduction to those beautiful methods of reckoning
which are generally called by the terrifying names of the differential calculus and the integral calculus. Not only did
Thompson recognize the anti-pragmatic tone with which calculus is too often taught, but he also infused no small
amount of humor in his work.
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For example, if the temperature of a furnace (7") increases over time, we might wish to describe

that change in temperature as AT

Blower
Valve @

N 4= Air flow

Exhaust stack

Refractory brick

Furnace
To.us = 1255 °F

Fuel gas
inlet

Refractory brick

Temperature of furnace at 9:45 AM = 1255 °F

Blower
Valve @

N 4= Air flow

Exhaust stack

Refractory brick

Furnace
Ti03 = 1276 °F

Fuel gas
inlet

Refractory brick

Temperature of furnace at 10:32 AM = 1276 °F

AT =Tioa - Touss
AT = 1276 °F - 1255 °F = 21 °F

The value of AT is nothing more than the difference (subtraction) between the recent temperature
and the older temperature. A rising temperature over time thus yields a positive value for AT, while
a falling temperature over time yields a negative value for AT.

We could also describe differences between the temperature of two locations (rather than a
difference of temperature between two times) by the notation AT, such as this example of heat
transfer through a heat-conducting wall where one side of the wall is hotter than the other:

Tcold Thot

Heat Heat

-

Once again, AT is calculated by subtracting one temperature from another. Here, the sign
(positive or negative) of AT denotes the direction of heat flow through the thickness of the wall.

One of the major concerns of calculus is changes or differences between variable values lying very
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close to each other. In the context of a heating furnace, this could mean increases in temperature over
miniscule time periods. In the context of heat flowing through a wall, this could mean differences in
temperature sampled between points within the wall immediately adjacent each other. If our desire
is to express the change in a variable between neighboring points along a continuum rather than
over some discrete period, we may use a different notation than the capital Greek letter delta (A);
instead, we use a lower-case Roman letter d (or in some cases, the lower-case Greek letter delta: §).

Thus, a change in furnace temperature from one instant in time to the next instant could be
expressed as dT (or dT), while a difference in temperature between two adjacent positions within
the heat-conducting wall could also be expressed as dT' (or 67). We even have a unique name for
this concept of extremely small differences: whereas AT is called a difference in temperature, d1" is
called a differential of temperature.

The concept of a differential may seem useless to you right now, but they are actually quite
powerful for describing continuous changes, especially when one differential is related to another
differential by ratio (something we call a derivative).

Another major concern in calculus is how quantities accumulate, especially how differential
quantities accumulate to form a larger whole. If we were concerned with how much the furnace’s
temperature would rise over time, we could express its total temperature rise (ATotq;) as the
accumulation, or sum, of many temperature differences (AT') measured over multiple increments of
time. Supposing we periodically measured the furnace’s temperature once every minute from 9:45
to 10:32 AM:

ATiorqr = ATg.a5 + ATy.46 + - - - AT10.30 = Total temperature rise over time, from 9:45 to 10:32

A more sophisticated expression of this series uses the capital Greek letter sigma (meaning “sum
of” in mathematics) with notations specifying which temperature differences to sum:

10:32
ATyora1 = Z AT, = Total temperature rise over time, from 9:45 to 10:32
n=9:45

However, if our furnace temperature monitor scans at an infinite pace, measuring temperature
differentials (dT) and summing them in rapid succession, we may express the same accumulated
temperature rise as an infinite sum of infinitesimal (infinitely small) changes, rather than as a
finite sum of temperature changes measured once every minute. Just as we introduced a unique
mathematical symbol to represent differentials (d) over a continuum instead of differences (A) over
discrete periods, we will introduce a unique mathematical symbol to represent the summation of
differentials () instead of the summation of differences (}°):

10:32
ATiotal = / dT = Total temperature rise over time, from 9:45 to 10:32
9:45
This summation of infinitesimal quantities is called integration, and the elongated “S” symbol
(/) is the integral symbol.

These are the two major ideas in calculus: differentials and integrals, and the notations used to
represent each. Now that wasn’t so frightening, was it?
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1.2 The concept of differentiation

Suppose we wished to measure the rate of propane gas flow through a hose to a torch:

Torch

Flowmeters appropriate for measuring low flow rates of any gas are typically very expensive,
making it impractical to directly measure the flow rate of propane fuel gas consumed by this torch
at any given moment. We could, however, indirectly measure the flow rate of propane by placing
the tank on a scale where its mass (m) could be monitored over time. By taking measurements of
mass over short time periods (At), we could calculate the corresponding differences in mass (Am),
then calculate the ratio of mass lost over time to calculate average mass flow rate (W):

— A
W = TT = Average mass flow rate

Where,
W = Average mass flow rate within each time period (kilograms per minute)
Am = Measured mass difference over time period (kilograms)
At = Time period of mass measurement sample (minutes)

Note that flow rate is a ratio (quotient) of mass change over time change. The units used to
express flow even reflect this process of division: kilograms per minute.

k]

[min]

k
= Average mass flow rate = {_g]

W =

min
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Graphed as a function over time, the tank’s mass will be seen to decrease as time elapses.
Each dot represents a mass and time measurement coordinate pair (e.g. 20 kilograms at 7:38, 18.6
kilograms at 7:51, etc.):

Average flow rate

- Am
W= A

Propane
mass

(m)

Time (1)

We should recall from basic geometry that the slope of a line segment is defined as its rise
(vertical height) divided by its run (horizontal width). Thus, the average mass flow rate calculated
within each time period may be represented as the pitch (slope) of the line segments connecting
dots, since mass flow rate is defined as a change in mass per (divided by) change in time.

Periods of high propane flow (large flame from the torch) show up on the graph as steeply-pitched
line segments. Periods of no propane flow reveal themselves as flat portions on the graph (no rise
or fall over time).

If the determination of average flow rates between significant gaps in time is good enough for
our application, we need not do anything more. However, if we wish to detect mass flow rate at any
particular instant in time, we need to perform the same measurements of mass loss, time elapse,
and division of the two at an infinitely fast rate.
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Supposing such a thing were possible, what we would end up with is a smooth graph showing
mass consumed over time. Instead of a few line segments roughly approximating a curve, we would
have an infinite number of infinitely short line segments connected together to form a seamless curve.
The flow rate at any particular point in time would be the ratio of the mass and time differentials
(the slope of the infinitesimal line segment) at that point:

Instantaneous flow rate

_ dm

W=~
Propane
mass dt
(m) dm
Time (t)
dm
W = a = Instantaneous mass flow rate
Where,

W = Instantaneous mass flow rate at a given time (kilograms per minute)
dm = Mass differential at a single point in time (kilograms)
dt = Time differential at a single point in time (minutes)

Flow is calculated just the same as before: a quotient of mass and time differences, except here
the differences are infinitesimal in magnitude. The unit of flow measurement reflects this process of
division, just as before, with mass flow rate expressed in units of kilograms per minute. Also, just as
before, the rate of flow is graphically represented by the slope of the graph: steeply-sloped points on
the graph represent moments of high flow rate, while shallow-sloped points on the graph represent
moments of low flow rate.

Such a ratio of differential quantities is called a derivative in calculus®. Derivatives — especially
time-based derivatives such as flow rate — find many applications in instrumentation as well as the

3Isaac Newton referred to derivatives as fluzions, and in Silvanus Thompson’s day they were known as differential
coefficients.
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general sciences. Some of the most common time-based derivative functions include the relationships
between position (x), velocity (v), and acceleration (a).

Velocity is the rate at which an object changes position over time. Since position is typically
denoted by the variable = and time by the variable ¢, the derivative of position with respect to time
may be written as such:

dx [meters]

V= [meters/second] =

[seconds]
The metric units of measurement® for velocity (meters per second, miles per hour, etc.) betray
this process of division: a differential of position (meters) divided by a differential of time (second).

Acceleration is the rate at which an object changes velocity over time. Thus, we may express
acceleration as the time-derivative of velocity, just as velocity was expressed as the time-derivative
of position:

_dv

dv [meters/second]
ot

a [meters/second’] =

[seconds]

We may even express acceleration as a function of position (z), since it is the rate of change of
the rate of change in position over time. This is known as a second derivative, since it is applying
the process of “differentiation” twice:

d*z

a=— [meters/second’] =

[meters]

[seconds?]

As with velocity, the units of measurement for acceleration (meters per second squared, or
alternatively meters per second per second) betray a compounded quotient.

4British units of measurement for velocity betray this same process of division: the number of feet traveled in a
time period of seconds yields a velocity in feet per second. There is nothing unique about metric units in this regard.
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It is also possible to express rates of change between different variables not involving time. A
common example in the engineering realm is the concept of gain, generally defined as the ratio of
output change to input change. An electronic amplifier, for example, with an input signal of 2 volts
(peak-to-peak) and an output signal of 8.6 volts (peak-to-peak), would be said to have a gain of 4.3,
since the change in output measured in peak-to-peak volts is 4.3 times larger than the corresponding
change in input voltage:

j_/\/ —to ot——o

Amplifier
8.6 volts P-P

—?7 _. Gain =4.3 ._ Avout

2 volts P-P
AV, @ J
il
Vous

This gain could be expressed as a quotient of differences (AAV
derivative instead:

), or it could be expressed as a

If the amplifier’s behavior is perfectly linear, there will be no difference between gain calculated
using differences and gain calculated using differentials (the derivative), since the average slope of
a straight line is the same as the instantaneous slope at any point along that line. If, however, the
amplifier does not behave in a perfectly linear fashion, gain calculated from large changes in voltage
(AAVT‘::;) will not be the same as gain calculated from infinitesimal changes at different points along
the amplifier’s operating voltage range.
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1.3 The concept of integration

Suppose we wished to measure the loss of mass over time in a large propane storage tank supplying a
building with heating fuel, because the tank lacked a level indicator to show how much fuel was left
at any given time. The flow rate is sufficiently large, and the task sufficiently important, to justify
the installation of a mass flowmeter®, which registers flow rate at an indicator inside the building:

d RN

Propane tank Flowmeter

H Gas pipe \:I|_ E

By measuring true mass flow rate, it should be possible to indirectly measure how much propane
has been used at any time following the most recent filling of the tank. For example, if the mass
flow rate of propane into the building was measured to be an average of 5 kilograms per hour for 30
hours, it would be a simple matter of multiplication to arrive at the consumed mass:

k h
150 ke = <5hrg> (301 rs)

Expressing this mathematically as a function of differences in mass and differences in time, we
may write the following equation:

Am =W At

Where,
W = Average mass flow rate within the time period (kilograms per hour)
Am = Mass difference over time period (kilograms)
At = Time period of flow measurement sample (hours)

It is easy to see how this is just a variation of the quotient-of-differences equation used previously
in this chapter to define mass flow rate:

— Am
W = —— = Average mass flow rate

At

Inferring mass flow rate from changes in mass over time periods is a process of division. Inferring
changes in mass from flow rate over time periods is a process of multiplication. The units of
measurement used to express each of the variables makes this quite clear.

5Most likely a thermal mass flowmeter or a Coriolis lowmeter.
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As we learned previously, the process of differentiation is really just a matter of determining the
slope of a graph. A graph of propane fuel mass (m) plotted over time (¢) has a slope corresponding
to mass flow rate (W = ‘ILTT). Here, we are attempting to do the opposite: the data reported by the
sensing instrument is propane mass flow rate (W), and our goal is to determine total mass lost (Am)
as the propane is consumed from the storage tank over a period of time (At). This is fundamentally
different from differentiation, which means the graphical interpretation will not be the same. Instead
of calculating the slope of the graph, we will have to do something else.

Suppose the propane flowmeter happened to report a constant mass flow rate (W) of 5 kilograms
of propane per hour. The total mass of propane consumed (Am) over a 30-hour interval (At) would
obviously be 150 kilograms, multiplying the constant mass flow rate by the time interval. Graphing
this, we see that the process of multiplication used to calculate the mass loss corresponds to the
geometric area enclosed by the graph, since the area of a rectangle is height times width:

8 —
7
6 —
- 30 hours >
Propane 5
flow rate |
(W)
kg/hr 3
2 -
1 -
0 I I I I I I I I I I I I I I I I I 1
0 5 10 15 20 25 30 35 40 45

Time (t) hours
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The task of inferring lost mass over time becomes more complicated if the propane flow rate
changes substantially over time. Consider the following graph, showing periods of increased and
decreased flow rate due to different gas-fired appliances turning on and off inside the building:

Propane
flow rate

(W)

1]
Time (t)

Here, the propane gas flow rate does not stay constant throughout the entire time interval covered
by the graph. This obviously complicates the task of calculating total propane mass used over that
time.
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In order to accurately calculate the amount of propane mass consumed by the building over
time, we must treat each period of constant flow as its own period, calculating the mass lost in each
period, then summing those mass differences to arrive at a total mass for the entire time interval
covered by the graph. Since we know the difference (loss) in mass over a time period is equal to
the average flow rate for that period multiplied by the period’s duration (Am = W At), we may
calculate each period’s mass as an area underneath the graph line, each rectangular area being equal
to height (W) times width (At):

Propane
flow rate Wit
(W)
W,AL, WAL,
W5At5 l
| WAt |
WAL, l WAL, | WAt
/1
Time (t)

Each rectangular area underneath the flow line on the graph (W At) represents a quantity of
propane gas consumed during that time period. To find the total amount of propane consumed in
the time represented by the entire graph, we must sum these mass quantities together:

Am = (WlAtl) + (WzAtQ) + (WSAt3) + (W4At4) + (W5At5) + (W(;Atg) + (W7At7) + (WgAts)

A “shorthand” notation for this sum uses the capital Greek letter sigma to represent a series
of repeated products (multiplication) of mass flow and time periods for the eight rectangular areas
enclosed by the graph:

8
Am =W, At,
n=1

While W,, At,, represents the area of just one of the rectangular periods, Zi:l W, At,, represents
the total combined areas, which in this application represents the total mass of propane consumed
over the eight periods shown on the graph.
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The task of inferring total propane mass consumed over time becomes even more complicated
if the flow does not vary in stair-step fashion as it did in the previous example. Suppose the
building were equipped with throttling gas appliances instead of on/off gas appliances, thus creating
a continuously variable flow rate demand over time. A typical flow rate graph might look something
like this:

Propane

flow rate
(W)

Time (1)

The physics of gas flow and gas mass over time has not changed: total propane mass consumed
over time will still be the area enclosed beneath the flow curve. However, it is more of a challenge
to calculate the enclosed area of an arbitrary curve shape than it is for a series of stair-steps.
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We can, however, approximate the area underneath this curve by overlaying a series of rectangles,
the area of each rectangle being height (W) times width (At):

Propane
flow rate Each rectangular area represents
(W) a mass (m) equal in magnitude to WAt

i

7 Atl

~

Time (t)

It should be intuitively obvious that the strategy of using rectangles to approximate the area
underneath a curve improves with the number of rectangles used. Each rectangle still has an area
W At, but since the At periods are shorter, it is easier to fit the rectangles to the curve of the
graph. The summation of a series of rectangular areas intended to approximate the area enclosed
by a graphed function is commonly referred to as a Riemann Sum in honor of the mathematician
Bernhard Riemann:

Propane L
flow rate A better approximation of area

(W) underneath the curve
(using narrower rectangles)

-

Time (t)
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Taking this idea to its ultimate realization, we could imagine a super-computer sampling mass
flow rates at an infinite speed, then calculating the rectangular area covered by each flow rate
(W) times each infinitesimal increment of time (dt). With time increments of negligible width, the
“approximation” of area underneath the graph found by the sum of all these rectangles would be
perfect — indeed, it would not be an approximation at all, but rather an exact match:

Propane ]
A perfect representation of area
flow rate
(W) underneath the curve
(using infinitely narrow rectangles)

° _>|<\ dt Time (1) §

If we represent infinitesimal time increments using the notation “dt” as opposed to the notation
“At” used to represent discrete time periods, we must also use different notation to represent the
mathematical sum of those quantities. Thus, we will replace the “sigma” symbol (>°) used for
summation and replace it with the integral symbol ( f ), which means a continuous summation of
infinitesimal quantities:

x
Am = Z W At, Summing discrete quantities of WAt
n=0
xr
Am = / W dt Summing continuous quantities of W dt
0

This last equation tells us the total change in mass (At) from time 0 to time z is equal to the
continuous sum of mass quantities found by multiplying mass flow rate measurements (W) over
corresponding increments of time (dt). We refer to this summation of infinitesimal quantities as
integration in calculus. Graphically, the integral of a function is the geometric area enclosed by the
function over a specified interval.
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An important detail to note is that this process of integration (multiplying flow rates by
infinitesimal time increments, then summing those products) only tells us how much propane mass
was consumed — it does mot tell us how much propane is left in the tank, which was the purpose
of installing the mass flowmeter and performing all this math! The integral of mass flow and time
( f W dt) will always be a negative quantity®, because a flow of propane gas out of the tank represents
a loss of propane mass within the tank. In order to calculate the amount of propane mass left in
the tank, we would need to know the initial value of propane in the tank before any of it flowed to
the building, then we would add this initial mass quantity (mg) to the negative mass loss calculated
by integration.

Thus, we would mathematically express the propane mass inside the tank at time x as such”:

mxz/ W dt + mg
0

This initial value must always be considered in problems of integration if we attempt to absolutely
define some integral quantity. Otherwise, all the integral will yield is a relative quantity (how much
something has changed over an interval).

6 Although we will measure time, and differentials of time, as positive quantities, the mass flowmeter should be
configured to show a negative flow rate (W) when propane flows from the tank to the building. This way, the integrand
(the product “inside” the integration symbol; W dt) will be a negative quantity, and thus the integral over a positive
time interval (from 0 to z) will likewise be a negative quantity.

7 According to calculus convention, the differential dt represents the end of the integrand. It is safe to regard the
long “S” symbol and the differential (dz, dt, etc.) as complementary grouping symbols declaring the beginning and
end of the integrand. This tells us mg is not part of the integrand, but rather comes after it. Using parentheses to
explicitly declare the boundaries of the integrand, we may re-write the expression as mg = ( f OZ W dt) + mo
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The problem of initial values is very easy to relate to common experience. Consider the odometer
indication in an automobile. This is an example of an integral function, the distance traveled (z)
being the time-integral of speed (or velocity, v):

Ax:/vdt

O[5[2[7]0[4] 8]

Miles

Although the odometer does accumulate to larger and larger values as you drive the automobile,
its indication does not necessarily tell me how many miles you have driven it. If, for example, you
purchased the automobile with 32411.6 miles on the odometer, its current indication of 52704.8
miles means that you have driven it 20293.2 miles. The automobile’s total distance traveled since
manufacture is equal to the distance you have accumulated while driving it ([ v dt) plus the initial
mileage accumulated at the time you took ownership of it (z¢):

Total = / vdt+ xo
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1.4 How derivatives and integrals relate to one another

First, let us review some of the properties of differentials and derivatives, referencing the expression
and graph shown below:

e A differential is an infinitesimal increment of change (difference) in some continuously-changing
variable, represented either by a lower-case Roman letter d or a lower-case Greek letter “delta”
(6). Such a change in time would be represented as dt; a similar change in temperature as d7
a similar change in the variable z as dz.

e A derivative is always a quotient of differences: a process of subtraction (to calculate the
amount each variable changed) followed by division (to calculate the rate of one change to
another change).

e The units of measurement for a derivative reflect this final process of division: one unit per
some other unit (e.g. gallons per minute, feet per second).

e Geometrically, the derivative of a function is its graphical slope (its “rise over run”)

e When computing the value of a derivative, we must specify a single point along the function
where the slope is to be calculated.

e The tangent line matching the slope at that point has a “rise over run” value equal to the
derivative of the function at that point.

y
Derivative = slope of the function

y=1(x)

.T . dy Rise of tangent line
Slope at this point = d_x " Run of tangent line

dy - Ay _ Small changesiny
dx ~ Ax ~ Small changes in x
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Next, let us review some of the properties of integrals, referencing the expression and graph shown
below:

e An integral is always a sum of products: a process of multiplication (to calculate the product
of two variables) followed by addition (to sum those quantities into a whole).

e The units of measurement for an integral reflect this initial process of multiplication: one unit
times some other unit (e.g. kilowatt-hours, foot-pounds, volt-seconds).

e When computing the value of an integral, we must specify two points along the function
defining the interval of integration (a and b).

e Geometrically, the integral of a function is the graphical area enclosed by the function and the
interval boundaries.

e The area enclosed by the function may be thought of as an infinite sum of extremely narrow
rectangles, each rectangle having a height equal to one variable (y) and a width equal to the
differential of another variable (dz).

y
Integral = area enclosed by the function

y=1(x)

X

P

a b
Upper boundary of area = vy
Lower boundary of area= 0
Left boundary of area= a
Right boundary of area= b

b
Enclosed area = [y dx



1.4. HOW DERIVATIVES AND INTEGRALS RELATE TO ONE ANOTHER 27

Just as division and multiplication are inverse mathematical functions (i.e. one “un-does” the
other), differentiation and integration are also inverse mathematical functions. The two examples
of propane gas flow and mass measurement highlighted in the previous sections illustrates this
complementary relationship. We may use differentiation with respect to time to convert a mass

measurement (m) into a mass flow measurement (W, or 4). Conversely, we may use integration

dt
with respect to time to convert a mass flow measurement (W, or ‘Z—T) into a measurement of mass
gained or lost (Am).
Likewise, the common examples of position (z), velocity (v), and acceleration (a) used to illustrate
the principle of differentiation are also related to one another by the process of integration. Reviewing

the derivative relationships:

v = Z—f Velocity is the derivative of position with respect to time
dv . N . . :
=7 Acceleration is the derivative of velocity with respect to time
Now, expressing position and velocity as integrals of velocity and acceleration, respectively®:
T = / v dt Position is the integral of velocity with respect to time
v = / adt Velocity is the integral of acceleration with respect to time

Differentiation and integration may be thought of as processes transforming these quantities into
one another. Note the transformation of units with each operation — differentiation always divides

while integration always multiplies:
Position _ Differentiate VeIOC|ty Differentiate Acceleration
(x) (@
meters meters/second meters/second?

Position Integrate VeIOC|ty Integrate Acceleration
() (@
meters meters/second meters/second?

8To be perfectly accurate, we must also include initial values for position and velocity. In other words, = f vdt+xo
andvzfadt—f—vo
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The inverse nature of these two calculus operations is codified in mathematics as the Fundamental

Theorem of Calculus, shown here:
d b
| reras| =

What this equation tells us is that the derivative of the integral of any continuous function is
that original function. In other words, we can take any mathematical function of a variable that
we know to be continuous over a certain range — shown here as f(x), with the range of integration
being from a to b — integrate that function over that range, then take the derivative of that result
and end up with the original function. By analogy, we can take the square-root of any quantity, then
square the result and end up with the original quantity, because these are inverse functions as well.

A feature of this book which may be helpful to your understanding of derivatives, integrals, and
their relation to each other is found in an Appendix section (Appendix A.3 beginning on page 2499).
In this section, a series of illustrations provides a simple form of animation you may “fip” through
to view the filling and emptying of a water storage tank, with graphs showing stored volume (V)
and volumetric flow rate (Q). Since flow rate is the time-derivative of volume (Q = dd—‘t/) and volume
change is the time-integral of volumetric flow rate (AV = [ Qdt), the animation demonstrates both

concepts in action.
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1.5 Symbolic versus numerical calculus

Calculus has a reputation for being difficult to learn, and with good reason. The traditional approach
to teaching calculus is based on manipulating symbols (variables) in equations, learning how different
types of mathematical functions become transformed by the calculus operations of differentiation
and integration.

For example, suppose a first-semester calculus student were given the following function to
differentiate. The function is expressed as y in terms of x:

_ 322 — 2245
B z2 —8

A calculus student would first apply two basic rules of symbolic differentiation (namely, the
Power Rule and the Quotient Rule) followed by algebraic distribution and combination of like terms

to arrive at the derivative of y with respect to x (written as %) in terms of x:

Y

dy (2% — 8)(6x — 2) — (322 — 22 + 5)(22)

de (22 — 8)2
dy 623 — 222 — 48z + 16 — (623 — 422 + 10x)
dr axt — 1622 + 64

dy 222 — 58z + 16
dr  x* — 1622 + 64

The resulting derivative expresses the rate-of-change of y with respect to x of the original function
for any value of x. In other words, anyone can now plug any arbitrary value of = they wish into the
derivative equation, and the result (g—g) will tell them how steep the slope is of the original function
at that same z value”.

Rules such as the Power Rule and even the Quotient Rule are not difficult to memorize, but
they are far from intuitive. Although it is possible to formally prove each one of them from more
fundamental principles of algebra, doing so is tedious, and so most students simply resign themselves
to memorizing all the calculus rules of differentiation and integration. There are many such rules to
memorize in symbolic calculus.

Symbolic integration is even more difficult to learn than symbolic differentiation. Most calculus
textbooks reserve pages at the very end listing the general rules of differentiation and integration.
Whereas a table of derivatives might occupy a single page in a calculus text, tables of integrals may
fill five or more pages!

The next logical topic in the sequence of a calculus curriculum is differential equations. A
“differential equation” is a function relating some variable to one or more of its own derivatives. To
use the variables y and z, a differential equation would be one containing both y and at least one
derivative of y (%, %, %, etc.). % = —kV is an example of a simple differential equation. The
various forms and solution techniques for different kinds of differential equations are numerous and

complex.

9For instance, at = 1, the original function tells us that y will be equal to ,g. If we plug this same value of 1

into f of the derivative function, the result Z—Z = 71—8 tells us the original function y = f(x) has a slope of 71—8 when
z =1
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It has been said that the laws of the universe are written in the language of calculus. This is
immediately evident in the study of physics, but it is also true for chemistry, biology, astronomy,
and other “hard sciences.” Areas of applied science including engineering (chemical, electrical,
mechanical, and civil) as well as economics, statistics, and genetics would be impoverished if not for
the many practical applications of symbolic calculus. To be able to express a function of real-life
quantities as a set of symbols, then apply the rules of calculus to those symbols to transform them
into functions relating rates of change and accumulations of those real-life quantities, is an incredibly
powerful tool.

Two significant problems exist with symbolic calculus, however. The first problem with symbolic
calculus is its complexity, which acts as a barrier to many people trying to learn it. It is quite
common for students to drop out of calculus or to change their major of study in college because
they find the subject so confusing and/or frustrating. This is a shame, not only because those
students end up missing out on the experience of being able to see the world around them in a new
way, but also because mastery of calculus is an absolute requirement of entry into many professions.
You can never become a licensed engineer, for example, unless and until you pass a series of calculus
courses and are able to apply those concepts learned to realistic problems.

The second significant problem with symbolic calculus is its limitation to a certain class of
mathematical functions. In order to be able to symbolically differentiate a function (e.g. y = f(x))
to determine its derivative (%), we must first have a function written in mathematical symbols to
differentiate. This rather obvious fact becomes a barrier when the data we have from a real-life
application defies symbolic expression. It is trivial for a first-semester calculus student to determine
the derivative of the function V = 2¢2 — 4t + 9, but what if V' and ¢ only exist as recorded values
in a table, or as a trend drawn by a process recorder? Without a mathematical formula showing
V as a function of ¢, none of the rules learned in a calculus course for manipulating those symbols
directly apply. The problem is even worse for differential equations, where a great many examples
exist that have so far defied solution by the greatest mathematicians.

Such is the case when we apply calculus to recorded values of process variable, setpoint, and
controller output in real-world automated processes. A trend showing a PV over time never comes
complete with a formula showing you PV = f(¢). We must approach these practical applications
from some perspective other than symbolic manipulation if we are to understand how calculus relates.
Students of instrumentation face this problem when learning PID control: the most fundamental
algorithm of feedback control, used in the vast majority of industrial processes to regulate process
variables to their setpoint values.

An alternative approach to calculus exists which is easily understood by anyone with the ability to
perform basic arithmetic (addition, subtraction, multiplication, and division) and sketching (drawing
lines and points on a graph). Numerical calculus uses simple arithmetic to approximate derivatives
and integrals on real-world data. The results are not as precise as with symbolic calculus, but the
technique works on any data as well as most mathematical functions written in symbolic form.
Furthermore, the simplicity of these techniques opens a door to those people who might otherwise
be scared away by the mathematical rigor of symbolic calculus. Any way we can find to showcase
the beauty and practicality of calculus principles to more people is a good thing!
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Suppose we needed to calculate the derivative of some real-world function, such as the volume

of liquid contained in a storage vessel. The derivative of volume (V') with respect to time (¢) is

volumetric flow rate ( %), thus the time-derivative of the vessel’s volume function at any specified

point in time will be the net flow rate into (or out of) that vessel at that point in time.
To numerically determine the derivative of volume from raw data, we could follow these steps:

e Choose two values of volume both near the point in time we’re interesting in calculating flow
rate

e Subtract the two volume values: this will be AV

e Subtract the two time values corresponding to those volume values: this will be At

e Divide AV by At to approximate % between those two points in time

A slightly different approach to numerical differentiation follows these steps:

e Sketch a graph of the volume versus time data for this vessel (if this has not already been done
for you by a trend recorder)

e Locate the point in time on this graph you are interested in, and sketch a tangent line to that
point (a straight line having the same slope as the graphed data at that point)

e Estimate the rise-over-run slope of this tangent line to approximate % at this point

An illustration is a helpful reminder of what differentiation means for any graphed function: the
slope of that function at a specified point:

y
Derivative = slope of the function

y=£(x)

A . dy Rise of tangent line
Slope at this pomt - & ~ Run of tangent line

dy _ Ay _ Small changesiny

dx  Ax Small changes in x
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Suppose we needed to calculate the integral of some real-world function, such as the flow rate of
liquid through a pipe. The integral of volumetric flow (Q) with respect to time (t) is total volume
(@), thus the time-integral of the flow rate over any specified time interval will be the total volume
of liquid that passed by over that time.

To numerically determine the integral of flow from raw data, we could follow these steps:

Identify the time interval over which we intend to calculate volume

Multiply each measured value of flow by the duration of that measurement (the interval
between that measurement and the next one) to obtain a volume over each duration

Repeat the last step for each and every flow data point up to the end of the interval we're
interested in.

Sum all these volume values together — the result will be the approximate liquid volume passed
through the pipe over the specified time interval

A slightly different approach to numerical integration follows these steps:

Sketch a graph of the flow versus time data for this pipe (if this has not already been done for
you by a trend recorder)

Mark the time interval over which we intend to calculate volume (two straight vertical lines
on the graph)

Use any geometrical means available to estimate the area bounded by the graph and the two
vertical time markers — the result will be the approximate liquid volume passed through the
pipe over the specified time interval

An illustration is a helpful reminder of what integration means for any graphed function: the
area enclosed by that function within a specified set of boundaries:

y
Integral = area enclosed by the function

y=1(x)

X

b

a b
Upper boundary of area = y
Lower boundary of area = 0
Left boundary ofarea= a
Right boundary of area= b

b
Enclosed area = [y dx
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The next sections of this chapter delve into more specific details of numerical differentiation and
integration, with realistic examples to illustrate.

1.6 Numerical differentiation

As we have seen, the concept of differentiation is finding the rate-of-change of one variable compared
to another (related) variable. In this section, we will explore the practical application of this concept
to real-world data, where actual numerical values of variables are used to calculate relative rates of
change.

In industrial instrumentation, for example, we are often interested in knowing the rate of change
of some process variable (pressure, level, temperature, flow, etc.) over time, and so we may use
computers to calculate those rates of change, either after the fact (from recorded data) or in real
time. We may be similarly interested in calculating the rate at which one process variable changes
with respect to another process variable, both of which measured and recorded as tables of data by
instruments.

Numerical (data-based) differentiation is fundamentally a two-step arithmetic process. First, we
must use subtraction to calculate the change in a variable between two different points. Actually,
we perform this step twice to determine the change in two variables which we will later compare.
Then, we must use division to calculate the ratio of the two variables’ changes, one to the other (i.e.
the “rise-over-run” steepness of the function’s graph).

For example, let us consider the application of pressure measurement for a pipeline. One of the
diagnostic indicators of a burst pipeline is that the measured pressure rapidly drops. It is not the
existence of low pressure in and of itself that suggests a breach, but rather the rate at which the
pressure falls that reveals a burst pipe. For this reason, pipeline control systems may be equipped
with automatic shut-down systems triggered by rate-of-change pressure calculations.
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An example of a pressure-trend recording during a pipeline rupture is shown here:

Trend recording of pipeline pressure over time

200 —
300
(PSI)

200 —

100 —

° I I I I I I I I I I I
0:15 0:30 0:45 1.00 115 1:30 1.45 2:00 2:15 2:30 2:45

Time Time of rupture
(Hours:Minutes)
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A computer tasked with calculating the pressure’s rate of change over time (%) would have
to continuously sample the pressure value over short time periods, then calculate the quotient of
pressure changes over time changes. Given a sample rate of once every 5 minutes, we see how the

computer would tabulate the pressure data over time:

300 —

200 —
1:30 1:45 2:00
Pressure Time

217.5 PSI 1 hour, 20 minutes
215.0 PSI 1 hour, 25 minutes
222.5 PSI 1 hour, 30 minutes
226.3 PSI 1 hour, 35 minutes
150.0 PSI 1 hour, 40 minutes
150.0 PSI 1 hour, 45 minutes
151.3 PSI 1 hour, 50 minutes
148.8 PSI 1 hour, 55 minutes
145.0 PSI 2 hours, 0 minutes
145.0 PSI 2 hours, 5 minutes
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To calculate the rate of pressure change over time in each of these periods, the computer would
subtract the two adjacent pressure values, subtract the two corresponding adjacent time values, and
then divide those two differences to arrive at a figure in units of PSI per minute. Taking the first
two data coordinates in the table as an example:

AP _ 2150 PSI—217.5PSI _ —25PSI __  PSI
At 1:25 — 1:20 ~ 5min  min
The sample period where the computer would detect the pipeline rupture lies between 1:35 and

1:40. Calculating this rate of pressure change:

AP 150.0 PSI —226.3 PSI  —76.3 PSI 15 26PSI
At 1:40 — 1:35 ~ 5min " min

Clearly, a pressure drop rate of -15.26 PSI per minute is far greater than a typical drop of -0.5
PSI per minute, thus signaling a pipeline rupture.

As you can see, the pipeline monitoring computer is not technically calculating derivatives (”fi—f),
but rather difference quotients (%). Being a digital device, the best it can ever do is perform
calculations at discrete points in real time. It is evident that calculating rates of change over 5-
minute period misses a lot of detail'”. The actual rate of change at the steepest point of the
pressure drop far exceeds -15.26 PSI per minute.

It is possible for us to calculate the instantaneous rate-of-change of pressure (%) at the moment
of the rupture by examining the graph and sketching a straight line called a tangent line matching
the slope where the graph is steepest. Our goal is to calculate the exact slope of that single (steepest)
point on that graph, rather than an estimate of slope between two points as the computer did. In
essence, the computer “drew” short line segments between pairs of points and calculated the slopes
(rise-over-run) of those line segments. The slope of each line segment** AL

is a difference quotient: S+
The slope of a tangent line matching the slope at a single point on the function graph, however, is

At
a derivative: %.

10Not only does a 5-minute rate calculation period miss a lot of detail, but it also results in a time delay of (up to)
5 minutes detecting a pipeline rupture.
1 The technical term for a line passing through a pair of points on a curve is called a secant line.
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We may calculate the slope of a tangent line by marking convenient points'? where the line
intersects major division marks on the graph’s graduated scale, then calculating rise over run:

T340.0 PSI
@ 1:37:30

300 —

Tangent line

200 — 150.0 PSI
@ 1:40:00
100 — | | |
1:30 1:45 2:00
dP — 150.0 PSI —340.0 PST ~ —190.0 PSI 6 OP—SI
dt  1:40:00—1:37:30 25min min
This distinction between calculating difference quotients (%) and calculating true derivative
values (%) becomes less and less significant as the calculation period shortens. If the computer

could sample and calculate at infinite speed, it would generate true derivative values instead of
approximate derivative values.

12PJease note that the pipeline pressure is not actually 340.0 PSI at a time of 1:37:30. This is simply a coordinate
convenient to mark because it how it lines up with the divisions on the trend display. We choose coordinate points
on the tangent line easy to visually discern, then calculate the tangent line’s slope using those coordinates.
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An algorithm applicable to calculating rates of change in a digital computer is shown here, using a
notation called pseudocode'®. For more information on pseudocode, refer to section 29.14.1 beginning
on page 2095. Each line of text in this listing represents a command for the digital computer to
follow, one by one, in order from top to bottom. The LOOP and ENDLOOP markers represent the
boundaries of a program loop, where the same set of encapsulated commands are executed over and
over again in cyclic fashion:

Pseudocode listing

LOOP
SET x = analog_input_N // Update z with the latest measured input
SET t = system_time // Sample the system clock

SET delta.x = x — last_x // Calculate change in x
SET delta_t = t — last_t // Calculate change in t (time)

SET rate = (delta_x / delta_t) // Calculate ratio of changes

SET last_x = x // Update last_xz wvalue for mnext program cycle
SET last_t =t // Update last_t wvalue for next program cycle
ENDLOOP

Each SET command tells the computer to assign a numerical value to the variable on the left-hand
side of the equals sign (=), according to the value of the variable or expression on the right-hand
side of the equals sign. Text following the double-dash marks (//) are comments, included only to
help human readers interpret the code, not for the computer’s benefit.

This computer program uses two variables to “remember” the values of the input (x) and time
(t) from the previous scan, named last_x and last_t, respectively. These values are subtracted
from the current values for x and ¢ to yield differences (delta x and delta_t, respectively), which
are subsequently divided to yield a difference quotient. This quotient (rate) may be sampled in
some other portion of the computer’s program to trigger an alarm, a shutdown action, or simply
display and/or record the rate value for a human operator’s benefit.

The time period (At) for this program’s difference quotient calculation is simply how often
this algorithm “loops,” or repeats itself. For a modern digital microprocessor, this could be many
thousands of times per second.

13 “pseudocode” is a name given to any imaginary computer language used for the purpose of illustrating some
procedure or concept without having to make reference to any particular (real) computer programming language. I
could have just as well shown you the same algorithm using BASIC, C, or Java code, but pseudocode does just as
well without the burden of introducing unfamiliar syntax to the reader.
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If a nearly-instantaneous calculation is required for a rate-of-change variable, we may turn to
an older technology using analog electronic circuitry. Such a differentiator circuit uses the natural
behavior of a capacitor to generate an output voltage proportional to the instantaneous rate-of-
change of the input voltage:

c R
Vin o—F—ww
Vout
dv;
Vout—_RC dt

The negative feedback of the operational amplifier forms a virtual ground at the node where
the capacitor, resistor, and inverting input connect. This means the capacitor “sees” the full input
voltage (Vi) at all times. Current through a capacitor is a direct function of the voltage’s time-
derivative:

av
I=C—
dt

This current finds its way through the feedback resistor, developing a voltage drop that becomes
the output signal (V,,;). Thus, the output voltage of this analog differentiator circuit is directly
proportional to the time-derivative of the input voltage (the input voltage’s rate-of-change).

It is indeed impressive that such a simple circuit, possessing far fewer components than a
microprocessor, is actually able to do a better job at calculating the real-time derivative of a
changing signal than modern digital technology. The only real limitations to this device are accuracy
(tolerances of the components used) and the bandwidth of the operational amplifier.

It would be a mistake, though, to think that an analog differentiator circuit is better suited
to industrial applications of rate calculation than a digital computer, even if it does a superior
job differentiating live signals. A very good argument for favoring difference quotients over actual
derivatives is the presence of noise in the measured signal. A true differentiator, calculating the
actual time-derivative of a live signal, will pick up on any rise or fall of the signal over time, no
matter how brief. This is a serious problem when differentiating real-world signals, because noise
(small amounts of “jittering” in the signal caused by any number of phenomena) will be interpreted
by a perfect differentiator as very large rates of change over time.
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A close look at the previous pipeline pressure trend illustrates this problem. Note the areas circled
(in red) on the graph, representing relatively small increases and decreases in signal occurring over
very short periods of time:

300 —

O

200 —

100 —
| | |

1:30 1:45 2:00

Although each “step” in pressure at these circled locations is small in amplitude, each one occurs
over an extremely brief time increment. Thus, each of these steps has a nearly infinite rate of
change (i.e. a vertical slope). Any rate-of-change sensing system able to apply true differentiation
to the pressure signal would falsely declare an alarm (high rate-of-change) condition every time
it encountered one of these “steps” in the signal. This means that even under perfectly normal
operating conditions the rate-detection system would periodically declare an alarm (or perhaps shut
the pipeline down!) given the inevitable presence of small noise-induced'* “jitters” in the signal.

The best solution to this problem is to use a digital computer to calculate rates of change, setting
the calculation period time slow enough that these small “jitters” will be averaged to very low values,
yet fast enough that any serious pressure rate-of-change will be detected if it occurs. Back in the
days when analog electronic circuits were the only practical option for calculating rates of signal
change, the solution to this problem was to place a low-pass filter before the differentiator circuit to
block such noise from ever reaching the differentiator.

Differentiation with respect to time has many applications, but there are other applications of
differentiation in industrial measurement and control that are not time-based. For example, we may

14 Another source of trouble for differentiation of live signals is when the signal originates from a digital sensor.
Digital devices, by their very nature, break analog signals into a series of discrete amplitude steps. As a digital
process transmitter encounters a steadily increasing or decreasing process variable, its output rises or falls in discrete
“jumps” rather than continuously as a fully analog transmitter would. Now, each of these jumps is quite small, but
since each one occurs almost instantly it still translates into an extremely large rate-of-change when detected by a
differentiator sampling over small time increments or sampling continuously (as in the case of an analog differentiator
circuit). This means the problem of false rates-of-change exists even in perfectly noiseless systems, when the detection
device (and/or the information channel to the monitoring system) is digital rather than analog.
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use differentiation to express the sensitivity of a non-linear device in terms of the rate-of-change of
output over input.

One such application is the sensitivity of a mechanism called a baffle/nozzle assembly used in
many pneumatic instruments to convert a small physical motion (x) into an air pressure signal (P).
This very simple mechanism uses a flat piece of sheet metal (the baffle) to restrict air flow out of
a small nozzle, causing a variable “backpressure” at the nozzle to develop as the baffle-to-nozzle
clearance changes:

Pressure gauge
P

X
—>||<— Clearance

Baffle

From compressed Orifice Nozzle
airsupply = __— mm—— —> —>

(20 PSI) \

Pivot
20
18
16
14
12

Backpressure at 10 -

nozzle (PSI)
P

o N A OO
|

0 12 3 456 7 8 910

Clearance, mils (thousandths of an inch)
X

The graph expressing the relationship between P and x is clearly non-linear, having different
slopes (?Tf)) at different points along its range. When used as part of the feedback mechanism for
a self-balancing instrument, the purpose of the baffle/nozzle assembly is to detect baffle motion as
sensitively as possible: that is, to generate the greatest change in pressure (AP) for the least change
in motion (Az). This means the designer of the pneumatic instrument should design it in such a
way that the normal baffle/nozzle clearance gap rests at a point of maximum slope (maximum %)

on the graph.
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Sketching a tangent line near the point of maximum slope (maximum “steepness” on the graph)
allows us to approximate the rate of change at that point:

20
18 — 18 PSI-@ 0.001 inch-gap

12 4
10

0 PSI'@ 0.0025 inch ga|
[ I I I I I I |

[
0 12 3 456 7 8 910
X

o N A OO
|

Choosing convenient points'® on this tangent line aligning with major divisions on the graph’s
scales, we find two coordinates we may use to calculate the derivative of the curve at its steepest
point:

AP 0 PSI — 18 PSI —18 PSI ,
dr ~ 0.0025 mch — 0,001 tnch — 0.0015 neh 12000 PSTper inch

The phenomenally large value of -12000 PSI per inch is a rate of pressure change to clearance
(baffle-nozzle gap) change. Do not mistakenly think that this value suggests the mechanism could
ever develop a pressure of 12000 PSI — it is simply describing the extreme sensitivity of the mechanism
in terms of PSI change per unit change of baffle motion. By analogy, just because an automobile
travels at a speed of 70 miles per hour does not mean it must travel 70 miles in distance!

It should be clear from an examination of the graph that this high sensitivity extends
approximately between the pressure values of 9 and 14 PSI. Outside of those pressure values, the
graph’s slope begins to decrease. While still sensitive, the baffle/nozzle mechanism will not be as
sensitive to baffle motion outside those pressure values as it is within.

150nce gain, we are looking for points where the tangent line happens to intersect with major divisions on the
graph’s scale. This makes it relatively easy to calculate the line’s slope, since the pressure and distance values for
those coordinates are easy to read.
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1.7 Numerical integration

As we have seen, the concept of integration is finding the accumulation of one variable multiplied by
another (related) variable. In this section, we will explore the practical application of this concept to
real-world data, where actual numerical values of variables are used to calculate accumulated sums.

In industrial instrumentation, for example, we are often interested in calculating the accumulation
of some process fluid based on a measured flow rate of that fluid. The rate is, of course, expressed
in either mass or volume units per unit time (e.g. gallons per minute), but the total accumulated
quantity will be expressed plainly in either mass or volume units (e.g. gallons). We may use
computers to calculate those accumulated quantities, either after the fact (from recorded data) or
in real time.

Numerical (data-based) integration is fundamentally a two-step arithmetic process. First, we
must use multiplication to calculate the product of a variable and a small increment of another
variable (a change in the second variable between two different points). Then, we must use addition
to calculate the accumulated sum of the products.

To illustrate, we will first focus on the integration of a flow measurement signal with respect
to time. The flow rate of any fluid is always expressed in units of volume or mass per unit time.
Common volumetric flow units are gallons per minute, liters per second, cubic feet per day, etc.
Common mass flow units are pounds per hour, kilograms per minute, slugs per second, etc. If we
desire to calculate the volume or mass of fluid passed through a pipe — representing fluid added to
or removed from a system — over some interval of time, we may do so by integrating flow rate with
respect to time:

b
AV:/ Q dt

b
Am:/ W dt

Where,
AV = Volume of fluid added or removed
@ = Volumetric flow rate of fluid
Am = Mass of fluid added or removed
W = Mass flow rate of fluid
a = Starting point of integration interval
b = Ending point of integration interval
t = Time

As always, integration is fundamentally a matter of multiplying one variable by small increments
of another variable. If a flow rate is integrated with respect to time, the result is that the unit
for time becomes eliminated. Gallons per minute, for example, becomes gallons after integration;
kilograms per second becomes kilograms; etc.
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The elimination of time units is also evident if we re-write the integrands in the previous equations
to show volumetric and mass flow rates (Q and W, respectively) as the rates of change they are
(Q:%andW:%—T):

b
sz/ﬂdt
S

b
dm
Am = — dt
m /adtd

It should be clear that the time differentials (dt) cancel in each integrand, leaving:

b
AV:/ av

b
Am:/ dm

Since we know the integral symbol ([) simply means the “continuous sum of” whatever follows
it, we may conclude in each case that the continuous sum of infinitesimal increments of a variable is
simply a larger change of that same variable. The continuous summation of dV is simply the total
change in V over the time interval from a to b; the continuous summation of dm is simply the total
change in m over the time interval from a to b.

A flowmeter measuring the flow rate of a fluid outputs a signal representing either volume or
mass units passing by per unit time. Integrating that signal with respect to time yields a value
representing the total volume or mass passed through the pipe over a specific interval. A physical
device designed to perform this task of integrating a signal with respect to time is called an integrator
or a totalizer:

Integrator
(totalizer)

Gallons per minute

_dv
= &

Gallons
AV

—————— S----- e TR

Volumetric
flowmeter
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An example of a flow integrator, or flow totalizer, made for pneumatic instrument systems is the
Foxboro model 14. A view of this instrument’s front face shows an odometer-style display, in this
particular case showing the total number of pounds (Ib) of fluid passed through the pipe, with a
multiplying factor of 10:

The fact that this instrument’s display resembles the odometer of an automobile is no coincidence.
Odometers are really just another form of mechanical integrator, “totalizing” the distance traveled
by a vehicle. If the speedometer of a vehicle registers speed (v) in units of miles per hour, then the
odometer will accumulate a distance (Az) in units of miles, since distance (miles) is the time-integral
of speed (miles per hour):

b b
Am:/vdt ...or. .. Ax:/didt
a o dt

fmiles] = / b (E:jj [hours])

In this particular case, where the flowmeter measures pounds per hour, and the integrator
registers accumulated mass in pounds, the integration of units is as follows:

b b
Am:/Wdt ...0r. .. Am:/cfi—n;dt

[pounds] = / b ({pz‘;ﬁs] [hours])
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The Foxboro model 14 used a turbine wheel driven by a jet of compressed air from a nozzle.
The wheel’s speed was made proportional to the process fluid flow rate sensed by a pneumatic
DP transmitter. As process flow rate increased, the wheel spun faster. This spinning wheel drove a
gear-reduction mechanism to slowly turn the odometer-style numerals, registering total fluid quantity
passed through the flowmeter:

As pneumatic signal pressure (3-15 PSI) from a pneumatic flow transmitter entered the brass
bellows of this instrument, it pressed down on a lever, forcing a baffle toward a nozzle. As
nozzle backpressure rose, amplified air pressure spun the turbine wheel to drive the integrating
“odometer” display. Mounted on the turbine wheel was a set of fly-weights, which under the
influence of centrifugal force would press upward on the lever to re-establish a condition of force-
balance to maintain a (relatively) constant baffle-nozzle gap. Thus, the force-balance mechanism
worked to establish an accurate and repeatable relationship'® between instrument signal pressure
and integration rate.

16The Foxboro model 14 totalizer’s design was quite ingenious, since centrifugal force varies with the square of
angular velocity. This had the effect of naturally performing the square-root characterization required of most
pneumatic flow-measuring instruments due to the quadratic nature of most primary flow-sensing elements (e.g. orifice
plate, venturi tubes, pitot tubes, etc.).
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A very different style of integrator appears here, as part of the controller for a ball mill used to
crush limestone into small pieces for the manufacture of concrete. Limestone is fed into the ball mill
on a device called a weighfeeder, which measures the mass of limestone as it passes over a conveyor
belt. The controller maintains a limestone “flow rate” at a setpoint specified in tons per hour (mass
flow of solid material). The red LED digital display shows the total number of tons passed through
the mill:

PULL-MAN. ¥ 4 REMOTE
\

SILENCE START

" LOAD
SPEED

The units involved in the integration of limestone “flow” into the ball mill are slightly different
from the example shown with the Foxboro model 14 totalizer, but the concept is the same:

b
Am:/ W dt

frons] = / b ([ﬁgﬁj [hours])

As with all cases of numerical integration, an essential piece of information to know when
“totalizing” any rate is the initial quantity at the start of the totalization interval. This is the
constant of integration mentioned previously. For flow totalization, this constant would be the
initial volume of fluid recorded at the starting time. For an automobile’s odometer, this constant is
the initial “mileage” accumulated prior to driving on a trip'7.

17Vehicles equipped with a trip odometer allow the driver to reset this integration constant to zero at will, thus
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An algorithm applicable to integrating real signals with respect to time in a digital computer
is shown here, once again using “pseudocode” as the computer language. Each line of text in this
listing represents a command for the digital computer to follow, one by one, in order from top to
bottom. The LOOP and ENDLOOP markers represent the boundaries of a program loop, where the
same set of encapsulated commands are executed over and over again in cyclic fashion:

Pseudocode listing

LOOP
SET x = analog_input_N // Update z with the latest measured input
SET t = system_time // Sample the system clock

SET delta_-t = t — last_t // Calculate change in t (time)

SET product = x x delta_t // Calculate product (integrand)
SET total = total + product // Add the result to all previous

SET last_t =t // Update last_-t wvalue for next program cycle
ENDLOOP

This computer program uses a variable to “remember” the value of time (¢) from the previous
scan, named last_t. This value is subtracted from the current value for ¢ to yield a difference
(delta_t), which is subsequently multiplied by the input value x to form a product. This product is
then added to an accumulating total (named total), representing the integrated value. This “total”
value may be sampled in some other portion of the computer’s program to trigger an alarm, a
shutdown action, or simply display and/or record the totalized value for a human operator’s benefit.

The time period (At) for this program’s difference quotient calculation is simply how often this
algorithm “loops,” or repeats itself. For a modern digital microprocessor, this could be upwards of
many thousands of times per second. Unlike differentiation, where an excessive sampling rate may
cause trouble by interpreting noise as extremely high rates of change, there is no danger of excessive
sampling when performing numerical integration. The computer may integrate as fast as it can with
no ill effect.

One of the fundamental characteristics of integration is that it ignores noise, which is a very
good quality for industrial signal processing. Small “jittering” in the signal tends to be random,
which means for every “up” spike of noise, one may expect a comparable “down” spike (or collection
of “down” spikes having comparable weight) at some later time. Thus, noise tends to cancel itself
out when integrated over time.

As with differentiation, applications exist for integration that are not time-based. One such
application is the calculation of mechanical work, defined as the product of force and displacement
(distance moved). In mechanical systems where there is no energy dissipated due to friction, work
results in a change in the energy possessed by an object.

allowing the tracking of mileage for individual trips instead of over the life of the automobile.
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For example, if we use a hoist to lift a mass weighing 700 pounds straight up against gravity a
distance of 3 feet, we will have done 2100 foot-pounds of work. The work done on the mass increases
its potential energy (AE) by 2100 foot-pounds:

AE = Fx

Where,
AFE = Change in potential energy resulting from work, in joules (metric) or foot-pounds (British)
F = Force doing the work, in newtons (metric) or pounds (British)
x = Displacement over which the work was done, in meters (metric) or feet (British)

We may also express this change in potential energy as an integral of force (F) multiplied
by infinitesimal increments in displacement (dz) over some interval (from a to b), since we know
integration is nothing more than a sophisticated way to multiply quantities:

b
AFE = / Fdx
a
Like any other integral, the energy change effected by lifting this mass a vertical distance may

be represented graphically as the area enclosed by the graph. In this case, the area is very simple
to calculate, being a simple rectangle (height times width):
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Lifting the mass vertically constitutes a positive change in potential energy for this object,
because each displacement differential (dx) is a positive quantity as we move from a height of 0 feet
to a height of 3 feet:

3ft

2100 ft-1bs = / (700 Ibs) dz
0ft
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A natural question to ask at this point is, what would the resulting change in energy be if we
lowered the mass from its height of 3 feet back down to 0 feet?. Doing so would cover the exact
same distance (3 feet) while exerting the exact same amount of suspending force (700 1bs), and so
we can safely conclude the work will have an absolute magnitude of 2100 ft-Ibs. However, if we
lower the mass, each displacement differential (dz) will be a negative quantity'® as we move from a
greater height to a lesser height. This makes the work — and the resulting energy change — a negative
quantity as well:

oft

—2100 ft-Ibs = / (700 1bs) da
3ft

This means if we raise the mass to a height of 3 feet, then lower it back to its original starting
height of 0 feet, the total change in potential energy will be zero:

3ft 0ft
0 ft-1bs = / (700 lbs) dxr + / (700 lbs) dx
0ft 3ft

This is true for any integral having an interval of zero (same starting and ending values),
regardless of the integrand’s value at any point in time:

0 ft-1bs = / Fdx

18As we lower the mass to ground level, height (z) goes from being a positive value to zero. This means each
differential (infinitesimal change in value) for x will be negative, thus causing the integrand F' dz to have a negative
value and thus causing the integrated total (work) to be negative as well.
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The integration of force and displacement to calculate potential energy change really shows
its utility when the force changes as a function of displacement. A classic example of this is the
compression of a mechanical spring, described in section 2.8.3 beginning on page 86.

One practical example of this sort of calculation is the determination of energy stored in an
archer’s bow when drawn to a certain displacement. The so-called force-draw curve of a longbow is
nearly ideal for a theoretical spring, with force increasing linearly as the string is drawn back by the
archer. The force-draw curve for a compound bow!? is quite nonlinear, with a much lesser holding
force required to maintain the bow at full draw:

Longbow force-draw curve Compound bow force-draw curve

Holding force
Force at full draw . —>— Force
" "
Holding force
atfulldraw  —>
Draw (x) Draw (x)

The force required to draw a compound bow rises sharply during the first few inches of draw,
peaks during the region where the archer’s arms are ideally angled for maximum pulling strength,
then “lets off” toward the end where the archer’s drawing arm is weakest in the “holding” position.
The result is a bow that requires substantial force to draw, but is relatively easy to hold in fully-
drawn position.

19While a longbow is really nothing more than a long and flexible stick with a straight string drawn across it,
a compound bow is a sophisticated machine with multiple passes of string and cam-shaped pulleys providing the
nonlinear force-draw relationship.
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While the compound bow may be easier to hold at full draw than the longbow, for any given
holding force the compound bow stores much more energy than the longbow, owing to the far greater
area (force-displacement integral) enclosed by the curve:

Longbow force-draw curve Compound bow force-draw curve

Force Force
(F) (F) Area =
energy stored
Area = AE = [F dx
energy stored
AE = [F dx
Draw (X) Draw (X)

This is why a compound bow is so much more powerful than a longbow or a “recurve” bow with
the same holding force: the energy represented by the greater area underneath the force-draw curve
equates to greater energy imparted to the arrow when released, and therefore greater kinetic energy
in the arrow during flight.

Like any other form of mechanical work, the energy invested into the bow by the archer is
readily calculated and expressed in units of force x displacement, typically newton-meters (joules)
in metric units and foot-pounds in British units. This stands to reason, since we know integration is
fundamentally a matter of multiplying quantities together, in this case force (pull) and displacement
(draw).

To actually calculate the amount of energy stored in a fully-drawn bow, we could measure both
force and displacement with sensors as the archer draws the bow, with a computer numerically
integrating force over increments of draw in real time. Another method would be to simply graph
force versus draw as we have done here, then use geometric methods?® to approximate the area
underneath the curve.

200ne simple way to do this is to cover the entire integration area using nothing but rectangles and triangles, then
measuring all the sketched shapes to totalize their areas.
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A more sophisticated example of numerical integration used to calculate work is that of a heat
engine, where a piston compresses an enclosed gas:

Cylinder )
Piston
F
(Gas) <= F
e— X —

X

As the piston is pushed farther into the cylinder, the gas becomes compressed, exerting more force
on the piston. This requires an ever-increasing application of force to continue the piston’s motion.
Unlike the example where a mass of constant weight was lifted against the pull of gravity, here the
force is a dynamically changing variable instead of a constant. The graph shows this relationship
between piston displacement and piston force.
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If we push the piston into the cylinder, the force increases as the displacement decreases. The
change in energy is described by the integral of force with respect to displacement, graphically
equivalent to the area underneath the force curve:

.=
|

|
b a b a

F AE = [F dx
[
b X a
b
AE:/ F dx

If we slowly allow the piston to return to its original position (letting the pressure of the enclosed
gas push it back out), the piston’s force decreases as displacement increases. The force/displacement
relationship is the same as before, the only difference being the direction of travel is opposite. This
means the change in energy is happening over the same interval, in reverse direction (from b to a
now instead of from a to b). Expressed as an integral:

AEz/ Fdx
b

As we have already learned, a reversal of direction means the sign of the integral will be opposite.
If pushing the piston farther inside the cylinder represented work being done on the enclosed gas by
the applied force, now the gas will be doing work on the source of the applied force as the piston
returns to its extended position.

This means we will have done zero net work by pushing the piston into the cylinder and then
letting it spring back out to its original position, just as we performed zero net work by lifting a
mass 3 feet in the air and then letting it back down.
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In order that this piston/cylinder mechanism might function as an engine, we must have some
way of making the energy change greater in one direction than the other. This is done by heating
the enclosed gas at the point of greatest compression. In a spark-ignition engine, the gas is actually
a mixture of air and fuel, ignited by an electric spark. In a compression-ignition (diesel) engine, the
gas is pure air, with fuel injected at the last moment to initiate combustion. The addition of heat
(from combustion) will cause the gas pressure to rise, exerting more force on the piston than what
it took to compress the gas when cold. This increased force will result in a greater energy change
with the piston moving out of the cylinder than with the piston moving in:

Compression Ignition Power

**ﬁ***
ot
(cold) **(*a)c**

* k k k k %

b a b a b a
TPressure rise
ldue to heating
+AE = [F dx
b
b
F -AE = [F dx F F
T T T T
b X a b X a b X a

Representing the work done by the hot gas as the area enclosed by the curve makes this clear:
more mechanical energy is being released as the piston travels from b to a during the “power stroke”
than the amount of energy invested in compressing the gas as the piston traveled from a to b during
the “compression stroke.” Thus, an internal combustion engine produces mechanical power by
repeatedly compressing a cold gas, heating that gas to a greater temperature, and then extracting
energy by letting that hot gas perform work on the piston as it expands.
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At the conclusion of the power stroke, a valve opens to exhaust the host gas and another valve
opens to introduce cold gas. This places the piston and cylinder in the original condition, ready for
another set of compression, ignition, and power strokes. This cycle is sometimes represented as a
closed “loop” on the force/displacement graph, like this:

Ignifion

Exhaust /
Intake

Compression

b X a

The amount of net energy output by the engine at the conclusion of each cycle is equivalent to
the area enclosed by the loop. This is the difference in areas (integrals) between the “compression”
and “power” strokes. Any design change to the engine resulting in a greater “loop” area (i.e. less
energy required to compress the gas, and/or more energy extracted from its expansion) results in
a more powerful engine. This is why heat engines output the most power when the difference in
temperatures (cold gas versus heated gas) is greatest: a greater temperature shift results in the two
curves being farther apart vertically, thus increasing the area enclosed by the “loop.”
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2.1 Terms and Definitions

Mass (m) is the opposition an object has to acceleration (changes in velocity). Weight is the force
(F) imposed on a mass by a gravitational field. Mass is an intrinsic property of an object, regardless
of the environment. Weight, on the other hand, depends on the strength of the gravitational field
in which the object resides. A 20 kilogram slug of metal has the exact same mass whether it rests
on Earth, or in the zero-gravity environment of outer space, or on the surface of the planet Jupiter.
However, the weight of that mass depends on gravity: zero weight in outer space (where there is no
gravity to act upon it), some weight on Earth, and a much greater amount of weight on the planet
Jupiter (due to the much stronger gravitational field of that planet).

Since mass is the opposition of an object to changes in velocity (acceleration), it stands to reason
force, mass, and acceleration for any particular object are directly related to one another:

F =ma

Where,
F = Force in newtons (metric) or pounds (British)
m = Mass in kilograms (metric) or slugs (British)
a = Acceleration in meters per second squared (metric) or feet per second squared (British)

If the force in question is the weight of the object, then the acceleration (a) in question is the
acceleration constant of the gravitational field where the object resides. For Earth at sea level,
Qgravity 1S approximately 9.8 meters per second squared, or 32 feet per second squared. Earth’s
gravitational acceleration constant is usually represented in equations by the variable letter g instead
of the more generic a.

Since acceleration is nothing more than the rate of velocity change with respect to time, the
force/mass equation may be expressed using the calculus notation of the first derivative:

dv
F=m%
Mt

Where,
F = Force in newtons (metric) or pounds (British)
m = Mass in kilograms (metric) or slugs (British)
v = Velocity in meters per second (metric) or feet per second (British)
t = Time in seconds

Since velocity is nothing more than the rate of position change with respect to time, the
force/mass equation may be expressed using the calculus notation of the second derivative
(acceleration being the derivative of velocity, which in turn is the derivative of position):

d’x
F=m 7z
Where,

F = Force in newtons (metric) or pounds (British)

m = Mass in kilograms (metric) or slugs (British)

x = Position in meters (metric) or feet (British)

t = Time in seconds
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Mass density (p) for any substance is the proportion of mass to volume. Weight density (v) for
any substance is the proportion of weight to volume.

Just as weight and mass are related to each other by gravitational acceleration, weight density
and mass density are also related to each other by gravity:

Flyeight = myg Weight and Mass

¥ = pg Weight density and Mass density

2.2 Metric prefixes

METRIC PREFIX SCALE

T G M k m 1 n p
tera giga mega kilo (none) milli micro nano pico
102 10° 10® 10® 10° 10® 10° 10° 10%2

N N PO N
N

102 10! 10! 102

hecto deca deci centi
h da d c

2.3 Areas and volumes

Area refers to the size of two-dimensional surface. Volume refers to the size of a three-dimensional
space. To put both these measures into context; the question of how much paint will be required to
adequately cover a house is one of area, while the question of how much water will be required to
fill a pond is one of volume.

Some units of measurement for area and volume are nothing more than compounded linear units.
Ten centimeters is an expression of distance, while ten square centimeters (cm2) is an expression
of area, and ten cubic centimeters (cm?) is an expression of volume. It important to note that the
modifiers “square” and “cubic” do not in any way imply the object in question is square or cubic
in shape. It is perfectly reasonable to measure the area of a circle, for instance, using the unit of
square centimeters.

Other units of spatial measurement are specific to area or to volume. The acre, for example,
is a unit of area measurement developed for the purpose of quantifying the size of land plots, one
acre being equivalent to 43560 square feet. An example of a unit specifically devoted to volume
measurement is the liter, equivalent to 1000 cubic centimeters.
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2.3.1 Common geometric shapes

Trapezoid

<~ b

Triangle

fe—Db — |J«— B ——
Area A= —1 Area A= 1 (b+ B)h
2 2
Z .
\</ Rectangular solid
Rectangle

—<—]

'
'

e— x — — x —

Perimeter P = 2x+ 2y Surface area A= 2xy + 2yz+ 2xz
Area A= xy Volume V = xyz
Circle Sphere

+— D — e— D —
Circumference C= D = 2711 Surface area A= 4rr?

Area A= 1’ Volume V= % e
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Right circular cylinder

Cone

f«— D — f«— D —
Surface area A= 2mr?+ 21rh Surface area A= 1 \/r?+ h?
Volume V= mrh Volume V= ?1 ?h

Tetrahedron

Note: the volume of any pyramid or cone
is one-third the product of its height (h)
and the area of its base.

— x — XY
Volume V= %xyh
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2.4 Unit conversions and physical constants

Converting between disparate units of measurement is the bane of many science students. The
problem is worse for students of industrial instrumentation in the United States of America, who
must work with British (“Customary”) units such as the pound, the foot, the gallon, etc. World-
wide adoption of the metric system would go a long way toward alleviating this problem, but until
then it is important for students of instrumentation to master the art of unit conversions'.

It is possible to convert from one unit of measurement to another by use of tables designed
expressly for this purpose. Such tables usually have a column of units on the left-hand side and an
identical row of units along the top, whereby one can look up the conversion factor to multiply by
to convert from any listed unit to any other listed unit. While such tables are undeniably simple to
use, they are practically impossible to memorize.

The goal of this section is to provide you with a more powerful technique for unit conversion,
which lends itself much better to memorization of conversion factors. This way, you will be able to
convert between many common units of measurement while memorizing only a handful of essential
conversion factors.

I like to call this the wnity fraction technique. It involves setting up the original quantity as
a fraction, then multiplying by a series of fractions having physical values of unity (1) so that by
multiplication the original value does not change, but the units do. Let’s take for example the
conversion of quarts into gallons, an example of a fluid volume conversion:

35 qt = 777 gal

Now, most people know there are four quarts in one gallon, and so it is tempting to simply
divide the number 35 by four to arrive at the proper number of gallons. However, the purpose of
this example is to show you how the technique of unity fractions works, not to get an answer to a
problem. First, we set up the original quantity as a fraction, in this case a fraction with 1 as the
denominator:

35 qt
1

Next, we multiply this fraction by another fraction having a physical value of unity, or 1. This
means a fraction comprised of equal measures in the numerator and denominator, but with different
units of measurement, arranged in such a way that the undesired unit cancels out leaving only the
desired unit(s). In this particular example, we wish to cancel out quarts and end up with gallons,
so we must arrange a fraction consisting of quarts and gallons having equal quantities in numerator
and denominator, such that quarts will cancel and gallons will remain:

35 qt 1 gal

1 4 qt
1 An interesting point to make here is the United States did get something right when they designed their monetary
system of dollars and cents. This is essentially a metric system of measurement, with 100 cents per dollar. The
founders of the USA wisely decided to avoid the utterly confusing denominations of the British, with their pounds,
pence, farthings, shillings, etc. The denominations of penny, dime, dollar, and eagle (310 gold coin) comprised a

simple power-of-ten system for money. Credit goes to France for first adopting a metric system of general weights
and measures as their national standard.
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Now we see how the unit of “quarts” cancels from the numerator of the first fraction and the
denominator of the second (“unity”) fraction, leaving only the unit of “gallons” left standing:

35 qt 1gal)
(1> <4 @ ) = 8.75 gal

The reason this conversion technique is so powerful is it allows one to do a large range of unit
conversions while memorizing the smallest possible set of conversion factors.
Here is a set of six equal volumes, each one expressed in a different unit of measurement:

1 gallon (gal) = 231.0 cubic inches (in®) = 4 quarts (qt) = 8 pints (pt) = 128 fluid ounces (fl. oz.)
= 3.7854 liters (1)

Since all six of these quantities are physically equal, it is possible to build a “unity fraction” out
of any two, to use in converting any of the represented volume units into any of the other represented
volume units. Shown here are a few different volume unit conversion problems, using unity fractions
built only from these factors:

40 gallons converted into fluid ounces:

40 gal 128 fl. oz _ 5190 fl. oz
1 1 gal

5.5 pints converted into cubic inches:

.3
5.5 pt 231 "\ 158.8 in?
1 8 pt

11701\ [ 4qt
( 1 ) <3.7854 1) = 1230 at

By contrast, if we were to try to memorize a 6 x 6 table giving conversion factors between any
two of six volume units, we would have to commit 30 different conversion factors to memory! Clearly,
the ability to set up “unity fractions” is a much more memory-efficient and practical approach.

But what if we wished to convert to a unit of volume measurement other than the six shown in
the long equality? For instance, what if we wished to convert 5.5 pints into cubic feet instead of
cubic inches? Since cubic feet is not a unit represented in the long string of quantities, what do we
do?

We do know of another equality between inches and feet, though. Everyone should know that
there are 12 inches in 1 foot. All we need to do is set up another unity fraction in the original
problem to convert cubic inches into cubic feet:

1170 liters converted into quarts:

5.5 pints converted into cubic feet (our first attempt!):

.3
5.5 pt 231 in 11t _ 979
1 8 pt 12 in
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Unfortunately, this will not give us the result we seek. Even though 112 fl“il is a valid unity fraction,

it does not completely cancel out the unit of inches. What we need is a unity fraction relating cubic

1 1t
12 1n

feet to cubic inches. We can get this, though, simply by cubing the unity fraction:

5.5 pints converted into cubic feet (our second attempt!):

55pt\ /2310 [/ 1ft\°
1 8 pt 12 in

Distributing the third power to the interior terms of the last unity fraction:

5.5 pt\ /231 in? 13 3
1 8 pt 123 in®

Calculating the values of 1® and 122 inside the last unity fraction, then canceling units and

solving:
5.5 pt\ /231 in® 163
( p)( m)< , 3)0.0919&3
1 8 pt 1728 in

Once again, this unit conversion technique shows its power by minimizing the number of
conversion factors we must memorize. We need not memorize how many cubic inches are in a
cubic foot, or how many square inches are in a square foot, if we know how many linear inches are in
a linear foot and we simply let the fractions “tell” us whether a power is needed for unit cancellation.

A major caveat to this method of converting units is that the units must be directly proportional
to one another, since this multiplicative conversion method is really nothing more than an exercise
in mathematical proportions. Here are some examples (but not an exhaustive list!) of conversions
that cannot be performed using the “unity fraction” method:

e Absolute / Gauge pressures, because one scale is offset from the other by 14.7 PSI (atmospheric
pressure).

e Celsius / Fahrenheit, because one scale is offset from the other by 32 degrees.

e Wire diameter / gauge number, because gauge numbers grow smaller as wire diameter grows
larger (inverse proportion rather than direct) and because there is no proportion relating the
two.

e Power / decibels, because the relationship is logarithmic rather than proportional.

The following subsections give sets of physically equal quantities, which may be used to create
unity fractions for unit conversion problems. Note that only those quantities shown in the same line
(separated by = symbols) are truly equal to each other, not quantities appearing in different lines!
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2.4.1 Conversion formulae for temperature

Note: all of the conversion factors given for temperature are ezract, not approximations.

°F = (°C)(9/5) + 32
°C = (°F - 32)(5/9)
°R = °F + 459.67

K = °C + 273.15

2.4.2 Conversion factors for distance

Note: all of the conversion factors given for distance are exact, not approximations.

1 inch (in) = 2.54 centimeters (cm)
1 foot (ft) = 12 inches (in)
1 yard (yd) = 3 feet (ft)

1 mile (mi) = 5280 feet (ft)

2.4.3 Conversion factors for volume

Note: all conversion factors shown in bold type are ezact, not approximations.

65

1 gallon (gal) = 231.0 cubic inches (in®) = 4 quarts (qt) = 8 pints (pt) = 16 cups = 128 fluid

ounces (fl. 0z.) = 3.7854 liters (1)

1 milliliter (ml) = 1 cubic centimeter (cm?)

2.4.4 Conversion factors for velocity

Note: all conversion factors shown in bold type are ezact, not approximations.

1 mile per hour (mi/h) = 88 feet per minute (ft/m) = 1.46667 feet per second (ft/s) = 1.60934
kilometer per hour (km/h) = 0.44704 meter per second (m/s) = 0.868976 knot (knot — international)

2.4.5 Conversion factors for mass

1 pound-mass (Ibm) = 0.4535924 kilogram (kg) = 0.031081 slugs

2.4.6 Conversion factors for force

1 pound-force (Ibf) = 4.448222 newtons (N)

1 kilogram-force (kgf) = 9.80665 newtons (N)



66 CHAPTER 2. PHYSICS

2.4.7 Conversion factors for area

Note: all conversion factors shown in bold type are exact, not approximations.

1 acre = 43560 square feet (ft?) = 4840 square yards (yd?) = 4046.86 square meters (m?)

2.4.8 Conversion factors for pressure (either all gauge or all absolute)

Note: all conversion factors shown in bold type are ezact, not approximations.

1 pounds per square inch (PSI) = 2.03602 inches of mercury at 0 °C (in. Hg) = 27.6799 inches of
water at 4 °C (in. W.C.) = 6.894757 kilo-pascals (kPa) = 0.06894757 bar

1 bar = 100 kilo-pascals (kPa) = 14.504 pounds per square inch (PSI)

1 meter of water at 4 °C (m W.C.) = 9.80665 kilo-pascals (kPa)

2.4.9 Conversion factors for pressure (absolute pressure units only)

Note: all conversion factors shown in bold type are ezact, not approximations.

1 standard atmosphere (Atm) = 14.7 pounds per square inch absolute (PSIA) = 101.325
kilo-pascals absolute (kPaA) = 1.01325 bar absolute = 760 millimeters of mercury absolute
(mmHgA) = 760 torr (torr)

2.4.10 Conversion factors for energy or work

1 British thermal unit (Btu — “International Table”) = 251.996 calories (cal — “International Table”)
= 1055.06 joules (J) = 1055.06 watt-seconds (W-s) = 0.293071 watt-hour (W-hr) = 1.05506 x 10*°
ergs (erg) = 778.169 foot-pound-force (ft-1bf)

2.4.11 Conversion factors for power

Note: all conversion factors shown in bold type are ezact, not approximations.

1 horsepower = 550 foot-pounds per second (ft-1bf/s) = 745.7 watts (W) = 2544.43 British
thermal units per hour (Btu/h) = 0.0760181 boiler horsepower (hp — boiler)
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2.4.12 Terrestrial constants

Acceleration of gravity at sea level = 9.806650 meters per second per second (m/s?) = 32.1740 feet
per second per second (ft/s?)

Atmospheric pressure = 14.7 pounds per square inch absolute (PSIA) = 760 millimeters of mercury
absolute (mmHgA) = 760 torr (torr) = 1.01325 bar (bar)

Atmospheric gas concentrations (by volume, not mass):
e Nitrogen = 78.084 %
e Oxygen = 20.946 %
e Argon = 0.934 %
e Carbon Dioxide (CO2) = 0.033 %
e Neon = 18.18 ppm
e Helium = 5.24 ppm
e Methane (CHy) = 2 ppm
e Krypton = 1.14 ppm
e Hydrogen = 0.5 ppm
e Nitrous Oxide (N2O) = 0.5 ppm
e Xenon = 0.087 ppm

Density of dry air at 20 °C and 760 torr = 1.204 mg/cm?® = 1.204 kg/m?® = 0.075 1b/ft3 = 0.00235
slugs/ft3

Absolute viscosity of dry air at 20 °C and 760 torr = 0.018 centipoise (cp) = 1.8 x 1075 pascal-
seconds (Pa-s)

2.4.13 Properties of water

Freezing point at sea level = 32 °F = 0 °C

Boiling point at sea level = 212 °F = 100 °C

Density of water at 4 °C = 1000 kg/m? = 1 g/cm? = 1 kg/liter = 62.428 1b/ft> = 1.94 slugs/ft>
Specific heat of water at 14 °C = 1.00002 calories/g-°C = 1 BTU/lb-°F = 4.1869 joules/g-°C
Specific heat of ice & 0.5 calories/g-°C

Specific heat of steam =2 0.48 calories/g-°C

Absolute viscosity of water at 20 °C = 1.0019 centipoise (cp) = 0.0010019 pascal-seconds (Pa-s)
Surface tension of water (in contact with air) at 18 °C = 73.05 dynes/cm

pH of pure water at 25 °C = 7.0 (pH scale = 0 to 14)
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2.4.14 Miscellaneous physical constants

Note: all constants shown in bold type are ezact, not approximations. Parentheses show one
standard deviation (o) of uncertainty in the last digits: for example, Avogadro’s number given as
6.02214179(30) x 1023 means the center value (6.02214179 x 1023) plus or minus 0.00000030 x 1023.
Avogadro’s number (N,) = 6.02214179(30) x 10?3 per mole (mol~1)

Boltzmann’s constant (k) = 1.3806504(24) x 10~2% joules per Kelvin (J/K)

Electronic charge (e) = 1.602176487(40) x 1079 Coulomb (C)

Faraday constant (F) = 9.64853399(24) x 10* Coulombs per mole (C/mol)

Gravitational constant (G) = 6.67428(67) x 107! cubic meters per kilogram-seconds squared
(m?/kg-s?)

Molar gas constant (R) = 8.314472(15) joules per mole-Kelvin (J/mol-K) = 0.08205746(14) liters-
atmospheres per mole-Kelvin

Planck constant (h) = 6.62606896(33) x 1034 joule-seconds (J-s)
Stefan-Boltzmann constant (o) = 5.670400(40) x 10~% Watts per square meter-Kelvin* (W/m?2.K*)
Speed of light in a vacuum (¢) = 299792458 meters per second (m/s) = 186282.4 miles per

second (mi/s)

All constants taken from NIST data “Fundamental Physical Constants — Extensive Listing”,
published 2006.
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2.4.15 Weight densities of common materials

All density figures approximate for samples at standard temperature and pressure”.

2

Liquids:

Acetone: v = 49.4 1b/ft3

Alcohol, ethyl (ethanol): v = 49.4 1b/ft3
Alcohol, methyl (methanol): v = 50.5 1b/ft?
Benzene: v = 56.1 1b/ft?

Butane (liquid): v = 36.1 1b/ft?

Carbon disulfide: v = 80.7 1b/ft?

Carbon tetrachloride: v = 99.6 1b/ft?
Chloroform: v = 93 Ib/ft3

Ethylene glycol (ethanediol): v = 69.22 1b/ft3
Gasoline: v = 41 1b/ft® to 43 Ib/ft3
Glycerin: v = 78.6 1b/ft?

Isobutane (liquid): v = 34.8 1b/ft?
Kerosene: v = 51.2 Ib/ft3

Mercury: v = 849 Ib/ft3

Methanol (methyl alcohol): v = 50.5 Ib/ft3
Milk: v = 64.2 Ib/ft3 to 64.6 1b/ft>
Naphtha, petroleum: v = 41.5 Ib/ft?

Oil, castor: v = 60.5 1b/ft?

Oil, coconut: v = 57.7 Ib/ft>

Oil, linseed (boiled): v = 58.8 Ib/ft3

Oil, olive: v = 57.3 1b/ft?

Propane (liquid): v = 31.2 Ib/ft3

Toluene: v = 54.1 1b/ft3

69

2Density figures taken or derived from tables in the CRC Handbook of Chemistry and Physics, 64th Edition. Most
liquid densities taken from table on page F-3 and solid densities taken from table on page F-1. Some liquid densities
taken from tables on pages E-27 through E-31. All temperatures at or near 20 °C.
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Turpentine: v = 54.3 1b/ft?

Water, heavy: v = 68.97 1b/ft3
Water, light (normal): v = 62.4 1b/ft3
Water, sea: v = 63.99 1b/ft>

Solids:

Beryllium: v = 115.37 Ib/ft3
Brass: v = 524.4 Ib/ft3
Calcium: v = 96.763 1b/ft>

Carbon (diamond): v = 196.65 1b/ft? to 220.37 1b/ft3
Cement (set): v = 170 1b/ft3 to 190 1b/ft3

Chromium: v = 448.86 1b/ft?
Copper: v = 559.36 1b/ft3

Cork: v = 14 Ib/ft3 to 16 1b/ft?
Gold: v = 1178.6 Ib/ft3

Ice: v = 57.2 Ib/ft?

Iron: v = 490.68 1b/ft3

Ivory: v = 114 Ib/£t3 to 120 Ib/ft?
Lead: v = 708.56 1b/ft3

Leather: v = 54 1b/ft?

Magnesium: v = 108.50 1b/ft3
Molybdenum: v = 638.01 1b/ft?
Quartz: v = 165 1b/ft?

Rubber (soft): v = 69 1b/ft?

Rubber (hard): v = 74 1b/ft3

Salt, rock: v = 136 1b/ft3

Sugar: v = 99 1b/ft?

Tar: v = 66 1b/ft3

Wood, balsa: v = 7 1b/ft3 to 9 Ib/ft3
Wood, maple: v = 39 1b/ft? to 47 Ib/ft3
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2.5 Dimensional analysis

An interesting parallel to the “unity fraction” unit conversion technique is something referred to in
physics as dimensional analysis. Performing dimensional analysis on a physics formula means to set
it up with units of measurement in place of variables, to see how units cancel and combine to form
the appropriate unit(s) of measurement for the result.

For example, let’s take the familiar power formula used to calculate power in a simple DC electric
circuit:

P=1V

Where,
P = Power (watts)
I = Current (amperes)
V' = Voltage (volts)

Each of the units of measurement in the above formula (watt, ampere, volt) are actually
comprised of more fundamental physical units. One watt of power is one joule of energy transferred
per second. One ampere of current is one coulomb of electric charge moving by per second. One
volt of potential is one joule of energy per coulomb of electric charge. When we write the equation
showing these units in their proper orientations, we see that the result (power in watts, or joules
per second) actually does agree with the units for amperes and volts because the unit of electric
charge (coulombs) cancels out. In dimensional analysis we customarily distinguish unit symbols
from variables by using non-italicized letters and surrounding each one with square brackets:

P=1V
[Watts] = [Amperes] x [Volts] or (W] = [A][V]
Joules | [ Coulombs o Joules or g B 9 i
Seconds| | Seconds Coulombs s| s C

Dimensional analysis gives us a way to “check our work” when setting up new formulae for
physics- and chemistry-type problems.
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2.6 The International System of Units

The very purpose of physics is to quantitatively describe and explain the physical world in as few
terms as possible. This principle extends to units of measurement as well, which is why we usually
find different units used in science actually defined in terms of more fundamental units. The watt,
for example, is one joule of energy transferred per second of time. The joule, in turn, is defined in
terms of three base units, the kilogram, the meter, and the second:

- Ll
[s?]
Within the metric system of measurements, an international standard exists for which units
are considered fundamental and which are considered “derived” from the fundamental units. The
modern standard is called SI, which stands for Systéme International. This standard recognizes

seven fundamental, or base units, from which all others are derived?:

Physical quantity ST unit SI symbol
Length meter m
Mass kilogram kg
Time second S
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

An older standard existed for base units, in which the centimeter, gram, and second comprised
the first three base units. This standard is referred to as the cgs system, in contrast to the SI
system?. You will still encounter some derived cgs units used in instrumentation, including the poise
and the stokes (both used to express fluid viscosity). Then of course we have the British engineering
system which uses such wonderful® units as feet, pounds, and (thankfully) seconds. Despite the fact
that the majority of the world uses the metric (SI) system for weights and measures, the British
system is sometimes referred to as the Customary system.

3The only exception to this rule being units of measurement for angles, over which there has not yet been full
agreement whether the unit of the radian (and its solid counterpart, the steradian) is a base unit or a derived unit.

4The older name for the SI system was “MKS,” representing meters, kilograms, and seconds.

5T'm noting my sarcasm here, just in case you are immune to my odd sense of humor.
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2.7 Conservation Laws

The Law of Mass Conservation states that matter can neither be created nor destroyed. The Law of
Energy Conservation states that energy can neither be created nor destroyed. However, both mass
and energy may change forms, and even change into one another in the case of nuclear phenomena.

Conversion of mass into energy, or of energy into mass, is quantitatively described by Albert
Einstein’s famous equation:

E = mdc?

Where,
E = Energy (joules)
m = Mass (kilograms)
¢ = Speed of light (approximately 3 x 10® meters per second)

Conservation laws find practical context in many areas of science and life, but in the realm of
process control we have the principles of mass balance and energy balance which are direct expressions
of these Laws. “Mass balance” refers to the fact that the sum total of mass entering a process must
equal the sum total of mass exiting the process, provided the process is in a steady-state condition
(all variables remaining constant over time). To give a simple example of this, the mass flow rate
of fluid entering a pipe must be equal to the mass flow rate of fluid exiting the pipe, provided the
pipe is neither accumulating nor releasing mass within its internal volume. “Energy balance” is a
parallel concept, stating that the sum total of energy entering a process must equal the sum total of
energy exiting a process, provided a steady-state condition (no energy being stored or released from
storage within the process).

2.8 Classical mechanics

Classical mechanics (often called Newtonian mechanics in honor of Isaac Newton) deal with forces
and motions of objects in common circumstances. The vast majority of instrumentation applications
deals with this realm of physics. Two other areas of physics, relativistic and quantum, will not
be covered in this chapter because their domains lie outside the typical experience of industrial
instrumentation®.

6Relativistic physics deals with phenomena arising as objects travel near the speed of light. Quantum physics deals
with phenomena at the atomic level. Neither is germane to the vast majority of industrial instrument applications.
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2.8.1 Newton’s Laws of Motion

These laws were formulated by the great mathematician and physicist Isaac Newton (1642-1727).
Much of Newton’s thought was inspired by the work of an individual who died the same year Newton
was born, Galileo Galilei (1564-1642).

1. An object at rest tends to stay at rest; an object in motion tends to stay in motion

2. The acceleration of an object is directly proportional to the net force acting upon it and
inversely proportional to the object’s mass

3. Forces between objects always exist in equal and opposite pairs

Newton’s first law may be thought of as the law of inertia, because it describes the property
of inertia that all objects having mass exhibit: resistance to change in velocity. This law is quite
counter-intuitive for many people, who tend to believe that objects require continual force to keep
moving. While this is true for objects experiencing friction, it is not for ideal (frictionless) motion.
This is why satellites and other objects in space continue to travel with no mode of propulsion: they
simply “coast” indefinitely on their own inertia because there is no friction in space to dissipate their
kinetic energy and slow them down.

Newton’s second law is the verbal equivalent of the force/mass/acceleration formula: F = ma.
This law elaborates on the first, in that it mathematically relates force and motion in a very precise
way. For a frictionless object, the change in velocity (i.e. its acceleration) is proportional to force.
This is why a frictionless object may continue to move without any force applied: once moving,
force would only be necessary for continued acceleration. If zero force is applied, the acceleration
will likewise be zero, and the object will maintain its velocity indefinitely (again, assuming no friction
at work).

Newton’s third law describes how forces always exist in pairs between two objects. The
rotating blades of a helicopter, for example, exert a downward force on the air (accelerating the
air), but the air in turn exerts an upward force on the helicopter (suspending it in flight). A spider
hanging on the end of a thread exerts a downward force (weight) on the thread, while the thread
exerts an upward force of equal magnitude on the spider (tension). Force pairs are always equal in
magnitude but opposite in direction.
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2.8.2 Work, energy, and power

Work is the expenditure of energy resulting from exerting a force over a parallel displacement
(motion)”:

W = Fx

Where,
W = Work, in joules (metric) or foot-pounds (British)
F = Force doing the work, in newtons (metric) or pounds (British)
2 = Displacement over which the work was done, in meters (metric) or feet (British)

Suppose a person pulls a heavy sled through snow, exerting a constant horizontal pulling force
of 83 pounds to move the sled 25 feet in distance. This equates to 2075 foot-pounds of work done
by the person:

W= F x = (83 Ib)(25 ft) = 2075 ft-Ib of work

force exerted

_ Person
Sleq 283D

—J

Y

x=25ft
distance pulled

W= F x = (369.2 N)(7.62 m) = 2813.3 N-m of work

Calculating the amount of work using metric units, we find the product of force (83 pounds, or
369.2 newtons) and distance (25 feet, or 7.62 meters) is equivalent to 2813.3 joules, which is the
same as saying 2813.3 newton-meters. This amount of energy happens to be equivalent to 0.672
dietary Calories (kilo-calories), relating directly to the food eaten by this person to give them the
energy to pull the sled.

In this case of the sled, the energy invested in pulling it 25 feet through the snow becomes
dissipated in the form of heat as the runners of the sled “drag” through the snow. If the snow is
deep enough, and the sled’s runners rough enough, the sled will cease moving the moment the person
stops pulling: all energy is immediately dissipated through the effects of friction.

"Technically, the best way to express work resulting from force and displacement is in the form of a vector dot-
product: W = F . % The result of a dot product is always a scalar quantity (neither work nor energy possesses a
direction, so it cannot be a vector), and the result is the same magnitude as a scalar product only if the two vectors
are pointed in the same direction.
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Potential energy is energy existing in a stored state, having the potential to do useful work. If
we perform work in lifting a mass vertically against the pull of Earth’s gravity, we store potential
energy which may later be released by allowing the mass to return to its previous (lower) height.
The equation for potential energy in this case is just a special form of the work equation (W = Fx),
where work is now expressed as potential energy (W = E,,), force is now expressed as a weight caused
by gravity acting on a mass (F' = mg), and displacement is now expressed as a height (z = h):

E,=W=Fz

E, = mgh

Where,

E,, = Potential energy in joules (metric) or foot-pounds (British)

m = Mass of object in kilograms (metric) or slugs (British)

g = Acceleration of gravity in meters per second squared (metric) or feet per second squared
(British)

h = Height of lift in meters (metric) or feet (British)

Once again using the example of a person pulling a load, suppose a person pulls a wagon weighing
166 pounds up a long hill, climbing a vertical height of 127 feet. To simplify matters, we will assume
the wagon’s wheels turn frictionlessly, so that none of the person’s work will be dissipated in the
form of heat: every bit of energy goes into the work of lifting the wagon to a greater height. We
could calculate the potential energy invested in lifting the wagon using the equation E, = mgh, but
we would need to know the mass of the wagon (m) in “slugs” to calculate work in British units,
using 32.2 ft/s? for g and 127 feet for h. Alternatively, we could calculate potential energy using the
E, =W = Fz equation, where F' is the weight (166 pounds upward force of the ground against the
wagon) of the wagon and x is the vertical height lifted (127 feet):

Person

Wagon

x = 127 ft
distance lifted

T force exerted
F=1661b

W= F x = (166 |b)(127 ft) = 21082 ft-Ib of work
W= F x= (738.4 N)(38.7 m) = 28583.3 N-m of work
Doing the latter, we find it takes 21082 foot-pounds (28583.3 joules, also 6.827 dietary Calories)

of work to lift the 166 pound wagon to the top of the 127-foot-high hill. A very important detail
to note is that we may apply the formula W = Fz to any parallel force and displacement vectors
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involved with moving the wagon up the hill. For instance, we could have used rope tension for F'
and rolling distance for z — the two vectors both parallel to the sloped ground — had we known
the values® of that force and that displacement. So long as the force and displacement vectors are
parallel to each other and relevant to the work being done, the W = Fz equation applies.

Unlike the sled-pulling scenario where all the person’s effort went into overcoming friction between
the snow and the sled runners, this time the person’s energy does not go to waste. Instead, the work
invested in pulling the wagon (frictionlessly) up the hill is stored and may be released at a later time.
All that is needed to release this stored energy is to let gravity take action by letting the wagon roll
freely downhill: the stored energy will accelerate the wagon to a greater and greater velocity as it
frictionlessly rolls down the hill.

Many different forms of potential energy exist, although the standard “textbook” example is of
a mass lifted to some height against the force of gravity. Compressed (or stretched) springs have
potential energy, as do compressed gases, chemical bonds (e.g. fuel molecules prior to combustion),
electrically-charged capacitors, and magnetized inductors. Any form of energy with the potential to
be released into a different form at some later time is, by definition, potential energy.

8We could calculate rope tension from the wagon’s 166 pound weight, and rolling distance from the 127 foot hill

height, if we knew the hill’s angle: F' = (166 1b)(sin ) and « = 127t A you can see, when you multiply these terms

sin 6
together, sin 0 cancel each other out, proof that the hill’s angle doesn’t matter to the calculation of work in pulling

the wagon to the top.
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Potential energy is an important principle not just in the study of physics, but also for workplace
safety. An industrial maintenance procedure known as lock-out, tag-out requires that all potential
energy sources on a system must either be dissipated or otherwise secured to that there will be
negligible risk to maintenance personnel as they perform work on a system. The most common
way to ensure this is to place a padlock on each energy-disconnect device (e.g. switch, valve, etc.)
to secure its position so that potential energy cannot be released in a harmful or destructive way.
Each maintenance worker places a padlock on that disconnect device to prevent its actuation, and
also places a tag on the device explaining when and why it was secured. Each and every person
performing work on the system must use their own personal padlock, so that the system cannot be
re-activated without the active consent of all persons working on that system.

An efficient strategy for safely locking out a large number of safety-disconnect devices on a
system with multiple personal locks is to use a sheet-metal box containing a numbered padlock
(with matching key) for each energy-flow device to be secured on the equipment, as well as a list
identifying which lock goes on which energy-flow device. The lid of this device is then lock-able with
a multi-lock device, permitting multiple peoples’ personal locks to be applied so the lid cannot be
opened unless all personal locks are removed from it:

Multi-lock device
goes here

f
N

Personal locks placed into
holes of multi-lock device

None of the energy-securing devices may be altered unless all personal locks have been removed
from the lock box, thereby ensuring the safety of all persons working on the system.

Procedures created and maintained at the worksite will identify the energy-flow devices in need
of securing prior to commencement of work on a piece of equipment. These procedures are literally
life-saving documents, as they ensure no energy-securing device is overlooked by personnel doing
work on the equipment or system.
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A photograph of such a document — appropriately titled an “Energy Control Procedure” — shows

the steps mandated to secure all potential energy sources prior to commencing work on a large
industrial engine. This procedure also serves to document which locks were used to secure which

energy flow devices during the procedure, as well as who performed the procedure:

l Energy Control Procedure
Revision Number & Date one 7/23/2009

f'l. |

|Ingersel Rand KVS 412 Minar maintenance
d before proceeding

Items to be
, Inivial all steps
["e | 1 |Onlyqualified \authorized employees are allowed to complete this task
| =7 | 2 |Verifyequi has not changed before relying on this procedure
7. | 3 |Rediine and update any changes & notify effected employee if required
|72 | 4 |Notify all effected employees belore starting
|" %72 | 5 |Notify Gas Control
J AR | 8 ﬁ(lhat:ranai!!oheu!ed pl crane insp
3 it Complete all required documeniation
= 8 |Indentify required forms, Use updated forms
{687 9 |Hot Work Permit WGP- 0059 Procedure 65.0020.05
[ <171 10 |Crane pre use inspection. Form Attachment A Procedure 65.00.08.08
[ = | 11 |Drawing ##8##### Not available at this time
Date & Time “-ds= 1| 1000 i
| Authorized Technician Dy eSst (LS
Scope of work <afl £ il oo Nt c 3
|Out of Service | : Cn %‘k&ﬁ e
Ste, Initials Lock # [Task
' 1 | Tag out unit mode switch in off position
[ 2 17 Y& | & [Close starting air block valve, Lock and tag.
| VE |2 [Close fuel block valve. Lock and tag

[Return 1o Service [

! Step | Initials [Lack # off [Task
[Remave tag from unit mode switch. Place switch in local manual

| [Remove lock from Starting air block valve open valve
J lRemm'e tag from fisel block valve open valve

[ [Reset unit panel alarms

;f [Place unit panel selector switch in remote auto
|

|

|

LI

Affected employee log

]
[
]
]
|
|
|

. -

=
[Tock | on | onm |
E ) =#7 Name
B Ty | R T
Lo e s o '
| S L

=

Note the particular lock-out steps required in this procedure: switching the control mode to
the “off” position and tagging it, closing the fuel gas valve supplying fuel to the engine and
locking/tagging it, and finally closing the valve supplying high-pressure air for engine starting and

locking/tagging it. The closure of the starting air valve prevents the engine from being pneumatically
The closure of the fuel gas valve eliminates

turned while personnel are performing work on it.
hazards resulting from the pressure of the fuel gas as well as its chemical energy (i.e. fire hazard)

and/or biological threats (poisoning or asphyxiation). Note also how this procedure lists steps of
notification to be taken prior to locking or tagging anything on the engine, as well as any other
procedures possibly necessary (e.g. inspecting the maintenance crane if that will be needed for work

on the engine).
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The following is a set of incomplete lists of various energy-securing devices and energy sources
which may be “locked out” for maintenance on a larger system:

Electrical energy
e Circuit breaker (locked in “off” position)
e Grounding switch (locked in “on” position to positively ground power conductors)

e Power cord (plastic cap locked onto plug, covering prongs)

Mechanical energy
e Block valve (locked in “shut” position) to prevent pressurized fluid motion
e Flange blind (installed in line) to prevent pressurized fluid motion
e Vent valve (locked in “open” position) to prevent fluid pressure buildup

e Mechanical clutch (disengaged, and locked in that position) to prevent prime mover from
moving something

e Mechanical coupling (disassembled, and locked in that state) to prevent prime mover from
moving something

e Mechanical brake (engaged, and locked in that position) to prevent motion
e Mechanical locking pin (inserted, and held in position by a padlock) to prevent motion

e Raised masses lowered to ground level, with lifting machines locked out

Chemical energy
e Block valve (locked in “shut” position) to prevent chemical fluid entry
e Vent valve (locked in “open” position) to prevent chemical fluid pressure buildup
e Ventilation fan (locked in “run” state) to prevent chemical vapor buildup

With all these preventative measures, the hope is that no form of potential energy great enough
to pose danger may be accidently released.
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This brings us to our next form of energy: kinetic. “Kinetic energy” is energy in motion. The
kinetic energy of a moving mass is equal to:
Lo o
E = va
Where,
Ej, = Kinetic energy in joules (metric) or foot-pounds (British)
m = Mass of object in kilograms (metric) or slugs (British)
v = Velocity of mass in meters per second (metric) or feet per second (British)

Note that this is a nonlinear equation: kinetic energy is not directly proportional to velocity. If
the velocity of a mass is doubled, its kinetic energy increases by a factor of four; if velocity is tripled,
the kinetic energy goes up by a factor of nine.

In the case of the 166 pound wagon lifted to a height of 127 feet (vertical), the 21082 foot-pounds
of potential energy possessed by the wagon at the top of the hill will translate to 21082 foot-pounds
of kinetic energy at the bottom of the hill, assuming a frictionless ride’ down the hill:

Person

E, = 21082 ft-Ib of potential energy
when wagon stationary at top of hill

E, = 21082 ft-Ib of kinetic energy
when wagon rolling at bottom of hill

Assuming no potential energy lost to friction during the wagon’s free-roll downhill, we may

calculate velocity at the bottom of the hill by setting Ej equal to 21082 foot-pounds of energy and

solving for v in the equation Fj = %va.

9In a more realistic scenario where friction takes effect, some of the 21.082 foot pounds of energy will dissipate in
the form of heat, leaving the wagon with less than 21082 foot-pounds of kinetic energy at the bottom of the hill.
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One more step is needed before we may calculate velocity (v), and that is to convert the wagon’s
weight of 166 pounds into a mass value in units of slugs: 166 pounds converts to 5.159 slugs. Now,
we may solve for velocity v as follows:

1

E, = imv2
2F, = mu?

25
k _ 1}2

m
2F,
v=14/—
m

(2)(21082 ft-1b)
5.159 slugs

v =904 ft/s

Assuming no energy lost to friction, either within the wagon’s wheel bearings or between the
wagon and the air, the 166 pound wagon’s velocity after rolling to the bottom of the 127 foot
(vertical) hill will be 90.4 feet per second, or 61.6 miles per hour.

Like potential energy, kinetic energy exists in multiple forms. Not only does a moving object
possess kinetic energy, but so do the vibrating molecules comprising any object’s mass (those
vibrations being directly related to the temperature of the matter). Any form of wave is another
example of kinetic energy, whether it be waves of water in the ocean, sound waves through air, or
even light waves.



2.8. CLASSICAL MECHANICS 83

The Law of Energy Conservation is extremely useful in projectile mechanics problems, where
we typically assume a projectile loses no energy and gains no energy in its flight. The velocity of
a projectile, therefore, depends on its height above the ground, because the sum of potential and
kinetic energies must remain constant:

E, + Ej, = constant

In free-fall problems, where the only source of energy for a projectile is its initial height, the
initial potential energy must be equal to the final kinetic energy:

E, (initial) = E}, (final)

1
mgh; = imv?

We can see from this equation that mass cancels out of both sides, leaving us with this simpler
form:

1
gh; = 51}?

It also leads to the paradoxical conclusion that the mass of a free-falling object is irrelevant to
its velocity. That is, both a heavy object and a light object in free fall will hit the ground with
the same velocity, and fall for the same amount of time, if released from the same height under the
influence of the same gravity'?. The same is true for our hypothetical wagon, assuming frictionless
runners: the speed it will reach at the bottom of the hill depends only on its initial height at the
top of the hill, not on its mass.

Dimensional analysis confirms the common nature of energy whether in the form of potential,
kinetic, or even mass (as described by Einstein’s equation). First, we will set these three energy
equations next to each other for comparison of their variables:

E, = mgh Potential energy due to elevation
1 S .

E, = 5™ Kinetic energy due to velocity
E =md? Mass-to-energy equivalence

10In practice, we usually see heavy objects fall faster than light objects due to the resistance of air. Energy losses
due to air friction nullify our assumption of constant total energy during free-fall. Energy lost due to air friction never
translates to velocity, and so the heavier object ends up hitting the ground faster (and sooner) because it had much
more energy than the light object did to start.
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Next, we will dimensionally analyze them using standard SI metric units (kilogram, meter,
second). Following the ST convention, mass (m) is always expressed in kilograms [kg], distance (h)
in meters [m], and time (¢) in seconds [s]. This means velocity (v, or ¢ for the speed of light) in the
ST system will be expressed in meters per second [m/s| and acceleration (a, or g for gravitational
acceleration) in meters per second squared [m/s?]:

k 2
[ g[]b[;]n ] = [ke] [g} [m] Potential energy due to elevation
k 2 2
[g[]S[QI]H] = [ke] {?} Kinetic energy due to velocity
k 2 2
[g[]s[zr]n] = [kg] [?} Mass-to-energy equivalence

In all three cases, the unit for energy is the same: kilogram-meter squared per second squared.
This is the fundamental definition of a “joule” of energy, and it is the same result given by all three
formulae.

Power is defined as the rate at which work is being done, or the rate at which energy is transferred.
Mathematically expressed, power is the first time-derivative of work (W):

oW
dt

The metric unit of measurement for power is the watt, defined as one joule of work performed
per second of time. The British unit of measurement for power is the horsepower, defined as 550
foot-pounds of work performed per second of time.

Although the term “power” is often colloquially used as a synonym for force or strength, it is in
fact a very different concept. A “powerful” machine is not necessarily a machine capable of doing
a great amount of work, but rather (more precisely) a great amount of work in a short amount of
time. Even a “weak” machine is capable of doing a great amount of work given sufficient time to
complete the task. The “power” of any machine is the measure of how rapidly it may perform work.
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An interesting exercise in dimensional analysis for people familiar with Joule’s Law in electric
circuits shows just how work and power relate. Power, as you may recall, is defined in electric
circuits as the product of voltage and current:

P=1Vv

Showing the common units of measurement for each of these variables:

[Watts] = [Amperes] x [Volts] or (W] = [A][V]

Now we will substitute more fundamental units of measurement to show how the units comprising
“power” really do come from the units comprising “volts” and “amps”. We know for example that
the unit of the “ampere” is really coulombs of charge flowing per second, and that the unit of the
“volt” is really joules of energy (or joules of work) per coulomb of charge. Thus, we may make the
unit substitutions and prove to ourselves that the “watt” is really joules of energy (or joules of work)
per second of time:

Joules Coulombs o Joules J Cl|J

= or —-1=1—11=

Seconds Seconds Coulombs S s|]|C
In summary, voltage is a measure of how much potential energy is infused in every coulomb of
charge in an electric circuit, and current is a measure of how quickly those charges flow through the
circuit. Multiplying those two quantities tells us the rate at which energy is transferred by those

moving charges in a circuit: the rate of charge flow multiplied by the energy value of each charge
unit.
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2.8.3 Mechanical springs

Many instruments make use of springs to translate force into motion, or visa-versa. The basic “Ohm’s
Law” equation for a mechanical spring relating applied force to spring motion (displacement) is called
Hooke’s Law'!:

F=—kx

Where,

F = Force generated by the spring in newtons (metric) or pounds (British)

k = Constant of elasticity, or “spring constant” in newtons per meter (metric) or pounds per
foot (British)

2 = Displacement of spring in meters (metric) or feet (British)

Hooke’s Law is a linear function, just like Ohm’s Law is a linear function: doubling the
displacement (either tension or compression) doubles the spring’s force. At least this is how springs
behave when they are displaced a small percentage of their total length. If you stretch or compress
a spring more substantially, the spring’s material will become strained beyond its elastic limit and
either yield (permanently deform) or fail (break).

The amount of potential energy stored in a tensed spring may be predicted using calculus. We
know that potential energy stored in a spring is the same as the amount of work done on the spring,
and work is equal to the product of force and displacement (assuming parallel lines of action for
both):

E,=TFx

Thus, the amount of work done on a spring is the force applied to the spring (F' = ka) multiplied
by the displacement (z). The problem is, the force applied to a spring varies with displacement and
therefore is not constant as we compress or stretch the spring. A mathematician would say that the
spring’s force is a function of x because the force varies as z varies. Thus, in order to calculate the
amount of potential energy stored in the spring (E, = F'z), we must calculate the amount of energy
stored over infinitesimal amounts of displacement (F' dz, or kxz dz) and then add those bits of energy

up (/) to arrive at a total:
E, = /kx dz

M Hooke’s Law may be written as F' = kz without the negative sign, in which case the force (F) is the force applied
on the spring from an external source. Here, the negative sign represents the spring’s reaction force to being displaced
(the restoring force). A spring’s reaction force always opposes the direction of displacement: compress a spring, and
it pushes back on you; stretch a spring, and it pulls back. A negative sign is the mathematically symbolic way of
expressing the opposing direction of a vector.
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We may evaluate this integral using the power rule (x is raised to the power of 1 in the integrand):

1
E, = §kx2 + E

Where,

E,, = Energy stored in the spring in joules (metric) or foot-pounds (British)

k = Constant of elasticity, or “spring constant” in newtons per meter (metric) or pounds per
foot (British)

x = Displacement of spring in meters (metric) or feet (British)

Ey = The constant of integration, representing the amount of energy initially stored in the spring
prior to our displacement of it

For example, if we take a very large spring with a constant k equal to 60 pounds per foot and
displace it by 4 feet, we will store 480 foot-pounds of potential energy in that spring (i.e. we will do
480 foot-pounds of work on the spring).

Graphing the force-displacement function on a graph yields a straight line (as we would expect,
because Hooke’s Law is a linear function). The area accumulated underneath this line from 0 feet
to 4 feet represents the integration of that function over the interval of 0 to 4 feet, and thus the
amount of potential energy stored in the spring:

400

300

Force
(pounds) **

(F)

100

Displacement (x)
(feet)

Note how the geometric interpretation of the shaded area on the graph exactly equals the result
predicted by the equation E, = %ka: the area of a triangle is one-half times the base times the
height. One-half times 4 feet times 240 pounds is 480 foot-pounds.
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2.8.4 Rotational motion

Rotational motion may be quantified in terms directly analogous to linear motion, using different
symbols and units.

The rotational equivalent of linear force (F') is torque (7). Linear force and rotational torque are
both vector quantities, mathematically related to one another by the radial distance separating the
force vector from the centerline of rotation. To illustrate with a string pulling on the circumference
of a wheel:

Linear force
(F) vector

~3

Rotational torque
\\ (T) vector

Right-hand rule
for vector cross-products

' right angle C A
Radius vector B /
(r)
C=AxB

This relationship may be expressed mathematically as a wvector cross-product, where the vector
directions are shown by the right-hand rule (the first vector 7 is the direction of the index finger,
the second vector F is the direction of the middle finger, and the product vector 7 is the direction
of the thumb, with all three vectors perpendicular to each other):

T=7rxF

Labeling force, radius, and torque as vectors is the formally correct way of noting the variables
in a mechanical system such as this, and is the way college students studying physics typically learn
the calculation of torque. In less academic settings, the force vector (13 ) is typically labeled as a
force along the line of action, and the radius vector () is called the moment arm, with the line of
action and moment arm always being perpendicular to each other.

The proper unit of measurement for torque is the product of the force unit and distance unit.
In the metric system, this is customarily the Newton-meter (N-m). In the British system, this is
customarily the foot-pound (ft-1b) or alternatively the pound-foot (1b-ft). Note that while these are
the exact same units as those used to express work, they are not the same types of quantities. Torque
is a vector cross-product, while work is a dot-product (W = F. Z). The cross-product of two vectors
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is always another vector'?, while the dot-product of two vectors is always a scalar (direction-less)
quantity. Thus, torque always has a direction, whereas work or energy does not.
An example calculation applied to a hand wrench turning a bolt appears here:

Direction of torque

PN

Axis of rotation

F=581b

T=rxF
1=(0.61 ft) x (58 Ib)
\ /7 \\\
T = 35.38 | b-ft O/
'\Q(v}’\// )
~ ’

With the radius and force vectors at right angles to each other, torque is simply the product of
both. In many non-academic settings, torque is calculated this way as a scalar quantity, with the
direction of rotation determined by observation rather than by strict adherence to the right-hand
rule of vector cross products. In this example, we see the magnitude of torque as the simple product
of 58 pounds force and 0.61 feet of moment arm (35.38 1b-ft of torque), with the torque direction
obviously counter-clockwise as viewed from the head of the bolt.

12Technically, it is a pseudovector, because it does not exhibit all the same properties of a true vector, but this is a
mathematical abstraction far beyond the scope of this book!
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If we apply the same force to the wrench handle at a different angle (not perpendicular to the
handle), the resulting torque will be less. The radius vector (moment arm), however, will still
remain perpendicular to the force vector (line of action) — it just decreases in length. To determine
the placement of the radius vector, all one must do is draw a line straight from the axis of rotation
perpendicular to the line of action, then use trigonometry to calculate its magnitude:

Direction of torque

Axis of rotation

T=rxF
1=(0.59 ft) x (58 Ib) n
(@) C[
1= 34.22 Ib-ft o8
£ G,
~ @,

1

A very practical example of torque is in the action of meshing gears, transferring mechanical
power from one gear to another. Each gear effectively acts as a wheel, the point of contact between
gear teeth acting to transfer force perpendicular to the radius of each gear (wheel). Thus, torque
applied to one gear becomes a linear force at the meshing teeth, which translates into another torque
at the second gear.

The ratio of torques between two meshing gears is equal to the ratio of gear teeth:

T1 ny

T2 n2

Where,
71 = Torque of first gear
79 = Torque of second gear
n; = Number of teeth on first gear
ng = Number of teeth on second gear

For example, if a small gear having 28 teeth meshes with a larger gear having 75 teeth, the torque
multiplication factor from the small gear to the large gear will be 75:28, or 2.679 to 1. A torque
of 40 1b-ft applied to the small gear will result in a torque of 107.1 1b-ft or torque generated at the
large gear. This ratio of gear teeth is called the gear ratio.

As gears multiply torque (7), they divide rotational speed (w). Thus, the 75:28 tooth gear set
creates a multiplication of torque from the small gear to the large gear, and an identical reduction
ratio of speed from the small gear to the large gear. Given this ratio, the small gear will have to be
turned 2.679 revolutions in order to make the large gear turn just one revolution.
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We may express gear speeds as another ratio of gear teeth, reciprocated in relation to torque:

w1 n2

w2 ni

Where,
w1 = Rotational speed of first gear
wo = Rotational speed of second gear
n1 = Number of teeth on first gear
ne = Number of teeth on second gear

In a set of meshed gears, the smaller gear will have the least torque and the greatest speed; the
larger gear will have the greatest torque and the least speed.

This is precisely how gear sets are used in industry: to transform torque and speed in mechanical
power systems. The complementary effects of a gear set on torque and speed is analogous to the
complementary effects that a transformer has on AC voltage and current: a step-up transformer
(having more turns of wire in the secondary coil than in the primary coil) will multiply voltage but
reduce (divide) current, both by the same turns ratio.
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Every quantity of force and motion which may be expressed in linear form has a rotational
equivalent. As we have seen, torque (7) is the rotational equivalent of force (F'). The following table
contrasts equivalent quantities for linear and rotational motion (all units are metric, shown in italic
font):

Linear quantity, symbol, and unit Rotational quantity, symbol, and unit
Force (F') N Torque (1) N-m
Linear displacement (z) m Angular displacement (0) radian
Linear velocity (v) m/s Angular velocity (w) rad/s
Linear acceleration (a) m/s> Angular acceleration () rad/s?
Mass (m) kg Moment of Inertia (I) kg-m?

Familiar equations for linear motion have rotational equivalents as well. For example, Newton’s
Second Law of motion states, “The acceleration of an object is directly proportional to the net
force acting upon it and inversely proportional to the object’s mass.” We may modify this law
for rotational motion by saying, “The angular acceleration of an object is directly proportional to
the net torque acting upon it and inversely proportional to the object’s moment of inertia.” The
mathematical expressions of both forms of Newton’s Second Law are as follows:

F=ma 7= 1«

The calculus-based relationships between displacement (z), velocity (v), and acceleration (a) find
parallels in the world of angular motion as well. Consider the following formula pairs, linear motion
on the left and angular motion on the right:

d df
v = d—j (Velocity as the time-derivative of displacement) w=—
a d
a@= d%: (Acceleration as the time-derivative of velocity) a= dit}
d%z ] ' ' ' . 20
a = ) (Acceleration as the second time-derivative of displacement) a= o7
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An object’s “moment of inertia” represents its angular inertia (opposition to changes in rotational
velocity), and is proportional to the object’s mass and to the square of its radius. Two objects having
the same mass will have different moments of inertia if there is a difference in the distribution of
their mass relative to radius. Thus, a hollow tube will have a greater moment of inertia than a solid
rod of equal mass, assuming an axis of rotation in the center of the tube/rod length:

axis of rotation

axis of rotation

m = 300 kg m = 300 kg
| = 1.5 kg-m? | = 2.8 kg-m?

This is why flywheels' are designed to be as wide as possible, to maximize their moment of
inertia with a minimum of total mass.

The formula describing the amount of work done by a torque acting over an angular displacement
is remarkably similar to the formula describing the amount of work done by a force acting over a
linear displacement:

W =Fx W =710
The formula describing the amount of kinetic energy possessed by a spinning object is also similar

to the formula describing the amount of energy possessed by a linearly-traveling object:

1
Ep = -mv By, = 5[@)2

13A “flywheel” is a disk on a shaft, designed to maintain rotary motion in the absence of a motivating torque for the
function of machines such as piston engines. The rotational kinetic energy stored by an engine’s flywheel is necessary
to give the pistons energy to compress the gas prior to the power stroke, during the times the other pistons are not
producing power.
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2.9 Elementary thermodynamics

Thermodynamics is the study of heat, temperature, and their related effects in physical systems. As
a subject, thermodynamics is quite complex and expansive, usually taught as a course in itself at
universities. The coverage in this book is limited to some of the more elementary and immediately
practical facets of thermodynamics rather than a comprehensive overview.
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2.9.1 Heat versus Temperature

Most people use the words heat and temperature interchangeably. This is unfortunate for every
student of thermodynamics, who must first deconstruct this false conception and replace it with one
more scientifically accurate before any progress may be made. While “heat” and “temperature” are
related concepts, they are not identical.

When people say something is “hot,” what they really mean is that the object has a high
temperature. Temperature is a direct function of molecular motion within an object or a fluid sample.
This is usually easier to visualize for a gas, where the individual molecules have great freedom to
move about. The molecules of a substance at high temperature are moving more vigorously (higher
velocity) than the molecules of the same substance at low temperature.

Heat, by contrast, is an expression of thermal energy transfer. By placing a pot of water over a
fire, we are adding heat to that pot (transferring thermal energy to the water), the effect of which is
to raise its temperature (making the water molecules’ motions more vigorous). If that same pot is
taken away from the fire and allowed to cool, its loss of heat (transferring energy out of the water to
the surrounding air) will result in its temperature lowering (the individual water molecules slowing
down).

Heat gain or loss often results in temperature change, but not always. In some cases heat may
be gained or lost with negligible temperature change — here, the gain or loss of heat manifests as
physical changes to the substance other than temperature. One example of this is the boiling of
water at constant pressure: no matter how much heat is transferred to the water, its temperature
will remain constant at the boiling point (100 degrees Celsius at sea level) until all the water has
boiled to vapor. The addition of thermal energy to the boiling water does not raise its temperature
(i.e. make the molecules move faster), but rather goes into the work of breaking molecules apart
from each other so that the liquid turns into vapor.

Heat transfer can only happen, though, where there is a difference of temperature between two
objects. Thermal energy (heat) naturally flows from the “hotter” (higher-temperature) substance
to the “colder” (lower-temperature) substance. To use the boiling water example, the only way to
get heat transfer into the water is to subject the water to a hotter substance (e.g., a flame, or a hot
electric heating element). If you understand temperature as being the vibration of molecules, with a
higher-temperature object’s molecules vibrating more vigorously than a lower-temperature object’s
molecules, this natural transfer of heat from hot to cold makes perfect sense: the molecular vibrations
of the higher-temperature object literally transfer to the molecules of the lower-temperature object.
As those respective molecules touch each other, with fast-vibrating molecules colliding against
slow-vibrating molecules, the inter-molecular collisions transfer energy away from the fast-vibrating
molecules (so they aren’t vibrating as fast anymore) and toward the slow-moving molecules (so they
begin to vibrate faster than before). It’s like a fast-moving ball colliding with a slow-moving ball:
the fast-moving ball slows down after the collision and the slow-moving ball speeds up after the
collision because kinetic energy has exchanged from the former to the latter during the collision.

Much more attention will be directed to the concepts of heat and temperature in subsequent
subsections.
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2.9.2 Temperature

In an ideal, monatomic'? gas (one atom per molecule), the mathematical relationship between
average molecular velocity and temperature is as follows:
lsz2 = §kT
2 2
Where,
m = Mass of each molecule
v = Velocity of a molecule in the sample
U = Average (“mean”) velocity of all molecules in the sample
v2 = Mean-squared molecular velocities in the sample
k = Boltzmann’s constant (1.38 x 10723 J / K)
T = Absolute temperature (Kelvin)

Non-ideal gases, liquids, and solids are more complex than this. Not only can the atoms of
complex molecules move to and fro, but they may also twist and oscillate with respect to each
other. No matter how complex the particular substance may be, however, the basic principle remains
unchanged: temperature is an expression of how vigorously molecules are moving within a substance.

There is a temperature at which all molecular motion ceases. At that temperature, the substance
cannot possibly become “colder,” because there is no more motion to halt. This temperature is called
absolute zero, equal to -273.15 degrees Celsius, or -459.67 degrees Fahrenheit. Two temperature
scales based on this absolute zero point, Kelvin and Rankine, express temperature relative to
absolute zero. That is, zero Kelvin and zero degrees Rankine is equal to absolute zero temperature.
Any temperature greater than absolute zero will be a positive value in either the Kelvin or the
Rankine scales. A sample of freezing water at sea level, for example, is 0 degrees Celsius (32 degrees
Fahrenheit) but could also be expressed as 273.15 Kelvin'® (0 plus 273.15) or 491.67 degrees Rankine
(32 plus 459.67).

Helium at room temperature is a close approximation of an ideal, monatomic gas, and is often used as an example
for illustrating the relationship between temperature and molecular velocity.

15Kelvin is typically expressed without the customary “degree” label, unlike the three other temperature units:
(degrees) Celsius, (degrees) Fahrenheit, and (degrees) Rankine.
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A table of melting and boiling points (at sea-level atmospheric pressure) for various substances
appears in this table, labeled in these four different units of temperature measurement:

Melting or boiling substance °C °F K °R
Melting point of water (H20O) 0 32 273.15 491.67
Boiling point of water (H20) 100 212 373.15 671.67

Melting point of ammonia (NHj) =777 -107.9 195.45 351.77

Boiling point of ammonia (NHj) -33.6 -28.5 239.55 431.17

Melting point of gold (Au) 1063 1945 1336 2405

Melting point of magnesium (Mg) 651 1203.8 924.2 1663.5
Boiling point of acetone (C3HgO) 56.5 133.7 329.65 593.37
Boiling point of propane (CsHg) -42.1 -43.8 231.05 415.87
Boiling point of ethanol (C3HgO) 78.4 173.1 351.55 632.77

Note how degrees Celsius and Kelvin for each point on the table differ by a constant (offset) of
273.15, while each corresponding degree Fahrenheit and degree Rankine value differs by 459.67 (note
that many of the figures in this table are slightly rounded, so the offset might not be exactly that
much). You might think of Kelvin as nothing more than the Celsius scale zero-shifted by 273.15
degrees, and likewise degrees Rankine as nothing more than the Fahrenheit scale zero-shifted by
459.67 degrees.

Note also how increments in temperature measured in degrees Fahrenheit are the same as
increments of temperature measured in degrees Rankine. The same is true for degrees Celsius
and Kelvin. The difference between the melting point of ammonia (-77.7 degrees C) and the melting
point of water (0 degrees C) is the same difference as that between the melting points of ammonia and
water expressed in Kelvin: 195.45 and 273.15, respectively. Either way, the difference in temperature
between these two substances’ melting points is 77.7 degrees (C or K). This is useful to know
when dealing with temperature changes over time, or temperature differences between points in a
system — if an equation asks for a temperature difference (AT) in Kelvin, it is the same value as
the temperature difference expressed in Celsius. Likewise, a AT expressed in degrees Rankine is
identical to a AT expressed in degrees Fahrenheit. This is analogous to differences between two fluid
pressures expressed in PSIG versus PSIA: the differential pressure value (PSID) will be the same.

Most people are familiar with the Fahrenheit and Celsius temperature scales used to express
temperature in common applications, but the absolute scales of Rankine and Kelvin have special
significance and purpose in scientific endeavors. The fact that Rankine and Kelvin are absolute scales
in the same manner that atmospheres and torr are units of absolute pressure measurement makes
them uniquely suited for expressing temperature (molecular motion) in relation to the absence of
thermal energy. Certain scientific laws such as the Ideal Gas Law and the Stefan-Boltzmann Law
relate other physical quantities to absolute temperature, and so require the use of these absolute
units of measurement.
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2.9.3 Heat

Heat, being the transfer of energy in thermal (molecular motion) form, may be measured in the same
units as any other form of energy is measured: joules (metric) and foot-pounds (British). However,
special units of measurement are often used for heat instead:

e calorie
e kilocalorie (or “dietary Calorie”)

e British Thermal Unit (BTU)

A calorie of heat is defined as the amount of thermal energy transfer required to change the
temperature of one gram of water by one degree Celsius (AT = 1 °C = 1 K). One calorie is
equivalent to 4.186 joules.

A British Thermal Unit, or BTU is defined as the amount of thermal energy transfer required
to change the temperature of one pound of water by one degree Fahrenheit (AT = 1 °F = 1 °R).
One BTU is equivalent to 778.2 foot-pounds.

The unit of “dietary” calories is used to express the amount of thermal energy available in a
sample of food by combustion'®. Since the official unit of the “calorie” is so small compared to the
typical amounts of energy contained in a meal, nutritionists use the unit of the kilocalorie (1000
calories, or 4186 joules) and call it “Calorie” (with a capital letter “C”).

Just as “Calories” are used to rate the energy content of food, the heat units of “calories” and
“BTU” are very useful in describing the potency of various industrial fuels. The following table
shows the heat of combustion for a few common fuels, in units of kilocalories per gram and BTU per
pound:

Fuel Combustion heat (kcal/g) Combustion heat (BTU/Ib)
Methane (CHy) 13.3 23940
Methanol (CH40) 5.43 9767
Ethanol (CH0) 7.10 12783
Propane (C3Hg) 12.1 21700
Carbon monoxide (CO) 2.415 4347

For example, if exactly one gram of methane gas were completely burnt, the resulting heat
liberated in the fire would be sufficient to warm 13.3 kilograms of water from 20 degrees Celsius to
21 degrees Celsius (a temperature rise, or AT, of one degree Celsius).

If a meal rated at 900 Calories (900 “dietary calories,” or 900 kilocalories) of energy were
completely metabolized, the resulting heat would be sufficient to warm a pool of water 900 kilograms
in mass (900 liters, or about 237 gallons) by one degree Celsius. This same amount of heat could
raise half the amount of water twice the temperature rise: 450 liters of water warmed two degrees
Celsius.

16 Animals process food by performing a very slow version of combustion, whereby the carbon and hydrogen atoms
in the food join with oxygen atoms inhaled to produce water and carbon dioxide gas (plus energy). Although it may
seem strange to rate the energy content of food by measuring how much heat it gives off when burnt, burning is just
a faster method of energy extraction than the relatively slow processes of biological metabolism.
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2.9.4 Heat transfer

Heat spontaneously!” flows from higher-temperature substances to lower-temperature substances.
This is the phenomenon you experience standing next to a fire on a cold day. Your body is cold (low
temperature), but the fire is much hotter (high temperature), and your proximity to the fire aids in
heat transfer from the fire to you.

Three principal methods exist for heat to transfer from one substance to another:

e Radiation'® (by light waves)
e Conduction (by direct contact)

e Convection (by intermediate contact with a moving fluid)

Practical examples of heat transfer often involve multiple modes rather than just one. For
example, the transfer of heat to a person’s body by sunlight obviously involves radiation from the
Sun, but it also involves conduction through layers of clothing and convection by air passing from
sun-warmed objects to the person.

Temperature-sensing instruments used to measure temperature in industrial applications likewise
rely on multiple heat-transfer modes to sample thermal energy from a process fluid or object(s).
Infrared thermometers detect temperature by sensing the intensity of infrared light radiated by hot
objects. A thermocouple directly touching a hot object relies on conduction to sense the temperature
of that object. An RTD inserted into a pipe carrying a hot fluid relies on convection to measure the
average temperature of that fluid. A filled-bulb thermometer inserted into a thermowell, inserted
into a fluid-filled process vessel relies on both convection (from the fluid to the thermowell) and
conduction (from the thermowell to the bulb) to sense process temperature.

1"Heat may be forced to flow from cold to hot by the use of a machine called a heat pump, but this direction of
heat flow does not happen naturally, which is what the word “spontaneous” implies.

181n this context, we are using the word “radiation” in a very general sense, to mean thermal energy radiated away
from the hot source via photons. This is quite different from nuclear radiation, which is what some may assume this
term means upon first glance.
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Radiation

If you have ever experienced the immediate sensation of heat from a large fire or explosion some
distance away, you know how radiation works to transfer thermal energy. Radiation is also the
method of heat transfer experienced in the Earth’s receiving of heat from the Sun (and also the
mechanism of heat loss from Earth to outer space). Radiation is the least efficient of the three heat
transfer mechanisms. It may be quantified by the Stefan-Boltzmann Law, which states the rate of
heat lost by an object (%) is proportional to the fourth power of its absolute temperature, and
directly proportional to its radiating area:
dq

E = 6UAT4

Where,
% = Radiant heat loss rate (watts)
e = Emissivity factor (unitless)
o = Stefan-Boltzmann constant (5.67 x 1078 W / m? - K*)
A = Surface area (square meters)
T = Absolute temperature (Kelvin)

Here is one of the scientific applications where temperature expressed in absolute units is truly
necessary. Radiant energy is a direct function of molecular motion, and so we would logically expect
objects to radiate energy at any temperature above absolute zero. The temperature value used in
this formula must be in units of Kelvin'? in order for the resulting % value to be correct. If degrees
Celsius were used for T instead of Kelvin, the formula would predict zero thermal radiation at the
freezing point of water (0 °C) and negative radiation at any temperature below freezing, which is
not true. Remember that the “zero” points of the Celsius and Fahrenheit scales were arbitrarily set
by the inventors of those scales, but that the “zero” points of the Kelvin and Rankine scales reflect
a fundamental limit of nature.

The emissivity factor varies with surface finish and color, ranging from one (ideal) to zero (no
radiation possible). Dark-colored, rough surfaces offer the greatest emissivity factors, which is why
heater elements and radiators are usually painted black. Shiny (reflective), smooth surfaces offer
the least emissivity, which is why thermally insulating surfaces are often painted white or silver.

Like all heat-transfer modes, radiation is two-way. Objects may emit energy in the form of
radiation, and they may also receive energy in the form of radiation. Everyone knows white-colored
shirts are cooler than black-colored shirts worn on a hot, sunny day — this is an example of how
emissivity affects heat absorption by radiant transfer. A black-colored shirt (high emissivity value)
enhances the receiving of radiant energy by your body from the sun. What is not as obvious, though,
is that a white-colored shirt will keep you warmer than a black-colored shirt on a cold, dark day
because that same decreased emissivity inhibits body heat loss by radiation. Thus, high-emissivity
objects both heat and cool more readily by radiation than low-emissivity objects.

190r in degrees Rankine, provided a suitably units-corrected value for the Stefan-Boltzmann constant were used.
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Conduction

If you have ever accidently touched a hot iron or stove heating element, you possess a very vivid
recollection of heat transfer through conduction. In conduction, fast-moving molecules in the hot
substance transfer some of their kinetic energy to slower-moving molecules in the cold substance.
Since this transfer of energy requires collisions between molecules, it only applies when the hot and
cold substances directly contact each other.

Perhaps the most common application of heat conduction in industrial processes is heat
conduction through the walls of a furnace or some other enclosure. In such applications, the desire is
usually to minimize heat loss through the walls, so those walls will be “insulated” with a substance
having poor thermal conductivity.

Conductive heat transfer rate is proportional to the difference in temperature between the hot
and cold points, the area of contact, the distance of heat travel from hot to cold, and the thermal
conductivity of the substance:

dQ  KAAT
a1

Where,

% = Conductive heat transfer rate

k = Thermal conductivity

A = Surface area

AT = Difference of temperature between “hot” and “cold” sides

[ = Length of heat flow path from “hot” to “cold” side

Note the meaning of “AT” in this context: it refers to the difference in temperature between two
different locations in a system. Sometimes the exact same symbology (“AT”) refers to a change in
temperature over time in the study of thermodynamics. Unfortunately, the only way to distinguish
one meaning of AT from the other is by context.
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An illustration showing heat conduction through a wall gives context to the variables in the
previous equation. As we see here, A refers to the surface area of the wall, AT refers to the
difference of temperature between either surface of the wall, and [ refers to the thickness of the wall:

Tcold Thot

T - ke
dQ dQ
dt dt

k

= =

In the United States, a common measure of insulating ability used for the calculation of
conductive heat loss in shelters is the R-value. The greater the R-value of a thermally insulating
material, the less conductive it is to heat (lower k value). “R-value” mathematically relates to k
and [ by the following equation:

l
R=z

Rearranging this equation, we see that [ = kR, and this allows us to substitute kR for [ in the
conduction heat equation, then cancel the k terms:

dQ _ kAAT
dt kR
dQ  AAT
dt R

R is always expressed in the compound unit of square feet - hours - degrees Fahrenheit per BTU.
This way, with a value for area expressed in square feet and a temperature difference expressed
in degrees Fahrenheit, the resulting heat transfer rate (%) will naturally be in units of BTU per
hour, which is the standard unit in the United States for expressing heat output for combustion-type
heaters. Dimensional analysis shows how the units cancel to yield a heat transfer rate in BT Us per
hour:

[BTU]  [ft*][°F]

h]  [ft*)hyeF]
(BTU]
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The utility of R-value ratings may be shown by a short example. Consider a contractor trailer,
raised up off the ground on a mobile platform, with a total skin surface area of 2400 square feet
(walls, floor, and roof) and a uniform R-value of 4 for all surfaces. If the trailer’s internal temperature
must be maintained at 70 degrees Fahrenheit while the outside temperature averages 40 degrees
Fahrenheit, the required output of the trailer’s heater will be:

dQ (2400 ft*)(30° F)
dt  4ft>. h-°F/BTU

= 18000 BTU per hour

If the trailer’s heater is powered by propane and rated at 80% efficiency (requiring 22500 BTU
per hour of fuel heating value to produce 18000 BTU per hour of heat transfer into the trailer), the
propane usage will be just over one pound per hour, since propane fuel has a heating value of 21700
BTU per pound.

Convection

Most industrial heat-transfer processes occur through convection, where a moving fluid acts as an
intermediary substance to transfer heat from a hot substance (heat source) to a cold substance
(heat sink). Convection may be thought of as two-stage heat conduction on a molecular scale: fluid
molecules come into contact with a hot object and absorb heat from that object through conduction,
then later release that heat energy through conduction to a cooler object. If the fluid is recycled
in a piping loop, the two-stage conduction process repeats indefinitely, individual molecules heating
up as they absorb heat from the heat source and then cooling down as they release heat to the heat
sink.

Special process devices called heat exchangers perform this heat transfer function between two
different fluids, the two fluids circulating past each other on different sides of tube walls. A simple
example of a heat exchanger is the radiator connected to the engine of an automobile, being a water-
to-air exchanger, the engine’s hot water transferring heat to cooling air entering the grille of the car
as it moves.
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Another example of a liquid-to-air heat exchanger is the condenser on a heat pump, refrigerator,
or air conditioner, a photograph appearing here:
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Another common style of heat exchanger works to transfer heat between two liquids. A small
example of this design used to transfer heat from a boat engine is shown here:

The purpose for this heat exchanger is to exchange heat between the liquid coolant of the boat
engine and sea water, the latter being quite corrosive to most metals. An engine would soon be
damaged if sea water were used directly as the coolant fluid, and so heat exchangers such as this
provide a means to release excess heat to the sea without subjecting the engine block to undue
corrosion. The heat exchanger, of course, does suffer from the corrosive effects of sea water, but at
least it is less expensive and more convenient to replace than an entire engine when it reaches the
end of its service life.
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This marine engine heat exchanger is an example of a shell-and-tube design, where one fluid
passes inside small tubes and a second fluid passes outside those same tubes, the tube bundle being
contained in a shell. The interior of such an exchanger looks like this when cut away:

The tubes of this particular heat exchanger are made of copper, a metal with extremely high
thermal conductivity (k), to facilitate conductive heat transfer.

Liquid-to-liquid heat exchangers are quite common in industry, where a set of tubes carry one
process liquid while a second process liquid circulates on the outside of those same tubes. The metal
walls of the tubes act as heat transfer areas for conduction to occur. Metals such as copper with
very high k values (very low R values) encourage heat transfer, while long lengths of tube ensure
ample surface area for heat exchange.
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A common application of liquid-to-liquid heat exchangers is in exothermic (heat-releasing)
chemical reaction processes where the reactants must be pre-heated before entering a reaction vessel
(“reactor”). Since the chemical reaction is exothermic, the reaction itself may be used as the heat
source for pre-heating the incoming feed. A simple P&ID shows how a heat exchanger accomplishes
this transfer of heat:

Y

Reactant "A" ,
feed ¢

Reactor
@ 700 °F

430 °F v 190 °F

@ AN D s

Heat © feed
exchanger

Reaction product
out

550 °F

Another industrial application of heat exchangers is in distillation processes, where mixed
components are separated from each other by a continuous process of boiling and condensation.
Alcohol purification is one example of distillation, where a mixture of alcohol and water are separated
to yield a purer (higher-percentage) concentration of alcohol. Distillation (also called fractionation)
is a very energy-intensive®® process, requiring great inputs of heat to perform the task of separation.
Any method of energy conservation typically yields significant cost savings in a distillation process,
and so we often find heat exchangers used to transfer heat from outgoing (distilled, or fractionated)
products to the incoming feed mixture, pre-heating the feed so that less heat need be added to the
distillation process from an external source.

20Jim Cabhill of Emerson wrote in April 2010 (“Reducing Distillation Column Energy Usage” Emerson Process
Expert weblog) about a report estimating distillation column energy usage to account for approximately 6% of the
total energy used in the United States. This same report tallied the number of columns in US industry to be
approximately 40000 total, accounting for about 19% of all energy used in manufacturing processes!
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The following P&ID shows a simple distillation process complete with heat exchangers for
reboiling (adding heat to the bottom of the distillation column), condensing (extracting heat from
the “overhead” product at the top of the column), and energy conservation (transferring heat from
the hot products to the incoming feed):
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Distillation “columns” (also called fractionating towers in the industry) are tall vessels containing
sets of “trays” where rising vapors from the boiling process contact falling liquid from the condensing
process. Temperatures increase toward the bottom of the column, while temperatures decrease
toward the top. In this case, steam through a “reboiler” drives the boiling process at the bottom
of the column (heat input), and cold water through a “condenser” drives the condensing process
at the top of the column (heat extraction). Products coming off the column at intermediate points
are hot enough to serve as pre-heating flows for the incoming feed. Note how the “economizing”
heat exchangers expose the cold feed flow to the cooler Product A before exposing it to the warmer
Product B, and then finally the warmest “Bottoms” product. This sequence of cooler-to-warmer
maximizes the efficiency of the heat exchange process, with the incoming feed flowing past products
of increasing temperature as it warms up to the necessary temperature for distillation entering the
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column.

Some heat exchangers transfer heat from hot gases to cool(er) liquids An example of this type
of heat exchanger is the construction of a steam boiler, where hot combustion gases transfer heat to
water flowing inside metal tubes:
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Here, hot gases from the combustion burners travel past the metal “riser” tubes, transferring heat
to the water within those tubes. This also serves to illustrate an important convection phenomenon:
a thermal siphon (often written as thermosiphon). As water heats in the “riser” tubes, it becomes
less dense, producing less hydrostatic pressure at the bottom of those tubes than the colder water in
the “downcomer” tubes. This difference of pressure causes the colder water in the downcomer tubes
to flow down to the mud drum, and hot water in the riser tubes to flow up to the steam drum. This
natural convection current will continue as long as heat is applied to the riser tubes by the burners,
and an unobstructed path exists for water to flow in a loop.
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Natural convection also occurs in heated air, such as in the vicinity of a lit candle:

Natural convection
near a candle flame

Air motion

Candle

This thermally forced circulation of air helps convect heat from the candle to all other points
within the room it is located, by carrying heated air molecules to colder objects.
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2.9.5 Specific heat and enthalpy

Earlier, we saw how units of heat measurement were defined in terms of the amount of energy gain
or loss required to alter the temperature of a water sample by one degree. In the case of the calorie,
it was the amount of heat gain/loss required to heat/cool one gram of water one degree Celsius. In
the case of the BTU, it was the amount of heat gain/loss required to heat/cool one pound of water
one degree Fahrenheit.

As one might expect, one heat unit might be similarly defined as the amount of heat gain or
loss to alter the temperature one-half of a degree for twice as much water, or two degrees for half as
much water. We could express this as a proportionality:

Q ox mAT

Where,
@ = Heat gain or loss
m = Mass of sample
AT = Temperature change (rise or fall) over time

The next logical question to ask is, “How does the relationship between heat and temperature
change work for substances other than water?” Does it take the same amount of heat to change the
temperature of one gram of iron by one degree Celsius as it does to change the temperature of one
gram of water by one degree Celsius? The answer to this question is a resounding no! Different
substances require vastly different amounts of heat gain/loss to alter their temperature by the same
degree, even when the masses of those substances happen to be identical.

We have a term for this ability to absorb or release heat, called heat capacity or specific
heat, symbolized by the variable ¢. Thus, our heat/mass/temperature change relationship may
be described as a true formula instead of a mere proportionality:

Q = mcAT

Where,
() = Heat gain or loss (metric calories or British BTU)
m = Mass of sample (metric grams or British pounds)
¢ = Specific heat of substance
AT = Temperature change (metric degrees Celsius or British degrees Fahrenheit)

Pure water, being the standard by which all other substances are measured, has a specific heat
value of 1. The smaller the value for ¢, the less heat gain or loss is required to alter the substance’s
temperature by a set amount. That substance (with a low value of ¢) has a low “heat capacity”
because each degree of temperature rise or fall represents a relatively small amount of energy gained
or lost. Substances with low ¢ values are easy to heat and cool, while substances having high ¢
values require much heat in order to alter their temperatures, assuming equal masses.
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A table of specific heat values (at room temperature, 25 degrees Celsius?!) for common substances
appears here:

Substance Specific heat value (c) cal/g-°C or BTU/Ib-°F
Aluminum (solid) 0.215
Iron (solid) 0.108
Copper (solid) 0.092
Lead (solid) 0.031
Tce (solid) 0.50
Water (liquid) 1.0
Methanol (liquid) 0.609
Ethanol (liquid) 0.587
Acetone (liquid) 0.521
Hydrogen (gas) 3.41
Helium (gas) 1.24
Nitrogen (gas) 0.249
Oxygen (gas) 0.219
Steam (gas) 0.476

If a liquid or a gas is chosen for use as a coolant (a substance to efficiently convect heat away
from an object), greater values of ¢ are better. Water is one of the best liquid coolants with its
relatively high ¢ value of one: it has more capacity to absorb heat than other liquids, for the same
rise in temperature. The ideal coolant would have an infinite ¢ value, being able to absorb an infinite
amount of heat without itself rising in temperature at all.

As you can see from the table, the light gases (hydrogen and helium) have extraordinarily high
¢ values. Consequently, they function as excellent media for convective heat transfer. This is why
large electric power generators often use hydrogen gas as a coolant: hydrogen has an amazing
ability to absorb heat from the wire windings of a generator without rising much in temperature.
In other words, hydrogen absorbs a lot of heat while still remaining “cool” (i.e. remains at a low
temperature). Helium, although not quite as good a coolant as hydrogen, has the distinct advantage
of being chemically inert (non-reactive), in stark contrast to hydrogen’s extreme flammability. Some
nuclear reactors use helium gas as a coolant rather than a liquid such as water or molten sodium
metal.

Lead has an extraordinarily low ¢ value, being a rather “easy” substance to heat up and cool
down. Anyone who has ever cast their own lead bullets for a firearm knows how quickly a new lead
bullet cools off after being released from the mold, especially if that same person has experience
casting other metals such as aluminum.

21 An important detail to note is that specific heat does not remain constant over wide temperature changes. This
complicates calculations of heat required to change the temperature of a sample: instead of simply multiplying the
temperature change by mass and specific heat (Q = mcAT or Q@ = mc[T> — T1]), we must integrate specific heat

T
over the range of temperature (Q = m fT2 c¢dT'), summing up infinitesimal products of specific heat and temperature
1
change (c dT') over the range starting from temperature 77 through temperature 7% then multiplying by the mass to
calculate total heat required. So, the specific heat values given for substances at 25 °C only hold true for relatively

small temperature changes deviating from 25 °C. To accurately calculate heat transfer over a large temperature
change, one must incorporate values of ¢ for that substance at different temperatures along the expected range.
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Numerical examples are helpful to better understand specific heat. Consider a case where a
copper pot filled with water receives heat from a small gas burner operating at an output of 5000
BTU per hour (350 calories per second):

Water
c=1.00
m= 3700 grams

\

Starting temperature = 20 °C
> Copper pot
c=0.092

I I I m= 1100 grams

((jj—tQ = 5000 BTU/hr

Time of heating = 40 seconds

A reasonable question to ask would be, “How much will the temperature of this water-filled pot
rise after 40 seconds of heating?” With the burner’s heat output of 350 calories per second and a
heating time of 40 seconds, we may assume?? the amount of heat absorbed by the water-filled pot
will be the simple product of heat rate times time:

d 350 cal
Q= (dcf) t = ( Sca ) 40 s = 14000 calories

This amount of heat not only goes into raising the temperature of the water, but it also raises
the temperature of the copper pot. Each substance (water, copper) has its own specific heat and
mass values (¢ and m), but they will share the same temperature rise (AT), so we must sum their
heats as follows:

Qtotal = ont + Qwate'f‘

Qtotal = mpotcpotAT + mwatercwaterAT

Since both the pot and the water start and end at the same temperature, AT is a common
variable to both terms and may therefore be factored out:

Qtotal = (mpotcpot + mwatercwater)AT

22In reality, the amount of heat actually absorbed by the pot will be less than this, because there will be heat losses
from the warm pot to the surrounding (cooler) air. However, for the sake of simplicity, we will assume all the burner’s
heat output goes into the pot and the water it holds.
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Solving this equation for temperature rise, we get:

Qtotal

mpotcpot + Muyater Cwater
14000 cal
1100 g)(0.092-3L) + (3700 g)(1<al
( g)( gTC) +( g)( gTC)

AT =

AT =

AT =3.68°C

So, if the water and pot began at a temperature of 20 degrees Celsius, they will be at a
temperature of 23.68 degrees Celsius after 40 seconds of heating over this small burner.

Another example involves the mixing of two substances at different temperatures. Suppose a
heated mass of iron drops into a cool container?® of water. Obviously, the iron will lose heat energy
to the water, causing the iron to decrease in temperature while the water rises in temperature.
Suppose the iron’s mass is 100 grams, and its original temperature is 65 degrees Celsius. Suppose
the water’s mass is 500 grams, and its original temperature is 20 degrees Celsius:

Water

c=1.00 Iron
m = 500 grams [l < c=0.108
Tgart = 20°C m= 100 grams

\ Tqart = 65 °C

/

Styrofoam cup
(negligible mass and specific heat)

23We will assume for the sake of this example that the container holding the water is of negligible mass, such as a
Styrofoam cup. This way, we do not have to include the container’s mass or its specific heat into the calculation.
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What will the equilibrium temperature be after the iron falls into the water and both their
temperatures equalize? We may solve this by setting two heat equations equal to each other?*: the
heat lost by the iron and the heat gained by the water, with the final equilibrium temperature being
T:

Qironfloss - Qwaterfgain

MironCiron (65 OC - T) = MuyaterCwater (T —20 OC)

Note how the AT term is carefully set up for each side of the equation. In order to make the
iron’s heat loss a positive value and the water’s heat gain a positive value, we must ensure the
quantity within each set of parentheses is positive. For the iron, this means AT will be 65 degrees
minus the final temperature. For the water, this means AT will be the final temperature minus its
starting temperature of 20 degrees.

mironciron(65> - mironcironT == mwatercwaterT - mwatercwater(zo)
mironciron(65) + mwate’rcwater(QO) = mironcironT + mwatercwaterT

mironciron(65) + mwatercwater(20) = T(mironciron + mwatercwater)

mironciron(65) + MuyaterCwater (20)
MironCiron T Muwater Cwater

(100)(0.108)(65) + (500)(1)(20)
(100)(0.108) + (500)(1)

T =

T =

T =20.95°C

Thus, the iron’s temperature falls from 65 degrees Celsius to 20.95 degrees Celsius, while the
water’s temperature rises from 20 degrees Celsius to 20.95 degrees Celsius. The water’s tremendous
specific heat value compared to the iron (nearly 10 times as much!), as well as its superior mass (5
times as much) results in a much larger temperature change for the iron than for the water.

24 An alternative way to set up the problem would be to calculate AT for each term as Tfinat — Tstart, making
the iron’s heat loss a negative quantity and the water’s heat gain a positive quantity, in which case we would have to
set up the equation as a zero-sum balance, with Qi on + Qwater = 0. I find this approach less intuitive than simply
saying the iron’s heat loss will be equal to the water’s heat gain, and setting up the equation as two positive values
equal to each other.
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An analogy to help grasp the concept of specific heat is to imagine heat as a fluid?® that may be
“poured” into vessels of different size, those vessels being objects or substances to be heated. The
amount of liquid held by any vessel represents the total amount of thermal energy, while the height
of the liquid inside any vessel represents its temperature:

Fluid analogy for heat and temperature

!
|

i . Ky TT
A A A A A A
Same heat, different temperature Same temperature, different heat

The factor determining the relationship between liquid volume (heat) and liquid height
(temperature) is of course the cross-sectional area of the vessel. The wider the vessel, the more
heat will be required to “fill” it up to any given temperature. In this analogy, the area of the
vessel is analogous to the term me: the product of mass and specific heat. Objects with larger
mass require more heat to raise their temperature to any specific point, specific heats being equal.
Likewise, objects with large specific heat values require more heat to raise their temperature to any
specific point, masses being equal.

In the first numerical calculation example where we determined the temperature of a pot of water
after 40 seconds of heating, the analogous model would be to determine the height of liquid in a
vessel after pouring liquid into it for 40 seconds at a fixed rate. A model for the second numerical
example would be to calculate the equilibrium height (of liquid) after connecting two vessels together
at their bottoms with a tube. Although the liquid heights of those vessels may be different at first,
the levels will equalize after time by way of liquid passing through the tube from the higher-level
vessel to the lower-level vessel.

25This is not far from the reality of eighteenth-century science, where heat was thought to be an invisible fluid
called caloric.
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Many industrial processes use fluids to convectively transfer heat from one object (or fluid) to
another. In such applications, it is important to know how much heat will be carried by a specific
quantity of that fluid over a specified temperature drop. One common way to express this heat
quantity is called enthalpy. Enthalpy is the amount of heat lost by a unit mass (one gram metric,
or one pound British) of a substance as it cools from a given temperature all the way down to
the freezing point of water (0 degrees Celsius, or 32 degrees Fahrenheit). A sample of water at a
temperature of 125 degrees Fahrenheit, for example, has an enthalpy of 93 BTU per pound (or 93
calories per gram):

Q = mcAT

Q= (11b) <11131$IFJ> (125 °F — 32 °F)

Q =93 BTU

Even if the process in question does not cool the heat transfer fluid down to water’s freezing point,
enthalpy is a useful figure for comparing the thermal energy “content” of hot fluids (per unit mass).
For example, if one were given the enthalpy values for a substance before and after heat transfer, it
would be easy to calculate the amount of heat transfer that transpired simply by subtracting those
enthalpy values. If water at 125 °F has an enthalpy value of 93 BTU/Ib and water at 170 °F has
an enthalpy of value 138 BTU/Ib, we may calculate the amount of heat needed to increase a sample
of water from 125 °F to 170 °F simply by subtracting 93 BTU/Ib from 138 BTU/Ib to arrive at 45
BTU/Ib.

In this rather trivial example, it would have been just as easy for us to calculate the heat
necessary to increase water’s temperature from 125 °F to 170 °F by using the specific heat formula
(Q = mcAT)?%, and so it might appear as though the concept of enthalpy sheds no new light on the
subject of heat transfer. However, the ability to calculate heat transfer based on a simple subtraction
of enthalpy values proves quite useful in more complex scenarios where substances change phase, as
we will see next.

26Following the formula Q = mcAT, we may calculate the heat as (1)(1)(170-125) = 45 BTU. This is obviously the
same result we obtained by subtracting enthalpy values for water at 170 °F and 125 °F.
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2.9.6 Phase changes

Scientists often speak of four phases of matter: solid, liquid, gas (or vapor), and plasma. Of these
four, the first three are common to everyday life. Plasma is a phase of matter where the atoms of
a gas are superheated to the point where they become electrically ionized, such as neon gas in an
electric tube light, or the gas comprising stars in space.

Phase changes are very important in thermodynamics, principally because energy transfer (heat
loss or heat gain) must occur for a substance to change states, often with negligible change in
temperature. To cite an example, consider the case of water (a liquid) turning into steam (a vapor)
at atmospheric pressure. At sea level, this phase change will occur at a temperature of 100 degrees
Celsius, or 212 degrees Fahrenheit. The amount of energy required to increase the temperature of
water from ambient up to its boiling point is a simple function of the sample’s mass and its original
temperature. For instance, a sample of water 70 grams in mass starting at 24 degrees Celsius will
require 5320 calories of heat to reach the boiling point:

Q = mcAT

cal

Q=(70g) (1g0C> (100 °C — 24 °C)

@ = 5320 cal

However, actually boiling the 70 grams of water into 70 grams of steam (both at 100 degrees
Celsius) requires a comparatively enormous input of heat: 3773/ calories — over seven times as much
heat to turn the water to steam than required to warm the water to its boiling point. Furthermore,
this additional input of 37734 calories does not increase the temperature of the water one bit: the
resulting steam is still at (only) 100 degrees Celsius. If further heat is added to the 70 gram steam
sample, its temperature will rise, albeit at a rate proportional to the value of steam’s specific heat
(0.476 calories per gram degree Celsius, or BTU per pound degree Fahrenheit).

What we see here is a fundamentally different phenomenon than we did with specific heat. Here,
we are looking at the thermal energy required to transition a substance from one phase to another,
not to change its temperature. We call this quantity latent heat rather than specific heat, because
no temperature change is manifest?”. Conversely, if we allow the steam to condense back into liquid
water, it must release the same 37734 calories of heat energy we invested in it turning the water into
steam before it may cool at all below the boiling point (100 degrees Celsius).

Latent heat has the effect of greatly increasing a substance’s enthalpy. Recall that “enthalpy” is
the amount of heat lost by one pound (mass) of a substance as it cools from a given condition all the
way down to the freezing point of water. Hot water has an enthalpy of 1 BTU/Ib for every degree
of temperature above freezing. Steam, however, possesses far greater enthalpy because of the latent
heat released in the phase change from vapor to liquid before it releases heat as water cooling down
to 32 °F.

27The word “latent” refers to something with potential that is not yet realized. Here, heat exchange takes place
without there being any realized change in temperature. By contrast, heat resulting in a temperature change
(Q = mcAT) is called sensible heat.
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As with specific heat, there is a formula relating mass, latent heat, and heat exchange:

Q=mL

Where,

@@ = Heat of transition required to completely change the phase of a sample (metric calories or
British BTU)

m = Mass of sample (metric grams or British pounds)

L = Latent heat of substance

Each substance has its own set of latent heat values, one®® for each phase-to-phase transition.
Water, for example, exhibits a latent heat of vaporization (boiling/condensing) of 539.1 calories per
gram, or 970.3 BTU per pound, at atmospheric pressure (boiling point = 100 °C = 212 °F). Water
also exhibits a latent heat of fusion (melting/freezing) of 79.7 calories per gram, or 143.5 BTU per
pound. Both figures are enormous compared to water’s specific heat value of 1 calorie per gram-
degree Celsius (or 1 BTU per pound-degree Fahrenheit®”): it takes only one calorie of heat to warm
one gram of water one degree Celsius, but it takes 539.1 calories of heat to boil that same gram of
water into one gram of steam, and 79.7 calories of heat to melt one gram of ice into one gram of
water. The lesson here is simple: phase changes involve huge amounts of heat.

A table showing various latent heats of vaporization (all at room temperature, 70 degrees
Fahrenheit) for common industrial fluids appears here, contrasted against their specific heat values
(as liquids). In each case you will note how much larger L is than c:

Fluid (@ 70 OF) Lvaporizationa BTU/lb Lvaporizationa Cal/g Cliquid
Water 970.3 539.1 1
Ammonia 508.6 282.6 1.1

Carbon dioxide 63.7 354 0.66

Butane 157.5 87.5 0.56
Propane 149.5 83.06 0.6

One of the most important, and also non-intuitive, consequences of latent heat is the relative
stability of temperature during the phase-change process. Referencing the table of latent heats of
vaporization, we see how much more heat is needed to boil a liquid into a vapor than is needed
to warm that same liquid one degree of temperature. During the process of boiling, all heat input
to the liquid goes into the task of phase change (latent heat) and none of it goes into increased
temperature. In fact, until all the liquid has been vaporized, the liquid’s temperature cannot rise
above its boiling point! The requirement of heat input to vaporize a liquid forces temperature to
stabilize (not rise further) until all the liquid has evaporated from the sample.

28 atent heat of vaporization also varies with pressure, as different amounts of heat are required to vaporize a liquid
depending on the pressure that liquid is subject to. Generally, increased pressure (increased boiling temperature)
results in less latent heat of vaporization.

29The reason specific heat values are identical between metric and British units, while latent heat values are not, is
because latent heat does not involve temperature change, and therefore there is one less unit conversion taking place
between metric and British when translating latent heats. Specific heat in both metric and British units is defined in
such a way that the three different units for heat, mass, and temperature all cancel each other out. With latent heat,
we are only dealing with mass and heat, and so we have a proportional conversion of g or % left over, just the same
as if we were converting between degrees Celsius and Fahrenheit alone.
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If we take a sample of ice and add heat to it over time until it melts, warms, boils, and then
becomes steam, we will notice a temperature profile that looks something like this:

Allice | Ice/water mix All water Water/steam mix All steam

Steam
heating

Temperature

Water
heating

Boiling

100°CH

Melting

0°C

Heat applied over time —>
(atmospheric pressure assumed)

The flat areas of the graph during the melting and boiling periods represents times where the
sample’s temperature does not change at all, but where all heat input goes into the work of changing
the sample’s phase. Only where we see the curve rising does the temperature change. So long as
there is a mizture of different phases, the temperature remains “locked” at one value. Only when
there is a single phase of material is the temperature “allowed” to rise or fall.
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To use our liquid-filled vessel analogy again, it is as if at some point along the vessel’s height
there is a pipe connection leading to a large, relatively flat expansion chamber, so that the vessel
“acts” as if its area were much larger at one point, requiring much more fluid volume (heat) to
change height (temperature) past that one point:

Fluid analogy for specific versus latent heat

Phase change temperature ------ |

Expansion chamber

Liquid poured into this vessel will fill it at a rate proportional to the volume added and inversely
proportional to the vessel’s cross-sectional area at the current liquid height. As soon as the liquid
level reaches the expansion chamber, a great deal more liquid must be added to cause level to
increase, since this chamber must fill before the liquid level may rise above it. Once that happens,
the liquid level rises at a different rate with addition introduced volume, because now the phase is
different (with a different specific heat value).

Remember that the filling of a vessel with liquid is merely an analogy for heat and temperature,
intended to provide an easily visualized process mimicking another process not so easily visualized.
The important concept to realize with latent heat and phase change is that it constitutes a
discontinuity in the temperature/heat function for any given substance.

A vivid demonstration of this phenomenon is to take a paper®? cup filled with water and place
it in the middle of a roaring fire*'. “Common sense” might tell you the paper will burn through
with the fire’s heat, so that the water runs out of the cup through the burn-hole. This does not
happen, however. Instead, the water in the cup will rise in temperature until it boils, and there
it will maintain that temperature no matter how hot the fire burns. The boiling point of water
happens to be substantially below the burning point of paper, and so the boiling water keeps the
paper cup too cool to burn. As a result, the paper cup remains intact so long as water remains in
the cup. The 7im of the cup above the water line will burn up because the steam does not have
the same temperature-stabilizing effect as the water, leaving a rimless cup that grows shorter as the
water boils away.

30Styrofoam and plastic cups work as well, but paper exhibits the furthest separation between the boiling point of
water and the burning point of the cup material, and it is usually thin enough to ensure good heat transfer from the
outside (impinging flame) to the inside (water).

31This is a lot of fun to do while camping!
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The point at which a pure substances changes phase not only relates to temperature, but to
pressure as well. We may speak casually about the boiling point of water being 100 degrees Celsius
(212 degrees Fahrenheit), but that is only if we assume the water and steam are at atmospheric
pressure (at sea level). If we reduce the ambient air pressure®?, water will boil at a lesser temperature.
Anyone familiar with cooking at high altitudes knows you must generally cook for longer periods of
time at altitude, because the decreased boiling temperature of water is not as effective for cooking.
Conversely, anyone familiar with pressure cooking (where the cooking takes place inside a vessel
pressurized by steam) knows how comparatively little cooking time is required because the pressure
raises water’s boiling temperature. In either of these scenarios, where pressure influences®? boiling
temperature, the latent heat of water acts to hold the boiling water’s temperature stable until all
the water has boiled away. The only difference is the temperature at which the water begins to boil
(or when the steam begins to condense).

Many industrial processes use boiling liquids to convectively transfer heat from one object (or
fluid) to another. In such applications, it is important to know how much heat will be carried by
a specific quantity of the vapor as it condenses into liquid over a specified temperature drop. The
quantity of enthalpy (heat content) used for rating the heat-carrying capacity of liquids applies to
condensing vapors as well. Enthalpy is the amount of heat lost by a unit mass (one gram metric, or
one pound British) of the fluid as it cools from a given temperature all the way down to the freezing
point of water (0 degrees Celsius, or 32 degrees Fahrenheit). When the fluid’s initial state is vapor,
and it condenses into liquid as it cools down to the reference temperature (32 °F), the heat content
(enthalpy) is not just a function of specific heat, but also of latent heat.

Water at its atmospheric boiling point has an enthalpy of approximately 180 BTU per pound.
Steam at atmospheric pressure and 212 °F, however, has an enthalpy of about 1150 BTU per pound:
nearly seven times as much heat as water at the same temperature. 970 of that 1150 BTU/Ib is due
to the phase change from steam to water, while the rest is due to water’s specific heat as it cools
from 212 °F to 32 °F.

Many technical reference books contain a set of data known as a steam table showing various
properties of steam at different temperatures and pressures. Enthalpy is one of the most important
parameters given in a steam table, showing how much available energy resides in steam under
different pressure and temperature conditions. For this reason, enthalpy is sometimes referred to
as total heat (hy). Steam tables also show saturation temperature (the condensing temperature for
steam at that pressure) and steam density.

32This may be done in a vacuum jar, or by traveling to a region of high altitude where the ambient air pressure is
less than at sea level.

33The mechanism of this influence may be understood by considering what it means to boil a liquid into a vapor.
Molecules in a liquid reside close enough to each other that they cohere, whereas molecules in a vapor or gas are
relatively far apart and act as independent objects. The process of boiling requires that cohesion between liquid
molecules to be broken, so the molecules may drift apart. Increased pressure encourages cohesion in liquid form
by helping to hold the molecules together, while decreased pressure encourages the separation of molecules into a
vapor/gas.
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If the vapor in question is at a temperature greater than its boiling point at that pressure, the
vapor is said to be superheated. The enthalpy of superheated vapor comes from three different
heat-loss mechanisms:

e Cooling the vapor down to its condensing temperature (specific heat of vapor)
e Phase-changing from vapor to liquid (latent heat of phase change)

e Cooling the liquid down to the reference temperature (specific heat of liquid)

Using steam as the example once more, a sample of superheated steam at 500 °F and atmospheric
pressure (boiling point = 212 °F) has an enthalpy of approximately 1287 BTU per pound. We may
calculate the heat lost by one pound of this superheated steam as it cools from 500 °F to 32 °F in
each of the three steps previously described. Here, we will assume a specific heat for steam of 0.476,
a specific heat for water of 1, and a latent heat of vaporization for water of 970:

Heat loss mechanism Formula Quantity
Cooling vapor Q = mcAT (1)(0.476)(500-212) = 137 BTU
Phase change Q=mL (1)(970) = 970 BTU
Cooling liquid Q = mcAT (1)(1)(212-32) = 180 BTU
TOTAL 1287 BTU

Enthalpy values are very useful®* in steam engineering to predict the amount of thermal energy
delivered to a load given the steam’s initial temperature, its final (cooled) temperature, and the mass
flow rate. Although the definition of enthalpy — where we calculate heat value by supposing the vapor
cools all the way down to the freezing point of water — might seem a bit strange and impractical
(how often does steam lose so much heat to a process that it reaches freezing temperature?), it is
not difficult to shift the enthalpy value to reflect a more practical final temperature. Since we know
the specific heat of liquid water is very nearly one, all we have to do is offset the enthalpy value by
the amount that the final temperature differs from freezing in order to calculate how much heat the
steam will lose (per pound) to its load.

Furthermore, the rate at which heat is delivered to a substance by steam (or conversely, the rate
at which heat is required to boil water into steam) may be easily calculated if we take this heat
value in units of BTU per pound and multiply it by the mass flow rate in pounds per minute: as the
unit of “pound” cancels in the multiplication, we arrive at a result for heat transfer rate in units of
BTU per minute.

34 At first it may seem as though the enthalpy of steam is so easy to calculate it almost renders steam tables useless.
If the specific heats of water and steam were constant, and the latent heat of vaporization for water likewise constant,
this would be the case. However, both these values (¢ and L) are not constant, but rather change with pressure and
with temperature. Thus, steam tables end up being quite valuable to engineers, allowing them to quickly reference
heat content of steam across a broad range of pressures and temperatures without having to account for changing c

T
and L values (performing integral calculus in the form of Q@ =m fT2 cdT for specific heat) in their heat calculations.
1
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For example, suppose we were to employ the same 500 °F superheated steam used in the previous
example to heat a flow of oil through a heat exchanger, with the steam condensing to water and
then cooling down to 170 degrees Fahrenheit as it delivers heat to the flowing oil. Here, the steam’s
enthalpy value of 1287 BTU per pound may simply be offset by 138 (170 degrees minus 32 degrees)
to calculate how much heat (per pound) this steam will deliver to the oil: 1287 - 138 = 1149 BTU
per pound:

Heat exchanger application Thermal diagram
° o
00 jﬁf;; BTUD) 500 °F steam T
1149 BTU/lb
Cold oil Hot oil (Heat liberated by steam as
—_— —_— 1287 BTU/Ib it cools from 500 °F to 170 °F)

(Enthalpy of 500 °F steam)

T 170 °F water

l 138 BTU/Ib
(138 BTU/Ib) * (Enthalpy of 170 °F water)

170 °F water 32 °F water Y

Here we see how 500 °F steam has an enthalpy (total heat) of 1287 BTU/Ib, but since the steam
does not in fact cool all the way down to 32 °F in the act of heating oil in the heat exchanger,
we must subtract the enthalpy of the 170 °F water (138 BTU/Ib) to determine the heat actually
delivered to the oil by the steam (1149 BTU/Ib). Calculating heat transfer rate is a simple matter
of multiplying this heat per pound of steam by the steam’s mass flow rate: for example, if the mass
flow rate of this steam happened to be 2 pounds per minute, the heat transfer rate would be 2298
BTU per minute.

If we happen to be dealing with a situation where steam gives up some heat energy to a process
fluid but not enough to cool to the point of condensation, all we need to do to calculate the amount
of heat liberated by the superheated steam as it cools is subtract the enthalpy values between its
hot and cool(er) states.

For example, suppose we have a heat-exchange process where superheated steam enters at 105
PSIG and 600 °F, exiting at 75 PSIG and 360 °F. The enthalpy of the steam under those two sets
of conditions as given by a steam table are 1328 BTU/Ib and 1208 BTU/1b, respectively. Thus, the
heat lost by the steam as it goes through this heat exchanger is the difference in enthalpy values:
1328 BTU/Ib — 1208 BTU/1b = 120 BTU/Ib. Once again, calculating heat transfer rate is a simple
matter of multiplication: if the mass flow rate of this steam happened to be 80 pounds per hour,
the heat transfer rate would be 120 BTU/Ib x 80 lb/hr = 9600 BTU /hr.

By encompassing both specific heat and latent heat into one quantity, enthalpy figures given in
steam tables greatly simplify heat transfer calculations, as compared to evaluating specific heat and
latent heat formulae (Q = mcAT and QQ = mL, respectively).
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2.9.7 Phase diagrams and critical points

A comprehensive way of describing the relationship between pressure, temperature, and substance
phase is with something called a phase diagram. With pressure shown on one axis, and temperature
on the other, a phase diagram describes the various phases of a substance in possible equilibrium at
certain pressure/temperature combinations.
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This phase diagram (for water) illustrates some of the features common to all phase diagrams:
curved lines define the boundaries between solid, liquid, and vapor phases; the point of intersection
of these three curves is where the substance may exist in all three phases simultaneously (called the
triple point of water); and points where a curve simply ends within the span of the graph indicate
critical points, where the certain phases cease to exist.

The curved line from the triple point up and to the right defines the boundary between liquid
water and water vapor. Each point on that line represents a set of unique pressure and temperature
conditions for boiling (changing phase from liquid to vapor) or for condensation (changing phase
from vapor to liquid). As you can see, increased pressure results in an increased boiling point (i.e.
at higher pressures, water must be heated to greater temperatures before boiling may take place).
In fact, the whole concept of a singular boiling point for water becomes quaint in the light of a
phase diagram: boiling is seen to occur over a wide range of temperatures®, the exact temperature

35 Anywhere between the triple-point temperature and the critical temperature, to be exact.
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varying with pressure.

Something interesting happens when the temperature is raised above a certain value called the
critical temperature. At this value (approximately 374 degrees Celsius for water), no amount of
pressure will maintain it in a liquid state. Water heated to 374 degrees Celsius or above can only
exist in a stable condition as a vapor.

A vivid example of critical temperature is this photograph of an ultra-high pressure storage vessel
for oxygen gas, at a rocket engine testing facility:

The critical temperature for oxygen is 154.58 Kelvin, which is equal to -118.57 degrees Celsius
or -181.43 degrees Fahrenheit. Since this pressure vessel is completely uninsulated, we know the
temperature of the oxygen inside of it will be the same (or nearly the same) as ambient temperature,
which is obviously much warmer than -118.57 °C. Since the oxygen’s temperature is well above the
critical temperature for the element oxygen, we may safely conclude that the oxygen inside this
vessel must exist as a gas. Even at the extremely high pressure this vessel is capable of holding
(15000 PSIG), the oxygen cannot liquefy.

The slightly curved line from the triple point up and to the left defines the boundary between
solid ice and liquid water. As you can see, the near-vertical pitch of this curve suggests the freezing
temperature of water is quite stable over a wide pressure range.

Below a certain pressure, called the critical pressure, the possibility of a stable liquid phase
disappears. The substance may exist in solid or gaseous forms, but not liquid, if the pressure is
below the critical pressure value.
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Carbon dioxide exhibits a different set of curves than water on its phase diagram, with its own
unique critical temperature and pressure values:

Phase diagram for carbon dioxide
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Note how the critical pressure of carbon dioxide is well above ambient conditions on Earth. This
means carbon dioxide is not stable in its liquid state unless put under substantial pressure (at least
60.4 PSIG). This is why solid carbon dioxide is referred to as dry ice: it does not liquefy with the
application of heat, rather it sublimates directly into its vapor phase.

Another interesting difference between the carbon dioxide and water phase diagrams is the slope
of the solid/liquid boundary line. With water, this boundary drifts to the left (lower temperature)
as pressure increases. With carbon dioxide, this boundary drifts to the right (higher temperature) as
pressure increases. Whether the fusion temperature increases or decreases with increasing pressure
marks whether that substance contracts or expands as it transitions from liquid to solid. Carbon
dioxide, like most pure substances, contracts to a smaller volume when it goes from liquid to solid,
and its fusion curve drifts to the right as pressure increases. Water is unusual in this regard,
expanding to a larger volume when freezing, and its fusion curve drifts to the left as pressure
increases.
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2.9.8 Thermodynamic degrees of freedom

If we look at the areas bounded by phase transition curves in a phase diagram (solid area, liquid area,
and vapor area), we see that both pressure and temperature may change independent of one another.
A vessel filled with liquid water, for instance, may be at 30 degrees Celsius and 2 atmospheres, or
at 50 degrees Celsius and 2 atmospheres, or at 50 degrees Celsius and 1 atmosphere, all equally
stable. A more technical way to state this is to say the liquid water has two degrees of freedom.
Here, the word “degree” has a completely different meaning than it does when used to denote a unit
of temperature or angle. In this context, “degree” may be thought of loosely as “dimension.” A
cube has three physical dimensions, a square has two and a line has one. A point within a cube has
three degrees of freedom (motion), while a point within a square only has two, and a point along
a line only has one. Here, we use the word “degree” to denote the number of independent ways a
system may change. For areas bounded by phase transition curves in a phase diagram, pressure and
temperature are the two “free” variables, because within those bounded areas we may freely alter
pressure without altering temperature, and visa-versa.

Such is not the case at any point lying along one of the phase transition curves. Any point on a
curve is geometrically defined by a pair of coordinates, which means that for a two-phase mixture
in equilibrium there will be exactly one temperature value valid for each unique pressure value. At
any point along a phase transition curve, pressure and temperature are not independent variable,
but rather are related. This means that for any single substance, there is only one degree of freedom
along any point of a phase transition curve.

To illustrate this concept, suppose we equip a closed vessel containing water with both a
thermometer and a pressure gauge. The thermometer measures the temperature of this water,
while the pressure gauge measures the pressure of the water. A burner beneath the vessel adds heat
to alter the water’s temperature, and a pump adds water to the vessel to alter the pressure inside:

Pressure gauge

Thermometer

To water
pump 2 =
discharge

Togas |, i Burner

fuel supply *

So long as the water is all liquid (one phase), we may adjust its pressure and temperature
independently. In this state, the system has two thermodynamic degrees of freedom.

However, if the water becomes hot enough to boil, creating a system of two phases in direct
contact with each other (equilibrium), we will find that pressure and temperature become linked:
one cannot alter one without altering the other. For a steam boiler, operation at a given steam
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pressure thus defines the temperature of the water, and visa-versa. In a single-component, two-
phase system, there is only one degree of thermodynamic freedom.

Our freedom to alter pressure and temperature becomes even more restricted if we ever reach
the triple point of the substance. For water, this occurs (only) at a pressure of -14.61 PSIG (0.006
atmospheres) and a temperature of 0.01 degrees Celsius: the coordinates where all three phase
transition curves intersect on the phase diagram. In this state, where solid (ice), liquid (water), and
vapor (steam) coexist, there are zero degrees of thermodynamic freedom. Both the temperature and
pressure are locked at these values until one or more of the phases disappears.

The relationship between degrees of freedom and phases is expressed neatly by Gibbs’ Phase Rule
— the sum of phases and degrees of freedom equals the number of substances (“components”) plus
two:

Nfreedom + Nphase = Nsubstance 1 2

We may simplify Gibbs’ rule for systems of just one substance (1 “component”) by saying the
number of degrees of freedom plus phases in direct contact with each other is always equal to
three. So, a vessel filled with nothing but liquid water (one component, one phase) will have two
thermodynamic degrees of freedom: we may change pressure or temperature independently of one
another. A vessel containing nothing but boiling water (two phases — water and steam, but still
only one component) has just one thermodynamic degree of freedom: we may change pressure and
temperature, but just not independently of one another. A vessel containing water at its triple
point (three phases, one component) has no thermodynamic freedom at all: both temperature and
pressure are fixed3% so long as all three phases coexist in equilibrium.

2.9.9 Applications of phase changes

Applications of phase changes abound in industrial and commercial processes. Some of these
applications exploit phase changes for certain production goals, such as the storage and transport
of energy. Others merely serve to illustrate certain phenomena such as latent heat and degrees of
thermodynamic freedom. This subsection will highlight several different processes for your learning
benefit.

36The non-freedom of both pressure and temperature for a pure substance at its triple point means we may
exploit different substances’ triple points as calibration standards for both pressure and temperature. Using suitable
laboratory equipment and samples of sufficient purity, anyone in the world may force a substance to its triple point
and calibrate pressure and/or temperature instruments against that sample.
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Propane storage tanks

A common example of a saturated liquid/vapor (two-phase) system is the internal environment of a
propane storage tank, such as the kind commonly used to store propane fuel for portable stoves and
gas cooking grills. If multiple propane storage tanks holding different volumes of liquid propane are
set side by side, pressure gauges attached to each tank will all register the exact same pressure:
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This is counter-intuitive, as most people tend to think the fullest tank should register the highest
pressure (having the least space for the vapor to occupy). However, since the interior of each tank
is a liquid/vapor system in equilibrium, the pressure is defined by the point on the liquid/vapor
transition curve on the phase diagram for pure propane matching the tanks’ temperature. Thus,
the pressure gauge on each tank actually functions as a thermometer®”, since pressure is a direct
function of temperature for a saturated liquid/vapor system and therefore cannot change without
a corresponding change in temperature. This is a thermodynamic system with just one degree of
freedom.

Storage tanks containing liquid/vapor mixtures in equilibrium present unique safety hazards. If
ever a rupture were to occur in such a vessel, the resulting decrease in pressure causes the liquid to
spontaneously boil, halting any further decrease in pressure. Thus, a punctured propane tank does
not lose pressure in the same manner than a punctured compressed air tank loses pressure. This
gives the escaping vapor more “power” to worsen the rupture, as its pressure does not fall off over
time the way it would in a simple compressed-gas application. As a result, relatively small punctures
can and often do grow into catastrophic ruptures, where all liquid previously held inside the tank
escapes and flashes into vapor, generating a vapor cloud of surprisingly large volume>®.

Compounding the problem of catastrophic tank rupture is the fact that propane happens to be
highly flammable. The thermodynamic properties of a boiling liquid combined with the chemical

37To be more precise, a propane tank acts like a Class II filled-bulb thermometer, with liquid and vapor coexisting
in equilibrium.

38Steam boilers exhibit this same explosive tendency. The expansion ratio of water to steam is on the order of a
thousand to one (1000:1), making steam boiler ruptures very violent even at relatively low operating pressures.
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property of flammability in air makes propane tank explosions particularly violent. Fire fighters
often refer to this as a BLEVE: a Boiling Liquid Expanding Vapor Ezplosion.
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Class II Filled-bulb thermometers

This same pressure-temperature interdependence finds application in a type of temperature
measurement instrument called a Class II filled-bulb, where a metal bulb, tube, and pressure-sensing
element are all filled with a saturated liquid/vapor mixture:
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Heat applied to the bulb literally “boils” the liquid inside until its pressure reaches the equilibrium
point with temperature. As the bulb’s temperature increases, so does the pressure throughout the
sealed system, indicating at the operator display where a bellows (or some other pressure-sensing
element) moves a pointer across a calibrated scale.

The only difference between the two filled-bulb thermometers shown in the illustration is which
end of the instrument is warmer. The Class ITA system on the left (where liquid fills the pressure-
indicating element) is warmer at the bulb than at the indicating end. The Class IIB system on
the right (where vapor fills the indicating bellows) has a cooler bulb than the indicating bellows.
The long length and small internal diameter of the connecting tube prevents any substantial heat
transfer from one end of the system to the other, allowing the sensing bulb to easily be at a different
temperature than the indicating bellows. Both types of Class II thermometers work the same®’,
the indicated pressure being a strict function of the bulb’s temperature where the liquid and vapor
coexist in equilibrium.

39Class ITA systems do suffer from elevation error where the indicator may read a higher or lower temperature than
it should due to hydrostatic pressure exerted by the column of liquid inside the tube connecting the indicator to the
sensing bulb. Class IIB systems do not suffer from this problem, as the gas inside the tube exerts no pressure over an
elevation.
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Nuclear reactor pressurizers

Nuclear reactors using pressurized water as the moderating and heat-transfer medium must maintain
the water coolant in liquid form despite the immense heat output of the reactor core, to avoid the
formation of steam bubbles within the reactor core which could lead to destructive “hot spots” inside
the reactor. The following diagram shows a simplified*’ pressurized water reactor (PWR) cooling
system:
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In order to maintain a liquid-only cooling environment for the reactor core, the water is held at
a pressure too high for boiling to occur inside the reactor vessel. Typical operating conditions for a
pressurized water reactor are 575 °F and 2100 PSIG. A steam table shows the boiling point of water
at 2100 PSIG to be over 640 °F, which means the water inside the reactor cannot boil if the reactor
only operates at 575 °F. Referencing the phase diagram for water, the operating point of the reactor
core is maintained above the liquid/vapor phase transition line by an externally supplied pressure.

This excess pressure comes from a device in the primary coolant loop called a pressurizer. Inside
the pressurizer is an array of immersion-style electric heater elements. The pressurizer is essentially
an electric boiler, purposely boiling the water inside at a temperature greater®! than that reached

40Circulation pumps and a multitude of accessory devices are omitted from this diagram for the sake of simplicity.
41This is another example of an important thermodynamic concept: the distinction between heat and temperature.
While the temperature of the pressurizer heating elements exceeds that of the reactor core, the total heat output
of course does not. Typical comparative values for pressurizer power versus reactor core power are 1800 kW versus
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by the reactor core itself. For the example figure of 2100 PSIG, the pressurizer elements would have
to operate at a temperature of approximately 644 °F to maintain a boiling condition inside the
pressurizer.

By maintaining the water temperature inside the pressurizer greater than at the reactor core,
the water flowing through the reactor core literally cannot boil. The water/vapor equilibrium inside
the pressurizer is a system with one degree of freedom (pressure and temperature linked), while
the water-only environment inside the reactor core has two degrees of freedom (temperature may
vary to any amount below the pressurizer’s temperature without water pressure changing at all).
Thus, the pressurizer functions like the temperature-sensing bulb of a gigantic Class ITA filled-bulb
thermometer, with a liquid/vapor equilibrium inside the pressurizer vessel and liquid only inside the
reactor vessel and all other portions of the primary coolant loop. Reactor pressure is then controlled
by the temperature inside the pressurizer, which is in turn controlled by the amount of power applied
to the heating element array*?.

Steam boilers

Boilers in general (the nuclear reactor system previously described being just one example of a large
“power” boiler) are outstanding examples of phase change applied to practical use. The purpose of
a boiler is to convert water into steam, sometimes for heating purposes, sometimes as a means of
producing mechanical power (through a steam engine), sometimes for chemical processes requiring
pressurized steam as a reactant, sometimes for utility purposes (maintenance-related cleaning,
process vessel purging, sanitary disinfection, fire suppression, etc.) or all of the above. Steam
is a tremendously useful substance in many industries, so you will find boilers in use at almost every
industrial facility.

3800 MW, respectively: a ratio exceeding three orders of magnitude. The pressurizer heating elements don’t have to
dissipate much power (compared to the reactor core) because the pressurizer is not being cooled by a forced convection
of water like the reactor core is.

421n this application, the heaters are the final control element for the reactor pressure control system.



134 CHAPTER 2. PHYSICS

A simplified diagram of a basic water tube boiler appears here:
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Water enters the boiler through a heat exchanger in the stack called an economizer. This allows
cold water to be pre-heated by the warm exhaust gases before they exit the stack. After pre-heating
in the economizer, the water enters the boiler itself, where water circulates by natural convection
(“thermosiphon”) through a set of tubes exposed to high-temperature fire. Steam collects in the
“steam drum,” where it is drawn off through a pipe at the top. Since this steam is in direct contact
with the boiling water, it will be at the same temperature as the water, and the steam/water
environment inside the steam drum represents a two-phase system with only one degree of freedom.
With just a single degree of freedom, steam temperature and pressure are direct functions of each
other — coordinates at a single point along the liquid/vapor phase transition line of water’s phase
diagram. One cannot change one variable without changing the other.

Consulting a steam table*?, you will find that the temperature required to boil water at a pressure
of 120 PSIG is approximately 350 degrees Fahrenheit. Thus, the temperature of the steam drum will
be fixed at 350 °F while generating steam pressure at 120 PSIG. The only way to increase pressure
in that boiler is to increase its temperature, and visa-versa.

When steam is at the same temperature as the boiling water it came from, it is referred to as
saturated steam. Steam in this form is very useful for heating and cleaning, but not as much for
operating mechanical engines or for process chemistry. If saturated steam loses any temperature at
all (by losing its latent heat), it immediately condenses back into water. Liquid water can cause
major mechanical problems inside steam engines (although “wet” steam works wonderfully well as
a cleaning agent!), and so steam must be made completely “dry” for some process applications.

43Since the relationship between saturated steam pressure and temperature does not follow a simple mathematical
formula, it is more practical to consult published tables of pressure/temperature data for steam. A great many
engineering manuals contain steam tables, and in fact entire books exist devoted to nothing but steam tables.
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The way this is done is by a process known as superheating. If steam exiting the steam drum
of a boiler is fed through another heat exchanger inside the firebox so it may receive more heat, its
temperature will rise beyond the saturation point. This steam is now said to be superheated:
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Superheated steam is absolutely dry, containing no liquid water at all. It is therefore safe to
use as a fluid medium for engines (piston and turbine alike) and as a process reactant where liquid
water is not tolerable. The difference in temperature between superheated steam and saturated
steam at any given pressure is the amount of superheat. For example, if saturated steam at 350
degrees Fahrenheit and 120 PSI drawn from the top of the steam drum in a boiler is heated to a
higher temperature of 380 degrees Fahrenheit (at the same pressure of 120 PSI), it is said to have
30 degrees (Fahrenheit) of superheat.
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Fruit crop freeze protection

An interesting application of phase changes and latent heat occurs in agriculture. Fruit growers,
needing to protect their budding crop from the damaging effects of a late frost, will spray water
over the fruit trees to maintain the sensitive buds above freezing temperature. As cold air freezes
the water, the water’s latent heat of fusion prevents the temperature at the ice/water interface from
dropping below 32 degrees Fahrenheit. So long as liquid water continues to spray over the trees, the
buds’ temperature cannot fall below freezing. Indeed, the buds cannot even freeze in this condition,
because once they cool down to the freezing point, there will be no more temperature difference
between the freezing water and the buds. With no difference of temperature, no heat will transfer
out of the buds. With no heat loss, water inside the buds cannot change phase from liquid to solid
(ice) even if held at the freezing point for long periods of time, thus preventing freeze damage®*.
Only if the buds are exposed to cold air (below the freezing point), or the water turns completely
to ice and no longer holds stable at the freezing point, can the buds themselves ever freeze solid.

2.10 Fluid mechanics

A fluid is any substance having the ability to flow: to freely change shape and move under the
influence of a motivating force. Fluid motion may be analyzed on a microscopic level, treating
each fluid molecule as an individual projectile body. This approach is extraordinarily tedious on a
practical level, but still useful as a simple model of fluid motion.

Some fluid properties are accurately predicted by this model, especially predictions dealing with
potential and kinetic energies. However, the ability of a fluid’s molecules to independently move give
it unique properties that solids do not possess. One of these properties is the ability to effortlessly
transfer pressure, defined as force applied over area.

44 An experiment illustrative of this point is to maintain an ice-water mixture in an open container, then to insert
a sealed balloon containing liquid water into this mixture. The water inside the balloon will eventually equalize in
temperature with the surrounding ice-water mix, but it will not itself freeze. Once the balloon’s water reaches 0
degrees Celsius, it stops losing heat to the surrounding ice-water mix, and therefore cannot make the phase change
to solid form.
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2.10.1 Pressure

The common phases of matter are solid, liquid, and gas. Liquids and gases are fundamentally distinct
from solids in their intrinsic inability to maintain a fixed shape. In other words, liquids and gases
tend to fill whatever solid containers they are held in. Similarly, both liquids and gases both have
the ability to flow, which is why they are collectively called fluids.

Due to their lack of definite shape, fluids tend to disperse any force applied to them. This stands
in marked contrast to solids, which tend to transfer force with the direction unchanged. Take for
example the force transferred by a nail, from a hammer to a piece of wood:
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The impact of the hammer’s blow is directed straight through the solid nail into the wood below
— nothing surprising here. But now consider what a fluid would do when subjected to the same
hammer blow:
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Given the freedom of a fluid’s molecules to move about, the impact of the hammer blow becomes
directed everywhere against the inside surface of the container (the cylinder). This is true for all
fluids: liquids and gases alike. The only difference between the behavior of a liquid and a gas in the
same scenario is that the gas will compress (i.e. the piston will move down as the hammer struck
it), whereas the liquid will not compress (i.e. the piston will remain in its resting position). Gases
yield under pressure, liquids do not.

It is very useful to quantify force applied to a fluid in terms of force per unit area, since the force
applied to a fluid becomes evenly dispersed in all directions to the surface containing it. This is the
definition of pressure (P): how much force (F') is distributed across how much area (A).

p_k

A
In the metric system, the standard unit of pressure is the pascal (Pa), defined as one Newton (N)
of force per square meter (m?) of area. In the British system of measurement, the standard unit of
pressure is the PSI: pounds (Ib) of force per square inch (in?) of area. Pressure is often expressed
in units of kilo-pascals (kPa) when metric units are used because one pascal is a rather low pressure

in most engineering applications.
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The even distribution of force throughout a fluid has some very practical applications. One
application of this principle is the hydraulic lift, which functions somewhat like a fluid lever:
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Force applied to the small piston creates a pressure throughout the fluid. That pressure exerts
a greater force on the large piston than what is exerted on the small piston, by a factor equal to
the ratio of piston areas. Since area for a circular piston is proportional to the square of the radius
(A = 7r?), even modest ratios of piston diameter yield large ratios of area and therefore force. If
the large piston has five times the area of the small piston (large piston diameter 2.236 times larger
than the small piston), force will be multiplied by five. Just like with the lever, however, there
must be a trade-off so we do not violate the Conservation of Energy. The trade-off for increased
force is decreased distance, whether in the lever system or in the hydraulic lift system. If the large
piston generates a force five times greater than what was input at the small piston, it will move
only one-fifth the distance that the small piston does. In this way, energy in equals energy out
(remember that work, which is equivalent to energy, is calculated by multiplying force by parallel
distance traveled).
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For those familiar with electricity, what you see here in either the lever system or the hydraulic
lift is analogous to a transformer: we can step AC voltage up, but only by reducing AC current.
Being a passive device, a transformer cannot boost power. Therefore, power out can never be greater
than power in, and given a perfectly efficient transformer, power out will always be precisely equal
to power in:

Power = (Voltage in)(Current in) = (Voltage out)(Current out)

Work = (Force in)(Distance in) = (Force out)(Distance out)

Fluid may be used to transfer power just as electricity is used to transfer power. Such systems
are called hydraulic if the fluid is a liquid (usually oil), and pneumatic if the fluid is a gas (usually
air). In either case, a machine (pump or compressor) is used to generate a continuous fluid pressure,
pipes are used to transfer the pressurized fluid to the point of use, and then the fluid is allowed to
exert a force against a piston or a set of pistons to do mechanical work:
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To learn more about fluid power systems, refer to section 10.2 beginning on page 534.
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An interesting use of fluid we see in the field of instrumentation is as a signaling medium, to
transfer information between places rather than to transfer power between places. This is analogous
to using electricity to transmit voice signals in telephone systems, or digital data between computers
along copper wire. Here, fluid pressure represents some other quantity, and the principle of force
being distributed equally throughout the fluid is exploited to transmit that representation to some
distant location, through piping or tubing:

Pressure
gauge
Closed bulb
filled with
fluid

O

This illustration shows a simple temperature-measuring system called a filled bulb, where an
enclosed bulb filled with fluid is exposed to a temperature that we wish to measure. A rise in
temperature causes the fluid pressure to increase, which is sent to the gauge far away through
the pipe, and registered at the gauge. The purpose of the fluid here is two-fold: first to sense
temperature, and second to relay this temperature measurement a long distance away to the gauge.
The principle of even pressure distribution allows the fluid to act as a signal medium to convey the
information (bulb temperature) to a distant location.
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2.10.2 Pascal’s Principle and hydrostatic pressure

We learned earlier that fluids tend to evenly distribute the force applied to them. This fundamental
principle is the basis of fluid power and fluid signaling systems, where pressure is assumed to be
transferred equally to all points in a confined fluid. In the example of a hydraulic lift given earlier,
we assume that the pressure throughout the fluid pathway is equal:

Resulting
_ force
Applied (1350 Ibs)
(150 Ibs) Hydraulic lift

.

Small Large

iston ;
A=3im PO
- (A=27in)

Pressure =
50 PSI

Pressure =
50 PSI

Pressure = Pressure =
50 PSI 50 PSI

If additional force is applied to the small piston (say, 160 lbs instead of 150 lbs), the fluid
pressure throughout the system will increase, not just the fluid pressure in the vicinity of the piston.
The effect of this additional force will be immediately®® “felt” at all points of the system. This
phenomenon is called Pascal’s principle.

Pascal’s principle is really nothing more than the direct consequence of fluids’ ability to flow. The
only way an additional applied pressure would not be transmitted to all points within a confined fluid
volume is if the fluid molecules were somehow not free to move. Since they are free, any compression
applied to one region of that fluid will propagate to all other regions within that fluid volume. As
fluid molecules are subjected to greater pressure, they naturally try to migrate to regions of lower
pressure where they “bump up” against other fluid molecules, distributing that increased pressure
in the process.

45There is actually a speed of propagation to this increase in pressure, and it is the speed of sound of the fluid.
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Pascal’s principle tells us any change in applied pressure to a confined fluid volume will be
distributed evenly throughout, but it does not say pressure will be the same throughout all points.
If forces other than those applied to pistons exert pressure on the fluid, we may indeed experience
gradients of pressure throughout a confined fluid volume.

In cases where we are dealing with tall columns of dense fluid, there is another force we must
consider: the weight of the fluid itself. Suppose we took a cubic foot of water which weighs
approximately 62.4 pounds, and poured it into a very tall vertical tube with a cross-sectional area
of 1 square inch:

Water column
weight = 62.4 Ibs

144 ft
(1728 inches)

Cross-sectional )
tube area=1in

Pressure gauge
62.4 PSI

Naturally, we would expect the pressure measured at the bottom of this tall tube to be 62.4
pounds per square inch, since the entire column of water (weighing 62.4 pounds) has its weight
supported by one square inch of area.
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If we placed another pressure gauge mid-way up the tube, though, how much pressure would it
register? At first you might be inclined to say 62.4 PSI as well, because you learned earlier in this
lesson that fluids naturally distribute force throughout their bulk. However, in this case the pressure
is not the same mid-way up the column as it is at the bottom:

Water column
weight = 62.4 Ibs

Pressure gauge

(Half-way up) 31.2 PSI

Cross-sectional Pressure gauge

tube area = 1in®
62.4 PS|

The reason for this apparent discrepancy is that the source of pressure in this fluid system comes
from the weight of the water column itself. Half-way up the column, the water only experiences half
the total weight (31.2 pounds), and so the pressure is half of what it is at the very bottom. We never
dealt with this effect before, because we assumed the force exerted by the piston in the hydraulic
lift was so large it “swamped” the weight of the fluid itself. Here, with our very tall column of water
(144 feet talll), the effect of gravity upon the water’s mass is quite substantial. Indeed, without a
piston to exert an external force on the water, weight is the only source of force we have to consider
when calculating pressure.

This fact does not invalidate Pascal’s principle. Any change in pressure applied to the fluid
column will still be distributed equally throughout. For example, if we were to place a piston at the
top of this fluid column and apply a force to the fluid, pressure at all points in that fluid column
would increase by the same amount?®. This is not the same as saying all pressures will be equal
throughout the column, however.

46Suppose a 1 square inch piston were set on the top of this tall fluid column, and a downward force of 20 lbs were
applied to it. This would apply an additional 20 PSI pressure to the fluid molecules at all points within the column.
The pressure at the bottom would be 82.4 PSI, and the pressure at the middle would be 51.2 PSI.
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An interesting fact about pressure generated by a column of fluid is that the width or shape of
the containing vessel is irrelevant: the height of the fluid column is the only dimension we need to
consider. Examine the following tube shapes, all connected at the bottom:

Since the force of fluid weight is generated only along the axis of gravitational attraction (straight
down), that is the only axis of measurement important in determining “hydrostatic” fluid pressure.

The fixed relationship between the vertical height of a water column and pressure is such that
sometimes water column height is used as a unit of measurement for pressure. That is, instead of
saying “30 PSI,” we could just as correctly quantify that same pressure as 830.4 inches of water
("W.C. or "H20), the conversion factor being approximately 27.68 inches of vertical water column
per PSI.

As one might guess, the density of the fluid in a vertical column has a significant impact on
the hydrostatic pressure that column generates. A liquid twice as dense as water, for example, will
produce twice the pressure for a given column height. For example, a column of this liquid (twice
as dense as water) 14 inches high will produce a pressure at the bottom equal to 28 inches of water
(28 "W.C.), or just over 1 PSI. An extreme example is liquid mercury, which is over 13.5 times as
dense as water. Due to its exceptional density and ready availability, the height of a mercury column
is also used as a standard unit of pressure measurement. For instance, 25 PSI could be expressed
as 50.9 inches of mercury ("Hg), the conversion factor being approximately 2.036 inches of vertical
mercury column per PSI.

The mathematical relationship between vertical liquid height and hydrostatic pressure is quite
simple, and may be expressed by either of the following formulae:

P = pgh

P=~h

Where,
P = Hydrostatic pressure in units of weight per square area unit: pascals (N/m?) or 1b/ft?
p = Mass density of liquid in kilograms per cubic meter (metric) or slugs per cubic foot (British)
g = Acceleration of gravity (9.8 meters per second squared or 32 feet per second squared)
v = Weight density of liquid in newtons per cubic meter (metric) or pounds per cubic foot
(British)
h = Vertical height of liquid column
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Dimensional analysis — where we account for all units of measurement in a formula — validates
the mathematical relationship between pressure, density, and height. Taking the second formula as
an example:

P =~h

[lb} B [1b] [ft}
2] L] [ 1

As you can see, the unit of “feet” in the height term cancels out one of the “feet” units in the
denominator of the density term, leaving an answer for pressure in units of pounds per square foot.
If one wished to set up the problem so the answer presented in a more common pressure unit such as
pounds per square inch, both the liquid density and height would have to be expressed in appropriate
units (pounds per cubic inch and inches, respectively).

Applying this to a realistic problem, consider the case of a tank filled with 8 feet (vertical) of
castor oil, having a weight density of 60.5 pounds per cubic foot:

8 ft

P =777

This is how we would set up the formula to calculate for hydrostatic pressure at the bottom of
the tank:

P=~h

60.5 1b
P= 8 ft
( ft3 ) (8 1)
_ 4841b
2
If we wished to convert this result into a more common unit such as PSI (pounds per square
inch), we could do so using an appropriate fraction of conversion units:

484 1b 1 ft?
P= 2 )
ft 144 in

3.36 1b

in?

= 3.36 PSI
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2.10.3 Fluid density expressions

Fluid density is commonly expressed as a ratio in comparison to pure water at standard

temperature*”. This ratio is known as specific gravity. For example, the specific gravity of glycerin
may be determined by dividing the density of glycerin by the density of water:

D

Specific gravity of any liquid = —-2%¢

water

3
Specific gravity of glycerin = Dgtycerin = 786 1b/ft3 =1.26
Dwater 62.4 lb/ft

The density of gases may also be expressed in ratio form, except the standard of comparison
is ambient air instead of water. Chlorine gas, for example, has a specific gravity of 2.47 (each
volumetric unit of chlorine having 2.47 times the mass of the same volume of air under identical
temperature and pressure conditions). Specific gravity values for gases are sometimes called relative
gas densities to avoid confusion with “specific gravity” values for liquids.

As with all ratios, specific gravity is a unitless quantity. In our example with glycerine, we see
how the identical units of pounds per cubic foot cancel out of both numerator and denominator, to
leave a quotient with no unit at all.

An alternative to expressing fluid density as a ratio of mass (or weight) to volume, or to compare
it against the density of a standard fluid such as pure water or air, is to express it as the ratio of
volume to mass. This is most commonly applied to vapors such as steam, and it is called specific
volume. The relationship between specific volume and density is one of mathematical reciprocation:
the reciprocal of density (e.g. pounds per cubic foot) is specific volume (e.g. cubic feet per pound).
For example, consulting a table of saturated steam properties, we see that saturated steam at a
pressure of 60 PSTA has a specific volume of 7.175 cubic feet per pound. Translating this into units
of pounds per cubic feet, we reciprocate the value 7.175 to arrive at 0.1394 pounds per cubic foot.

Industry-specific units of measurement do exist for expressing the relative density of a fluid. These
units of measurement all begin with the word “degree” much the same as for units of temperature
measurement, for example:

e Degrees API (used in the petroleum industries)

e Degrees Baumé (used in a variety of industries including paper manufacture and alcohol
production)

e Degrees Twaddell (used in the textile industry for tanning solutions and the like)

47Usually, this standard temperature is 4 degrees Celsius, the point of maximum density for water. However,
sometimes the specific gravity of a liquid will be expressed in relation to the density of water at some other temperature.
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The mathematical relationships between each of these “degree” units of density versus specific
gravity?® is as follows:

141.5
Degrees APl = ——————— — 131.5
Specific gravity

Degrees Twaddell = 200 x (Specific gravity — 1)

Two different formulae exist for the calculation of degrees Baumé, depending on whether the
liquid in question is heavier or lighter than water. For lighter-than-water liquids:

140

— — 130
Specific gravity

Degrees Baumé (light) =

Note that pure water would measure 10° Baumé on the light scale. As liquid density decreases,
the light Baumé value increases. For heavier-than-water liquids:

145
Degrees Baumé (heavy) = 145 — ——————
Specific gravity

Note that pure water would measure 0° Baumé on the heavy scale. As liquid density increases,
the heavy Baumé value increases.

Just to make things confusing, there are different standards for the heavy Baumé scale. Instead of
the constant value 145 shown in the above equation (used throughout the United States of America),
an older Dutch standard used the same formula with a constant value of 144. The Gerlach heavy
Baumé scale uses a constant value of 146.78:

144
Specific gravity

146.78
Specific gravity

Degrees Baumé (heavy, old Dutch) = 144 —

Degrees Baumé (heavy, Gerlach scale) = 146.78 —

There exists a seemingly endless array of “degree” scales used to express liquid density, scattered
throughout the pages of history. For the measurement of sugar concentrations in the food industries,
the unit of degrees Balling was invented. This scale was later revised to become the unit of degrees
Brixz, which is directly proportional to the percent concentration of sugar in the liquid. Another
density scale used for expressing sugar concentration is degrees Plato. The density of tanning liquor
may be measured in degrees Bark. Milk density may be measured in degrees Sozhlet. Vegetable oil
density (and in older times, the density of oil extracted from sperm whales) may be measured in
degrees Oleo.

48For each of these calculations, specific gravity is defined as the ratio of the liquid’s density at 60 degrees Fahrenheit
to the density of pure water, also at 60 degrees Fahrenheit.
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2.10.4 Manometers

Expressing fluid pressure in terms of a vertical liquid column makes perfect sense when we use a very
simple kind of motion-balance pressure instrument called a manometer. A manometer is nothing
more than a piece of clear (glass or plastic) tubing filled with a liquid of known density, situated

next to a scale for measuring distance. The most basic form of manometer is the U-tube manometer,
shown here:

U-tube manometer

(vented) (vented) R gl— (vented)
=] Applied =]
= pressure =
% % Height
= = l difference

Pressure is read on the scale as the difference in height (h) between the two liquid columns. One
nice feature of a manometer is it really cannot become “uncalibrated” so long as the fluid is pure
and the assembly is maintained in an upright position. If the fluid used is water, the manometer

may be filled and emptied at will, and even rolled up for storage if the tubes are made of flexible
plastic.



150 CHAPTER 2. PHYSICS

We may create even more sensitive manometers by purposely inclining one or more of the tubes,
so that the liquid must travel a farther distance along the tube length to achieve the same vertical
shift in height. This has the effect of “amplifying” the liquid’s motion to make it easier to resolve
small pressures:

Inclined manometer

This way, a greater motion of liquid (z) is required to generate the same hydrostatic pressure
(vertical liquid displacement, /) than in an upright manometer, making the inclined manometer more
sensitive. As the similar triangle in the illustration shows, x and h are related trigonometrically by
the sine function:

sinf = ﬁ
T

The difference in fluid column positions measured diagonally along the scale () must always be
greater than the vertical height difference between the two columns (h) by a factor of ﬁ, which
will always be greater than one for angles less than 90°. The smaller the angle 6, the greater the
ratio between z and h, leading to more sensitivity.
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If even more sensitivity is desired, we may construct something called a micromanometer,
consisting of a gas bubble trapped in a clear horizontal tube between two large vertical manometer
chambers:

A simple micromanometer

Gas

/

M
Scale

Pressure applied to the top of either vertical chamber will cause the vertical liquid columns to
shift just the same as any U-tube manometer. However, the bubble trapped in the clear horizontal
tube will move much farther than the vertical displacement of either liquid column, owing to the
huge difference in cross-sectional area between the vertical chambers and the horizontal tube. This
amplification of motion is analogous to the amplification of motion in a hydraulic piston system
(where the smaller piston moves farther than the larger piston), and makes the micromanometer
exceptionally sensitive to small pressures.

The movement of the gas bubble within the clear horizontal viewing tube (z) relates to applied
pressure by the following formula:

— 'YhAlarge
2Asmall

Using water as the working liquid in a standard U-tube manometer, 1 PSI of applied gas pressure
results in approximately 27.7 inches of vertical liquid column displacement (i.e. 27.7 inches of height
difference between the two water columns). This relatively large range of motion limits the usefulness
of water manometers to modest pressures only. If we wished to use a water manometer to measure
the pressure of compressed air in an industrial pneumatic supply system at approximately 100 PSI,
the manometer would have to be in excess of 230 feet talll Clearly, a water manometer would not
be the proper instrument to use for such an application.

However, water is not the only viable liquid for use in manometers. We could take the exact same
clear U-tube and fill it partially full of liquid mercury instead, which is substantially denser than
water. In a mercury manometer, 1 PSI of applied gas pressure results in very slightly more than 2
inches of liquid column displacement. A mercury manometer applied to the task of measuring air
pressure in an industrial pneumatic system would only have to be 17 feet tall — still quite large and
cumbersome®® for a measuring instrument, but not impossible to construct or to use.

49A colleague of mine told me once of working in an industrial facility with a very old steam boiler, where boiler
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A common form of manometer seen in industrial instrument calibration shops is the well type,
consisting of a single vertical tube and a relatively large reservoir (called the “well”) acting as the
second column:

"Well" manometer

Applied
pressure

'

|
Height h Scale

Well

Due to the well’s much larger cross-sectional area, liquid motion inside of it is negligible compared
to the motion of liquid inside the clear viewing tube. For all practical purposes®®, the liquid level
inside the “well” is constant, and so the liquid inside the tube moves the full distance equivalent
to the applied pressure. Thus, the well manometer provides an easier means of reading pressure:
no longer does one have to measure the difference of height between two liquid columns, only the
height of a single column.

steam pressure was actually indicated by tall mercury manometers reaching from floor to ceiling. Operations personnel
had to climb a ladder to accurately read pressure indicated by these manometers!

50To give some perspective on just how little the liquid level changes in the well, consider a well-type manometer
with a 1/4 inch (inside) diameter viewing tube and a 4-inch diameter circular well. The ratio of diameters for these
two liquid columns is 16:1, which means their ratio of areas is 256:1. Thus, for every inch of liquid motion in the
viewing tube, the liquid inside the well moves only % of an inch. Unless the viewing tube is quite tall, the amount
of error incurred by interpreting the tube’s liquid height directly as pressure will be minimal — quite likely less than
what the human eye is able to discern on a ruler scale anyway. If the utmost accuracy is desired in a well manometer,
however, we may compensate for the trifling motion of liquid in the well by building a custom ruler for the vertical
tube — one with a 222 reduced scale (so that 253 of an inch of liquid motion in the tube reads as exactly 1 inch of

256 256
liquid column) in the case of the 1/4 inch tube and 4 inch well dimensions.
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2.10.5 Systems of pressure measurement

Pressure measurement is often a relative thing. When we say there is 35 PSI of air pressure in an
inflated car tire, what we mean is that the pressure inside the tire is 35 pounds per square inch greater
than the surrounding, ambient air pressure. It is a fact that we live and breathe in a pressurized
environment. Just as a vertical column of liquid generates a hydrostatic pressure, so does a vertical
column of gas. If the column of gas is very tall, the pressure generated by it will be substantial
enough to measure. Such is the case with Earth’s atmosphere, the pressure at sea level caused by
the weight of the atmosphere is approximately 14.7 PSI.

You and I do not perceive this constant air pressure around us because the pressure inside our
bodies is equal to the pressure outside our bodies. Thus our skin, which serves as a differential
pressure-sensing diaphragm, detects no difference of pressure between the inside and outside of our
bodies. The only time the Earth’s air pressure becomes perceptible to us is if we rapidly ascend
or descend, where the pressure inside our bodies does not have time to equalize with the pressure
outside, and we feel the force of that differential pressure on our eardrums.

If we wish to speak of a fluid pressure in terms of how it compares to a perfect vacuum (absolute
zero pressure), we specify it in terms of absolute units. For example, when I said earlier that the
atmospheric pressure at sea level was 14.7 PSI, what I really meant is it is 14.7 PSIA (pounds per
square inch absolute), meaning 14.7 pounds per square inch greater than a perfect vacuum. When 1
said earlier that the air pressure inside an inflated car tire was 35 PSI, what I really meant is it was 35
PSIG (pounds per square inch gauge), meaning 35 pounds per square inch greater than ambient air
pressure. The qualifier “gauge” implies the pressure indicated by a pressure-measuring gauge, which
in most cases works by comparing the sample fluid’s pressure to that of the surrounding atmosphere.
When units of pressure measurement are specified without a “G” or “A” suffix, “gauge” pressure is
usually”®! assumed.

51With few exceptions!
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Gauge and absolute pressure values for some common fluid pressures are shown in this table:

Gauge pressure Fluid example Absolute pressure
90 PSIG Bicycle tire air pressure 104.7 PSIA
35 PSIG Automobile tire air pressure 49.7 PSTA
0 PSIG Atmospheric pressure 14.7 PSTA
at sea level
-9.8 PSI Engine manifold vacuum 4.9 PSIA
(9.8 PSI vacuum) under idle conditions
-14.7 PSIG Perfect vacuum 0 PSIA
(14.7 PSI vacuum) (no gas molecules present)

Note that the only difference between each of the corresponding gauge and absolute pressures is
an offset of 14.7 PSI, with absolute pressure being the larger (more positive) value.

This offset of 14.7 PSI between absolute and gauge pressures can be confusing if we must convert
between different pressure units. Suppose we wished to express the tire pressure of 35 PSIG in
units of inches of water column ("W.C.). If we stay in the gauge-pressure scale, all we have to do is
multiply by 27.68:

35PSI  27.68”W.C.
1 1psI

Note how the fractions have been arranged to facilitate cancellation of units. The “PSI” unit

in the numerator of the first fraction cancels with the “PSI” unit in the denominator of the second

fraction, leaving inches of water column ("W.C.) as the only unit standing. Multiplying the first

fraction (35 PSI over 1) by the second fraction (27.68 "W.C. over 1 PSI) is “legal” to do since the

second fraction has a physical value of unity (1): being that 27.68 inches of water column is the same

physical pressure as 1 PSI, the second fraction is really the number “1” in disguise. As we know,

multiplying any quantity by unity does not change its value, so the result of 968.8 ”W.C. we get has

the exact same physical meaning as the original figure of 35 PSI. This technique of unit conversion

is sometimes known as unity fractions, and it is discussed in more general terms in another section
of this book (refer to section 2.4 beginning on page 62).

= 968.8"W.C.

If, however, we wished to express the car’s tire pressure in terms of inches of water column
absolute (in reference to a perfect vacuum), we would have to include the 14.7 PST offset in our
calculation, and do the conversion in two steps:

35 PSIG + 14.7 PSI = 49.7 PSIA

49.7PSIA  27.68"W.C.A
1 1PSIA

The proportion between inches of water column and pounds per square inch is still the same

(27.68) in the absolute scale as it is in the gauge scale. The only difference is that we included the

14.7 PSI offset in the very beginning to express the tire’s pressure on the absolute scale rather than
on the gauge scale. From then on, all conversions were performed in absolute units.

This two-step conversion process is not unlike converting between different units of temperature

(degrees Celsius versus degrees Fahrenheit), and for the exact same reason. To convert from °F to

=1375.7"W.C.A



2.10. FLUID MECHANICS 155

°C, we must first subtract an offset of 32 degrees, then multiply by g The reason an offset is involved
in this temperature conversion is because the two temperature scales do not share the same “zero”
point: 0 °C is not the same temperature as 0 °F. Likewise, 0 PSIG is not the same pressure as 0
PSIA, and so an offset is always necessary to convert between gauge and absolute pressure units.

As seen with the unit of pounds per square inch (PSI), the distinction between gauge and absolute
pressure is typically shown by a lettered suffix “G” or “A” following the unit, respectively. Following
this convention, we may encounter other units of pressure measurement qualified as either gauge
or absolute by these letters: kPaA (kilo-pascals absolute), inches HgG (inches of mercury gauge),
inches W.C.A (inches of water column absolute), etc.

There are some pressure units that are always in absolute terms, and as such require no letter
“A” to specify. One is the unit of atmospheres, 1 atmosphere being 14.7 PSIA. There is no such thing
as “atmospheres gauge” pressure. For example, if we were given a pressure as being 4.5 atmospheres
and we wanted to convert that into pounds per square inch gauge (PSIG), the conversion would be
a two-step process:

4.5atm  14.7 PSIA

X = 66.15 PSTA
1 1 atm

66.15 PSTA — 14.7 PSI = 51.45 PSIG

Another unit of pressure measurement that is always absolute is the torr, equal to 1 millimeter
of mercury column absolute (mmHgA). 0 torr is absolute zero, equal to 0 atmospheres, 0 PSIA; or
-14.7 PSIG. Atmospheric pressure at sea level is 760 torr, equal to 1 atmosphere, 14.7 PSIA, or 0
PSIG.

If we wished to convert the car tire’s pressure of 35 PSIG into torr, we would once again have to
offset the initial value to get everything into absolute terms.

35 PSIG + 14.7 PSI = 49.7 PSIA

49.7 PSIA 760 torr

=2 .
1 X Ta7psIa 20090 torr

One last unit of pressure measurement deserves special comment, for it may be used to express
either gauge or absolute pressure, yet it is not customary to append a “G” or an “A” to the unit.
This unit is the bar, exactly equal to 100 kPa, and approximately equal®® to 14.5 PSI. Some technical
references append a lower-case letter “g” or “a” to the word “bar” to show either gauge pressure
(barg) or absolute pressure (bara), but this notation seems no longer favored. Modern usage typically
omits the “g” or “a” suffix in favor of context: the word “gauge” or “absolute” may be included
in the expression to clarify the meaning of “bar.” Sadly, many references fail to explicitly declare
either “gauge” or “absolute” when using units of bar, leaving the reader to interpret the intended
context. Despite this ambiguity, the bar is frequently used in European literature as a unit of

pressure measurement.

52The origin of this unit for pressure is the atmospheric pressure at sea level: 1 atmosphere, or 14.7 PSIA. The
word “bar” is short for barometric, in reference to Earth’s ambient atmospheric pressure.
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2.10.6 Buoyancy

When a solid body is immersed in a fluid, it displaces an equal volume of that fluid. This displacement
of fluid generates an upward force on the object called the buoyant force. The magnitude of this
force is equal to the weight of the fluid displaced by the solid body, and it is always directed exactly
opposite the line of gravitational attraction. This is known as Archimedes’ Principle.

Buoyant force is what makes ships float. A ship sinks into the water just enough so the weight
of the water displaced is equal to the total weight of the ship and all it holds (cargo, crew, food,
fuel, etc.):

v

Amount of water
displaced by the ship

If we could somehow measure the weight of that water displaced, we would find it exactly equals
the dry weight of the ship:

Expressed mathematically, Archimedes’ Principle states that the buoyant force is the product of
the liquid volume and liquid density:

Fbuoyant = 7V

Where,
F, = Buoyant force exerted on object, opposite in direction from gravity
v = Weight density of liquid
V' = Volume of liquid displaced by the submerged object

Archimedes’ Principle also explains why hot-air balloons and helium aircraft float. By filling a
large enclosure with a gas that is less dense than the surrounding air, that enclosure experiences
an upward (buoyant) force equal to the difference between the weight of the air displaced and the
weight of the gas enclosed. If this buoyant force equals the weight of the craft and all it holds (cargo,
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crew, food, fuel, etc.), it will exhibit an apparent weight of zero, which means it will float. If the
buoyant force exceeds the weight of the craft, the resultant force will cause an upward acceleration
according to Newton’s Second Law of motion (F = ma).

Submarines also make use of Archimedes’ Principle, adjusting their buoyancy by adjusting the
amount of water held by ballast tanks on the hull. Positive buoyancy is achieved by “blowing” water
out of the ballast tanks with high-pressure compressed air, so the submarine weighs less (but still
occupies the same hull volume and therefore displaces the same amount of water). Negative buoyancy
is achieved by “flooding” the ballast tanks so the submarine weighs more. Neutral buoyancy is when
the buoyant force exactly equals the weight of the submarine and the remaining water stored in
the ballast tanks, so the submarine is able to “hover” in the water with no vertical acceleration or
deceleration.

An interesting application of Archimedes’ Principle is the quantitative determination of an
object’s density by submersion in a liquid. For instance, copper is 8.96 times as dense as water,
with a mass of 8.96 grams per cubic centimeter (8.96 g/cm?) as opposed to water at 1.00 gram per
cubic centimeter (1.00 g/cm?). If we had a sample of pure, solid copper exactly 1 cubic centimeter
in volume, it would have a mass of 8.96 grams. Completely submerged in pure water, this same
sample of solid copper would appear to have a mass of only 7.96 grams, because it would experience
a buoyant force equivalent to the mass of water it displaces (1 cubic centimeter = 1 gram of water).
Thus, we see that the difference between the dry mass (mass measured in air) and the wet mass
(mass measured when completely submerged in water) is the mass of the water displaced. Dividing
the sample’s dry mass by this mass difference (dry — wet mass) yields the ratio between the sample’s
mass and the mass of an equivalent volume of water, which is the very definition of specific gravity.
The same calculation yields a quantity for specific gravity if weights instead of masses are used,
since weight is nothing more than mass multiplied by the acceleration of gravity (Fieight = mg),
and the constant g cancels out of both numerator and denominator:

Mry B Mdryg B Dry weight

Specific Gravity = = =
P Vi Mdry — Mawet  Mdryg — Muwerg — Dry weight — Wet weight
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Another application of Archimedes’ Principle is the use of a hydrometer for measuring liquid
density. If a narrow cylinder of precisely known volume and weight (most of the weight concentrated
at one end) is immersed in liquid, that cylinder will sink to a level dependent on the liquid’s density.
In other words, it will sink to a level sufficient to displace its own weight in fluid. Calibrated marks
made along the cylinder’s length may then serve to register liquid density in any unit desired.

A simple style of hydrometer used to measure the density of lead-acid battery electrolyte is shown
in this illustration:

Squeeze bulb

Read density
here

To use this hydrometer, you must squeeze the rubber bulb at the top and dip the open end of
the tube into the liquid to be sampled. Relaxing the rubber bulb will draw a sample of liquid up
into the tube where it immerses the float. When enough liquid has been drawn into the tube to
suspend the float so that it neither rests on the bottom of the tapered glass tube or “tops out” near
the bulb, the liquid’s density may be read at the air/liquid interface.
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A denser electrolyte liquid results in the float rising to a higher level inside the hydrometer tube:

Dense liquid Light liquid
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The following photograph shows a set of antique hydrometers used to measure the density of
beer. The middle hydrometer bears a label showing its calibration to be in degrees Baumé (heavy):

Liquid density measurement is useful in the alcoholic beverage industry to infer alcohol content.
Since alcohol is less dense than water, a sample containing a greater concentration of alcohol (a
greater proof rating) will be less dense than a “weaker” sample, all other factors being equal.
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A less sophisticated version of hydrometer uses multiple balls of differing density. A common
application for such a hydrometer is in measuring the concentration of “antifreeze” coolant for

automobile engines. The denser the sample liquid, the more of the balls will float (and fewer will
sink):

—~—"Squeeze bulb"

P Eyedropper

~ Colored balls

This form of instrument yields a qualitative assessment of liquid density as opposed to the
quantitative measurement given by a hydrometer with calibrated marks on a single float. When used
to measure the density of engine coolant, a greater number of floating balls represents a “stronger”
concentration of glycol in the coolant. “Weak” glycol concentrations represent a greater percentage
of water in the coolant, with a correspondingly greater freezing temperature.



162 CHAPTER 2. PHYSICS

2.10.7 Gas Laws

The Ideal Gas Law relates pressure, volume, molecular quantity, and temperature of an ideal gas
together in one concise mathematical expression:

PV =nRT

Where,
P = Absolute pressure (atmospheres)
V' = Volume (liters)
n = Gas quantity (moles)
R = Universal gas constant (0.0821 L - atm / mol - K)
T = Absolute temperature (K)

For example, the Ideal Gas Law predicts five moles of helium gas (20 grams worth) at a pressure
of 1.4 atmospheres and a temperature of 310 Kelvin will occupy 90.9 liters of volume.

An alternative form of the Ideal Gas Law uses the number of actual gas molecules (V) instead
of the number of moles of molecules (n):

PV = NET

Where,
P = Absolute pressure (atmospheres)
V' = Volume (liters)
N = Gas quantity (molecules)
k = Boltzmann’s constant (1.38 x 10723 J / K)
T = Absolute temperature (K)

Interestingly, the Ideal Gas Law holds true for any gas. The theory behind this assumption is
that gases are mostly empty space: there is far more volume of empty space separating individual
gas molecules in a sample than there is space occupied by the gas molecules themselves. This means
variations in the sizes of those individual molecules is negligible. Thus, we may apply either form of
the Ideal Gas Law to situations regardless of the type of gas involved.

To modify the previous example, where 5 moles of helium gas occupied 90.9 liters at 1.4
atmospheres and 310 Kelvin, it is also true that 5 moles of nitrogen gas will occupy the same
volume (90.9 liters) at 1.4 atmospheres and 310 Kelvin. The only difference will be the mass of each
gas sample. 5 moles of helium gas (*He) will have a mass of 20 grams, whereas 5 moles of nitrogen
gas (14Ny) will have a mass of 140 grams.

Although no gas in real life is ideal, the Ideal Gas Law is a close approximation for conditions of
modest gas density, and no phase changes (gas turning into liquid or visa-versa). You will find this
Law appearing again and again in calculations of gas volume and gas flow rates, where engineers
and technicians must know the relationship between gas volume, pressure, and temperature.
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Since the molecular quantity of an enclosed gas is constant, and the universal gas constant must
be constant, the Ideal Gas Law may be written as a proportionality instead of an equation:

PV xT

Several “gas laws” are derived from this proportionality. They are as follows:

PV = Constant Boyle’s Law (assuming constant temperature ')
VT Charles’s Law (assuming constant pressure P)
PxT Gay-Lussac’s Law (assuming constant volume V')

You will see these laws referenced in explanations where the specified quantity is constant (or
very nearly constant).

For non-ideal conditions, the “Real” Gas Law formula incorporates a corrected term for the
compressibility of the gas:

PV = ZnRT

Where,
P = Absolute pressure (atmospheres)
V' = Volume (liters)
7 = Gas compressibility factor (unitless)
n = Gas quantity (moles)
R = Universal gas constant (0.0821 L - atm / mol - K)
T = Absolute temperature (K)

The compressibility factor for an ideal gas is unity (Z = 1), making the Ideal Gas Law a limiting
case of the Real Gas Law. Real gases have compressibility factors less than unity (< 1). What this
means is real gases tend to compress more than the Ideal Gas Law would predict (i.e. occupies less
volume for a given amount of pressure than predicted, and/or exerts less pressure for a given volume
than predicted).
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2.10.8 Fluid viscosity

Viscosity is a measure of a fluid’s resistance to shear. It may be visualized as a sort of internal
friction, where individual fluid molecules experience either cohesion or collision while flowing past
one another. The more “viscous” a fluid is, the “thicker” it is when stirred. Clean water is an
example of a low-viscosity liquid, while honey at room temperature is an example of a high-viscosity
liquid.

There are two different ways to quantify the viscosity of a fluid: absolute viscosity and kinematic
viscosity. Absolute viscosity (symbolized by the Greek symbol “eta” 7, or sometimes by the Greek
symbol “mu” p), also known as dynamic viscosity, is a direct relation between stress placed on
a fluid and its rate of deformation (or shear). The textbook definition of absolute viscosity is
based on a model of two flat plates moving past each other with a film of fluid separating them.
The relationship between the shear stress applied to this fluid film (force divided by area) and the
velocity /film thickness ratio is viscosity:

Force
F » plate Velocity
Y —V
L }_ (stationary)
plate
_FL
= Av

Where,
n = Absolute viscosity (pascal-seconds), also symbolized as
F = Force (newtons)
L = Film thickness (meters) — typically much less than 1 meter for any realistic demonstration!
A = Plate area (square meters)
v = Relative velocity (meters per second)

Another common unit of measurement for absolute viscosity is the poise, with 1 poise being equal
to 0.1 pascal-seconds. Both units are too large for common use, and so absolute viscosity is often
expressed in centipoise. Water has an absolute viscosity of very nearly 1.000 centipoise.
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Kinematic viscosity (symbolized by the Greek letter “nu” v) includes an assessment of the fluid’s
density in addition to all the above factors. It is calculated as the quotient of absolute viscosity and
mass density:

T I3

Where,
v = Kinematic viscosity (stokes)
n = Absolute viscosity (poises)
p = Mass density (grams per cubic centimeter)

As with the unit of poise, the unit of stokes is too large for convenient use, so kinematic viscosities
are often expressed in units of centistokes. Water has a kinematic viscosity of very nearly 1.000
centistokes.

The mechanism of viscosity in liquids is inter-molecular cohesion. Since this cohesive force is
overcome with increasing temperature, most liquids tend to become “thinner” (less viscous) as they
heat up. The mechanism of viscosity in gases, however, is inter-molecular collisions. Since these
collisions increase in frequency and intensity with increasing temperature, gases tend to become
“thicker” (more viscous) as they heat up.

As a ratio of stress to strain (applied force to yielding velocity), viscosity is often constant for
a given fluid at a given temperature. Interesting exceptions exist, though. Fluids whose viscosities
change with applied stress, and/or over time with all other factors constant, are referred to as non-
Newtonian fluids. A simple example of a non-Newtonian fluid is cornstarch mixed with water, which
“solidifies” under increasing stress then returns to a liquid state when the stress is removed.
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2.10.9 Reynolds number

Viscous flow is when friction forces dominate the behavior of a moving fluid, typically in cases
where viscosity (internal fluid friction) is great. Inviscid flow, by contrast, is where friction within a
moving fluid is negligible and the fluid moves freely. The Reynolds number of a fluid is a dimensionless
quantity expressing the ratio between a moving fluid’s momentum and its viscosity, and is a helpful
gauge in predicting how a fluid stream will move.

A couple of formulae for calculating Reynolds number of a flow are shown here:

~ Dwp
i

Re

Where,
Re = Reynolds number (unitless)
D = Diameter of pipe, (meters)
v = Average velocity of fluid (meters per second)
p = Mass density of fluid (kilograms per cubic meter)
p = Absolute viscosity of fluid (pascal-seconds)

(3160)GQ

R:
e D

Where,
Re = Reynolds number (unitless)
Gy = Specific gravity of liquid (unitless)
@ = Flow rate (gallons per minute)
D = Diameter of pipe (inches)
1 = Absolute viscosity of fluid (centipoise)
3160 = Conversion factor for British units
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The first formula, with all metric units, is the textbook “definition” for Reynolds number. If you
take the time to dimensionally analyze this formula, you will find that all units do indeed cancel to
leave the Reynolds number unitless:

Re — Dup
"
] [12] [ 54
Re = [Pa~£] ]

Recalling that the definition of a “pascal” is one Newton of force per square meter:

[
]
J %)
7]

Recalling that the definition of a “newton” is one kilogram times meters per second squared
(from Newton’s Second Law equation F' = ma):

= 5

Re — [

e [t

kg -m - g2

Re = unitless

The second formula given for calculating Reynolds number includes a conversion constant of 3160,
which bears the unwieldy unit of “inches-centipoise-minutes per gallon” in order that the units of
all variables (flow in gallons per minute, pipe diameter in inches, and viscosity in centipoise) may
cancel. Note that specific gravity (Gy) is unitless and therefore does not appear in this dimensional
analysis:

Re — (100610
o] 2]

Re = [in - cp]

Re = unitless

You will often find this formula, and the conversion constant of 3160, shown without units at
all. Its sole purpose is to make the calculation of Reynolds number easy when working with British
units customary in the United States.
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The Reynolds number of a fluid stream may be used to qualitatively predict whether the flow
regime will be laminar or turbulent. Low Reynolds number values predict laminar (viscous) flow,
where fluid molecules move in straight “stream-line” paths, and fluid velocity near the center of the
pipe is substantially greater than near the pipe walls:

Laminar flow

Velocity
"profile"

High Reynolds number values predict turbulent (inviscid) flow, where individual molecule motion
is chaotic on a microscopic scale, and fluid velocities across the face of the flow profile are similar:

Turbulent flow

Velocity
"profile”

Fluid flow P DO 86”0

It should be emphasized that this turbulence is microscopic in nature, and occurs even when the
fluid flows through a piping system free of obstructions, rough surfaces, and/or sudden directional
changes. At high Reynolds number values, turbulence simply happens.

Other forms of turbulence, such as eddies and swirl are possible at high Reynolds numbers, but
are caused by disturbances in the flow stream such as pipe elbows, tees, control valves, thermowells,
and other irregular surfaces. The “micro-turbulence” naturally occurring at high Reynolds numbers
will actually randomize such macroscopic (large-scale) motions if the fluid subsequently passes
through a long enough length of straight pipe.

Turbulent flow is actually the desired condition for many industrial processes. When different
fluids must be mixed together, for example, laminar flow is a bad thing: only turbulent flow will
guarantee thorough mixing. The same is true for convective heat exchange: in order for two fluids
to effectively exchange heat energy within a heat exchanger, the flow must be turbulent so that
molecules from the inner portions of the flow stream will come into contact with the exchanger
walls. Many types of flowmeters require a condition called fully-developed turbulent flow, where
the flow profile is relatively flat and the only turbulence is that existing on a microscopic scale.
Large-scale disturbances in the flow profile such as eddies and swirl tend to negatively affect the
measurement performance of many flowmeter designs. This is why such flowmeters usually require
long lengths of “straight-run” piping both upstream and downstream: to give micro-turbulence the
opportunity to randomize any large-scale motions and homogenize the velocity profile.
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A generally accepted rule-of-thumb is that Reynolds number values less than 2000 will probably
be laminar, while values in excess of 10000 will probably be turbulent. There is no definite threshold
value for all fluids and piping configurations, though. To illustrate, I will share with you some
examples of Reynolds number thresholds for laminar versus turbulent flows are given by various
technical sources:

Chapter 2.8: Laminar Flowmeters of the Instrument Engineers’ Handbook, Process Measurement
and Analysis, Third Edition (pg. 105 — authors: R. Siev, J.B. Arant, B.G. Liptdk) define Re < 2000
as “laminar” flow, Re > 10000 as “fully developed turbulent” flow, and any Reynolds number values
between 2000 and 10000 as “transitional” flow.

Chapter 2: Fluid Properties — Part IT of the ISA Industrial Measurement Series — Flow (pg. 11)
define “laminar” flow as Re < 2000, “turbulent” flow as Re > 4000, and any Reynolds values in
between 2000 and 4000 as “transitional” flow.

The Laminar Flow in a Pipe section in the Standard Handbook of Engineering Calculations (pg. 1-
202) defines “laminar” flow as Re < 2100, and “turbulent” flow as Re > 3000. In a later section of
that same book (Piping and Fluid Flow — page 3-384), “laminar” flow is defined as Re < 1200 and
“turbulent” flow as Re > 2500.

Douglas Giancoli, in his physics textbook Physics (third edition, pg. 11), defines “turbulent” flow
as Re < 2000 and “turbulent” flow as Re > 2000.

Finally, a source on the Internet (http://flow.netfirms.com/reynolds/theory.htm) attempts to
define the threshold separating laminar from turbulent flow to an unprecedented degree of precision:
Re < 2320 is supposedly the defining point of “laminar” flow, while Re > 2320 is supposedly marks
the onset of “turbulent” flow.

Clearly, Reynolds number alone is insufficient for consistent prediction of laminar or turbulent
flow, otherwise we would find far greater consistency in the reported Reynolds number values for each
regime. Pipe roughness, swirl, and other factors influence flow regime, making Reynolds number
an approximate indicator only. It should be noted that laminar flow may be sustained at Reynolds
numbers significantly in excess of 10000 under very special circumstances. For example, in certain
coiled capillary tubes, laminar flow may be sustained all the way up to Re = 15000, due to something
known as the Dean effect!
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2.10.10 Law of Continuity

Any fluid moving through a pipe obeys the Law of Continuity, which states that the product of
average velocity (), pipe cross-sectional area (A), and fluid density (p) for a given flow stream must
remain constant:

p1AIUT = poAdy = - pr ApUy,

_/\/_

— m) >

\
p 1A1V]_ p2 A ZVZ N

P3AV;

Fluid continuity is an expression of a more fundamental law of physics: the Conservation of
Mass. If we assign appropriate units of measurement to the variables in the continuity equation, we
see that the units cancel in such a way that only units of mass per unit time remain:

_ [kg] [mQ] m kg
o= 1] [2] 2] - 2
m 1 S S
This means we may define the product pAv as an expression of mass flow rate, or W:

W = pAv

In order for the product pAv to differ between any two points in a pipe, mass would have to
mysteriously appear and disappear. So long as the flow is continuous (not pulsing), and the pipe
does not leak, it is impossible to have different rates of mass flow at different points along the flow
path without violating the Law of Mass Conservation. The continuity principle for fluid through a
pipe is analogous to the principle of current being the same everywhere in a series circuit, and for

53

equivalently the same reason®-.

53In an electric circuit, the conservation law necessitating equal current at all points in a series circuit is the Law
of Charge Conservation.
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We refer to a flowing fluid as incompressible if its density does not substantially change with
modest changes in pressure®?. For this limiting case, p is constant and the continuity equation
simplifies to the following form:

AT1 = Ao

Examining this equation in light of dimensional analysis, we see that the product Av is also an
expression of flow rate:

2 3
m m m
o= [2] 2 [2
[ 1 ] s s
Cubic meters per second is an expression of volumetric flow rate, often symbolized by the variable

Q:

Q= Av

The practical implication of this principle is that fluid velocity is inversely proportional to the
cross-sectional area of a pipe. That is, fluid slows down when the pipe’s diameter expands, and
visa-versa. We readily see this principle manifest in the natural world: deep rivers run slow, while
rapids are relatively shallow (and/or narrow).

More specifically, we may say that the average velocity of a fluid through a pipe varies inversely
with the square of the diameter, since cross-sectional area is proportional to the square of the pipe
diameter. For example, if fluid flows at a velocity of 2 feet per second through a 12-inch pipe, and
that pipe extends to a narrower section only 6 inches (half the diameter of the wide section), the
velocity at the narrower section will be four times as great (8 feet per second), since the area of that
skinnier section is one-quarter the area of the wider section.

54 Although not grammatically correct, this is a common use of the word in discussions of fluid dynamics. By
definition, something that is “incompressible” cannot be compressed, but that is not how we are using the term here.
We commonly use the term “incompressible” to refer to either a moving liquid (in which case the actual compressibility
of the liquid is inconsequential) or a gas/vapor that does not happen to undergo substantial compression or expansion
as it flows through a pipe. In other words, an “incompressible” flow is a moving fluid whose p does not substantially
change, whether by actual impossibility or by circumstance.



172 CHAPTER 2. PHYSICS

For example, consider a pipe with an inside diameter of 8 inches (2/3 of a foot), passing a liquid
flow of 5 cubic feet per minute. The average velocity (v) of this fluid may be calculated as follows:

Q=Av
5=9
A
Solving for A in units of square feet:
A=mr?

Now, solving for average velocity :

5 ft?
T = Q _ Inin
A zg?
= (o) ()
U= -
min / \ 7 ft2
45 fi f
v = o ,t = 14.32—jE
7T IM1n min

Thus, the average fluid velocity inside an 8-inch pipe passing a volumetric flow rate of 5 cubic
feet per minute is 14.32 feet per minute.

2.10.11 Viscous flow

The pressure dropped by a slow-moving, viscous fluid through a pipe is described by the Hagen-
Poiseuille equation. This equation applies only for conditions of low Reynolds number; i.e. when
viscous forces are the dominant restraint to fluid motion through the pipe, and turbulence is

nonexistent:
APD*
=k
© ( pL )

Where,
@ = Flow rate (gallons per minute)
k = Unit conversion factor = 7.86 x10°
AP = Pressure drop (inches of water column)
D = Pipe diameter (inches)
1 = Liquid viscosity (centipoise) — this is a temperature-dependent variable!
L = Length of pipe section (inches)
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2.10.12 Bernoulli’s equation

Bernoulli’s equation is an expression of the Law of Energy Conservation for an inviscid fluid stream,
named after Daniel Bernoulli®®. It states that the sum total energy at any point in a passive
fluid stream (i.e. no pumps or other energy-imparting machines in the flow path, nor any energy-
dissipating elements) must be constant. Two versions of the equation are shown here:

2 2
(% v
zlpg+§p+P1:Zng+%p+Pz
2 2 P.
R R R A
2 29 v

Where,
z = Height of fluid (from a common reference point, usually ground level)
p = Mass density of fluid
~v = Weight density of fluid (v = pg)
g = Acceleration of gravity
v = Velocity of fluid
P = Pressure of fluid

Each of the three terms in Bernoulli’s equation is an expression of a different kind of energy,
commonly referred to as head:

zZpg Elevation head

2
% Velocity head

P Pressure head

Elevation and Pressure heads are potential forms of energy, while Velocity head is a kinetic form
of energy. Note how the elevation and velocity head terms so closely resemble the formulae for
potential and kinetic energy of solid objects:

E, = mgh Potential energy formula

1
Ep = §m1)2
The only real differences between the solid-object and fluid formulae for energies is the use of
mass density (p) for fluids instead of mass (m) for solids, and the arbitrary use of the variable z for
height instead of h. In essence, the elevation and velocity head terms within Bernoulli’s equation

come from the assumption of individual fluid molecules behaving as miniscule solid masses.

Kinetic energy formula

55 According to Ven Te Chow in Open Channel Hydraulics, who quotes from Hunter Rouse and Simon Ince’s work
History of Hydraulics, Bernoulli’s equation was first formulated by the great mathematician Leonhard Euler and made
popular by Julius Weisbach, not by Daniel Bernoulli himself.
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It is very important to maintain consistent units of measurement when using Bernoulli’s equation!
Each of the three energy terms (elevation, velocity, and pressure) must possess the exact same units
if they are to add appropriately’®. Here is an example of dimensional analysis applied to the first
version of Bernoulli’s equation (using British units):

2

v
ng+7p+P

o 2] 5] 2] 2] [ (2

As you can see, both the first and second terms of the equation (elevation and velocity heads)
bear the same unit of slugs per foot-second squared after all the “feet” are canceled. The third term
(pressure head) does not appear as though its units agree with the other two terms, until you realize
that the unit definition of a “pound” is a slug of mass multiplied by the acceleration of gravity in
feet per second squared, following Newton’s Second Law of motion (F = ma):

1b] = gl | 5|

Once we make this substitution into the pressure head term, the units are revealed to be the
same as the other two terms, slugs per foot-second squared:

{lb} % _ [slug}

w2~ 2 ft - 2

In order for our British units to be consistent here, we must use feet for elevation, slugs per
cubic foot for mass density, feet per second squared for acceleration, feet per second for velocity,
and pounds per square foot for pressure. If one wished to use the more common pressure unit of
PSI (pounds per square inch) with Bernoulli’s equation instead of PSF (pounds per square foot),
all the other units would have to change accordingly: elevation in inches, mass density in slugs per
cubic inch, acceleration in inches per second squared, and velocity in inches per second.

Just for fun, we can try dimensional analysis on the second version of Bernoulli’s equation, this
time using metric units:

v2 P
) ]
) )™

Here, we see that all three terms end up being cast in simple units of meters. That is, the fluid’s
elevation, velocity, and pressure heads are all expressed as simple elevations. In order for our metric

56Surely you’ve heard the expression, “Apples and Oranges don’t add up.” Well, pounds per square inch and
pounds per square foot don’t add up either! A general mathematical rule in physics is that any quantities added to
or subtracted from each other must bear the exact same units. This rule does not hold for multiplication or division,
which is why we see units canceling in those operations. With addition and subtraction, no unit cancellation occurs.
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units to be consistent here, we must use meters for elevation, meters per second for velocity, meters
per second squared for acceleration, pascals (newtons per square meter) for pressure, and newtons
per cubic meter for weight density.

Applying Bernoulli’s equation to real-life applications can be a bit daunting for students, as there
are so many different units of measurement to contend with, and so many calculations which must
be precise in order to arrive at a correct final answer. The following example serves to illustrate how
Bernoulli’s equation may be applied to the solution of pressure at a point in a water piping system,
assuming no frictional losses anywhere in the system:

Valve

P, =777

Pipe diameter = 6 inches —»

Elevation difference

i = 3 feet

P, = 46 PSI

Pipe diameter = 10 inches
v, =11 ft/s

We know without a doubt that Bernoulli’s equation will be what we need to evaluate in order to
solve for the unknown pressure P», but where do we begin? A good place to start is by writing the
equation we know we will need, then identifying all known values and all unknown values:

V2 v2
leg+%)+P1=22ﬁ’g+%)+P2



176 CHAPTER 2. PHYSICS

Here is a list of known values, given to us already:

Known quantity Comments
21 0 ft (arbitrarily assigned as 0 height)
29 3 ft (if 21 is O feet, then 2o is 3 ft above it)
vy 11 ft/s
P 46 PSI (need to convert into PSF so all units match)
g 32.2. ft/s?

The conversion for P from units of PSI into units of PSF is quite simple: multiply 46 PSI by
144 to get 6624 PSF.

Here is a list of values unknown to us at this time:

Unknown quantity Comments
p (needs to be in units of slugs/ft?)
Vg (needs to be un units of ft/s just like vy)
Py (the quantity we are ultimately solving for)

Now all we must do is solve for p and v, and we will be ready to use Bernoulli’'s equation to
solve for P». The important of identifying all the known and unknown quantities before beginning
any calculations cannot be overstated. Doing so allows us to develop a plan for solving the problem.
Without a plan, one has no idea of where or how to proceed, which is a condition many students
repeatedly find themselves in when solving physics-type problems.

We know that p is an expression of mass density for the fluid, and we were told the fluid in this
example is water. Water has a maximum density of 62.4 pounds per cubic foot, but this figure is
not usable in our chosen form of Bernoulli’s equation because it is weight density () and not mass
density (p).

The relationship between weight density v and mass density p is the exact same relationship
between weight (Fy) and mass (m) in a gravi