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Preface

I did not want to write this book . . . honestly.

My first book project began in 1998, titled Lessons In Electric Circuits, and I didn’t call “quit” until
six volumes and five years later. Even then it was not complete, but being an open-source project
it gained traction on the Internet to the point where other people took over its development and
it grew fine without me. The impetus for writing this first tome was a general dissatisfaction with
available electronics textbooks. Plenty of textbooks exist to describe things, but few really ezplain
things well for students, and the field of electronics is no exception. I wanted my book(s) to be
different, and so they were. No one told me how time-consuming it was going to be to write them,
though!

The next few years’ worth of my spare time went to developing a set of question-and-answer
worksheets designed to teach electronics theory in a Socratic, active-engagement style. This project
proved quite successful in my professional life as an instructor of electronics. In the summer of 2006,
my job changed from teaching electronics to teaching industrial instrumentation, and I decided to
continue the Socratic mode of instruction with another set of question-and-answer worksheets.

However, the field of industrial instrumentation is not as well-represented as general electronics,
and thus the array of available textbooks is not as vast. I began to re-discover the drudgery of
trying to teach with inadequate texts as source material. The basis of my active teaching style was
that students would spend time researching the material on their own, then engage in Socratic-style
discussion with me on the subject matter when they arrived for class. This teaching technique
functions in direct proportion to the quality and quantity of the research sources at the students’
disposal. Despite much searching, I was unable to find a textbook adequately addressing my students’
learning needs. Many textbooks I found were written in a shallow, “math-phobic” style well below
the level I intended to teach to. Some reference books I found contained great information, but
were often written for degreed engineers with lots of Laplace transforms and other mathematical
techniques well above the level I intended to teach to. Few on either side of the spectrum actually
made an effort to explain certain concepts students generally struggle to understand. I needed a
text giving good, practical information and theoretical coverage at the same time.

In a futile effort to provide my students with enough information to study outside of class, I
scoured the Internet for free tutorials written by others. While some manufacturer’s tutorials were
nearly perfect for my needs, others were just as shallow as the textbooks I had found, and/or were
little more than sales brochures. I found myself starting to write my own tutorials on specific topics
to “plug the gaps,” but then another problem arose: it became troublesome for students to navigate
through dozens of tutorials in an effort to find the information they needed in their studies. What
my students really needed was a book, not a smorgasbord of tutorials.
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So here I am again, writing another textbook. This time around I have the advantage of wisdom
gained from the first textbook project. For this project, I will not:

. attempt to maintain a parallel book in HTML markup (for direct viewing on the Internet).
I had to go to the trouble of inventing my own quasi-XML markup language last time in an
effort to generate multiple format versions of the book from the same source code. Instead,
this time I will use stock ITEX as the source code format and regular Adobe PDF format for
the final output, which anyone may read thanks to its ubiquity. If anyone else desires the book
in a different format, I will gladly let them deal with issues of source code translation. Not
that this should be a terrible problem for anyone technically competent in markup languages,
as IATEX source is rather easy to work with.

use a GNU GPL-style copyleft license. Instead, I will use the Creative Commons
Attribution-only license, which is far more permissive for anyone wishing to incorporate my
work into derivative works. My interest is maximum flexibility for those who may adapt my
material to their own needs, not the imposition of certain philosophical ideals.

. start from a conceptual state of “ground zero.” I will assume the reader has certain
familiarity with electronics and mathematics, which I will build on. If a reader finds they need
to learn more about electronics, they should go read Lessons In Electric Clircuits.

. avoid using calculus to help explain certain concepts. Not all my readers will understand
these parts, and so I will be sure to explain what I can without using calculus. However,
I want to give my more mathematically adept students an opportunity to see the power of
calculus applied to instrumentation where appropriate. By occasionally applying calculus and
explaining my steps, I also hope this text will serve as a practical guide for students who might
wish to learn calculus, so they can see its utility and function in a context that interests them.

There do exist many fine references on the subject of industrial instrumentation. I only wish I
could condense their best parts into a single volume for my students. Being able to do so would
certainly save me from having to write my own! Listed here are some of the best books I can
recommend for those wishing to explore instrumentation outside of my own presentation:

Instrument Engineers’ Handbook series (Volumes I, II, and III), edited by Béla Liptak — by
far my favorite modern references on the subject. Unfortunately, there is a fair amount of
material within that lies well beyond my students’ grasp (Laplace transforms, etc.), and the
volumes are incredibly bulky and expensive (nearly 2000 pages, and at a cost of nearly $200.00,
apiece!). These texts also lack some of the basic content my students do need, and I don’t
have the heart to tell them to buy yet another textbook to fill the gaps.

Handbook of Instrumentation and Controls, by Howard P. Kallen. Perhaps the best-written
textbook on general instrumentation I have ever encountered. Too bad it is both long out of
print — my copy dates 1961 — and technologically dated. Like most American textbooks written
during the years immediately following Sputnik, it is a masterpiece of practical content and
conceptual clarity. I consider books like this useful for their presentations of “first principles,”
which of course are timeless.

Industrial Instrumentation Fundamentals, by Austin E. Fribance. Another great post-Sputnik
textbook — my copy dates 1962.
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e [nstrumentation for Process Measurement and Control, by Norman A. Anderson. An inspiring
effort by someone who knows the art of teaching as well as the craft of instrumentation. Too
bad the content doesn’t seem to have been updated since 1980.

o Applied Instrumentation in the Process Industries (Volume I), edited by William G. Andrew.
A very clear and fairly comprehensive overview of industrial instrumentation. Sadly, this fine
book is out of print, and much of the material is quite dated (second edition written in 1979).

e Practically anything written by Francis Greg Shinskey.

Whether or not I achieve my goal of writing a better textbook is a judgment left for others to
make. One decided advantage my book will have over all the others is its openness. If you don’t
like anything you see in these pages, you have the right to modify it to your liking! Delete content,
add content, modify content — it’s all fair game thanks to the Creative Commons licensing. My
only condition is declared in the license: you must give me credit for my original authorship. What
you do with it beyond that is wholly up to you?. This way, perhaps I can spare someone else from
having to write their own textbook from scratch!

2This includes selling copies of it, either electronic or print. Of course, you must include the Creative Commons
license as part of the text you sell (see Section 4, subsection 1 of the license for details), which means anyone will be
able to tell it is an open text and can probably figure out how to download an electronic copy off the Internet for free.
The only way you're going to make significant money selling this text is to add your own value to it, either in the
form of expansions or bundled product (e.g. simulation software, learning exercises, etc.), which of course is perfectly
fair — you must profit from your own labors. All my work does for you is give you a starting point.
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Chapter 1

Calculus

Mathematics is the investigation of an artificial world: a universe populated by abstract entities
and rigid rules governing those entities. Mathematicians devoted to the study and advancement of
pure mathematics have an extremely well-developed respect for these rules, for the integrity of this
artificial world depends on them. In order to preserve the integrity of their artificial world, their
collective work must be rigorous, never allowing for sloppy handling of the rules or allowing intuitive
leaps to be left unproven.

However, many of the tools and techniques developed by mathematicians for their artificial
world happen to be extremely useful for understanding the real world in which we live and work,
and therein lies a problem. In applying mathematical rules to the study of real-world phenomena,
we often take a far more pragmatic approach than any mathematician would feel comfortable with.

The tension between pure mathematicians and those who apply math to real-world problems is
not unlike the tension between linguists and those who use language in everyday life. All human
languages have rules (though none as rigid as in mathematics!), and linguists are the guardians
of those rules, but the vast majority of human beings play fast and loose with the rules as they
use language to describe and understand the world around them. Whether or not this “sloppy”
adherence to rules is good depends on which camp you are in. To the purist, it is offensive; to the
pragmatist, it is convenient.

I like to tell my students that mathematics is very much like a language. The more you understand
mathematics, the larger “vocabulary” you will possess to describe principles and phenomena you
encounter in the world around you. Proficiency in mathematics also empowers you to grasp
relationships between different things, which is a powerful tool in learning new concepts.

This book is not written for (or by!) mathematicians. Rather, it is written for people wishing
to make sense of industrial process measurement and control. This chapter of the book is devoted
to a very pragmatic coverage of certain mathematical concepts, for the express purpose of applying
these concepts to real-world systems.

Mathematicians, cover your eyes for the rest of this chapter!
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1.1 Introduction to calculus

Few areas of mathematics are as powerfully useful in describing and analyzing the physical world as
calculus: the mathematical study of changes. Calculus also happens to be tremendously confusing
to most students first encountering it. A great deal of this confusion stems from mathematicians’
insistence on rigor! and denial of intuition.

Look around you right now. Do you see any mathematicians? If not, good — you can proceed in
safety. If so, find another location to begin reading the rest of this chapter. I will frequently appeal to
practical example and intuition in describing the basic principles of single-variable calculus, for the
purpose of expanding your mathematical “vocabulary” to be able to describe and better understand
phenomena of change related to instrumentation.

Silvanus P. Thompson, in his wonderful book Calculus Made Simple originally published in 1910,
began his text with a short chapter entitled, “To Deliver You From The Preliminary Terrors®.” I
will follow his lead by similarly introducing you to some of the notations frequently used in calculus,
along with very simple (though not mathematically rigorous) definitions.

When we wish to speak of a change in some variable’s value (let’s say ), it is common to precede
the variable with the capital Greek letter “delta” as such:

Ax = “Change in 2"

An alternative interpretation of the “delta” symbol (A) is to think of it as denoting a difference
between two values of the same variable. Thus, Az could be taken to mean “the difference between
two values of 7. The cause of this difference is not important right now: it may be the difference
between the value of z at one point in time versus another point in time, it may be the difference
between the value of x at one point in space versus another point in space, or it may simply be
the difference between values of = as it relates to some other variable (e.g. y) in a mathematical
function. If we have some variable such as z that is known to change value relative to some other
variable (e.g. time, space, y), it is nice to be able to express that change using precise mathematical
symbols, and this is what the “delta” symbol does for us.

1In mathematics, the term rigor refers to a meticulous attention to detail and insistence that each and every step
within a chain of mathematical reasoning be thoroughly justified by deductive logic, not intuition or analogy.

2The book’s subtitle happens to be, Being a very-simplest introduction to those beautiful methods of reckoning
which are generally called by the terrifying names of the differential calculus and the integral calculus. Not only did
Thompson recognize the anti-pragmatic tone with which calculus is too often taught, but he also infused no small
amount of humor in his work.
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For example, if the temperature of a furnace (7") increases over time, we might wish to describe

that change in temperature as AT

Blower
Valve @

N 4= Air flow

Exhaust stack

Refractory brick

Furnace
To.us = 1255 °F

Fuel gas
inlet

Refractory brick

Temperature of furnace at 9:45 AM = 1255 °F

Blower
Valve @

N 4= Air flow

Exhaust stack

Refractory brick

Furnace
Ti03 = 1276 °F

Fuel gas
inlet

Refractory brick

Temperature of furnace at 10:32 AM = 1276 °F

AT =Tioa - Touss
AT = 1276 °F - 1255 °F = 21 °F

The value of AT is nothing more than the difference (subtraction) between the recent temperature
and the older temperature. A rising temperature over time thus yields a positive value for AT, while
a falling temperature over time yields a negative value for AT.

We could also describe differences between the temperature of two locations (rather than a
difference of temperature between two times) by the notation AT, such as this example of heat
transfer through a heat-conducting wall where one side of the wall is hotter than the other:

Tcold Thot

Heat Heat

-

Once again, AT is calculated by subtracting one temperature from another. Here, the sign
(positive or negative) of AT denotes the direction of heat flow through the thickness of the wall.

One of the major concerns of calculus is changes or differences between variable values lying very
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close to each other. In the context of a heating furnace, this could mean increases in temperature over
miniscule time periods. In the context of heat flowing through a wall, this could mean differences in
temperature sampled between points within the wall immediately adjacent each other. If our desire
is to express the change in a variable between neighboring points along a continuum rather than
over some discrete period, we may use a different notation than the capital Greek letter delta (A);
instead, we use a lower-case Roman letter d (or in some cases, the lower-case Greek letter delta: §).

Thus, a change in furnace temperature from one instant in time to the next instant could be
expressed as dT (or dT), while a difference in temperature between two adjacent positions within
the heat-conducting wall could also be expressed as dT' (or 67). We even have a unique name for
this concept of extremely small differences: whereas AT is called a difference in temperature, d1" is
called a differential of temperature.

The concept of a differential may seem useless to you right now, but they are actually quite
powerful for describing continuous changes, especially when one differential is related to another
differential by ratio (something we call a derivative).

Another major concern in calculus is how quantities accumulate, especially how differential
quantities accumulate to form a larger whole. If we were concerned with how much the furnace’s
temperature would rise over time, we could express its total temperature rise (ATotq;) as the
accumulation, or sum, of many temperature differences (AT') measured over multiple increments of
time. Supposing we periodically measured the furnace’s temperature once every minute from 9:45
to 10:32 AM:

ATiorqr = ATg.a5 + ATy.46 + - - - AT10.30 = Total temperature rise over time, from 9:45 to 10:32

A more sophisticated expression of this series uses the capital Greek letter sigma (meaning “sum
of” in mathematics) with notations specifying which temperature differences to sum:

10:32
ATyora1 = Z AT, = Total temperature rise over time, from 9:45 to 10:32
n=9:45

However, if our furnace temperature monitor scans at an infinite pace, measuring temperature
differentials (dT) and summing them in rapid succession, we may express the same accumulated
temperature rise as an infinite sum of infinitesimal (infinitely small) changes, rather than as a
finite sum of temperature changes measured once every minute. Just as we introduced a unique
mathematical symbol to represent differentials (d) over a continuum instead of differences (A) over
discrete periods, we will introduce a unique mathematical symbol to represent the summation of
differentials () instead of the summation of differences (}°):

10:32
ATiotal = / dT = Total temperature rise over time, from 9:45 to 10:32
9:45
This summation of infinitesimal quantities is called integration, and the elongated “S” symbol
(/) is the integral symbol.

These are the two major ideas in calculus: differentials and integrals, and the notations used to
represent each. Now that wasn’t so frightening, was it?
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1.2 The concept of differentiation

Suppose we wished to measure the rate of propane gas flow through a hose to a torch:

Torch

Flowmeters appropriate for measuring low flow rates of any gas are typically very expensive,
making it impractical to directly measure the flow rate of propane fuel gas consumed by this torch
at any given moment. We could, however, indirectly measure the flow rate of propane by placing
the tank on a scale where its mass (m) could be monitored over time. By taking measurements of
mass over short time periods (At), we could calculate the corresponding differences in mass (Am),
then calculate the ratio of mass lost over time to calculate average mass flow rate (W):

— A
W = TT = Average mass flow rate

Where,
W = Average mass flow rate within each time period (kilograms per minute)
Am = Measured mass difference over time period (kilograms)
At = Time period of mass measurement sample (minutes)

Note that flow rate is a ratio (quotient) of mass change over time change. The units used to
express flow even reflect this process of division: kilograms per minute.

k]

[min]

k
= Average mass flow rate = {_g]

W =

min
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Graphed as a function over time, the tank’s mass will be seen to decrease as time elapses.
Each dot represents a mass and time measurement coordinate pair (e.g. 20 kilograms at 7:38, 18.6
kilograms at 7:51, etc.):

Average flow rate

- Am
W= A

Propane
mass

(m)

Time (1)

We should recall from basic geometry that the slope of a line segment is defined as its rise
(vertical height) divided by its run (horizontal width). Thus, the average mass flow rate calculated
within each time period may be represented as the pitch (slope) of the line segments connecting
dots, since mass flow rate is defined as a change in mass per (divided by) change in time.

Periods of high propane flow (large flame from the torch) show up on the graph as steeply-pitched
line segments. Periods of no propane flow reveal themselves as flat portions on the graph (no rise
or fall over time).

If the determination of average flow rates between significant gaps in time is good enough for
our application, we need not do anything more. However, if we wish to detect mass flow rate at any
particular instant in time, we need to perform the same measurements of mass loss, time elapse,
and division of the two at an infinitely fast rate.
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Supposing such a thing were possible, what we would end up with is a smooth graph showing
mass consumed over time. Instead of a few line segments roughly approximating a curve, we would
have an infinite number of infinitely short line segments connected together to form a seamless curve.
The flow rate at any particular point in time would be the ratio of the mass and time differentials
(the slope of the infinitesimal line segment) at that point:

Instantaneous flow rate

_ dm

W=~
Propane
mass dt
(m) dm
Time (t)
dm
W = a = Instantaneous mass flow rate
Where,

W = Instantaneous mass flow rate at a given time (kilograms per minute)
dm = Mass differential at a single point in time (kilograms)
dt = Time differential at a single point in time (minutes)

Flow is calculated just the same as before: a quotient of mass and time differences, except here
the differences are infinitesimal in magnitude. The unit of flow measurement reflects this process of
division, just as before, with mass flow rate expressed in units of kilograms per minute. Also, just as
before, the rate of flow is graphically represented by the slope of the graph: steeply-sloped points on
the graph represent moments of high flow rate, while shallow-sloped points on the graph represent
moments of low flow rate.

Such a ratio of differential quantities is called a derivative in calculus®. Derivatives — especially
time-based derivatives such as flow rate — find many applications in instrumentation as well as the

3Isaac Newton referred to derivatives as fluzions, and in Silvanus Thompson’s day they were known as differential
coefficients.
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general sciences. Some of the most common time-based derivative functions include the relationships
between position (x), velocity (v), and acceleration (a).

Velocity is the rate at which an object changes position over time. Since position is typically
denoted by the variable = and time by the variable ¢, the derivative of position with respect to time
may be written as such:

dx [meters]

V= [meters/second] =

[seconds]
The metric units of measurement® for velocity (meters per second, miles per hour, etc.) betray
this process of division: a differential of position (meters) divided by a differential of time (second).

Acceleration is the rate at which an object changes velocity over time. Thus, we may express
acceleration as the time-derivative of velocity, just as velocity was expressed as the time-derivative
of position:

_dv

dv [meters/second]
ot

a [meters/second’] =

[seconds]

We may even express acceleration as a function of position (z), since it is the rate of change of
the rate of change in position over time. This is known as a second derivative, since it is applying
the process of “differentiation” twice:

d*z

a=— [meters/second’] =

[meters]

[seconds?]

As with velocity, the units of measurement for acceleration (meters per second squared, or
alternatively meters per second per second) betray a compounded quotient.

4British units of measurement for velocity betray this same process of division: the number of feet traveled in a
time period of seconds yields a velocity in feet per second. There is nothing unique about metric units in this regard.
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It is also possible to express rates of change between different variables not involving time. A
common example in the engineering realm is the concept of gain, generally defined as the ratio of
output change to input change. An electronic amplifier, for example, with an input signal of 2 volts
(peak-to-peak) and an output signal of 8.6 volts (peak-to-peak), would be said to have a gain of 4.3,
since the change in output measured in peak-to-peak volts is 4.3 times larger than the corresponding
change in input voltage:

j_/\/ —to ot——o

Amplifier
8.6 volts P-P

—?7 _. Gain =4.3 ._ Avout

2 volts P-P
AV, @ J
il
Vous

This gain could be expressed as a quotient of differences (AAV
derivative instead:

), or it could be expressed as a

If the amplifier’s behavior is perfectly linear, there will be no difference between gain calculated
using differences and gain calculated using differentials (the derivative), since the average slope of
a straight line is the same as the instantaneous slope at any point along that line. If, however, the
amplifier does not behave in a perfectly linear fashion, gain calculated from large changes in voltage
(AAVT‘::;) will not be the same as gain calculated from infinitesimal changes at different points along
the amplifier’s operating voltage range.
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1.3 The concept of integration

Suppose we wished to measure the loss of mass over time in a large propane storage tank supplying a
building with heating fuel, because the tank lacked a level indicator to show how much fuel was left
at any given time. The flow rate is sufficiently large, and the task sufficiently important, to justify
the installation of a mass flowmeter®, which registers flow rate at an indicator inside the building:

d RN

Propane tank Flowmeter

H Gas pipe \:I|_ E

By measuring true mass flow rate, it should be possible to indirectly measure how much propane
has been used at any time following the most recent filling of the tank. For example, if the mass
flow rate of propane into the building was measured to be an average of 5 kilograms per hour for 30
hours, it would be a simple matter of multiplication to arrive at the consumed mass:

k h
150 ke = <5hrg> (301 rs)

Expressing this mathematically as a function of differences in mass and differences in time, we
may write the following equation:

Am =W At

Where,
W = Average mass flow rate within the time period (kilograms per hour)
Am = Mass difference over time period (kilograms)
At = Time period of flow measurement sample (hours)

It is easy to see how this is just a variation of the quotient-of-differences equation used previously
in this chapter to define mass flow rate:

— Am
W = —— = Average mass flow rate

At

Inferring mass flow rate from changes in mass over time periods is a process of division. Inferring
changes in mass from flow rate over time periods is a process of multiplication. The units of
measurement used to express each of the variables makes this quite clear.

5Most likely a thermal mass flowmeter or a Coriolis lowmeter.
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As we learned previously, the process of differentiation is really just a matter of determining the
slope of a graph. A graph of propane fuel mass (m) plotted over time (¢) has a slope corresponding
to mass flow rate (W = ‘ILTT). Here, we are attempting to do the opposite: the data reported by the
sensing instrument is propane mass flow rate (W), and our goal is to determine total mass lost (Am)
as the propane is consumed from the storage tank over a period of time (At). This is fundamentally
different from differentiation, which means the graphical interpretation will not be the same. Instead
of calculating the slope of the graph, we will have to do something else.

Suppose the propane flowmeter happened to report a constant mass flow rate (W) of 5 kilograms
of propane per hour. The total mass of propane consumed (Am) over a 30-hour interval (At) would
obviously be 150 kilograms, multiplying the constant mass flow rate by the time interval. Graphing
this, we see that the process of multiplication used to calculate the mass loss corresponds to the
geometric area enclosed by the graph, since the area of a rectangle is height times width:

8 —
7
6 —
- 30 hours >
Propane 5
flow rate |
(W)
kg/hr 3
2 -
1 -
0 I I I I I I I I I I I I I I I I I 1
0 5 10 15 20 25 30 35 40 45

Time (t) hours
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The task of inferring lost mass over time becomes more complicated if the propane flow rate
changes substantially over time. Consider the following graph, showing periods of increased and
decreased flow rate due to different gas-fired appliances turning on and off inside the building:

Propane
flow rate

(W)

1]
Time (t)

Here, the propane gas flow rate does not stay constant throughout the entire time interval covered
by the graph. This obviously complicates the task of calculating total propane mass used over that
time.
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In order to accurately calculate the amount of propane mass consumed by the building over
time, we must treat each period of constant flow as its own period, calculating the mass lost in each
period, then summing those mass differences to arrive at a total mass for the entire time interval
covered by the graph. Since we know the difference (loss) in mass over a time period is equal to
the average flow rate for that period multiplied by the period’s duration (Am = W At), we may
calculate each period’s mass as an area underneath the graph line, each rectangular area being equal
to height (W) times width (At):

Propane
flow rate Wit
(W)
W,AL, WAL,
W5At5 l
| WAt |
WAL, l WAL, | WAt
/1
Time (t)

Each rectangular area underneath the flow line on the graph (W At) represents a quantity of
propane gas consumed during that time period. To find the total amount of propane consumed in
the time represented by the entire graph, we must sum these mass quantities together:

Am = (WlAtl) + (WzAtQ) + (WSAt3) + (W4At4) + (W5At5) + (W(;Atg) + (W7At7) + (WgAts)

A “shorthand” notation for this sum uses the capital Greek letter sigma to represent a series
of repeated products (multiplication) of mass flow and time periods for the eight rectangular areas
enclosed by the graph:

8
Am =W, At,
n=1

While W,, At,, represents the area of just one of the rectangular periods, Zi:l W, At,, represents
the total combined areas, which in this application represents the total mass of propane consumed
over the eight periods shown on the graph.
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The task of inferring total propane mass consumed over time becomes even more complicated
if the flow does not vary in stair-step fashion as it did in the previous example. Suppose the
building were equipped with throttling gas appliances instead of on/off gas appliances, thus creating
a continuously variable flow rate demand over time. A typical flow rate graph might look something
like this:

Propane

flow rate
(W)

Time (1)

The physics of gas flow and gas mass over time has not changed: total propane mass consumed
over time will still be the area enclosed beneath the flow curve. However, it is more of a challenge
to calculate the enclosed area of an arbitrary curve shape than it is for a series of stair-steps.
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We can, however, approximate the area underneath this curve by overlaying a series of rectangles,
the area of each rectangle being height (W) times width (At):

Propane
flow rate Each rectangular area represents
(W) a mass (m) equal in magnitude to WAt

i

7 Atl

~

Time (t)

It should be intuitively obvious that the strategy of using rectangles to approximate the area
underneath a curve improves with the number of rectangles used. Each rectangle still has an area
W At, but since the At periods are shorter, it is easier to fit the rectangles to the curve of the
graph. The summation of a series of rectangular areas intended to approximate the area enclosed
by a graphed function is commonly referred to as a Riemann Sum in honor of the mathematician
Bernhard Riemann:

Propane L
flow rate A better approximation of area

(W) underneath the curve
(using narrower rectangles)

-

Time (t)
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Taking this idea to its ultimate realization, we could imagine a super-computer sampling mass
flow rates at an infinite speed, then calculating the rectangular area covered by each flow rate
(W) times each infinitesimal increment of time (dt). With time increments of negligible width, the
“approximation” of area underneath the graph found by the sum of all these rectangles would be
perfect — indeed, it would not be an approximation at all, but rather an exact match:

Propane ]
A perfect representation of area
flow rate
(W) underneath the curve
(using infinitely narrow rectangles)

° _>|<\ dt Time (1) §

If we represent infinitesimal time increments using the notation “dt” as opposed to the notation
“At” used to represent discrete time periods, we must also use different notation to represent the
mathematical sum of those quantities. Thus, we will replace the “sigma” symbol (>°) used for
summation and replace it with the integral symbol ( f ), which means a continuous summation of
infinitesimal quantities:

x
Am = Z W At, Summing discrete quantities of WAt
n=0
xr
Am = / W dt Summing continuous quantities of W dt
0

This last equation tells us the total change in mass (At) from time 0 to time z is equal to the
continuous sum of mass quantities found by multiplying mass flow rate measurements (W) over
corresponding increments of time (dt). We refer to this summation of infinitesimal quantities as
integration in calculus. Graphically, the integral of a function is the geometric area enclosed by the
function over a specified interval.
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An important detail to note is that this process of integration (multiplying flow rates by
infinitesimal time increments, then summing those products) only tells us how much propane mass
was consumed — it does mot tell us how much propane is left in the tank, which was the purpose
of installing the mass flowmeter and performing all this math! The integral of mass flow and time
( f W dt) will always be a negative quantity®, because a flow of propane gas out of the tank represents
a loss of propane mass within the tank. In order to calculate the amount of propane mass left in
the tank, we would need to know the initial value of propane in the tank before any of it flowed to
the building, then we would add this initial mass quantity (mg) to the negative mass loss calculated
by integration.

Thus, we would mathematically express the propane mass inside the tank at time x as such”:

mxz/ W dt + mg
0

This initial value must always be considered in problems of integration if we attempt to absolutely
define some integral quantity. Otherwise, all the integral will yield is a relative quantity (how much
something has changed over an interval).

6 Although we will measure time, and differentials of time, as positive quantities, the mass flowmeter should be
configured to show a negative flow rate (W) when propane flows from the tank to the building. This way, the integrand
(the product “inside” the integration symbol; W dt) will be a negative quantity, and thus the integral over a positive
time interval (from 0 to z) will likewise be a negative quantity.

7 According to calculus convention, the differential dt represents the end of the integrand. It is safe to regard the
long “S” symbol and the differential (dz, dt, etc.) as complementary grouping symbols declaring the beginning and
end of the integrand. This tells us mg is not part of the integrand, but rather comes after it. Using parentheses to
explicitly declare the boundaries of the integrand, we may re-write the expression as mg = ( f OZ W dt) + mo
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The problem of initial values is very easy to relate to common experience. Consider the odometer
indication in an automobile. This is an example of an integral function, the distance traveled (z)
being the time-integral of speed (or velocity, v):

Ax:/vdt

O[5[2[7]0[4] 8]

Miles

Although the odometer does accumulate to larger and larger values as you drive the automobile,
its indication does not necessarily tell me how many miles you have driven it. If, for example, you
purchased the automobile with 32411.6 miles on the odometer, its current indication of 52704.8
miles means that you have driven it 20293.2 miles. The automobile’s total distance traveled since
manufacture is equal to the distance you have accumulated while driving it ([ v dt) plus the initial
mileage accumulated at the time you took ownership of it (z¢):

Total = / vdt+ xo
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1.4 How derivatives and integrals relate to one another

First, let us review some of the properties of differentials and derivatives, referencing the expression
and graph shown below:

e A differential is an infinitesimal increment of change (difference) in some continuously-changing
variable, represented either by a lower-case Roman letter d or a lower-case Greek letter “delta”
(6). Such a change in time would be represented as dt; a similar change in temperature as d7
a similar change in the variable z as dz.

e A derivative is always a quotient of differences: a process of subtraction (to calculate the
amount each variable changed) followed by division (to calculate the rate of one change to
another change).

e The units of measurement for a derivative reflect this final process of division: one unit per
some other unit (e.g. gallons per minute, feet per second).

e Geometrically, the derivative of a function is its graphical slope (its “rise over run”)

e When computing the value of a derivative, we must specify a single point along the function
where the slope is to be calculated.

e The tangent line matching the slope at that point has a “rise over run” value equal to the
derivative of the function at that point.

y
Derivative = slope of the function

y=1(x)

.T . dy Rise of tangent line
Slope at this point = d_x " Run of tangent line

dy - Ay _ Small changesiny
dx ~ Ax ~ Small changes in x
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Next, let us review some of the properties of integrals, referencing the expression and graph shown
below:

e An integral is always a sum of products: a process of multiplication (to calculate the product
of two variables) followed by addition (to sum those quantities into a whole).

e The units of measurement for an integral reflect this initial process of multiplication: one unit
times some other unit (e.g. kilowatt-hours, foot-pounds, volt-seconds).

e When computing the value of an integral, we must specify two points along the function
defining the interval of integration (a and b).

e Geometrically, the integral of a function is the graphical area enclosed by the function and the
interval boundaries.

e The area enclosed by the function may be thought of as an infinite sum of extremely narrow
rectangles, each rectangle having a height equal to one variable (y) and a width equal to the
differential of another variable (dz).

y
Integral = area enclosed by the function

y=1(x)

X

P

a b
Upper boundary of area = vy
Lower boundary of area= 0
Left boundary of area= a
Right boundary of area= b

b
Enclosed area = [y dx
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Just as division and multiplication are inverse mathematical functions (i.e. one “un-does” the
other), differentiation and integration are also inverse mathematical functions. The two examples
of propane gas flow and mass measurement highlighted in the previous sections illustrates this
complementary relationship. We may use differentiation with respect to time to convert a mass

measurement (m) into a mass flow measurement (W, or 4). Conversely, we may use integration

dt
with respect to time to convert a mass flow measurement (W, or ‘Z—T) into a measurement of mass
gained or lost (Am).
Likewise, the common examples of position (z), velocity (v), and acceleration (a) used to illustrate
the principle of differentiation are also related to one another by the process of integration. Reviewing

the derivative relationships:

v = Z—f Velocity is the derivative of position with respect to time
dv . N . . :
=7 Acceleration is the derivative of velocity with respect to time
Now, expressing position and velocity as integrals of velocity and acceleration, respectively®:
T = / v dt Position is the integral of velocity with respect to time
v = / adt Velocity is the integral of acceleration with respect to time

Differentiation and integration may be thought of as processes transforming these quantities into
one another. Note the transformation of units with each operation — differentiation always divides

while integration always multiplies:
Position _ Differentiate VeIOC|ty Differentiate Acceleration
(x) (@
meters meters/second meters/second?

Position Integrate VeIOC|ty Integrate Acceleration
() (@
meters meters/second meters/second?

8To be perfectly accurate, we must also include initial values for position and velocity. In other words, = f vdt+xo
andvzfadt—f—vo
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The inverse nature of these two calculus operations is codified in mathematics as the Fundamental

Theorem of Calculus, shown here:
d b
| reras| =

What this equation tells us is that the derivative of the integral of any continuous function is
that original function. In other words, we can take any mathematical function of a variable that
we know to be continuous over a certain range — shown here as f(x), with the range of integration
being from a to b — integrate that function over that range, then take the derivative of that result
and end up with the original function. By analogy, we can take the square-root of any quantity, then
square the result and end up with the original quantity, because these are inverse functions as well.

A feature of this book which may be helpful to your understanding of derivatives, integrals, and
their relation to each other is found in an Appendix section (Appendix A.3 beginning on page 2649).
In this section, a series of illustrations provides a simple form of animation you may “fip” through
to view the filling and emptying of a water storage tank, with graphs showing stored volume (V)
and volumetric flow rate (Q). Since flow rate is the time-derivative of volume (Q = dd—‘t/) and volume
change is the time-integral of volumetric flow rate (AV = [ Qdt), the animation demonstrates both

concepts in action.
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1.5 Symbolic versus numerical calculus

Calculus has a reputation for being difficult to learn, and with good reason. The traditional approach
to teaching calculus is based on manipulating symbols (variables) in equations, learning how different
types of mathematical functions become transformed by the calculus operations of differentiation
and integration.

For example, suppose a first-semester calculus student were given the following function to
differentiate. The function is expressed as y in terms of x:

_ 322 — 2245
B z2 —8

A calculus student would first apply two basic rules of symbolic differentiation (namely, the
Power Rule and the Quotient Rule) followed by algebraic distribution and combination of like terms

to arrive at the derivative of y with respect to x (written as %) in terms of x:

Y

dy (2% — 8)(6x — 2) — (322 — 22 + 5)(22)

de (22 — 8)2
dy 623 — 222 — 48z + 16 — (623 — 422 + 10x)
dr axt — 1622 + 64

dy 222 — 58z + 16
dr  x* — 1622 + 64

The resulting derivative expresses the rate-of-change of y with respect to x of the original function
for any value of x. In other words, anyone can now plug any arbitrary value of = they wish into the
derivative equation, and the result (g—g) will tell them how steep the slope is of the original function
at that same z value”.

Rules such as the Power Rule and even the Quotient Rule are not difficult to memorize, but
they are far from intuitive. Although it is possible to formally prove each one of them from more
fundamental principles of algebra, doing so is tedious, and so most students simply resign themselves
to memorizing all the calculus rules of differentiation and integration. There are many such rules to
memorize in symbolic calculus.

Symbolic integration is even more difficult to learn than symbolic differentiation. Most calculus
textbooks reserve pages at the very end listing the general rules of differentiation and integration.
Whereas a table of derivatives might occupy a single page in a calculus text, tables of integrals may
fill five or more pages!

The next logical topic in the sequence of a calculus curriculum is differential equations. A
“differential equation” is a function relating some variable to one or more of its own derivatives. To
use the variables y and z, a differential equation would be one containing both y and at least one
derivative of y (%, %, %, etc.). % = —kV is an example of a simple differential equation. The
various forms and solution techniques for different kinds of differential equations are numerous and

complex.

9For instance, at = 1, the original function tells us that y will be equal to ,g. If we plug this same value of 1

into f of the derivative function, the result Z—Z = 71—8 tells us the original function y = f(x) has a slope of 71—8 when
z =1
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It has been said that the laws of the universe are written in the language of calculus. This is
immediately evident in the study of physics, but it is also true for chemistry, biology, astronomy,
and other “hard sciences.” Areas of applied science including engineering (chemical, electrical,
mechanical, and civil) as well as economics, statistics, and genetics would be impoverished if not for
the many practical applications of symbolic calculus. To be able to express a function of real-life
quantities as a set of symbols, then apply the rules of calculus to those symbols to transform them
into functions relating rates of change and accumulations of those real-life quantities, is an incredibly
powerful tool.

Two significant problems exist with symbolic calculus, however. The first problem with symbolic
calculus is its complexity, which acts as a barrier to many people trying to learn it. It is quite
common for students to drop out of calculus or to change their major of study in college because
they find the subject so confusing and/or frustrating. This is a shame, not only because those
students end up missing out on the experience of being able to see the world around them in a new
way, but also because mastery of calculus is an absolute requirement of entry into many professions.
You can never become a licensed engineer, for example, unless and until you pass a series of calculus
courses and are able to apply those concepts learned to realistic problems.

The second significant problem with symbolic calculus is its limitation to a certain class of
mathematical functions. In order to be able to symbolically differentiate a function (e.g. y = f(x))
to determine its derivative (%), we must first have a function written in mathematical symbols to
differentiate. This rather obvious fact becomes a barrier when the data we have from a real-life
application defies symbolic expression. It is trivial for a first-semester calculus student to determine
the derivative of the function V = 2¢2 — 4t + 9, but what if V' and ¢ only exist as recorded values
in a table, or as a trend drawn by a process recorder? Without a mathematical formula showing
V as a function of ¢, none of the rules learned in a calculus course for manipulating those symbols
directly apply. The problem is even worse for differential equations, where a great many examples
exist that have so far defied solution by the greatest mathematicians.

Such is the case when we apply calculus to recorded values of process variable, setpoint, and
controller output in real-world automated processes. A trend showing a PV over time never comes
complete with a formula showing you PV = f(¢). We must approach these practical applications
from some perspective other than symbolic manipulation if we are to understand how calculus relates.
Students of instrumentation face this problem when learning PID control: the most fundamental
algorithm of feedback control, used in the vast majority of industrial processes to regulate process
variables to their setpoint values.

An alternative approach to calculus exists which is easily understood by anyone with the ability to
perform basic arithmetic (addition, subtraction, multiplication, and division) and sketching (drawing
lines and points on a graph). Numerical calculus uses simple arithmetic to approximate derivatives
and integrals on real-world data. The results are not as precise as with symbolic calculus, but the
technique works on any data as well as most mathematical functions written in symbolic form.
Furthermore, the simplicity of these techniques opens a door to those people who might otherwise
be scared away by the mathematical rigor of symbolic calculus. Any way we can find to showcase
the beauty and practicality of calculus principles to more people is a good thing!
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Suppose we needed to calculate the derivative of some real-world function, such as the volume

of liquid contained in a storage vessel. The derivative of volume (V') with respect to time (¢) is

volumetric flow rate ( %), thus the time-derivative of the vessel’s volume function at any specified

point in time will be the net flow rate into (or out of) that vessel at that point in time.
To numerically determine the derivative of volume from raw data, we could follow these steps:

e Choose two values of volume both near the point in time we’re interesting in calculating flow
rate

e Subtract the two volume values: this will be AV

e Subtract the two time values corresponding to those volume values: this will be At

e Divide AV by At to approximate % between those two points in time

A slightly different approach to numerical differentiation follows these steps:

e Sketch a graph of the volume versus time data for this vessel (if this has not already been done
for you by a trend recorder)

e Locate the point in time on this graph you are interested in, and sketch a tangent line to that
point (a straight line having the same slope as the graphed data at that point)

e Estimate the rise-over-run slope of this tangent line to approximate % at this point

An illustration is a helpful reminder of what differentiation means for any graphed function: the
slope of that function at a specified point:

y
Derivative = slope of the function

y=£(x)

A . dy Rise of tangent line
Slope at this pomt - & ~ Run of tangent line

dy _ Ay _ Small changesiny

dx  Ax Small changes in x
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Suppose we needed to calculate the integral of some real-world function, such as the flow rate of
liquid through a pipe. The integral of volumetric flow (Q) with respect to time (t) is total volume
(V), thus the time-integral of the flow rate over any specified time interval will be the total volume
of liquid that passed by over that time.

To numerically determine the integral of flow from raw data, we could follow these steps:

Identify the time interval over which we intend to calculate volume

Multiply each measured value of flow by the duration of that measurement (the interval
between that measurement and the next one) to obtain a volume over each duration

Repeat the last step for each and every flow data point up to the end of the interval we're
interested in.

Sum all these volume values together — the result will be the approximate liquid volume passed
through the pipe over the specified time interval

A slightly different approach to numerical integration follows these steps:

Sketch a graph of the flow versus time data for this pipe (if this has not already been done for
you by a trend recorder)

Mark the time interval over which we intend to calculate volume (two straight vertical lines
on the graph)

Use any geometrical means available to estimate the area bounded by the graph and the two
vertical time markers — the result will be the approximate liquid volume passed through the
pipe over the specified time interval

An illustration is a helpful reminder of what integration means for any graphed function: the
area enclosed by that function within a specified set of boundaries:

y
Integral = area enclosed by the function

y=1(x)

X

b

a b
Upper boundary of area = y
Lower boundary of area = 0
Left boundary ofarea= a
Right boundary of area= b

b
Enclosed area = [y dx
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The next sections of this chapter delve into more specific details of numerical differentiation and
integration, with realistic examples to illustrate.

1.6 Numerical differentiation

As we have seen, the concept of differentiation is finding the rate-of-change of one variable compared
to another (related) variable. In this section, we will explore the practical application of this concept
to real-world data, where actual numerical values of variables are used to calculate relative rates of
change.

In industrial instrumentation, for example, we are often interested in knowing the rate of change
of some process variable (pressure, level, temperature, flow, etc.) over time, and so we may use
computers to calculate those rates of change, either after the fact (from recorded data) or in real
time. We may be similarly interested in calculating the rate at which one process variable changes
with respect to another process variable, both of which measured and recorded as tables of data by
instruments.

Numerical (data-based) differentiation is fundamentally a two-step arithmetic process. First, we
must use subtraction to calculate the change in a variable between two different points. Actually,
we perform this step twice to determine the change in two variables which we will later compare.
Then, we must use division to calculate the ratio of the two variables’ changes, one to the other (i.e.
the “rise-over-run” steepness of the function’s graph).

For example, let us consider the application of pressure measurement for a pipeline. One of the
diagnostic indicators of a burst pipeline is that the measured pressure rapidly drops. It is not the
existence of low pressure in and of itself that suggests a breach, but rather the rate at which the
pressure falls that reveals a burst pipe. For this reason, pipeline control systems may be equipped
with automatic shut-down systems triggered by rate-of-change pressure calculations.
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An example of a pressure-trend recording during a pipeline rupture is shown here:

Trend recording of pipeline pressure over time

200 —
300
(PSI)

200 —

100 —

° I I I I I I I I I I I
0:15 0:30 0:45 1.00 115 1:30 1.45 2:00 2:15 2:30 2:45

Time Time of rupture
(Hours:Minutes)
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A computer tasked with calculating the pressure’s rate of change over time (%) would have
to continuously sample the pressure value over short time periods, then calculate the quotient of
pressure changes over time changes. Given a sample rate of once every 5 minutes, we see how the

computer would tabulate the pressure data over time:

300 —

200 —
1:30 1:45 2:00
Pressure Time

217.5 PSI 1 hour, 20 minutes
215.0 PSI 1 hour, 25 minutes
222.5 PSI 1 hour, 30 minutes
226.3 PSI 1 hour, 35 minutes
150.0 PSI 1 hour, 40 minutes
150.0 PSI 1 hour, 45 minutes
151.3 PSI 1 hour, 50 minutes
148.8 PSI 1 hour, 55 minutes
145.0 PSI 2 hours, 0 minutes
145.0 PSI 2 hours, 5 minutes
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To calculate the rate of pressure change over time in each of these periods, the computer would
subtract the two adjacent pressure values, subtract the two corresponding adjacent time values, and
then divide those two differences to arrive at a figure in units of PSI per minute. Taking the first
two data coordinates in the table as an example:

AP _ 2150 PSI—217.5PSI _ —25PSI __  PSI
At 1:25 — 1:20 ~ 5min  min
The sample period where the computer would detect the pipeline rupture lies between 1:35 and

1:40. Calculating this rate of pressure change:

AP 150.0 PSI —226.3 PSI  —76.3 PSI 15 26PSI
At 1:40 — 1:35 ~ 5min " min

Clearly, a pressure drop rate of -15.26 PSI per minute is far greater than a typical drop of -0.5
PSI per minute, thus signaling a pipeline rupture.

As you can see, the pipeline monitoring computer is not technically calculating derivatives (”fi—f),
but rather difference quotients (%). Being a digital device, the best it can ever do is perform
calculations at discrete points in real time. It is evident that calculating rates of change over 5-
minute period misses a lot of detail'”. The actual rate of change at the steepest point of the
pressure drop far exceeds -15.26 PSI per minute.

It is possible for us to calculate the instantaneous rate-of-change of pressure (%) at the moment
of the rupture by examining the graph and sketching a straight line called a tangent line matching
the slope where the graph is steepest. Our goal is to calculate the exact slope of that single (steepest)
point on that graph, rather than an estimate of slope between two points as the computer did. In
essence, the computer “drew” short line segments between pairs of points and calculated the slopes
(rise-over-run) of those line segments. The slope of each line segment** AL

is a difference quotient: S+
The slope of a tangent line matching the slope at a single point on the function graph, however, is

At
a derivative: %.

10Not only does a 5-minute rate calculation period miss a lot of detail, but it also results in a time delay of (up to)
5 minutes detecting a pipeline rupture.
1 The technical term for a line passing through a pair of points on a curve is called a secant line.
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We may calculate the slope of a tangent line by marking convenient points'? where the line
intersects major division marks on the graph’s graduated scale, then calculating rise over run:

T340.0 PSI
@ 1:37:30

300 —

Tangent line

200 — 150.0 PSI
@ 1:40:00
100 — | | |
1:30 1:45 2:00
dP — 150.0 PSI —340.0 PST ~ —190.0 PSI 6 OP—SI
dt  1:40:00—1:37:30 25min min
This distinction between calculating difference quotients (%) and calculating true derivative
values (%) becomes less and less significant as the calculation period shortens. If the computer

could sample and calculate at infinite speed, it would generate true derivative values instead of
approximate derivative values.

12PJease note that the pipeline pressure is not actually 340.0 PSI at a time of 1:37:30. This is simply a coordinate
convenient to mark because it how it lines up with the divisions on the trend display. We choose coordinate points
on the tangent line easy to visually discern, then calculate the tangent line’s slope using those coordinates.
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An algorithm applicable to calculating rates of change in a digital computer is shown here, using a
notation called pseudocode'®. For more information on pseudocode, refer to section 29.14.1 beginning
on page 2221. Each line of text in this listing represents a command for the digital computer to
follow, one by one, in order from top to bottom. The LOOP and ENDLOOP markers represent the
boundaries of a program loop, where the same set of encapsulated commands are executed over and
over again in cyclic fashion:

Pseudocode listing

LOOP
SET x = analog_input_N // Update z with the latest measured input
SET t = system_time // Sample the system clock

SET delta.x = x — last_x // Calculate change in x
SET delta_t = t — last_t // Calculate change in t (time)

SET rate = (delta_x / delta_t) // Calculate ratio of changes

SET last_x = x // Update last_xz wvalue for mnext program cycle
SET last_t =t // Update last_t wvalue for next program cycle
ENDLOOP

Each SET command tells the computer to assign a numerical value to the variable on the left-hand
side of the equals sign (=), according to the value of the variable or expression on the right-hand
side of the equals sign. Text following the double-dash marks (//) are comments, included only to
help human readers interpret the code, not for the computer’s benefit.

This computer program uses two variables to “remember” the values of the input (x) and time
(t) from the previous scan, named last_x and last_t, respectively. These values are subtracted
from the current values for x and ¢ to yield differences (delta x and delta_t, respectively), which
are subsequently divided to yield a difference quotient. This quotient (rate) may be sampled in
some other portion of the computer’s program to trigger an alarm, a shutdown action, or simply
display and/or record the rate value for a human operator’s benefit.

The time period (At) for this program’s difference quotient calculation is simply how often
this algorithm “loops,” or repeats itself. For a modern digital microprocessor, this could be many
thousands of times per second.

13 “pseudocode” is a name given to any imaginary computer language used for the purpose of illustrating some
procedure or concept without having to make reference to any particular (real) computer programming language. I
could have just as well shown you the same algorithm using BASIC, C, or Java code, but pseudocode does just as
well without the burden of introducing unfamiliar syntax to the reader.
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If a nearly-instantaneous calculation is required for a rate-of-change variable, we may turn to
an older technology using analog electronic circuitry. Such a differentiator circuit uses the natural
behavior of a capacitor to generate an output voltage proportional to the instantaneous rate-of-
change of the input voltage:

c R
Vin o—F—ww
Vout
dv;
Vout—_RC dt

The negative feedback of the operational amplifier forms a virtual ground at the node where
the capacitor, resistor, and inverting input connect. This means the capacitor “sees” the full input
voltage (Vi) at all times. Current through a capacitor is a direct function of the voltage’s time-
derivative:

av
I=C—
dt

This current finds its way through the feedback resistor, developing a voltage drop that becomes
the output signal (V,,;). Thus, the output voltage of this analog differentiator circuit is directly
proportional to the time-derivative of the input voltage (the input voltage’s rate-of-change).

It is indeed impressive that such a simple circuit, possessing far fewer components than a
microprocessor, is actually able to do a better job at calculating the real-time derivative of a
changing signal than modern digital technology. The only real limitations to this device are accuracy
(tolerances of the components used) and the bandwidth of the operational amplifier.

It would be a mistake, though, to think that an analog differentiator circuit is better suited
to industrial applications of rate calculation than a digital computer, even if it does a superior
job differentiating live signals. A very good argument for favoring difference quotients over actual
derivatives is the presence of noise in the measured signal. A true differentiator, calculating the
actual time-derivative of a live signal, will pick up on any rise or fall of the signal over time, no
matter how brief. This is a serious problem when differentiating real-world signals, because noise
(small amounts of “jittering” in the signal caused by any number of phenomena) will be interpreted
by a perfect differentiator as very large rates of change over time.
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A close look at the previous pipeline pressure trend illustrates this problem. Note the areas circled
(in red) on the graph, representing relatively small increases and decreases in signal occurring over
very short periods of time:

300 —

O

200 —

100 —
| | |

1:30 1:45 2:00

Although each “step” in pressure at these circled locations is small in amplitude, each one occurs
over an extremely brief time increment. Thus, each of these steps has a nearly infinite rate of
change (i.e. a vertical slope). Any rate-of-change sensing system able to apply true differentiation
to the pressure signal would falsely declare an alarm (high rate-of-change) condition every time
it encountered one of these “steps” in the signal. This means that even under perfectly normal
operating conditions the rate-detection system would periodically declare an alarm (or perhaps shut
the pipeline down!) given the inevitable presence of small noise-induced'* “jitters” in the signal.

The best solution to this problem is to use a digital computer to calculate rates of change, setting
the calculation period time slow enough that these small “jitters” will be averaged to very low values,
yet fast enough that any serious pressure rate-of-change will be detected if it occurs. Back in the
days when analog electronic circuits were the only practical option for calculating rates of signal
change, the solution to this problem was to place a low-pass filter before the differentiator circuit to
block such noise from ever reaching the differentiator.

Differentiation with respect to time has many applications, but there are other applications of
differentiation in industrial measurement and control that are not time-based. For example, we may

14 Another source of trouble for differentiation of live signals is when the signal originates from a digital sensor.
Digital devices, by their very nature, break analog signals into a series of discrete amplitude steps. As a digital
process transmitter encounters a steadily increasing or decreasing process variable, its output rises or falls in discrete
“jumps” rather than continuously as a fully analog transmitter would. Now, each of these jumps is quite small, but
since each one occurs almost instantly it still translates into an extremely large rate-of-change when detected by a
differentiator sampling over small time increments or sampling continuously (as in the case of an analog differentiator
circuit). This means the problem of false rates-of-change exists even in perfectly noiseless systems, when the detection
device (and/or the information channel to the monitoring system) is digital rather than analog.
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use differentiation to express the sensitivity of a non-linear device in terms of the rate-of-change of
output over input.

One such application is the sensitivity of a mechanism called a baffle/nozzle assembly used in
many pneumatic instruments to convert a small physical motion (x) into an air pressure signal (P).
This very simple mechanism uses a flat piece of sheet metal (the baffle) to restrict air flow out of
a small nozzle, causing a variable “backpressure” at the nozzle to develop as the baffle-to-nozzle
clearance changes:

Pressure gauge
P

X
—>||<— Clearance

Baffle

From compressed Orifice Nozzle
airsupply = __— mm—— —> —>

(20 PSI) \

Pivot
20
18
16
14
12

Backpressure at 10 -

nozzle (PSI)
P

o N A OO
|

0 12 3 456 7 8 910

Clearance, mils (thousandths of an inch)
X

The graph expressing the relationship between P and x is clearly non-linear, having different
slopes (?Tf)) at different points along its range. When used as part of the feedback mechanism for
a self-balancing instrument, the purpose of the baffle/nozzle assembly is to detect baffle motion as
sensitively as possible: that is, to generate the greatest change in pressure (AP) for the least change
in motion (Az). This means the designer of the pneumatic instrument should design it in such a
way that the normal baffle/nozzle clearance gap rests at a point of maximum slope (maximum %)

on the graph.
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Sketching a tangent line near the point of maximum slope (maximum “steepness” on the graph)
allows us to approximate the rate of change at that point:

20
18 — 18 PSI-@ 0.001 inch-gap

12 4
10

0 PSI'@ 0.0025 inch ga|
[ I I I I I I |

[
0 12 3 456 7 8 910
X

o N A OO
|

Choosing convenient points'® on this tangent line aligning with major divisions on the graph’s
scales, we find two coordinates we may use to calculate the derivative of the curve at its steepest
point:

AP 0 PSI — 18 PSI —18 PSI ,
dr ~ 0.0025 mch — 0,001 tnch — 0.0015 neh 12000 PSTper inch

The phenomenally large value of -12000 PSI per inch is a rate of pressure change to clearance
(baffle-nozzle gap) change. Do not mistakenly think that this value suggests the mechanism could
ever develop a pressure of 12000 PSI — it is simply describing the extreme sensitivity of the mechanism
in terms of PSI change per unit change of baffle motion. By analogy, just because an automobile
travels at a speed of 70 miles per hour does not mean it must travel 70 miles in distance!

It should be clear from an examination of the graph that this high sensitivity extends
approximately between the pressure values of 9 and 14 PSI. Outside of those pressure values, the
graph’s slope begins to decrease. While still sensitive, the baffle/nozzle mechanism will not be as
sensitive to baffle motion outside those pressure values as it is within.

150nce gain, we are looking for points where the tangent line happens to intersect with major divisions on the
graph’s scale. This makes it relatively easy to calculate the line’s slope, since the pressure and distance values for
those coordinates are easy to read.
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1.7 Numerical integration

As we have seen, the concept of integration is finding the accumulation of one variable multiplied by
another (related) variable. In this section, we will explore the practical application of this concept to
real-world data, where actual numerical values of variables are used to calculate accumulated sums.

In industrial instrumentation, for example, we are often interested in calculating the accumulation
of some process fluid based on a measured flow rate of that fluid. The rate is, of course, expressed
in either mass or volume units per unit time (e.g. gallons per minute), but the total accumulated
quantity will be expressed plainly in either mass or volume units (e.g. gallons). We may use
computers to calculate those accumulated quantities, either after the fact (from recorded data) or
in real time.

Numerical (data-based) integration is fundamentally a two-step arithmetic process. First, we
must use multiplication to calculate the product of a variable and a small increment of another
variable (a change in the second variable between two different points). Then, we must use addition
to calculate the accumulated sum of the products.

To illustrate, we will first focus on the integration of a flow measurement signal with respect
to time. The flow rate of any fluid is always expressed in units of volume or mass per unit time.
Common volumetric flow units are gallons per minute, liters per second, cubic feet per day, etc.
Common mass flow units are pounds per hour, kilograms per minute, slugs per second, etc. If we
desire to calculate the volume or mass of fluid passed through a pipe — representing fluid added to
or removed from a system — over some interval of time, we may do so by integrating flow rate with
respect to time:

b
AV:/ Q dt

b
Am:/ W dt

Where,
AV = Volume of fluid added or removed
@ = Volumetric flow rate of fluid
Am = Mass of fluid added or removed
W = Mass flow rate of fluid
a = Starting point of integration interval
b = Ending point of integration interval
t = Time

As always, integration is fundamentally a matter of multiplying one variable by small increments
of another variable. If a flow rate is integrated with respect to time, the result is that the unit
for time becomes eliminated. Gallons per minute, for example, becomes gallons after integration;
kilograms per second becomes kilograms; etc.
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The elimination of time units is also evident if we re-write the integrands in the previous equations
to show volumetric and mass flow rates (Q and W, respectively) as the rates of change they are
(Q:%andW:%—T):

b
sz/ﬂdt
S

b
dm
Am = — dt
m /adtd

It should be clear that the time differentials (dt) cancel in each integrand, leaving:

b
AV:/ av

b
Am:/ dm

Since we know the integral symbol ([) simply means the “continuous sum of” whatever follows
it, we may conclude in each case that the continuous sum of infinitesimal increments of a variable is
simply a larger change of that same variable. The continuous summation of dV is simply the total
change in V over the time interval from a to b; the continuous summation of dm is simply the total
change in m over the time interval from a to b.

A flowmeter measuring the flow rate of a fluid outputs a signal representing either volume or
mass units passing by per unit time. Integrating that signal with respect to time yields a value
representing the total volume or mass passed through the pipe over a specific interval. A physical
device designed to perform this task of integrating a signal with respect to time is called an integrator
or a totalizer:

Integrator
(totalizer)

Gallons per minute

_dv
= &

Gallons
AV

—————— S----- e TR

Volumetric
flowmeter
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An example of a flow integrator, or flow totalizer, made for pneumatic instrument systems is the
Foxboro model 14. A view of this instrument’s front face shows an odometer-style display, in this
particular case showing the total number of pounds (Ib) of fluid passed through the pipe, with a
multiplying factor of 10:

The fact that this instrument’s display resembles the odometer of an automobile is no coincidence.
Odometers are really just another form of mechanical integrator, “totalizing” the distance traveled
by a vehicle. If the speedometer of a vehicle registers speed (v) in units of miles per hour, then the
odometer will accumulate a distance (Az) in units of miles, since distance (miles) is the time-integral
of speed (miles per hour):

b b
Am:/vdt ...or. .. Ax:/didt
a o dt

fmiles] = / b (E:jj [hours])

In this particular case, where the flowmeter measures pounds per hour, and the integrator
registers accumulated mass in pounds, the integration of units is as follows:

b b
Am:/Wdt ...0r. .. Am:/cfi—n;dt

[pounds] = / b ({pz‘;ﬁs] [hours])
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The Foxboro model 14 used a turbine wheel driven by a jet of compressed air from a nozzle.
The wheel’s speed was made proportional to the process fluid flow rate sensed by a pneumatic
DP transmitter. As process flow rate increased, the wheel spun faster. This spinning wheel drove a
gear-reduction mechanism to slowly turn the odometer-style numerals, registering total fluid quantity
passed through the flowmeter:

As pneumatic signal pressure (3-15 PSI) from a pneumatic flow transmitter entered the brass
bellows of this instrument, it pressed down on a lever, forcing a baffle toward a nozzle. As
nozzle backpressure rose, amplified air pressure spun the turbine wheel to drive the integrating
“odometer” display. Mounted on the turbine wheel was a set of fly-weights, which under the
influence of centrifugal force would press upward on the lever to re-establish a condition of force-
balance to maintain a (relatively) constant baffle-nozzle gap. Thus, the force-balance mechanism
worked to establish an accurate and repeatable relationship'® between instrument signal pressure
and integration rate.

16The Foxboro model 14 totalizer’s design was quite ingenious, since centrifugal force varies with the square of
angular velocity. This had the effect of naturally performing the square-root characterization required of most
pneumatic flow-measuring instruments due to the quadratic nature of most primary flow-sensing elements (e.g. orifice
plate, venturi tubes, pitot tubes, etc.).
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A very different style of integrator appears here, as part of the controller for a ball mill used to
crush limestone into small pieces for the manufacture of concrete. Limestone is fed into the ball mill
on a device called a weighfeeder, which measures the mass of limestone as it passes over a conveyor
belt. The controller maintains a limestone “flow rate” at a setpoint specified in tons per hour (mass
flow of solid material). The red LED digital display shows the total number of tons passed through
the mill:

PULL-MAN. ¥ 4 REMOTE
\

SILENCE START

" LOAD
SPEED

The units involved in the integration of limestone “flow” into the ball mill are slightly different
from the example shown with the Foxboro model 14 totalizer, but the concept is the same:

b
Am:/ W dt

frons] = / b ([ﬁgﬁj [hours])

As with all cases of numerical integration, an essential piece of information to know when
“totalizing” any rate is the initial quantity at the start of the totalization interval. This is the
constant of integration mentioned previously. For flow totalization, this constant would be the
initial volume of fluid recorded at the starting time. For an automobile’s odometer, this constant is
the initial “mileage” accumulated prior to driving on a trip'7.

17Vehicles equipped with a trip odometer allow the driver to reset this integration constant to zero at will, thus



48 CHAPTER 1. CALCULUS

An algorithm applicable to integrating real signals with respect to time in a digital computer
is shown here, once again using “pseudocode” as the computer language. Each line of text in this
listing represents a command for the digital computer to follow, one by one, in order from top to
bottom. The LOOP and ENDLOOP markers represent the boundaries of a program loop, where the
same set of encapsulated commands are executed over and over again in cyclic fashion:

Pseudocode listing

LOOP
SET x = analog_input_N // Update z with the latest measured input
SET t = system_time // Sample the system clock

SET delta_-t = t — last_t // Calculate change in t (time)

SET product = x x delta_t // Calculate product (integrand)
SET total = total + product // Add the result to all previous

SET last_t =t // Update last_-t wvalue for next program cycle
ENDLOOP

This computer program uses a variable to “remember” the value of time (¢) from the previous
scan, named last_t. This value is subtracted from the current value for ¢ to yield a difference
(delta_t), which is subsequently multiplied by the input value x to form a product. This product is
then added to an accumulating total (named total), representing the integrated value. This “total”
value may be sampled in some other portion of the computer’s program to trigger an alarm, a
shutdown action, or simply display and/or record the totalized value for a human operator’s benefit.

The time period (At) for this program’s difference quotient calculation is simply how often this
algorithm “loops,” or repeats itself. For a modern digital microprocessor, this could be upwards of
many thousands of times per second. Unlike differentiation, where an excessive sampling rate may
cause trouble by interpreting noise as extremely high rates of change, there is no danger of excessive
sampling when performing numerical integration. The computer may integrate as fast as it can with
no ill effect.

One of the fundamental characteristics of integration is that it ignores noise, which is a very
good quality for industrial signal processing. Small “jittering” in the signal tends to be random,
which means for every “up” spike of noise, one may expect a comparable “down” spike (or collection
of “down” spikes having comparable weight) at some later time. Thus, noise tends to cancel itself
out when integrated over time.

As with differentiation, applications exist for integration that are not time-based. One such
application is the calculation of mechanical work, defined as the product of force and displacement
(distance moved). In mechanical systems where there is no energy dissipated due to friction, work
results in a change in the energy possessed by an object.

allowing the tracking of mileage for individual trips instead of over the life of the automobile.
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For example, if we use a hoist to lift a mass weighing 700 pounds straight up against gravity a
distance of 3 feet, we will have done 2100 foot-pounds of work. The work done on the mass increases
its potential energy (AE) by 2100 foot-pounds:

AE = Fx

Where,
AFE = Change in potential energy resulting from work, in joules (metric) or foot-pounds (British)
F = Force doing the work, in newtons (metric) or pounds (British)
x = Displacement over which the work was done, in meters (metric) or feet (British)

We may also express this change in potential energy as an integral of force (F) multiplied
by infinitesimal increments in displacement (dz) over some interval (from a to b), since we know
integration is nothing more than a sophisticated way to multiply quantities:

b
AFE = / Fdx
a
Like any other integral, the energy change effected by lifting this mass a vertical distance may

be represented graphically as the area enclosed by the graph. In this case, the area is very simple
to calculate, being a simple rectangle (height times width):
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Lifting the mass vertically constitutes a positive change in potential energy for this object,
because each displacement differential (dx) is a positive quantity as we move from a height of 0 feet
to a height of 3 feet:

3ft

2100 ft-1bs = / (700 Ibs) dz
0ft
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A natural question to ask at this point is, what would the resulting change in energy be if we
lowered the mass from its height of 3 feet back down to 0 feet?. Doing so would cover the exact
same distance (3 feet) while exerting the exact same amount of suspending force (700 1bs), and so
we can safely conclude the work will have an absolute magnitude of 2100 ft-Ibs. However, if we
lower the mass, each displacement differential (dz) will be a negative quantity'® as we move from a
greater height to a lesser height. This makes the work — and the resulting energy change — a negative
quantity as well:

oft

—2100 ft-Ibs = / (700 1bs) da
3ft

This means if we raise the mass to a height of 3 feet, then lower it back to its original starting
height of 0 feet, the total change in potential energy will be zero:

3ft 0ft
0 ft-1bs = / (700 lbs) dxr + / (700 lbs) dx
0ft 3ft

This is true for any integral having an interval of zero (same starting and ending values),
regardless of the integrand’s value at any point in time:

0 ft-1bs = / Fdx

18As we lower the mass to ground level, height (z) goes from being a positive value to zero. This means each
differential (infinitesimal change in value) for x will be negative, thus causing the integrand F' dz to have a negative
value and thus causing the integrated total (work) to be negative as well.
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The integration of force and displacement to calculate potential energy change really shows
its utility when the force changes as a function of displacement. A classic example of this is the
compression of a mechanical spring, described in section 2.8.3 beginning on page 90.

One practical example of this sort of calculation is the determination of energy stored in an
archer’s bow when drawn to a certain displacement. The so-called force-draw curve of a longbow is
nearly ideal for a theoretical spring, with force increasing linearly as the string is drawn back by the
archer. The force-draw curve for a compound bow!? is quite nonlinear, with a much lesser holding
force required to maintain the bow at full draw:

Longbow force-draw curve Compound bow force-draw curve

Holding force
Force at full draw . —>— Force
" "
Holding force
atfulldraw  —>
Draw (x) Draw (x)

The force required to draw a compound bow rises sharply during the first few inches of draw,
peaks during the region where the archer’s arms are ideally angled for maximum pulling strength,
then “lets off” toward the end where the archer’s drawing arm is weakest in the “holding” position.
The result is a bow that requires substantial force to draw, but is relatively easy to hold in fully-
drawn position.

19While a longbow is really nothing more than a long and flexible stick with a straight string drawn across it,
a compound bow is a sophisticated machine with multiple passes of string and cam-shaped pulleys providing the
nonlinear force-draw relationship.
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While the compound bow may be easier to hold at full draw than the longbow, for any given
holding force the compound bow stores much more energy than the longbow, owing to the far greater
area (force-displacement integral) enclosed by the curve:

Longbow force-draw curve Compound bow force-draw curve

Force Force
(F) (F) Area =
energy stored
Area = AE = [F dx
energy stored
AE = [F dx
Draw (X) Draw (X)

This is why a compound bow is so much more powerful than a longbow or a “recurve” bow with
the same holding force: the energy represented by the greater area underneath the force-draw curve
equates to greater energy imparted to the arrow when released, and therefore greater kinetic energy
in the arrow during flight.

Like any other form of mechanical work, the energy invested into the bow by the archer is
readily calculated and expressed in units of force x displacement, typically newton-meters (joules)
in metric units and foot-pounds in British units. This stands to reason, since we know integration is
fundamentally a matter of multiplying quantities together, in this case force (pull) and displacement
(draw).

To actually calculate the amount of energy stored in a fully-drawn bow, we could measure both
force and displacement with sensors as the archer draws the bow, with a computer numerically
integrating force over increments of draw in real time. Another method would be to simply graph
force versus draw as we have done here, then use geometric methods?® to approximate the area
underneath the curve.

200ne simple way to do this is to cover the entire integration area using nothing but rectangles and triangles, then
measuring all the sketched shapes to totalize their areas.
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A more sophisticated example of numerical integration used to calculate work is that of a heat
engine, where a piston compresses an enclosed gas:

Cylinder )
Piston
F
(Gas) <= F
e— X —

X

As the piston is pushed farther into the cylinder, the gas becomes compressed, exerting more force
on the piston. This requires an ever-increasing application of force to continue the piston’s motion.
Unlike the example where a mass of constant weight was lifted against the pull of gravity, here the
force is a dynamically changing variable instead of a constant. The graph shows this relationship
between piston displacement and piston force.
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If we push the piston into the cylinder, the force increases as the displacement decreases. The
change in energy is described by the integral of force with respect to displacement, graphically
equivalent to the area underneath the force curve:

.=
|

|
b a b a

F AE = [F dx
[
b X a
b
AE:/ F dx

If we slowly allow the piston to return to its original position (letting the pressure of the enclosed
gas push it back out), the piston’s force decreases as displacement increases. The force/displacement
relationship is the same as before, the only difference being the direction of travel is opposite. This
means the change in energy is happening over the same interval, in reverse direction (from b to a
now instead of from a to b). Expressed as an integral:

AEz/ Fdx
b

As we have already learned, a reversal of direction means the sign of the integral will be opposite.
If pushing the piston farther inside the cylinder represented work being done on the enclosed gas by
the applied force, now the gas will be doing work on the source of the applied force as the piston
returns to its extended position.

This means we will have done zero net work by pushing the piston into the cylinder and then
letting it spring back out to its original position, just as we performed zero net work by lifting a
mass 3 feet in the air and then letting it back down.
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In order that this piston/cylinder mechanism might function as an engine, we must have some
way of making the energy change greater in one direction than the other. This is done by heating
the enclosed gas at the point of greatest compression. In a spark-ignition engine, the gas is actually
a mixture of air and fuel, ignited by an electric spark. In a compression-ignition (diesel) engine, the
gas is pure air, with fuel injected at the last moment to initiate combustion. The addition of heat
(from combustion) will cause the gas pressure to rise, exerting more force on the piston than what
it took to compress the gas when cold. This increased force will result in a greater energy change
with the piston moving out of the cylinder than with the piston moving in:

Compression Ignition Power (expansion)

**ﬁ***
ot
(cold) **(*a)c**

* k k k k %

b a b a b a
TPressure rise
ldue to heating
+AE = [F dx
b
b
F -AE = [F dx F F
T T T T
b X a b X a b X a

Representing the work done by the hot gas as the area enclosed by the curve makes this clear:
more mechanical energy is being released as the piston travels from b to a during the “power stroke”
than the amount of energy invested in compressing the gas as the piston traveled from a to b during
the “compression stroke.” Thus, an internal combustion engine produces mechanical power by
repeatedly compressing a cold gas, heating that gas to a greater temperature, and then expanding
that hot gas to extract energy from it.
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At the conclusion of the power stroke, a valve opens to exhaust the hot gas and another valve
opens to introduce cold gas. This places the piston and cylinder in the original condition, ready for
another set of compression, ignition, and power strokes. This cycle is sometimes represented as a
closed “loop” on the force/displacement graph, like this:

Ignifion

Power (expansion)

Exhaust /

. Intake
Compression

b X a

The amount of net energy output by the engine at the conclusion of each cycle is equivalent to
the area enclosed by the loop. This is the difference in areas (integrals) between the “compression”
and “power” strokes. Any design change to the engine resulting in a greater “loop” area (i.e. less
energy required to compress the gas, and/or more energy extracted from its expansion) results in
a more powerful engine. This is why heat engines output the most power when the difference in
temperatures (cold gas versus heated gas) is greatest: a greater temperature shift results in the two
curves being farther apart vertically, thus increasing the area enclosed by the “loop.”
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2.1 Terms and Definitions

Mass (m) is the opposition an object has to acceleration (changes in velocity). Weight is the force
(F) imposed on a mass by a gravitational field. Mass is an intrinsic property of an object, regardless
of the environment. Weight, on the other hand, depends on the strength of the gravitational field
in which the object resides. A 20 kilogram slug of metal has the exact same mass whether it rests
on Earth, or in the zero-gravity environment of outer space, or on the surface of the planet Jupiter.
However, the weight of that mass depends on gravity: zero weight in outer space (where there is no
gravity to act upon it), some weight on Earth, and a much greater amount of weight on the planet
Jupiter (due to the much stronger gravitational field of that planet).

Since mass is the opposition of an object to changes in velocity (acceleration), it stands to reason
force, mass, and acceleration for any particular object are directly related to one another:

F =ma

Where,
F = Force in newtons (metric) or pounds (British)
m = Mass in kilograms (metric) or slugs (British)
a = Acceleration in meters per second squared (metric) or feet per second squared (British)

If the force in question is the weight of the object, then the acceleration (a) in question is the
acceleration constant of the gravitational field where the object resides. For Earth at sea level,
Qgravity 15 approximately 9.81 meters per second squared, or 32.2 feet per second squared. Earth’s
gravitational acceleration constant is usually represented in equations by the variable letter g instead
of the more generic a.

Since acceleration is nothing more than the rate of velocity change with respect to time, the
force/mass equation may be expressed using the calculus notation of the first derivative:

dv
F=m%
Mt

Where,
F = Force in newtons (metric) or pounds (British)
m = Mass in kilograms (metric) or slugs (British)
v = Velocity in meters per second (metric) or feet per second (British)
t = Time in seconds

Since velocity is nothing more than the rate of position change with respect to time, the
force/mass equation may be expressed using the calculus notation of the second derivative
(acceleration being the derivative of velocity, which in turn is the derivative of position):

d’x
F=m 7z
Where,

F = Force in newtons (metric) or pounds (British)

m = Mass in kilograms (metric) or slugs (British)

x = Position in meters (metric) or feet (British)

t = Time in seconds
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Mass density (p) for any substance is the proportion of mass to volume. Weight density (v) for
any substance is the proportion of weight to volume.

Just as weight and mass are related to each other by gravitational acceleration, weight density
and mass density are also related to each other by gravity:

Flyeight = myg Weight and Mass

¥ = pg Weight density and Mass density

2.2 Metric prefixes

METRIC PREFIX SCALE

T G M k m 1 n p
tera giga mega kilo (none) milli micro nano pico
102 10° 10® 10® 10° 10® 10° 10° 10%2

N N PO N
N

102 10! 10! 102

hecto deca deci centi
h da d c

2.3 Areas and volumes

Area refers to the size of two-dimensional surface. Volume refers to the size of a three-dimensional
space. To put both these measures into context; the question of how much paint will be required to
adequately cover a house is one of area, while the question of how much water will be required to
fill a pond is one of volume.

Some units of measurement for area and volume are nothing more than compounded linear units.
Ten centimeters is an expression of distance, while ten square centimeters (cm2) is an expression
of area, and ten cubic centimeters (cm?) is an expression of volume. It important to note that the
modifiers “square” and “cubic” do not in any way imply the object in question is square or cubic
in shape. It is perfectly reasonable to measure the area of a circle, for instance, using the unit of
square centimeters.

Other units of spatial measurement are specific to area or to volume. The acre, for example,
is a unit of area measurement developed for the purpose of quantifying the size of land plots, one
acre being equivalent to 43560 square feet. An example of a unit specifically devoted to volume
measurement is the liter, equivalent to 1000 cubic centimeters.
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2.3.1 Common geometric shapes

Trapezoid

<~ b

Triangle

fe—Db — |J«— B ——
Area A= —1 Area A= 1 (b+ B)h
2 2
Z .
\</ Rectangular solid
Rectangle

—<—]

'
'

e— x — — x —

Perimeter P = 2x+ 2y Surface area A= 2xy + 2yz+ 2xz
Area A= xy Volume V = xyz
Circle Sphere

+— D — e— D —
Circumference C= D = 2711 Surface area A= 4rr?

Area A= 1’ Volume V= % e
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Right circular cylinder

Cone

f«— D —> f«— D —
Surface area A= 2%+ 2rrh Surface area A= 1 \/r?+ h?® +
Volume V= mrh Volume V= ?1 mh
Tetrahedron

Note: the volume of any pyramid or cone
is one-third the product of its height (h)
and the area of its base.

Volume V= ?1 xyh
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2.4 Unit conversions and physical constants

Converting between disparate units of measurement is the bane of many science students. The
problem is worse for students in the United States of America, who must work with British
(“Customary”) units such as the pound, the foot, the gallon, etc. World-wide adoption of the
metric system would go a long way toward alleviating this problem, but until then it is important
for students to master the art of unit conversions®.

It is possible to convert from one unit of measurement to another by use of tables designed
expressly for this purpose. Such tables usually have a column of units on the left-hand side and an
identical row of units along the top, whereby one can look up the conversion factor to multiply by
to convert from any listed unit to any other listed unit. While such tables are undeniably simple to
use, they are practically impossible to memorize.

The goal of this section is to provide you with a more powerful technique for unit conversion,
which lends itself much better to memorization of conversion factors. This way, you will be able to
convert between many common units of measurement while memorizing only a handful of essential
conversion factors.

I like to call this the wnity fraction technique. It involves setting up the original quantity as
a fraction, then multiplying by a series of fractions having physical values of unity (1) so that by
multiplication the original value does not change, but the units do. Let’s take for example the
conversion of quarts into gallons, an example of a fluid volume conversion:

35 qt = 777 gal

Now, most people know there are four quarts in one gallon, and so it is tempting to simply
divide the number 35 by four to arrive at the proper number of gallons. However, the purpose of
this example is to show you how the technique of unity fractions works, not to get an answer to a
problem. First, we set up the original quantity as a fraction, in this case a fraction with 1 as the
denominator:

35 qt
1

Next, we multiply this fraction by another fraction having a physical value of unity, or 1. This
means a fraction comprised of equal measures in the numerator and denominator, but with different
units of measurement, arranged in such a way that the undesired unit cancels out leaving only the
desired unit(s). In this particular example, we wish to cancel out quarts and end up with gallons,
so we must arrange a fraction consisting of quarts and gallons having equal quantities in numerator
and denominator, such that quarts will cancel and gallons will remain:

35 qt 1 gal

1 4 qt
1 An interesting point to make here is the United States did get something right when they designed their monetary
system of dollars and cents. This is essentially a metric system of measurement, with 100 cents per dollar. The
founders of the USA wisely decided to avoid the utterly confusing denominations of the British, with their pounds,
pence, farthings, shillings, etc. The denominations of penny, dime, dollar, and eagle (310 gold coin) comprised a

simple power-of-ten system for money. Credit goes to France for first adopting a metric system of general weights
and measures as their national standard.




2.4. UNIT CONVERSIONS AND PHYSICAL CONSTANTS 63

Now we see how the unit of “quarts” cancels from the numerator of the first fraction and the
denominator of the second (“unity”) fraction, leaving only the unit of “gallons” left standing:

35 qt 1gal)
(1> <4 @ ) = 8.75 gal

The reason this conversion technique is so powerful is it allows one to perform the largest range
of unit conversions while memorizing the smallest possible set of conversion factors.
Here is a set of six equal volumes, each one expressed in a different unit of measurement:

1 gallon (gal) = 231.0 cubic inches (in®) = 4 quarts (qt) = 8 pints (pt) = 128 fluid ounces (fl. oz.)
= 3.7854 liters (1)

Since all six of these quantities are physically equal, it is possible to build a “unity fraction” out
of any two, to use in converting any of the represented volume units into any of the other represented
volume units. Shown here are a few different volume unit conversion problems, using unity fractions
built only from these factors:

40 gallons converted into fluid ounces:

40 gal 128 fl. oz _ 5190 fl. oz
1 1 gal

5.5 pints converted into cubic inches:

.3
5.5 pt 231 "\ 158.8 in?
1 8 pt

11701\ [ 4qt
( 1 ) <3.7854 1) = 1230 at

By contrast, if we were to try to memorize a 6 x 6 table giving conversion factors between any
two of six volume units, we would have to commit 30 different conversion factors to memory! Clearly,
the ability to set up “unity fractions” is a much more memory-efficient and practical approach.

But what if we wished to convert to a unit of volume measurement other than the six shown in
the long equality? For instance, what if we wished to convert 5.5 pints into cubic feet instead of
cubic inches? Since cubic feet is not a unit represented in the long string of quantities, what do we
do?

We do know of another equality between inches and feet, though. Everyone should know that
there are 12 inches in 1 foot. All we need to do is set up another unity fraction in the original
problem to convert cubic inches into cubic feet:

1170 liters converted into quarts:

5.5 pints converted into cubic feet (our first attempt!):

.3
5.5 pt 231 in 11t _ 979
1 8 pt 12 in
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Unfortunately, this will not give us the result we seek. Even though 112 fl“il is a valid unity fraction,

it does not completely cancel out the unit of inches. What we need is a unity fraction relating cubic

1 1t
12 1n

feet to cubic inches. We can get this, though, simply by cubing the unity fraction:

5.5 pints converted into cubic feet (our second attempt!):

55pt\ /2310 [/ 1ft\°
1 8 pt 12 in

Distributing the third power to the interior terms of the last unity fraction:

5.5 pt\ /231 in? 13 3
1 8 pt 123 in®

Calculating the values of 1® and 122 inside the last unity fraction, then canceling units and

solving:
5.5 pt\ /231 in® 163
( p)( m)< , 3)0.0919&3
1 8 pt 1728 in

Once again, this unit conversion technique shows its power by minimizing the number of
conversion factors we must memorize. We need not memorize how many cubic inches are in a
cubic foot, or how many square inches are in a square foot, if we know how many linear inches are in
a linear foot and we simply let the fractions “tell” us whether a power is needed for unit cancellation.

A major caveat to this method of converting units is that the units must be directly proportional
to one another, since this multiplicative conversion method is really nothing more than an exercise
in mathematical proportions. Here are some examples (but not an exhaustive list!) of conversions
that cannot be performed using the “unity fraction” method:

e Absolute / Gauge pressures, because one scale is offset from the other by 14.7 PSI (atmospheric
pressure).

e Celsius / Fahrenheit, because one scale is offset from the other by 32 degrees.

e Wire diameter / gauge number, because gauge numbers grow smaller as wire diameter grows
larger (inverse proportion rather than direct) and because there is no proportion relating the
two.

e Power / decibels, because the relationship is logarithmic rather than proportional.

The following subsections give sets of physically equal quantities, which may be used to create
unity fractions for unit conversion problems. Note that only those quantities shown in the same line
(separated by = symbols) are truly equal to each other, not quantities appearing in different lines!
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2.4.1 Conversion formulae for temperature

Note: all of the conversion factors given for temperature are ezract, not approximations.

°F = (°C)(9/5) + 32
°C = (°F - 32)(5/9)
°R = °F + 459.67

K = °C + 273.15

2.4.2 Conversion factors for distance

Note: all of the conversion factors given for distance are exact, not approximations.

1 inch (in) = 2.54 centimeters (cm)
1 foot (ft) = 12 inches (in)
1 yard (yd) = 3 feet (ft)

1 mile (mi) = 5280 feet (ft)

2.4.3 Conversion factors for volume

Note: all conversion factors shown in bold type are ezact, not approximations.

65

1 gallon (gal) = 231.0 cubic inches (in®) = 4 quarts (qt) = 8 pints (pt) = 16 cups = 128 fluid

ounces (fl. 0z.) = 3.7854 liters (1)

1 milliliter (ml) = 1 cubic centimeter (cm?)

2.4.4 Conversion factors for velocity

Note: all conversion factors shown in bold type are ezact, not approximations.

1 mile per hour (mi/h) = 88 feet per minute (ft/m) = 1.46667 feet per second (ft/s) = 1.60934
kilometer per hour (km/h) = 0.44704 meter per second (m/s) = 0.868976 knot (knot — international)

2.4.5 Conversion factors for mass

1 pound-mass (Ibm) = 0.4535924 kilogram (kg) = 0.031081 slugs

2.4.6 Conversion factors for force

1 pound-force (Ibf) = 4.448222 newtons (N)

1 kilogram-force (kgf) = 9.80665 newtons (N)
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2.4.7 Conversion factors for area

Note: all conversion factors shown in bold type are exact, not approximations.

1 acre = 43560 square feet (ft?) = 4840 square yards (yd?) = 4046.86 square meters (m?)

2.4.8 Conversion factors for pressure (either all gauge or all absolute)

Note: all conversion factors shown in bold type are ezact, not approximations.

1 pounds per square inch (PSI) = 2.03602 inches of mercury at 0 °C (in. Hg) = 27.6799 inches of
water at 4 °C (in. W.C.) = 6.894757 kilopascals (kPa) = 0.06894757 bar

1 bar = 100 kilopascals (kPa) = 14.504 pounds per square inch (PSI)

1 meter of water at 4 °C (m W.C.) = 9.80665 kilopascals (kPa)

2.4.9 Conversion factors for pressure (absolute pressure units only)

Note: all conversion factors shown in bold type are ezact, not approximations.

1 standard atmosphere (Atm) = 14.7 pounds per square inch absolute (PSIA) = 101.325
kilopascals absolute (kPaA) = 1.01325 bar absolute = 760 millimeters of mercury absolute
(mmHgA) = 760 torr (torr)

2.4.10 Conversion factors for energy or work

1 British thermal unit (Btu — “International Table”) = 251.996 calories (cal — “International Table”)
= 1055.06 joules (J) = 1055.06 watt-seconds (W-s) = 0.293071 watt-hour (W-hr) = 1.05506 x 10*°
ergs (erg) = 778.169 foot-pound-force (ft-1bf)

2.4.11 Conversion factors for power

Note: all conversion factors shown in bold type are ezact, not approximations.

1 horsepower = 550 foot-pounds per second (ft-1bf/s) = 745.7 watts (W) = 2544.43 British
thermal units per hour (Btu/h) = 0.0760181 boiler horsepower (hp — boiler)
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2.4.12 Terrestrial constants

Acceleration of gravity at sea level = 9.806650 meters per second per second (m/s?) = 32.1740 feet
per second per second (ft/s?)

Atmospheric pressure = 14.7 pounds per square inch absolute (PSIA) = 760 millimeters of mercury
absolute (mmHgA) = 760 torr (torr) = 1.01325 bar (bar)

Atmospheric gas concentrations (by volume, not mass):
e Nitrogen = 78.084 %
e Oxygen = 20.946 %
e Argon = 0.934 %
e Carbon Dioxide (CO2) = 0.033 %
e Neon = 18.18 ppm
e Helium = 5.24 ppm
e Methane (CHy) = 2 ppm
e Krypton = 1.14 ppm
e Hydrogen = 0.5 ppm
e Nitrous Oxide (N2O) = 0.5 ppm
e Xenon = 0.087 ppm

Density of dry air at 20 °C and 760 torr = 1.204 mg/cm?® = 1.204 kg/m?® = 0.075 1b/ft3 = 0.00235
slugs/ft3

Absolute viscosity of dry air at 20 °C and 760 torr = 0.018 centipoise (cp) = 1.8 x 1075 pascal-
seconds (Pa-s)

2.4.13 Properties of water

Freezing point at sea level = 32 °F = 0 °C

Boiling point at sea level = 212 °F = 100 °C

Density of water at 4 °C = 1000 kg/m? = 1 g/cm? = 1 kg/liter = 62.428 1b/ft> = 1.94 slugs/ft>
Specific heat of water at 14 °C = 1.00002 calories/g-°C = 1 BTU/lb-°F = 4.1869 joules/g-°C
Specific heat of ice & 0.5 calories/g-°C

Specific heat of steam =2 0.48 calories/g-°C

Absolute viscosity of water at 20 °C = 1.0019 centipoise (cp) = 0.0010019 pascal-seconds (Pa-s)
Surface tension of water (in contact with air) at 18 °C = 73.05 dynes/cm

pH of pure water at 25 °C = 7.0 (pH scale = 0 to 14)
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2.4.14 Miscellaneous physical constants

Note: all constants shown in bold type are ezact, not approximations. Parentheses show one
standard deviation (o) of uncertainty in the last digits: for example, Avogadro’s number given as
6.02214179(30) x 1023 means the center value (6.02214179 x 1023) plus or minus 0.00000030 x 1023.
Avogadro’s number (N,) = 6.02214179(30) x 10?3 per mole (mol~1)

Boltzmann’s constant (k) = 1.3806504(24) x 10~2% joules per Kelvin (J/K)

Electronic charge (e) = 1.602176487(40) x 1079 Coulomb (C)

Faraday constant (F) = 9.64853399(24) x 10* Coulombs per mole (C/mol)

Gravitational constant (G) = 6.67428(67) x 107! cubic meters per kilogram-seconds squared
(m?/kg-s?)

Molar gas constant (R) = 8.314472(15) joules per mole-Kelvin (J/mol-K) = 0.08205746(14) liters-
atmospheres per mole-Kelvin

Planck constant (h) = 6.62606896(33) x 1034 joule-seconds (J-s)
Stefan-Boltzmann constant (o) = 5.670400(40) x 10~% Watts per square meter-Kelvin* (W/m?2.K*)
Speed of light in a vacuum (¢) = 299792458 meters per second (m/s) = 186282.4 miles per

second (mi/s)

All constants taken from NIST data “Fundamental Physical Constants — Extensive Listing”,
published 2006.
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2.4.15 Weight densities of common materials

All density figures approximate for samples at standard temperature and pressure”.

2

Liquids:

Acetone: v = 49.4 1b/ft3

Alcohol, ethyl (ethanol): v = 49.4 1b/ft3
Alcohol, methyl (methanol): v = 50.5 1b/ft?
Benzene: v = 56.1 1b/ft?

Butane (liquid): v = 36.1 1b/ft?

Carbon disulfide: v = 80.7 1b/ft?

Carbon tetrachloride: v = 99.6 1b/ft?
Chloroform: v = 93 Ib/ft3

Ethylene glycol (ethanediol): v = 69.22 1b/ft3
Gasoline: v = 41 1b/ft® to 43 Ib/ft3
Glycerin: v = 78.6 1b/ft?

Isobutane (liquid): v = 34.8 1b/ft?
Kerosene: v = 51.2 Ib/ft3

Mercury: v = 849 Ib/ft3

Methanol (methyl alcohol): v = 50.5 Ib/ft3
Milk: v = 64.2 Ib/ft3 to 64.6 1b/ft>
Naphtha, petroleum: v = 41.5 Ib/ft?

Oil, castor: v = 60.5 1b/ft?

Oil, coconut: v = 57.7 Ib/ft>

Oil, linseed (boiled): v = 58.8 Ib/ft3

Oil, olive: v = 57.3 1b/ft?

Propane (liquid): v = 31.2 Ib/ft3

Toluene: v = 54.1 1b/ft3

69

2Density figures taken or derived from tables in the CRC Handbook of Chemistry and Physics, 64th Edition. Most
liquid densities taken from table on page F-3 and solid densities taken from table on page F-1. Some liquid densities
taken from tables on pages E-27 through E-31. All temperatures at or near 20 °C.
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Turpentine: v = 54.3 1b/ft?

Water, heavy: v = 68.97 1b/ft3
Water, light (normal): v = 62.4 1b/ft3
Water, sea: v = 63.99 1b/ft>

Solids:

Beryllium: v = 115.37 Ib/ft3
Brass: v = 524.4 Ib/ft3
Calcium: v = 96.763 1b/ft>

Carbon (diamond): v = 196.65 1b/ft? to 220.37 1b/ft3
Cement (set): v = 170 1b/ft3 to 190 1b/ft3

Chromium: v = 448.86 1b/ft?
Copper: v = 559.36 1b/ft3

Cork: v = 14 Ib/ft3 to 16 1b/ft?
Gold: v = 1178.6 Ib/ft3

Ice: v = 57.2 Ib/ft?

Iron: v = 490.68 1b/ft3

Ivory: v = 114 Ib/£t3 to 120 Ib/ft?
Lead: v = 708.56 1b/ft3

Leather: v = 54 1b/ft?

Magnesium: v = 108.50 1b/ft3
Molybdenum: v = 638.01 1b/ft?
Quartz: v = 165 1b/ft?

Rubber (soft): v = 69 1b/ft?

Rubber (hard): v = 74 1b/ft3

Salt, rock: v = 136 1b/ft3

Sugar: v = 99 1b/ft?

Tar: v = 66 1b/ft3

Wood, balsa: v = 7 1b/ft3 to 9 Ib/ft3
Wood, maple: v = 39 1b/ft? to 47 Ib/ft3
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2.5 Dimensional analysis

An interesting parallel to the “unity fraction” unit conversion technique is something referred to in
physics as dimensional analysis. Performing dimensional analysis on a physics formula means to set
it up with units of measurement in place of variables, to see how units cancel and combine to form
the appropriate unit(s) of measurement for the result.

For example, let’s take the familiar power formula used to calculate power in a simple DC electric
circuit:

P=1V

Where,
P = Power (watts)
I = Current (amperes)
V' = Voltage (volts)

Each of the units of measurement in the above formula (watt, ampere, volt) are actually
comprised of more fundamental physical units. One watt of power is one joule of energy transferred
per second. One ampere of current is one coulomb of electric charge moving by per second. One
volt of potential is one joule of energy per coulomb of electric charge. When we write the equation
showing these units in their proper orientations, we see that the result (power in watts, or joules
per second) actually does agree with the units for amperes and volts because the unit of electric
charge (coulombs) cancels out. In dimensional analysis we customarily distinguish unit symbols
from variables by using non-italicized letters and surrounding each one with square brackets:

P=1V
[Watts] = [Amperes] x [Volts] or (W] = [A][V]
Joules | [ Coulombs o Joules or g B 9 i
Seconds| | Seconds Coulombs s| s C

Dimensional analysis gives us a way to “check our work” when setting up new formulae for
physics- and chemistry-type problems.
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2.6 The International System of Units

The very purpose of physics is to quantitatively describe and explain the physical world in as few
terms as possible. This principle extends to units of measurement as well, which is why we usually
find different units used in science actually defined in terms of more fundamental units. The watt,
for example, is one joule of energy transferred per second of time. The joule, in turn, is defined in
terms of three base units, the kilogram, the meter, and the second:

- Ll
[s?]
Within the metric system of measurements, an international standard exists for which units
are considered fundamental and which are considered “derived” from the fundamental units. The
modern standard is called SI, which stands for Systéme International. This standard recognizes

seven fundamental, or base units, from which all others are derived?:

Physical quantity ST unit SI symbol
Length meter m
Mass kilogram kg
Time second S
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

An older standard existed for base units, in which the centimeter, gram, and second comprised
the first three base units. This standard is referred to as the cgs system, in contrast to the SI
system?. You will still encounter some derived cgs units used in instrumentation, including the poise
and the stokes (both used to express fluid viscosity). Then of course we have the British engineering
system which uses such wonderful® units as feet, pounds, and (thankfully) seconds. Despite the fact
that the majority of the world uses the metric (SI) system for weights and measures, the British
system is sometimes referred to as the Customary system.

3The only exception to this rule being units of measurement for angles, over which there has not yet been full
agreement whether the unit of the radian (and its solid counterpart, the steradian) is a base unit or a derived unit.

4The older name for the SI system was “MKS,” representing meters, kilograms, and seconds.

5T'm noting my sarcasm here, just in case you are immune to my odd sense of humor.
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2.7 Conservation Laws

The Law of Mass Conservation states that matter can neither be created nor destroyed. The Law of
Energy Conservation states that energy can neither be created nor destroyed. However, both mass
and energy may change forms, and even change into one another in the case of nuclear phenomena.

Conversion of mass into energy, or of energy into mass, is quantitatively described by Albert
Einstein’s famous equation:

E = mdc?

Where,
E = Energy (joules)
m = Mass (kilograms)
¢ = Speed of light (approximately 3 x 10® meters per second)

Conservation laws find practical context in many areas of science and life, but in the realm of
process control we have the principles of mass balance and energy balance which are direct expressions
of these Laws. “Mass balance” refers to the fact that the sum total of mass entering a process must
equal the sum total of mass exiting the process, provided the process is in a steady-state condition
(all variables remaining constant over time). To give a simple example of this, the mass flow rate
of fluid entering a pipe must be equal to the mass flow rate of fluid exiting the pipe, provided the
pipe is neither accumulating nor releasing mass within its internal volume. “Energy balance” is a
parallel concept, stating that the sum total of energy entering a process must equal the sum total of
energy exiting a process, provided a steady-state condition (no energy being stored or released from
storage within the process).

2.8 Classical mechanics

Classical mechanics (often called Newtonian mechanics in honor of Isaac Newton) deal with forces
and motions of objects in common circumstances. The vast majority of instrumentation applications
deals with this realm of physics. Two other areas of physics, relativistic and quantum, will not
be covered in this chapter because their domains lie outside the typical experience of industrial
instrumentation®.

6Relativistic physics deals with phenomena arising as objects travel near the speed of light. Quantum physics deals
with phenomena at the atomic level. Neither is germane to the vast majority of industrial instrument applications.
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2.8.1 Newton’s Laws of Motion

These laws were formulated by the great mathematician and physicist Isaac Newton (1642-1727).
Much of Newton’s thought was inspired by the work of an individual who died the same year Newton
was born, Galileo Galilei (1564-1642).

1. An object at rest tends to stay at rest; an object in motion tends to stay in motion

2. The acceleration of an object is directly proportional to the net force acting upon it and
inversely proportional to the object’s mass

3. Forces between objects always exist in equal and opposite pairs

Newton’s first law may be thought of as the law of inertia, because it describes the property
of inertia that all objects having mass exhibit: resistance to change in velocity. This law is quite
counter-intuitive for many people, who tend to believe that objects require continual force to keep
moving. While this is true for objects experiencing friction, it is not for ideal (frictionless) motion.
This is why satellites and other objects in space continue to travel with no mode of propulsion: they
simply “coast” indefinitely on their own inertia because there is no friction in space to dissipate their
kinetic energy and slow them down.

Newton’s second law is the verbal equivalent of the force/mass/acceleration formula: F = ma.
This law elaborates on the first, in that it mathematically relates force and motion in a very precise
way. For a frictionless object, the change in velocity (i.e. its acceleration) is proportional to force.
This is why a frictionless object may continue to move without any force applied: once moving,
force would only be necessary for continued acceleration. If zero force is applied, the acceleration
will likewise be zero, and the object will maintain its velocity indefinitely (again, assuming no friction
at work).

Newton’s third law describes how forces always exist in pairs between two objects. The
rotating blades of a helicopter, for example, exert a downward force on the air (accelerating the
air), but the air in turn exerts an upward force on the helicopter (suspending it in flight). A spider
hanging on the end of a thread exerts a downward force (weight) on the thread, while the thread
exerts an upward force of equal magnitude on the spider (tension). Force pairs are always equal in
magnitude but opposite in direction.
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2.8.2 Work, energy, and power

Two very fundamental and closely-related concepts in physics are work and energy. Work is simply
what happens when any force acts through a parallel motion, such as when a weight is lifted against
gravity or when a spring is compressed. FEnergy is a more abstract concept and therefore more
difficult to define. One definition” of energy is “that which permits or results in motion,” where the
word “motion” is used in a very broad sense including even the motion of individual atoms within
a substance. Energy exists in many different forms, and may be transferred between objects and/or
converted from one form to another, but cannot be created from nothing or be destroyed and turned
into nothing (this is the Law of Energy Conservation). Power is the rate at which work is done, or
alternatively the rate at which energy transfer occurs.

First, just a little bit of math. Work (1) is mathematically defined as the dot-product of force
(F) and displacement (z) vectors®, written as follows:

W=F.7

Where,

W = Work, in newton-meters (metric) or foot-pounds (British)

F = Force vector (force and direction exerted) doing the work, in newtons (metric) or pounds
(British)

Z = Displacement vector (distance and direction traveled) over which the work was done, in
meters (metric) or feet (British)

The fact that both force and displacement appear as wvectors tells us their relative directions
are significant to the calculation of work. If the force and displacement vectors point in exactly
the same direction, work is simply the product of F' and x magnitudes (W = Fz). If the force
and displacement vectors point in opposite directions, work is the negative product (W = —Fuz).
Another way to express the calculation of work is as the product of the force and displacement
magnitudes (F and z) and the cosine of the angle separating the two force vectors (cos6):

W = Fxzcosf

When the two vectors F and point the same direction, the angle # between them is zero and
therefore W = Fx because cos(0° = 1. When the two vectors point in opposite directions, the angle
between them is 180° and therefore W = —Fx because cos 180° = —1.

7A common definition of energy is the “ability to do work” which is not always true. There are some forms of
energy which may not be harnessed to do work, such as the thermal motion of molecules in an environment where all
objects are at the same temperature. Energy that has the ability to do work is more specifically referred to as ezxergy.
While energy is always conserved (i.e. never lost, never gained), exergy is a quantity that can never be gained but
can be lost. The inevitable loss of exergy is closely related to the concept of entropy, where energy naturally diffuses
into less useful (more homogeneous) forms over time. This important concept explains why no machine can never be
perfectly (100.00000%) efficient, among other things.

8 A wvector is a mathematical quantity possessing both a magnitude and a direction. Some physical quantities such
as temperature (7'), work (W), and energy (E) only possess magnitude, and do not possess a direction. Other physical
quantities such as force (F'), distance (z), and velocity (v) definitely possess direction in addition to magnitude. It
would make no sense at all to speak of a temperature being “79 degrees Celsius due North” whereas it would make sense
to speak of a force being “79 Newtons due North” or “193 pounds at 34 degrees from North”. Physicists commonly
use a little arrow symbol over the variable letter to represent that variable as a vector, when both magnitude and
direction matter. Thus F represents a force vector with both magnitude and direction specified, while plain F' merely
represents the magnitude of that force without a specified direction.
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[lustrations are helpful in comprehending these concepts. Consider a crane hoisting a 2380
pound weight 15 feet up into the air:

Crane lifts weight 15 feet up
Ferane = 2380 Ibs T

x=15ftT

2380 Ibs

FWeight = 2380 Ibs l Weight

77T777777777777T77777777

Crane does work on weight W, .. = (2380 Ib)(15 ft)(cos 0°) = + 35700 ft-lbs
Work is done on the weight W, = (2380 Ib)(15 ft)(cos 180°) = -35700 ft-lbs

777777

The amount of work done from the crane’s perspective is +35700 ft-lbs, since the crane’s force
(2380 1bs) points in the same upward direction as the weight’s motion (15 ft). The amount of work
done from weight’s perspective, however, is —35700 ft-1bs because the weight’s force points in the
opposite direction as the cable’s motion. Another way of expressing these two work values is to state
the crane’s work in the active voice and the weight’s work in the passive voice: the crane did 35700
ft-lbs of work, while 35700 ft-lbs of work was done on the weight. This language is truly appropriate,
as the crane is indeed the active agent in this scenario, while the weight passively opposes the crane’s
efforts. In other words, the crane is the motive source of the work, while the weight is a load.

Now, how does energy fit into this illustration? Certainly we see that motion happened, and
therefore energy must have been involved. The energy permitting the 2380 pound weight to be lifted
15 feet into the air didn’t come from nowhere — it must have been present somewhere in the universe
prior to the weight’s ascension if the Law of Energy Conservation is indeed true. If the crane is
powered by an internal combustion engine, then the energy came from the fuel stored in the crane’s
fuel tank. If the crane is electric, then the energy to lift the weight came from a battery or from
an electrical generator somewhere sending power to the crane through an electric cable. The act of
lifting the weight was actually an act of energy transfer from the crane’s energy source, through the
crane motor, and to that weight. Along the way, some of the initial energy was also converted into
heat through inefficiencies in the crane’s motor and mechanism. However, if we were to calculate
the sum of all the energy transferred to the lifted weight plus all energy “dissipated” in the form of
heat, that total must be precisely equal to the initial energy of the fuel (or electricity) used by the
crane in doing this lift. In other words, the sum total of all energy in the universe is the same after
the lift as it was before the lift.

Power fits into this illustration when we consider how quickly the weight was lifted. So far, all
we know about the weight’s lifting is that it took 35700 ft-l1bs of energy to do that work. If we
knew how long it took the crane to do that work, we could calculate the crane’s power output. For
example, a crane with a power rating of 35700 ft-1bs per second could complete this 15-foot lift in
only one second of time. Likewise, a crane with a power rating of only 3570 ft-1bs per second would
require 10 seconds of time to execute the same lift.
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An interesting thing happens if the crane moves sideways along the ground after lifting the weight
15 feet up into the air. No work is being done by the crane on the weight, or by the weight on the
crane, because the displacement vector is now perpendicular (90° to) both force vectors:

Crane moves weight 15 feet along the ground

Foane = 2380 Ibs T

x=15ft
&

Weight
2380 Ibs

Fuegn = 2380 Ibs l

No work done on or by the crane W, .. = (2380 Ib)(15 ft)(cos 90°) = O ft-lbs
No work done on or by the weight W,,qy = (2380 Ib)(15 ft)(cos -90°) = 0 ft-lbs

It should be noted that the crane’s engine will do work as it overcomes rolling friction in the
wheels to move the crane along, but this is not work done on or by the hoisted weight. When we
calculate work — as with all other calculations in physics — we must be very careful to keep in mind
where the calculation(s) apply in the scenario. Here, the forces and displacement with regard to the
hoisted weight are perpendicular to each other, and therefore no work is being done there. The only
work done anywhere in this system as the crane rolls 15 feet horizontally involves the horizontal
force required to roll the crane, which is unspecified in this illustration.

Similarly, there is no transfer of energy to or from the hoisted weight while the crane rolls along.
Whatever energy comes through the crane’s engine only goes into overcoming rolling friction at the
wheels and ground, not to do any work with the weight itself. Generally this will be a very small
amount of energy compared to the energy required to hoist a heavy load.
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A good question to ask after hoisting the weight is “Where did that 35700 ft-1bs of energy go after
the lift was complete?” The Law of Energy Conservation tells us that energy cannot be destroyed,
and so the 35700 ft-lbs of work must be accounted for somehow. In this case, the energy is now
stored in the weight where it may be released at some later time. We may demonstrate this fact by
slowly lowering the weight back down to the ground and watching the energy transfer:

Crane lowers weight 15 feet back to ground

Foue = 2380 1bs T

x:15ftl

Weight
2380 Ibs

Fugn = 2380 1bs l

T777777T77T7777777777777

Work is done on the crane W, . = (2380 Ib)(15 ft)(cos 180°) = -35700 ft-lbs
Weight does work on crane W,gqy = (2380 1b)(15 ft)(cos 0°) = +35700 ft-lbs

777777

Notice how the weight is now the actively-working object in the system, doing work on the
crane. The crane is now the passive element, opposing the work being done by the weight. Both the
crane and the weight are still pulling the same directions as before (crane pulling up, weight pulling
down), but now the direction of displacement is going down which means the weight is “winning”
and therefore doing the work, while the crane is “losing” and opposing the work.

If we examine what is happening inside the crane as the weight descends, we see that energy
is being transferred from the descending weight to the crane. In most cranes, the descent of a
load is controlled by a brake mechanism, regulating the speed of descent by applying friction to the
cable’s motion. This brake friction generates a great deal of heat, which is a form of energy transfer:
energy stored in the elevated weight is now being converted into heat which exits the crane in the
form of hot air (air whose molecules are now vibrating at a faster speed than they were at their
previous temperature). If the crane is electric, we have the option of regenerative braking where
we recapture this energy instead of dissipating it in the form of heat. This works by switching the
crane’s electric winch motor into an electric generator on demand, so the weight’s descent turns the
motor/generator shaft to generate electricity to re-charge the crane’s battery or be injected back
into the electric power grid to do useful work elsewhere.
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From this illustration it is clear that the weight stored energy while it was being lifted up by the
crane, and released this energy back to the crane while it was being lowered down to the ground.
The energy held by the elevated weight may therefore be characterized as potential energy, since it
had the potential to do work even if no work was being done at that moment.

A special version of the general work formula W = F . & exists for calculating this gravitational
potential energy. Rather than express force and displacement as vectors with arbitrary directions,
we express the weight of the object as the product of its mass and the acceleration of gravity
(F = myg) and the vertical displacement of the object simply as its height above the ground (x = h).
The amount of potential energy stored in the lift is simply equal to the work done during the lift

(W = EP)I

E, = mgh

Where,

E,, = Gravitational potential energy in newton-meters (metric) or foot-pounds (British)

m = Mass of object in kilograms (metric) or slugs (British)

g = Acceleration of gravity in meters per second squared (metric) or feet per second squared
(British)

h = Height of lift in meters (metric) or feet (British)

There is no need for vectors or cosine functions in the E, = mgh formula, because gravity and
height are always guaranteed to act along the same axis. A positive height (i.e. above ground level)
is assumed to yield a positive potential energy value for the elevated mass.

Many different forms of potential energy exist, although the standard “textbook” example is of
a mass lifted to some height against the force of gravity. Compressed (or stretched) springs have
potential energy, as do pressurized fluids, chemical bonds (e.g. fuel molecules prior to combustion),
hot masses, electrically-charged capacitors, and magnetized inductors. Any form of energy with the
potential to be released into a different form at some later time is, by definition, potential energy.

Potential energy is an important principle not just in the study of physics, but also for workplace
safety. When large amounts of potential energy are released, the effects may be hazardous to
personnel and/or destructive to equipment. An industrial maintenance procedure known as lock-
out, tag-out requires that all potential energy sources on a system must either be exhausted or
otherwise secured to that there will be negligible risk to maintenance personnel as they perform
work on a system. The most common way to ensure this is to place a padlock on each energy-
disconnect device (e.g. switch, valve, etc.) to secure its position so that potential energy cannot
be released in a hazardous or destructive way. Each maintenance worker places a padlock on that
disconnect device to prevent its actuation, and also places a tag on the device explaining when
and why it was secured. Each and every person performing work on the system must use their own
personal padlock, so that the system cannot be re-activated without the active consent of all persons
working on that system.
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An efficient strategy for safely locking out a large number of safety-disconnect devices on a
system with multiple personal locks is to use a sheet-metal box containing a numbered padlock
(with matching key) for each energy-flow device to be secured on the equipment, as well as a list
identifying which lock goes on which energy-flow device. The lid of this device is then lock-able with
a multi-lock device, permitting multiple peoples’ personal locks to be applied so the lid cannot be
opened unless all personal locks are removed from it:

Multi-lock device
goes here

f
N

Personal locks placed into
holes of multi-lock device

None of the energy-securing devices may be altered unless all personal locks have been removed
from the lock box, thereby ensuring the safety of all persons working on the system.

Procedures created and maintained at the worksite will identify the energy-flow devices in need
of securing prior to commencement of work on a piece of equipment. These procedures are literally
life-saving documents, as they ensure no energy-securing device is overlooked by personnel doing
work on the equipment or system.
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A photograph of such a document — appropriately titled an “Energy Control Procedure” — shows

the steps mandated to secure all potential energy sources prior to commencing work on a large
industrial engine. This procedure also serves to document which locks were used to secure which

energy flow devices during the procedure, as well as who performed the procedure:

l Energy Control Procedure
Revision Number & Date one 7/23/2009

f'l. |

|Ingersel Rand KVS 412 Minar maintenance
d before proceeding

Items to be
, Inivial all steps
["e | 1 |Onlyqualified \authorized employees are allowed to complete this task
| =7 | 2 |Verifyequi has not changed before relying on this procedure
7. | 3 |Rediine and update any changes & notify effected employee if required
|72 | 4 |Notify all effected employees belore starting
|" %72 | 5 |Notify Gas Control
J AR | 8 ﬁ(lhat:ranai!!oheu!ed pl crane insp
3 it Complete all required documeniation
= 8 |Indentify required forms, Use updated forms
{687 9 |Hot Work Permit WGP- 0059 Procedure 65.0020.05
[ <171 10 |Crane pre use inspection. Form Attachment A Procedure 65.00.08.08
[ = | 11 |Drawing ##8##### Not available at this time
Date & Time “-ds= 1| 1000 i
| Authorized Technician Dy eSst (LS
Scope of work <afl £ il oo Nt c 3
|Out of Service | : Cn %‘k&ﬁ e
Ste, Initials Lock # [Task
' 1 | Tag out unit mode switch in off position
[ 2 17 Y& | & [Close starting air block valve, Lock and tag.
| VE |2 [Close fuel block valve. Lock and tag

[Return 1o Service [

! Step | Initials [Lack # off [Task
[Remave tag from unit mode switch. Place switch in local manual

| [Remove lock from Starting air block valve open valve
J lRemm'e tag from fisel block valve open valve

[ [Reset unit panel alarms

;f [Place unit panel selector switch in remote auto
|

|

|

LI

Affected employee log

]
[
]
]
|
|
|

. -

=
[Tock | on | onm |
E ) =#7 Name
B Ty | R T
Lo e s o '
| S L

=5
Note the particular lock-out steps required in this procedure: switching the control mode to
the “off” position and tagging it, closing the fuel gas valve supplying fuel to the engine and

locking/tagging it, and finally closing the valve supplying high-pressure air for engine starting and
locking/tagging it. The closure of the starting air valve prevents the engine from being pneumatically

The closure of the fuel gas valve eliminates

turned while personnel are performing work on it.
hazards resulting from the pressure of the fuel gas as well as its chemical energy (i.e. fire hazard)

and/or biological threats (poisoning or asphyxiation). Note also how this procedure lists steps of
notification to be taken prior to locking or tagging anything on the engine, as well as any other
procedures possibly necessary (e.g. inspecting the maintenance crane if that will be needed for work

on the engine).
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The following is a set of incomplete lists of various energy-securing devices and energy sources
which may be “locked out” for maintenance on a larger system:

Electrical energy
e Circuit breaker (locked in “off” position, also “racked out” if possible)
e Grounding switch (locked in “on” position to positively ground power conductors)

e Power cord (plastic cap locked onto plug, covering prongs)

Mechanical energy
e Block valve (locked in “shut” position) to prevent pressurized fluid motion
e Flange blind (installed in line) to prevent pressurized fluid motion
e Vent valve (locked in “open” position) to prevent fluid pressure buildup

e Mechanical clutch (disengaged, and locked in that position) to prevent prime mover from
moving something

e Mechanical coupling (disassembled, and locked in that state) to prevent prime mover from
moving something

e Mechanical brake (engaged, and locked in that position) to prevent motion
e Mechanical locking pin (inserted, and held in position by a padlock) to prevent motion

e Raised masses lowered to ground level, with lifting machines locked out

Chemical energy
e Block valve (locked in “shut” position) to prevent chemical fluid entry
e Vent valve (locked in “open” position) to prevent chemical fluid pressure buildup
e Ventilation fan (locked in “run” state) to prevent chemical vapor buildup

With all these preventative measures, the hope is that no form of potential energy great enough
to pose danger may be accidently released.
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Let us return to the crane illustration to explore another concept called kinetic energy. As you
might guess by the word “kinetic,” this form of energy exists when an object is in the process of
moving. Let’s imagine the crane lifting the 2380 pound weight 15 feet up into the air, and then the
cable snapping apart so that the weight free-falls back to the ground:

Cable snaps!

X

A

Fweight = 2380 Ibs l Weight

2380 Ibs

The Conservation of Energy still (and always!) holds true: all the potential energy stored in the
elevated weight must be accounted for, even when it free-falls. What happens, of course, is that
the weight accelerates toward the ground at the rate determined by Earth’s gravity: 32.2 feet per
second per second (32.2 ft/s?). As the weight loses height, its potential energy decreases according
to the gravitational potential energy formula (E, = mgh), but since we know energy cannot simply
disappear we must conclude it is taking some other form. This “other form” is based on the weight’s
velocity (v), and is calculated by the kinetic energy formula:

-

Ey =~
k 2mv

Where,
Ej, = Kinetic energy in joules or newton-meters (metric), or foot-pounds (British)
m = Mass of object in kilograms (metric) or slugs (British)
v = Velocity of mass in meters per second (metric) or feet per second (British)

Thus, the Conservation of Energy explains why a falling object must fall faster as it loses height:
kinetic energy must increase by the same amount that potential energy decreases, if energy is to be
conserved. A very small amount of this falling weight’s potential energy will be dissipated in the
form of heat (as air molecules are disturbed) rather than get converted into kinetic energy. However,
the vast majority of the initial 35700 ft-lbs of potential energy gets converted into kinetic energy,
until the weight’s energy is all kinetic and no potential the moment it first touches the ground.

When the weight finally slams into the ground, all that (nearly 35700 ft-1bs) of kinetic energy once
again gets converted into other forms. Compression of the soil upon impact converts much of the
energy into heat (molecular vibrations). Chunks of soil ejected from the impact zone possess their
own kinetic energy, carrying that energy to other locations where they slam into other stationary
objects. Sound waves rippling through the air also convey energy away from the point of impact. All
in all, the 35700 ft-lbs of potential energy which turned into (nearly) 35700 ft-lbs of kinetic energy
at ground level becomes dispersed.
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For the sake of review, let us examine some other illustrations of work, energy, and power. This
time, we will focus on human effort rather than a mechanical crane. Suppose a person pulls a heavy
sled through snow, exerting a constant horizontal pulling force of 83 pounds (369.2 Newtons, metric)
to move the sled 25 feet (7.62 meters, metric) in distance. This equates to 2075 foot-pounds (2813.3
Newton-meters or Joules, metric) of work done by the person:

Person pulling a sled

force exerted

_ Person
Sleq 283D

—J

x=25ft
distance pulled

Wierson = F X cos 8 = (83 b)(25 ft)(cos 0°) = 2075 ft-Ibs of work
Wierson = F X €os 6 = (369.2 N)(7.62 m)(cos 0°) = 2813.3 N-m of work

The 2075 foot-pounds or 2813.3 joules of energy required to do this work is equivalent to 0.672
dietary Calories (kilocalories), and comes directly from the food eaten by this person. In this case,
all the energy expended by the person in pulling the sled along level ground became converted into
heat by the action of friction between the sled runners and the snow. Thus, no potential energy was
stored in the sled as it was pulled along. As soon at the person stops pulling, the sled comes to an
immediate halt and will not move again unless an external force is applied to it.
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Now suppose same person pulls a wagon weighing 166 pounds up a long hill, climbing a vertical
height of 127 feet. To simplify matters, we will assume the wagon’s wheels turn frictionlessly, so
that none of the person’s work will be dissipated in the form of heat: every bit of energy goes into
the work of lifting the wagon to a greater height. We could calculate the potential energy invested
in lifting the wagon using the formula F, = mgh, but we would need to know the mass of the
wagon (m) in “slugs” to calculate work in British units, using 32.2 ft/s? for g and 127 feet for h.
Alternatively, we could calculate potential energy using the E, = W = Facosf formula, where F
is the weight (166 pounds upward force of the ground against the wagon) of the wagon and x is the
vertical height lifted (127 feet):

Person pulling a wagon up a hill

Person

Wagon

x = 127 ft
distance lifted

T force exerted
F=1661b

Wierson = F X €0s 8= (166 1b)(127 ft)(cos 0°) = 21082 ft-Ib of work
Woerson = F X c0s 6= (738.4 N)(38.7 m) = 28583.3 N-m of work

Doing the latter, we find it takes 21082 foot-pounds (28583.3 joules, also 6.827 dietary Calories)
of work to lift the 166 pound wagon to the top of the 127-foot-high hill. A very important detail to
note is that we may apply the formula W = Fx cosf to any force and displacement vectors involved
with moving the wagon up the hill. For instance, we could have used rope tension for F' and incline
rolling distance for = — the two vectors both parallel to each other — had we known the values® of
that force and that displacement. So long as the force and displacement vectors are parallel to each
other and relevant to the work being done, the work done is simply W = Fx.

Unlike the sled-pulling scenario where all the person’s effort went into overcoming friction between
the snow and the sled runners, this time the person’s energy does not go to waste. Instead, the work
invested in pulling the wagon (frictionlessly) up the hill is stored as potential energy in the wagon
and may be released at a later time. All that is needed to release this stored energy is to let gravity
take action by letting the wagon roll freely downhill: the stored energy will accelerate the wagon to
a greater and greater velocity as it frictionlessly rolls down the hill.

9We could calculate rope tension from the wagon’s 166 pound weight, and rolling distance from the 127 foot hill

height, if we knew the hill’s angle a: F = (166 lb)(sina) and = = 12.7 ft Ag you can see, when you multiply these

sSin o«
together, the two sin a terms cancel each other out, proof that the hill’s angle o doesn’t matter to the calculation of

work in pulling the wagon to the top.
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Supposing we did just that — release the wagon at the top of the 127 foot hill — the 21082 foot-
pounds of potential energy at the top of the hill will translate to 21082 foot-pounds of kinetic energy
at the bottom of the hill, assuming a frictionless ride'® down the hill:

Person

E, = 21082 ft-Ib of potential energy
when wagon stationary at top of hill

E, = 21082 ft-Ib of kinetic energy
when wagon rolling at bottom of hill

Assuming no potential energy lost to friction during the wagon’s free-roll downhill, we may
calculate velocity at the bottom of the hill by setting E} equal to 21082 foot-pounds of energy and
solving for v in the equation Ej = %va. Just one more step is needed before we may calculate
velocity (v), and that is to convert the wagon’s weight of 166 pounds into a mass value in units of
slugs: 166 pounds converts to 5.159 slugs. Now, we may solve for velocity v as follows:

1
E, = vag
2F), = mv>
2F
k _ 1}2
m
2k,
V= —_—
m

(2)(21082 ft-1b)
5.159 slugs

v =904 ft/s

Assuming no energy lost to friction, either within the wagon’s wheel bearings or between the
wagon and the air, the 166 pound wagon’s velocity after rolling to the bottom of the 127 foot
(vertical) hill will be 90.4 feet per second, or 61.6 miles per hour.

10In a more realistic scenario where friction takes effect, some of the 21082 foot-pounds of energy will dissipate in
the form of heat, leaving the wagon with less than 21082 foot-pounds of kinetic energy at the bottom of the hill.
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The Law of Energy Conservation is extremely useful in projectile mechanics problems, where
we typically assume a projectile loses no energy and gains no energy in its flight. The velocity of
a projectile, therefore, depends on its height above the ground, because the sum of potential and
kinetic energies must remain constant:

E, + Ej, = constant

In free-fall problems, where the only source of energy for a projectile is its initial height, the
initial potential energy must be equal to the final kinetic energy:

E, (initial) = E}, (final)

1
mgh; = imv?

We can see from this equation that mass cancels out of both sides, leaving us with this simpler
form:

1
gh; = 51}?

It also leads to the paradoxical conclusion that the mass of a free-falling object is irrelevant to
its velocity. That is, both a heavy object and a light object in free fall hit the ground with the same
velocity, and fall for the same amount of time, if released from the same height under the influence
of the same gravity''. The same is true for our hypothetical wagon, assuming frictionless runners:
the speed it will reach at the bottom of the hill depends only on its initial height at the top of the
hill, not on its mass.

H1n practice, we usually see heavy objects fall faster than light objects due to the resistance of air. Energy losses
due to air friction nullify our assumption of constant total energy during free-fall. Energy lost due to air friction never
translates to velocity, and so the heavier object ends up hitting the ground faster (and sooner) because it had much
more energy than the light object did to start.
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Dimensional analysis confirms the common nature of energy whether in the form of potential,
kinetic, or even mass (as described by Einstein’s equation). First, we will set these three energy
equations next to each other for comparison of their variables:

E, = mgh Potential energy due to elevation
1, . .

E, = imv Kinetic energy due to velocity
E =mdc® Mass-to-energy equivalence

Next, we will dimensionally analyze them using standard SI metric units (kilogram, meter,
second). Following the SI convention, mass (m) is always expressed in kilograms [kg], distance (h)
in meters [m], and time (¢) in seconds [s]. This means velocity (v, or ¢ for the speed of light) in the
ST system will be expressed in meters per second [m/s] and acceleration (a, or g for gravitational
acceleration) in meters per second squared [m/s?]:

k 2
[gEH;]n] = [kg] [%} [m] Potential energy due to elevation
S S
k 2 2
[g[j[zr]n] = [kg] {E] Kinetic energy due to velocity
S S
k 2 2
[g[]s[;]n] = [kg] [?} Mass-to-energy equivalence

In all three cases, the unit for energy is the same: kilogram-meter squared per second squared.
This is the fundamental definition of a “joule” of energy (also equal to a “newton-meter” of energy),
and it is the same result given by all three formulae.

Power is defined as the rate at which work is being done, or the rate at which energy is transferred.
Mathematically expressed, power is the first time-derivative of work (W):

P
dt

The metric unit of measurement for power is the watt, defined as one joule of work performed
per second of time. The British unit of measurement for power is the horsepower, defined as 550
foot-pounds of work performed per second of time.

Although the term “power” is often colloquially used as a synonym for force or strength, it is in
fact a very different concept. A “powerful” machine is not necessarily a machine capable of doing
a great amount of work, but rather (more precisely) a great amount of work in a short amount of
time. Even a “weak” machine is capable of doing a great amount of work given sufficient time to
complete the task. The “power” of any machine is the measure of how rapidly it may perform work.
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An interesting exercise in dimensional analysis for people familiar with Joule’s Law in electric
circuits shows just how work and power relate. Power, as you may recall, is defined in electric
circuits as the product of voltage and current:

P=1Vv

Showing the common units of measurement for each of these variables:

[Watts] = [Amperes] x [Volts] or [W] = [A][V]

Now we will substitute more fundamental units of measurement to show how the units comprising
“power” really do come from the units comprising “volts” and “amps”. We know for example that
the unit of the “ampere” is really coulombs of charge flowing per second, and that the unit of the
“volt” is really joules of energy (or joules of work) per coulomb of charge. Thus, we may make the
unit substitutions and prove to ourselves that the “watt” is really joules of energy (or joules of work)
per second of time:

Joules Coulombs o Joules J Cl|J

= or —-1=1—11=

Seconds Seconds Coulombs S s|]|C
In summary, voltage is a measure of how much potential energy is infused in every coulomb of
charge in an electric circuit, and current is a measure of how quickly those charges flow through the
circuit. Multiplying those two quantities tells us the rate at which energy is transferred by those

moving charges in a circuit: the rate of charge flow multiplied by the energy value of each charge
unit.

wire

+
Electro-motive force [ "— Battery
applied by source \ —

Displacement of
T wire

electric charge

(arrow points in the direction
of conventional flow)

Voltage dropped % Resistor
by load gl

wire

Whatery = POSItive value, because its force is in the same direction as the current
W,esigor = Negative value, because its force opposes the direction of the current
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2.8.3 Mechanical springs

Many instruments make use of springs to translate force into motion, or visa-versa. The basic “Ohm’s
Law” equation for a mechanical spring relating applied force to spring motion (displacement) is called
Hooke’s Law'?:

F=—kx

Where,

F = Force generated by the spring in newtons (metric) or pounds (British)

k = Constant of elasticity, or “spring constant” in newtons per meter (metric) or pounds per
foot (British)

2 = Displacement of spring in meters (metric) or feet (British)

Hooke’s Law is a linear function, just like Ohm’s Law is a linear function: doubling the
displacement (either tension or compression) doubles the spring’s force. At least this is how springs
behave when they are displaced a small percentage of their total length. If you stretch or compress
a spring more substantially, the spring’s material will become strained beyond its elastic limit and
either yield (permanently deform) or fail (break).

The amount of potential energy stored in a tensed spring may be predicted using calculus. We
know that potential energy stored in a spring is the same as the amount of work done on the spring,
and work is equal to the product of force and displacement (assuming parallel lines of action for
both):

E,=TFx

Thus, the amount of work done on a spring is the force applied to the spring (F' = ka) multiplied
by the displacement (z). The problem is, the force applied to a spring varies with displacement and
therefore is not constant as we compress or stretch the spring. A mathematician would say that the
spring’s force is a function of x because the force varies as z varies. Thus, in order to calculate the
amount of potential energy stored in the spring (E, = F'z), we must calculate the amount of energy
stored over infinitesimal amounts of displacement (F' dz, or kxz dz) and then add those bits of energy

up (/) to arrive at a total:
E, = /kx dz

2Hooke’s Law may be written as F' = kz without the negative sign, in which case the force (F) is the force applied
on the spring from an external source. Here, the negative sign represents the spring’s reaction force to being displaced
(the restoring force). A spring’s reaction force always opposes the direction of displacement: compress a spring, and
it pushes back on you; stretch a spring, and it pulls back. A negative sign is the mathematically symbolic way of
expressing the opposing direction of a vector.
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We may evaluate this integral using the power rule (x is raised to the power of 1 in the integrand):

1
E, = §kx2 + E

Where,

E,, = Energy stored in the spring in joules (metric) or foot-pounds (British)

k = Constant of elasticity, or “spring constant” in newtons per meter (metric) or pounds per
foot (British)

x = Displacement of spring in meters (metric) or feet (British)

Ey = The constant of integration, representing the amount of energy initially stored in the spring
prior to our displacement of it

For example, if we take a very large spring with a constant k equal to 60 pounds per foot and
displace it by 4 feet, we will store 480 foot-pounds of potential energy in that spring (i.e. we will do
480 foot-pounds of work on the spring).

Graphing the force-displacement function on a graph yields a straight line (as we would expect,
because Hooke’s Law is a linear function). The area accumulated underneath this line from 0 feet
to 4 feet represents the integration of that function over the interval of 0 to 4 feet, and thus the
amount of potential energy stored in the spring:

400

300

Force
(pounds) **

(F)

100

Displacement (x)
(feet)

Note how the geometric interpretation of the shaded area on the graph exactly equals the result
predicted by the equation E, = %ka: the area of a triangle is one-half times the base times the
height. One-half times 4 feet times 240 pounds is 480 foot-pounds.
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2.8.4 Rotational motion

Rotational motion may be quantified in terms directly analogous to linear motion, using different
symbols and units.

The rotational equivalent of linear force (F') is torque (7). Linear force and rotational torque are
both vector quantities, mathematically related to one another by the radial distance separating the
force vector from the centerline of rotation. To illustrate with a string pulling on the circumference
of a wheel:

Linear force
(F) vector

~3

Rotational torque
\\ (T) vector

Right-hand rule
for vector cross-products

' right angle C A
Radius vector B /
(r)
C=AxB

This relationship may be expressed mathematically as a wvector cross-product, where the vector
directions are shown by the right-hand rule (the first vector 7 is the direction of the index finger,
the second vector F is the direction of the middle finger, and the product vector 7 is the direction
of the thumb, with all three vectors perpendicular to each other):

T=7rxF

Labeling force, radius, and torque as vectors is the formally correct way of noting the variables
in a mechanical system such as this, and is the way college students studying physics typically learn
the calculation of torque. In less academic settings, the force vector (13 ) is typically labeled as a
force along the line of action, and the radius vector () is called the moment arm, with the line of
action and moment arm always being perpendicular to each other.

The proper unit of measurement for torque is the product of the force unit and distance unit.
In the metric system, this is customarily the Newton-meter (N-m). In the British system, this is
customarily the foot-pound (ft-1b) or alternatively the pound-foot (1b-ft). Note that while these are
the exact same units as those used to express work, they are not the same types of quantities. Torque
is a vector cross-product, while work is a dot-product (W = F. Z). The cross-product of two vectors
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is always another vector'?, while the dot-product of two vectors is always a scalar (direction-less)
quantity. Thus, torque always has a direction, whereas work or energy does not.

An example calculation applied to a hand wrench turning a bolt appears here:

Direction of torque

PN

Axis of rotation

F=58Ib

T=rxF
1=(0.61 ft) x (58 Ib)
N AN
T=35.38 bt S5/
'\Q(?// )
~ /

With the radius and force vectors at right angles to each other, torque is simply the product of
both. In many non-academic settings, torque is calculated this way as a scalar quantity, with the
direction of rotation determined by observation rather than by strict adherence to the right-hand
rule of vector cross products. In this example, we see the magnitude of torque as the simple product
of 58 pounds force and 0.61 feet of moment arm (35.38 1b-ft of torque), with the torque direction
obviously counter-clockwise as viewed from the head of the bolt.

13 Technically, it is a pseudovector, because it does not exhibit all the same properties of a true vector, but this is a
mathematical abstraction far beyond the scope of this book!
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If we apply the same force to the wrench handle at a different angle (not perpendicular to the
handle), the resulting torque will be less. The radius vector (moment arm), however, will still
remain perpendicular to the force vector (line of action) — it just decreases in length. To determine
the placement of the radius vector, all one must do is draw a line straight from the axis of rotation
perpendicular to the line of action, then use trigonometry to calculate its magnitude:

Direction of torque

Axis of rotation

T=rxF

=(0.59ft) x (58 Ib

1= (059 ft) x (58 Ib) 5

1=34.22 |b-ft ey
£,
~ @,

1

A very practical example of torque is in the action of meshing gears, transferring mechanical
power from one gear to another. FEach gear effectively acts as a wheel, the point of contact between
gear teeth acting to transfer force perpendicular to the radius of each gear (wheel). Thus, torque
applied to one gear becomes a linear force at the meshing teeth, which translates into another torque
at the second gear:

Gear #1 Gear #2

The ratio of torques between two meshing gears is equal to the ratio of gear teeth:

T1 ni

T2 2

Where,
71 = Torque of first gear
7o = Torque of second gear
n1 = Number of teeth on first gear
ny = Number of teeth on second gear
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For example, if a small gear having 28 teeth meshes with a larger gear having 75 teeth, the torque
multiplication factor from the small gear to the large gear will be 75:28, or 2.679 to 1. A torque
of 40 Ib-ft applied to the small gear will result in a torque of 107.1 1b-ft or torque generated at the
large gear. This ratio of gear teeth is called the gear ratio.

As gears multiply torque (7), they divide rotational speed (w). Thus, the 75:28 tooth gear set
creates a multiplication of torque from the small gear to the large gear, and an identical reduction
ratio of speed from the small gear to the large gear. Given this ratio, the small gear will have to be
turned 2.679 revolutions in order to make the large gear turn just one revolution.

We may express gear speeds as another ratio of gear teeth, reciprocated in relation to torque:

w1 N2

w2 ny

Where,
wi = Rotational speed of first gear
wy = Rotational speed of second gear
n1 = Number of teeth on first gear
ny = Number of teeth on second gear

In a set of meshed gears, the smaller gear will have the least torque and the greatest speed; the
larger gear will have the greatest torque and the least speed.

This is precisely how gear sets are used in industry: to transform torque and speed in mechanical
power systems. The complementary effects of a gear set on torque and speed is analogous to the
complementary effects that a transformer has on AC voltage and current: a step-up transformer
(having more turns of wire in the secondary coil than in the primary coil) will multiply voltage but
reduce (divide) current, both by the same turns ratio.
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Every quantity of force and motion which may be expressed in linear form has a rotational
equivalent. As we have seen, torque (7) is the rotational equivalent of force (F'). The following table
contrasts equivalent quantities for linear and rotational motion (all units are metric, shown in italic
font):

Linear quantity, symbol, and unit Rotational quantity, symbol, and unit
Force (F') N Torque (1) N-m
Linear displacement (z) m Angular displacement (0) radian
Linear velocity (v) m/s Angular velocity (w) rad/s
Linear acceleration (a) m/s> Angular acceleration () rad/s?
Mass (m) kg Moment of Inertia (I) kg-m?

Familiar equations for linear motion have rotational equivalents as well. For example, Newton’s
Second Law of motion states, “The acceleration of an object is directly proportional to the net
force acting upon it and inversely proportional to the object’s mass.” We may modify this law
for rotational motion by saying, “The angular acceleration of an object is directly proportional to
the net torque acting upon it and inversely proportional to the object’s moment of inertia.” The
mathematical expressions of both forms of Newton’s Second Law are as follows:

F=ma 7= 1«

The calculus-based relationships between displacement (z), velocity (v), and acceleration (a) find
parallels in the world of angular motion as well. Consider the following formula pairs, linear motion
on the left and angular motion on the right:

d df
v = d—j (Velocity as the time-derivative of displacement) w=—
a d
a@= d%: (Acceleration as the time-derivative of velocity) a= dit}
d%z ] ' ' ' . 20
a = ) (Acceleration as the second time-derivative of displacement) a= o7
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An object’s “moment of inertia” represents its angular inertia (opposition to changes in rotational
velocity), and is proportional to the object’s mass and to the square of its radius. Two objects having
the same mass will have different moments of inertia if there is a difference in the distribution of
their mass relative to radius. Thus, a hollow tube will have a greater moment of inertia than a solid
rod of equal mass, assuming an axis of rotation in the center of the tube/rod length:

axis of rotation

axis of rotation

m = 300 kg m = 300 kg
| = 1.5 kg-m? | = 2.8 kg-m?

This is why flywheels'* are designed to be as wide as possible, to maximize their moment of
inertia with a minimum of total mass.

The formula describing the amount of work done by a torque acting over an angular displacement
is remarkably similar to the formula describing the amount of work done by a force acting over a
linear displacement:

W =Fx W =710
The formula describing the amount of kinetic energy possessed by a spinning object is also similar

to the formula describing the amount of energy possessed by a linearly-traveling object:

1
Ep = -mv By, = 5[@)2

A “flywheel” is a disk on a shaft, designed to maintain rotary motion in the absence of a motivating torque for the
function of machines such as piston engines. The rotational kinetic energy stored by an engine’s flywheel is necessary
to give the pistons energy to compress the gas prior to the power stroke, during the times the other pistons are not
producing power.
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2.9 Simple machines

A machine in the broad sense of the word is any device designed to translate some form of energy
into useful work. A “simple” machine is one where both the input energy and the output energy are
mechanical in nature (i.e. both are forces acting along displacements). Examples of simple machines
include levers, pulleys, ramps, wedges, gears, and chain/sprockets. More complex machines include
such examples as electric motors, heat engines, pumps, compressors, and refrigerators.

The efficiency of any machine (symbolized by the Greek letter “eta” 1) is defined as the ratio of
output energy to input energy:

Eoutput

. . Eoutput
Machine Efficiency = n = .
input

(Useful work)
R

(Usually heat)

Ei nput

Ideally, these two will be equal, with all of the input energy translated losslessly into output
energy. However, no machine is perfectly efficient although some simple machines come very close
to achieving 100% efficiency. It is physically impossible to achieve an energy efficiency greater than
100%, as that would violate the Law of Energy Conservation.

2.9.1 Levers

Perhaps the most basic type of machine is the lever: a rigid beam pivoting on an axis. This axis
may be something as simple as a round cylinder, a pointed wedge, or even a sophisticated bearing.
In any case, the general term for the pivot point on a lever is fulcrum:

Fulcrum
Fulcrum  Lever Fulcrum  Lever (bearing) Lever

(cylinder) / (wedge) /

Ground
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If we look at the lever’s motion at each end, we see that the distance the “output” end moves
is a function of how far the “input” end moves as well as the ratio of lengths from each end to the
fulcrum. Showing examples using three different classes of lever, each one with an % length ratio:

First-class lever Second-class lever Third-class lever
(Output and input on opposite (Output between input (Input between output
sides of the fulcrum) and the fulcrum) and the fulcrum)
Fou Fin Fout Xout Fin Fin Fou
Xout i Output Xin i Xout
Output T :Ig — TOutput
Weight Weight
777777777777 777777 / [77777777777777
Fout=X|_n_3 szi_n_i FL“‘:X'_H_E
Fin Yo 3 Fin X 3 Fin Yot 8

The ratio of output force to input force (%) is called the mechanical advantage'® of the machine.

This ratio is always the reciprocal of the outp{;t versus input motion: if the output of the lever moves
less than the input moves, the output force must be greater than the input force, and visa-versa.
This makes perfect sense if you view a lever as a perfectly efficient machine where the output
energy (work) must equal the input energy (work): since output energy is output force multiplied
by output motion, and input energy is input force multiplied by input motion, in order for force to
be multiplied, motion must be diminished.

Levers abound in everyday life. A shovel, for example, functions as either a first-class lever or
a second-class lever, depending on its use. In either case, it is being used as a force multiplier, the
trade-off being that the person must move the handle a farther distance than the rock moves, thus
exchanging motion for force:

Shovel as a second-class lever

Shovel as a first-class lever

>
QAQ/
2y

<\Rock

Dirt Fulcrum Dirt

™~

Fulcrum

15Technically, mechanical advantage should be defined by the ratio of input motion to output motion, rather than
being defined in terms of force. The reason for this is if friction happens to exist in the machine, it will cause a
degradation of force but not of motion. Since “mechanical advantage” is supposed to represent the ideal ratio of
the machine, it is always safest to define it in terms of motion where friction will not affect the calculation. For
a frictionless machine, however, defining mechanical advantage in terms of force is perfectly legitimate, and in fact
makes more intuitive sense, since a larger mechanical advantage always corresponds with force multiplication from
input to output.
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2.9.2 Pulleys

Another simple and useful machine is a pulley and rope. A “pulley” is nothing more than a wheel
with a groove cut around its circumference to guide a rope or cable, a bearing and axle supporting
the wheel and allowing it to freely turn. A single pulley hung from an overhead support has the
ability to convert downward motion of a rope into upward motion to hoist a load:

AAVAVAVAVAVAVA VAV VA VA VA VA W VA VA VWA

FOUt

Wd@n‘l‘\ }[E%?f:>

L7777 7777777777 7777777

A single-pulley system such as this exhibits no mechanical advantage, because F,,; = Fj,. If
we get creative with multiple pulleys, however, we can achieve a mechanical advantage sufficient to
hoist very heavy loads with modest input force:

AANMNVNNNNMNNAN NN

L7777 777777 77777777777

Here, the weight is being supported by the tension within two ropes, not just one rope. Since the
person’s force on the rope is what generates the rope’s tension, Fj, is equal to rope tension, while
F,ut is equal to twice the rope’s tension. Thus, this simple machine has a mechanical advantage
equal to 2. It also means the person’s motion while pulling the rope will be exactly twice the motion
of the hoisted weight. Remember that we cannot cheat the Law of Energy Conservation: work
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in cannot be less than work out. If the output force is twice as much as the input force due to
mechanical advantage, the output motion can only be half as much as the input motion.

The mechanical advantage of a pulley system may be extended beyond two by adding even more
pulleys. This pulley system has a mechanical advantage of 4, since the weight is being supported by
the tension of four ropes, while the person pulling only feels the tension of a single rope:

AAVAVAVAVAVAVA VAV VA VA VA VA W VA VA VWA

F out

L7777 7777777777 7777777

Here is where one must be careful in analyzing pulley systems with regard to mechanical
advantage. The mechanical advantage in each of these examples was based on the number of ropes
supporting the weight. So far, this also happened to equal the number of pulleys in the system.
Lest anyone be tempted to determine mechanical advantage by simply counting pulleys, here is an
example that breaks the pattern:

AVAVAVAVAVAVAVA VAV VA VA VA VA V. VA VA VWA

I:in

[T 77777777 7777777777

Here there is only one pulley in the system, yet the weight is being supported by the tension in
two ropes and the person pulling on the rope only feels the tension of one rope, which means the
system has a mechanical advantage of 2.
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This simple technology is commonly used on cranes to provide huge amounts of lifting force with
modest amounts of cable tension. In this photograph you can see the multiple pulleys and lifting
cable of a large industrial crane:
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2.9.3 Inclined planes

A wedge, also referred to as an inclined plane, is another type of simple machine. A large enough
wedge such as a ramp is useful for producing a mechanical advantage to lift a weight equipped with
wheels. Instead of hoisting the weight vertically, the weight is rolled up the diagonal incline of the
ramp:

Fin Xin

=
\Weight Xst::

T

In moving the heavy weight a short distance vertically, the person pushes with much less force
over a longer distance. The mechanical advantage of this ramp, therefore, is equal to the ratio of the

ramp’s diagonal length (hypotenuse side) to its vertical height (opposite side). From the perspective
hypotenuse )
opposite

of angle 0 shown in the illustration, this equates to the cosecant function (csc6 =

Another example of an inclined plane is a screw conveyor or auger, shown in the following
photograph. The “fins” on the screw function as a long incline, wrapped around a central shaft:

Placed inside of a pipe and turned slowly, this simple machine moves semi-solid material linearly
through the pipe.
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In a similar fashion, this electric valve actuator uses the principle of an inclined plane to raise and
lower a heavy gate to control the flow of wastewater through channels at a municipal wastewater
treatment facility. The long threaded shaft pulls upward on the heavy gate (not shown), moved
by the turning action of a nut engaged with the shaft’s threads. The electric motor inside the
blue-colored actuator turns the nut on command, raising or lowering the gate as needed:
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2.9.4 Gears

A gear set is another type of simple machine, part of a whole class of simple machines converting
one form of rotary motion into another forms of rotary motion. A set of spur gears are shown here:

Gear #2

Fast-turning,
low-torque

Each gear rotates about a central axis (usually a rotating shaft), the teeth of each gear cut into
shapes designed to smoothly “mesh” together as the gears rotate. Gears may be thought of as levers,
with the radius of each gear equivalent to the distance between the fulcrum and the force point on
a level. The gear with the largest radius turns the slowest, and with the most torque'®.

The mechanical advantage of a gear set is simply the ratio of gear diameters. Another way to
determine gear ratios is to count the number of teeth on each gear: since the teeth are all cut to
the same size so as to smoothly mesh, the ratio of gear teeth will be proportional to the ratio of
gear circumferences, which in turn must be proportional to the ratio of gear radii. If a gear set may
be turned by hand, a simple counting of turns from input to output will also allow you to calculate
the gear ratio. For example, if you turn one gear 15 revolutions to get the second gear to turn 4
revolutions, the mechanical advantage is %’, or 3.75. As with levers, the gear that turns the farthest
does so with less force (torque), and visa-versa. All simple machines work by trading motion for
force, so that an increase in one necessarily results in a decrease of the other.

16 «Torque” is to rotational motion as “force” is to linear motion. Mathematically, torque (7) is defined as the
cross-product of force acting on a radius (7 =7 X F).
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A variety of spur gear designs appears on this page. In this illustration'”, we see an external
spur gear set with straight-cut teeth, perhaps the simplest style of gear:

Next, we see variations on this design where the gear teeth are cut at angles instead of being
parallel with the gears’ shafts. This causes the meshing of the gear teeth to be smoother and quieter,
but also causes a thrust force to develop along the axis of the gear shaft, since the teeth act as inclined
planes. A “double” helical gear pattern (also known as a herringbone gear due to its resemblance to
a fish skeleton) cancels any thrust force by angling the teeth in opposite angles. Herringbone gear
sets are quiet and strong, but tend to be more expensive to manufacture than single-helical gears:

Double-hehcal teeth

17T am indebted to NASA for this and the rest of the black-and-white gear illustrations found in this section. All
these illustrations were taken from NASA technical reports on gearing.
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The exposed gear sets commonly found in antique machinery provide excellent visual examples of
gear designs. This next photograph shows sets of external spur gears. The upper photograph shows
a pair of meshing spur gears with parallel teeth, while the lower photograph shows a set of four
meshing spur gears with single-helical teeth, both sets of gears found on antique gasoline engines:
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Another style of gear set is called planetary, because its shape resembles circular orbits of planets
around a star. Planetary gear sets are exceptionally strong, and are capable of delivering multiple
gear ratios depending on which gear (the “sun” gear, the “ring” gear, or the “planet” gears) is being
held stationary, which gear is the input, and which gear is the output. If any two sets of gears are
locked together such that they rotate at the same speed, the third gear in a planetary mechanism
must also rotate at that same speed, for a 1:1 ratio. Typically, the planet gears are all anchored in
their respective positions by a rotating frame called a carrier:

Ring gear

S gear 1

Manet
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The particular planetary gear set shown in the above illustration uses two sets of helical gears
(much like a herringbone design, only with two single-helical gears placed back-to-back instead of
one gear with double-helical teeth) in order to eliminate thrust forces on the shafts.

Planetary gear sets are the standard type of gears used in automatic transmissions for
automobiles. Different gear ratios (e.g. “Low”, “Drive”, “Overdrive”) are achieved in an automatic
transmission by selecting which gears in a planetary gear set are input, output, and stationary. A
series of clutches engage and disengage shafts to control which gears are input versus output, while
a series of bands act as brakes to hold different gears stationary in the planetary gear set. These
clutches and bands are all operated by hydraulic oil pressure inside the transmission, controlled
either by a series of hydraulic relays and/or by an electronic computer telling the transmission when
to shift.

The Synergy’™ gear drive system designed by Toyota for use in its line of hybrid gasoline-
electric cars is a unique application of planetary gears. In the first-generation Toyota Prius, an
electric motor/generator (“MG1”) is coupled to the sun gear, the internal-combustion (gasoline)
engine is coupled to the planet carrier, and the driveshaft is coupled to the ring gear (as well as
a second electric motor/generator “MG2”). This planetary gear set allows power to be transferred
smoothly and with great flexibility between the engine, the motor/generator, and the driveshaft.
Motor/generator MG1 functions as a kind of variable brake (in “generator” mode, passing its power
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to either the battery or to MG2) to slow down the sun gear to achieve an infinite number of effective
gear ratios for the engine, and the gasoline engine may also be locked to keep the planet gear carrier
from turning during all-electric operation.

With a simple set of parallel-shaft spur gears, the ratio of the gear set is simply the ratio of gear
teeth (or of effective diameters). For example, if a spur gear set has 15 teeth on the driving gear
(Nariving = 15) and 45 teeth on the driven gear (Ngriven = 45), the gear ratio will be a 45:15 or 3:1
reduction in speed (multiplication in torque). Planetary gear sets are more complicated than this,
as shown by the following table:

Condition Slow Fast | Ratio (z:1)
Ring gear held stationary Planet carrier | Sun %—: +1
Sun gear held stationary Planet carrier | Ring % +1
Planet carrier held stationary Ring Sun —%:
Any two locked together — — 1

It is interesting to note that the only gear teeth (diameters) values factoring into these ratio
calculations belong to the ring and sun gears. The negative sign for the stationary-carrier condition
refers to the reversed rotation of the ring gear compared to the sun gear.

As always, one should strive to understand rather than memorize when learning anything new,
and planetary gear set ratios are no exception to this rule. An excellent exercise is to mentally
visualize each of the conditions listed in the table above, applied to a graphic image of a planetary
gear'® set. Run a series of “thought experiments” on the gear set, where you imagine one of the
three pieces being held stationary while one of the free pieces is turned. Ask yourself whether the
third piece turns faster or slower than the other free piece. Then, imagine the sun gear growing or
shrinking in size, and ask yourself how this change in sun gear size affects the speed ratio:

18Here, each gear is shown simply as a toothless wheel for the sake of simplicity. Truth be told, your humble author
has difficulty drawing realistic gear teeth!
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A variety of gear set designs with perpendicular shafts exist to transfer mechanical power around
corners. First, we see a crossed helical spur gear. Like parallel-shaft helical spur gears, crossed
helical gears generate thrust forces due to the action of the gear teeth as inclined planes:

Next we see a bevel gear or miter gear set, where a pinion gear intersects with a ring gear to
transfer mechanical power through perpendicular shafts. The left-hand illustration shows a straight-
toothed bevel gear set, while the right-hand illustration shows a spiral-toothed bevel gear set.

LSt

These two styles of bevel gears are analogous to the straight- versus helical- toothed variants of
the spur gear, with similar characteristics: spiral-toothed bevel gears provide smoother and quieter
operation than straight-toothed bevel gears, but at the expense of generating large thrust forces on
the pinion gear shaft, and radial forces on the ring gear shaft.
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An interesting variation on the bevel gear concept is the hypoid gear system, where the two shaft
axes do not intersect. In this gear set, the gear teeth actually rub against each other rather than
merely touch, necessitating special lubricant to handle the dynamic pressures and stresses. Hypoid
gear sets are exceptionally strong and quiet-running, and became popular for automotive axle drive
systems because they allowed the driveshaft (attached to the pinion gear) to be lower than the axles
(attached to the ring gear), providing more floor space in the vehicle. The non-intersecting shaft
centerlines also make it possible to place support bearings on both ends of the pinion gear for extra
strength, as seen in heavy-duty truck axle designs:

A photograph of a hypoid gear set inside the differential of an automobile is shown here, the
differential housing cover removed for inspection:
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An important type of gear set used for perpendicular-shaft applications with large speed-
reduction ratios is the worm gear. A worm gear resembles a screw whose threads engage with
matching helical-cut threads on another gear called a worm wheel:

Worm gear mechanism

Worm wheel

Worm screw

An interesting and useful feature of a worm gear set is that power transfer occurs easily from the
worm screw to the worm wheel, but not so easily from the worm wheel to the worm screw due to
friction between the teeth of the two gears. This means when the worm screw is not being turned
by an outside force, even small amounts of friction between the screw threads and wheel teeth will
effectively “lock” the worm wheel in place such that it cannot turn when an outside force acts on it.
A practical example of a worm gear exploiting this feature is a hand-crank winch, where we desire
the winch drum to remain locked in position when we let go of the hand-crank.

Another interesting feature of worm gears is that the gear ratio is simply the number of teeth
on the worm wheel, since the tooth pitch on the circumference of the worm wheel defines what the
thread pitch must be on the worm screw. For example, a worm wheel having 40 teeth around its
circumference will exhibit a 40:1 speed-reduction ratio regardless of worm screw size, since there is
only one worm screw thread pitch that will engage with the teeth on this worm wheel.
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A real worm gear assembly may be seen in this next photograph, as one component of an antique
farm implement. Here, a hand-wheel turns the work screw, which then turns the worm wheel and
either lifts or drops the height of the implement’s blade:

The “one-way” action of a worm gear is advantageous in this application, so that the hand wheel
does not spin on its own every time the implement’s blade encounters uneven ground. Wherever
the hand wheel is set to adjust blade height, that blade height remains fixed until the hand wheel is
turned to some new position.

It should be noted that modern worm gear sets, like nearly all types of gears, are more
commonly found encased in a housings where they operate in a lubricated environment, sealed from
contamination by dust and other matter both solid and liquid. Exposed gears are more commonly
seen on antique machinery, where the mechanical stresses were low enough (i.e. low torque forces,
large gears) to permit reliable operation of gears with the only lubrication typically being a coat of
heavy grease smeared over the gear teeth.



114 CHAPTER 2. PHYSICS

As with other types of simple machines, gear sets may be combined into larger assemblies, with
the over-all mechanical advantage (i.e. gear ratio) being the product of all individual gear ratios in
the system. An example of a compound gear train is this helicopter transmission, designed to reduce
the high-speed shaft rotation of the helicopter’s turbine engine down to a speed more suitable for
the main rotor:

Rotor shaft output

Sun gear
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Mechanical shaft power flows from the turbine shaft (usually several thousand RPM) to the rotor
(a few hundred RPM) in this transmission via several types of gears. First, the turbine shaft’s speed
is reduced through multiple sets of bevel gears operating in parallel (from the “driving spur pinion”
gear to the “face gears”). These multiple face gears then couple to a “combining” gear through a
spur gear reduction. This combining gear then feeds power to a central “sun” gear in a planetary
gear train. The “ring” gear of this planetary set is fixed to the case of the transmission so that it does
not turn. Finally, four “planet” gears running in a common carrier assembly drive the helicopter’s

rotor.
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)

The following photograph shows a modern “gearbox” used to decrease the rotational speed of
an electric motor, to turn an auger feeding grain out of a storage bin at a beer brewery. Like all
modern gear sets, the gears inside this gearbox operate in a continuously-lubricated environment,
sealed to prevent contaminants such as dust and water from entering:

A very large gearbox is shown in this next photograph, used in the head of a Vestas wind turbine
to “step up” the slow rotational speed of the turbine to the much higher rotational speed of the
electric generator. Planetary gears are used in wind turbine gearboxes due to their ruggedness and
relatively compact size:

The ratio of this wind turbine’s gear set happens to be 111.5:1, with the generator turning 111.5
times faster than the turbine blades (but with only ﬁ the torque of the turbine blades, of course)!
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2.9.5 Belt drives

A sheave is very similar in form and function to a pulley, but designed to grip a flexible belt rather
than a rope or a cable. Unlike a pulley which is designed to turn freely to re-direct the tension of a
rope, a sheave works more like a gear to couple the belt’s motion to a rotating shaft. The mechanical
advantage of a pair of sheaves coupled by a common belt is simply the ratio of sheave radii, just like

gears:

Belt

Sheave #2

Fast-turning,

/ low-torque

The following photograph shows a triple-belt drive from an electric motor to an agitator on the
bottom of a sawdust storage bin:

As indicated by the respective sheave diameters, the electric motor turns much faster than the
agitator, while the agitator spins with much greater torque than the motor.
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Most modern belt drives are either V-belt or toothed belt, referring to the shapes of the belt
and how they engage with the sheave. The triple-belt drive system for the sawdust agitator shown
in the previous photograph used V-belts. A V-belt has a V-shaped cross-section, and sits in a V-
shaped groove around the circumference of the sheave. Toothed belts almost resemble chains, in
that their inner surface is characterized by regularly-spaced perpendicular ribs designed to engage
with matching cavities machined into the circumference of the sheave. The advantage of a toothed
belt is that it cannot slip on the sheave if overloaded, unlike a V-belt. A toothed belt is firmly
“locked” into place on the sheave’s circumference so long as proper belt tension is maintained.

An older belt-and-sheave technology is the flat belt. Here, the sheave’s circumference is flat, and
the belt itself is nothing more than a strip of flexible material with no special shape. The following
photograph shows an antique flat belt drive in a workshop, where a central shaft ran along the ridge
of the ceiling to power several machines in the shop, the shaft itself turned continuously by either a
water turbine or a steam engine:

Flat belts are still used in modern times, but they tend to be much wider than V-belts or toothed
belts of comparable rating in order to deliver adequate “grip” on the sheave. Also, sheave-to-sheave
alignment is much more critical for a flat belt, which has no guides on the sheave to keep it centered!'?.

19 An interesting feature of many flat-belt sheaves is a slight “crown” shape to the sheave, such that the diameter
is slightly larger at the sheave’s center than it is at either side edge. The purpose of this crown is to help the belt
center itself while in operation. As it turns out, a flat belt naturally tends to find the point at which it operates under
maximum tension. If the belt happens to wander off-center, it will naturally find its way back to the center of the
sheave as it rotates because that is where the tension reaches a maximum.
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Like gear sets, industrial belt drive systems are typically shrouded for cleanliness and for
personnel safety. Sheet-metal enclosures such as the one covering the top of this V-belt drive
system on a “walking-beam” style of oil field pump. The sheet-metal enclosure protects the belts
and sheaves from rain and snow. You will also note a large gearbox following the belt drive, further
reducing rotational speed from the electric motor to the pump’s counter-weighted crank:

Co
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Belts of all styles are subject to wear and fatigue, and as such must be periodically replaced.
Some belt drive systems employ tensioner mechanisms which maintain consistent belt tension by
applying a constant force to the belt. Small tensioners are usually spring-loaded, while large belt
tensioners (particularly conveyor belts) are loaded by the weight of a large mass. Minimum belt
tension is extremely important for belt drives, as loose belts will begin to “slip” under load and
quickly fail if the problem is not remedied.

When multiple belts are used to distribute loading between belts in high-power drive systems,
it is important that all belts be replaced simultaneously, never partially. If a new belt is installed
next to an old belt on the same sheave, the old belt will run “loose” and not bear its full share of
the load, thus overloading the other (new) belt(s) in the drive system.
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2.9.6 Chain drives

Sprockets are identical in function to sheaves, using link chain rather than belt to couple the two
rotating pieces together. Bicycles are perhaps the best-known example of sprockets and chains
from everyday life, being the most efficient simple machine for the purpose of coupling a person’s
leg power to a rotating wheel for propulsion. Like gear sets, the mechanical advantage ratio of a
sprocket set may be determined by counting teeth on each sprocket and then dividing one tooth
count by the other, or empirically by rotating one sprocket by hand and counting the number of
turns (revolutions) each sprocket makes.

The following photograph shows a pair of sprockets linked together with a roller chain. The
sprocket ratio here is 1:1, as both sprockets share the same number of teeth:

Bicycles use sprockets and a chain to transfer power from the crank to the rear wheel. Here, a
multi-speed sprocket assembly allows the rider to select the best ratio (i.e. mechanical advantage)
for riding at different speeds and in different conditions. Three sprockets on the crank and eight
sprockets on the wheel give a theoretical?’ maximum of 24 different “speeds” or “gears” from which
to select:

)

Chain drive systems require thorough lubrication and freedom from dirt and other abrasive
particles in order to deliver full service life. Open-chain systems such as the two shown in the above
photographs are challenging to maintain in good working order for these reasons.

20Tn practice, not all of these 24 “speeds” are recommended, because some of the front/rear sprocket selections
would place the chain at an extreme angle as it engaged with both sprockets. In the interest of extending chain life,
it should run as “straight” on each sprocket as possible.
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2.10 Elementary thermodynamics

Thermodynamics is the study of heat, temperature, and their related effects in physical systems. As
a subject, thermodynamics is quite complex and expansive, usually taught as a course in itself at
universities. The coverage in this book is limited to some of the more elementary and immediately
practical facets of thermodynamics rather than a comprehensive overview.
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2.10.1 Heat versus Temperature

Most people use the words heat and temperature interchangeably. This is unfortunate for every
student of thermodynamics, who must first deconstruct this false conception and replace it with one
more scientifically accurate before any progress may be made. While “heat” and “temperature” are
related concepts, they are not identical.

When people say something is “hot,” what they really mean is that the object has a high
temperature. Temperature is a direct function of molecular motion within an object or a fluid sample.
This is usually easiest to visualize for a gas, where the individual molecules have great freedom to
move about. The molecules of a substance at high temperature are moving more vigorously (higher
velocity) than the molecules of the same substance at low temperature.

Heat, by contrast, is an expression of thermal energy transfer. By placing a pot of water over a
fire, we are adding heat to that pot (transferring thermal energy to the water), the effect of which is
to raise its temperature (making the water molecules’ motions more vigorous). If that same pot is
taken away from the fire and allowed to cool, its loss of heat (transferring energy out of the water to
the surrounding air) will result in its temperature lowering (the individual water molecules slowing
down).

Heat gain or loss often results in temperature change, but not always. In some cases heat may
be gained or lost with negligible temperature change — here, the gain or loss of heat manifests as
physical changes to the substance other than temperature. One example of this is the boiling of
water at constant pressure: no matter how much heat is transferred to the water, its temperature
will remain constant at the boiling point (100 degrees Celsius at sea level) until all the water has
boiled to vapor. The addition of thermal energy to the boiling water does not raise its temperature
(i.e. make the molecules move faster), but rather goes into the work of disrupting inter-molecular
bonds so that the liquid turns into vapor.

Heat transfer can only happen, though, where there is a difference of temperature between two
objects. Thermal energy (heat) naturally flows from the “hotter” (higher-temperature) substance
to the “colder” (lower-temperature) substance. To use the boiling water example, the only way to
get heat transfer into the water is to subject the water to a hotter substance (e.g., a flame, or a hot
electric heating element). If you understand temperature as being the vibration of molecules, with a
higher-temperature object’s molecules vibrating more vigorously than a lower-temperature object’s
molecules, this natural transfer of heat from hot to cold makes perfect sense: the molecular vibrations
of the higher-temperature object literally transfer to the molecules of the lower-temperature object.
As those respective molecules touch each other, with fast-vibrating molecules colliding against
slow-vibrating molecules, the inter-molecular collisions transfer energy away from the fast-vibrating
molecules (so they aren’t vibrating as fast anymore) and toward the slow-moving molecules (so they
begin to vibrate faster than before). It’s like a fast-moving ball colliding with a slow-moving ball:
the fast-moving ball slows down after the collision and the slow-moving ball speeds up after the
collision because kinetic energy has exchanged from the former to the latter during the collision.

Much more attention will be directed to the concepts of heat and temperature in subsequent
subsections.
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2.10.2 Temperature

In an ideal, monatomic?' gas (one atom per molecule), the mathematical relationship between
average molecular velocity and temperature is as follows:
lsz2 = §kT
2 2
Where,
m = Mass of each molecule
v = Velocity of a molecule in the sample
U = Average (“mean”) velocity of all molecules in the sample
v2 = Mean-squared molecular velocities in the sample
k = Boltzmann’s constant (1.38 x 10723 J / K)
T = Absolute temperature (Kelvin)

Non-ideal gases, liquids, and solids are more complex than this. Not only can the atoms of
complex molecules move to and fro, but they may also twist and oscillate with respect to each
other. No matter how complex the particular substance may be, however, the basic principle remains
unchanged: temperature is an expression of how vigorously molecules are moving within a substance.

There is a temperature at which all molecular motion ceases. At that temperature, the substance
cannot possibly become “colder,” because there is no more motion to halt. This temperature is called
absolute zero, equal to -273.15 degrees Celsius, or -459.67 degrees Fahrenheit. Two temperature
scales based on this absolute zero point, Kelvin and Rankine, express temperature relative to
absolute zero. That is, zero Kelvin and zero degrees Rankine is equal to absolute zero temperature.
Any temperature greater than absolute zero will be a positive value in either the Kelvin or the
Rankine scales. A sample of freezing water at sea level, for example, is 0 degrees Celsius (32 degrees
Fahrenheit) but could also be expressed as 273.15 Kelvin?? (0 plus 273.15) or 491.67 degrees Rankine
(32 plus 459.67).

21Helium at room temperature is a close approximation of an ideal, monatomic gas, and is often used as an example
for illustrating the relationship between temperature and molecular velocity.

22Kelvin is typically expressed without the customary “degree” label, unlike the three other temperature units:
(degrees) Celsius, (degrees) Fahrenheit, and (degrees) Rankine.
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A table of melting and boiling points (at sea-level atmospheric pressure) for various substances
appears in this table, labeled in these four different units of temperature measurement:

Melting or boiling substance °C °F K °R
Melting point of water (H20O) 0 32 273.15 491.67
Boiling point of water (H20) 100 212 373.15 671.67

Melting point of ammonia (NHj) =777 -107.9 195.45 351.77

Boiling point of ammonia (NHj) -33.6 -28.5 239.55 431.17

Melting point of gold (Au) 1063 1945 1336 2405

Melting point of magnesium (Mg) 651 1203.8 924.2 1663.5
Boiling point of acetone (C3HgO) 56.5 133.7 329.65 593.37
Boiling point of propane (CsHg) -42.1 -43.8 231.05 415.87
Boiling point of ethanol (C3HgO) 78.4 173.1 351.55 632.77

Note how degrees Celsius and Kelvin for each point on the table differ by a constant (offset) of
273.15, while each corresponding degree Fahrenheit and degree Rankine value differs by 459.67 (note
that many of the figures in this table are slightly rounded, so the offset might not be exactly that
much). You might think of Kelvin as nothing more than the Celsius scale zero-shifted by 273.15
degrees, and likewise degrees Rankine as nothing more than the Fahrenheit scale zero-shifted by
459.67 degrees.

Note also how increments in temperature measured in degrees Fahrenheit are the same as
increments of temperature measured in degrees Rankine. The same is true for degrees Celsius
and Kelvin. The difference between the melting point of ammonia (-77.7 degrees C) and the melting
point of water (0 degrees C) is the same difference as that between the melting points of ammonia and
water expressed in Kelvin: 195.45 and 273.15, respectively. Either way, the difference in temperature
between these two substances’ melting points is 77.7 degrees (C or K). This is useful to know
when dealing with temperature changes over time, or temperature differences between points in a
system — if an equation asks for a temperature difference (AT) in Kelvin, it is the same value as
the temperature difference expressed in Celsius. Likewise, a AT expressed in degrees Rankine is
identical to a AT expressed in degrees Fahrenheit. This is analogous to differences between two fluid
pressures expressed in PSIG versus PSIA: the differential pressure value (PSID) will be the same.

Most people are familiar with the Fahrenheit and Celsius temperature scales used to express
temperature in common applications, but the absolute scales of Rankine and Kelvin have special
significance and purpose in scientific endeavors. The fact that Rankine and Kelvin are absolute scales
in the same manner that atmospheres and torr are units of absolute pressure measurement makes
them uniquely suited for expressing temperature (molecular motion) in relation to the absence of
thermal energy. Certain scientific laws such as the Ideal Gas Law and the Stefan-Boltzmann Law
relate other physical quantities to absolute temperature, and so require the use of these absolute
units of measurement.
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2.10.3 Heat

Heat, being the transfer of energy in thermal (molecular motion) form, may be measured in the same
units as any other form of energy is measured: joules (metric) and foot-pounds (British). However,
special units of measurement are often used for heat instead:

e calorie
e kilocalorie (or “dietary Calorie”)

e British Thermal Unit (BTU)

A calorie of heat is defined as the amount of thermal energy transfer required to change the
temperature of one gram of water by one degree Celsius (AT = 1 °C = 1 K). One calorie is
equivalent to 4.186 joules.

A British Thermal Unit, or BTU is defined as the amount of thermal energy transfer required
to change the temperature of one pound of water by one degree Fahrenheit (AT = 1 °F = 1 °R).
One BTU is equivalent to 778.2 foot-pounds.

The unit of “dietary” calories is used to express the amount of thermal energy available in a
sample of food by combustion??. Since the official unit of the “calorie” is so small compared to the
typical amounts of energy contained in a meal, nutritionists use the unit of the kilocalorie (1000
calories, or 4186 joules) and call it “Calorie” (with a capital letter “C”).

Just as “Calories” are used to rate the energy content of food, the heat units of “calories” and
“BTU” are very useful in describing the potency of various industrial fuels. The following table
shows the heat of combustion for a few common fuels, in units of kilocalories per gram and BTU per
pound:

Fuel Combustion heat (kcal/g) Combustion heat (BTU/Ib)
Methane (CHy) 13.3 23940
Methanol (CH40) 5.43 9767
Ethanol (CH0) 7.10 12783
Propane (C3Hg) 12.1 21700
Carbon monoxide (CO) 2.415 4347

For example, if exactly one gram of methane gas were completely burnt, the resulting heat
liberated in the fire would be sufficient to warm 13.3 kilograms of water from 20 degrees Celsius to
21 degrees Celsius (a temperature rise, or AT, of one degree Celsius).

If a meal rated at 900 Calories (900 “dietary calories,” or 900 kilocalories) of energy were
completely metabolized, the resulting heat would be sufficient to warm a pool of water 900 kilograms
in mass (900 liters, or about 237 gallons) by one degree Celsius. This same amount of heat could
raise half the amount of water twice the temperature rise: 450 liters of water warmed two degrees
Celsius.

23 Animals process food by performing a very slow version of combustion, whereby the carbon and hydrogen atoms
in the food join with oxygen atoms inhaled to produce water and carbon dioxide gas (plus energy). Although it may
seem strange to rate the energy content of food by measuring how much heat it gives off when burnt, burning is just
a faster method of energy extraction than the relatively slow processes of biological metabolism.
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2.10.4 Heat transfer

Heat spontaneously?* flows from higher-temperature substances to lower-temperature substances.
This is the phenomenon you experience standing next to a fire on a cold day. Your body is cold (low
temperature), but the fire is much hotter (high temperature), and your proximity to the fire aids in
heat transfer from the fire to you.

Three principal methods exist for heat to transfer from one substance to another:

e Radiation®® (by light waves)
e Conduction (by direct contact)

e Convection (by intermediate contact with a moving fluid)

Practical examples of heat transfer often involve multiple modes rather than just one. For
example, the transfer of heat to a person’s body by sunlight obviously involves radiation from the
Sun, but it also involves conduction through layers of clothing and convection by air passing from
sun-warmed objects to the person.

Temperature-sensing instruments used to measure temperature in industrial applications likewise
rely on multiple heat-transfer modes to sample thermal energy from a process fluid or object(s).
Infrared thermometers detect temperature by sensing the intensity of infrared light radiated by hot
objects. A thermocouple directly touching a hot object relies on conduction to sense the temperature
of that object. An RTD inserted into a pipe carrying a hot fluid relies on convection to measure the
average temperature of that fluid. A filled-bulb thermometer inserted into a thermowell, inserted
into a fluid-filled process vessel relies on both convection (from the fluid to the thermowell) and
conduction (from the thermowell to the bulb) to sense process temperature.

24Heat may be forced to flow from cold to hot by the use of a machine called a heat pump, but this direction of
heat flow does not happen naturally, which is what the word “spontaneous” implies. In truth, the rule of heat flowing
from high-temperature to cold-temperature applies to heat pumps as well, just in a way that is not obvious from first
inspection. Mechanical heat pumps cause heat to be drawn from a cool object by placing an even cooler object (the
evaporator) in direct contact with it. That heat is then transferred to a hot object by placing an even hotter object
(the condenser) in direct contact with it. Heat is moved against the natural (spontaneous) direction of flow from the
evaporator to the condenser by means of mechanical compression and expansion of a refrigerant fluid.

25In this context, we are using the word “radiation” in a very general sense, to mean thermal energy radiated away
from the hot source via photons. This is quite different from nuclear radiation, which is what some may assume this
term means upon first glance.



126 CHAPTER 2. PHYSICS

Radiation

If you have ever experienced the immediate sensation of heat from a large fire or explosion some
distance away, you know how radiation works to transfer thermal energy. Radiation is also the
method of heat transfer experienced in the Earth’s receiving of heat from the Sun (and also the
mechanism of heat loss from Earth to outer space). Radiation is the least efficient of the three heat
transfer mechanisms. It may be quantified by the Stefan-Boltzmann Law, which states the rate of
heat lost by an object (%) is proportional to the fourth power of its absolute temperature, and
directly proportional to its radiating area:
dq

E = 6UAT4

Where,
% = Radiant heat loss rate (watts)
e = Emissivity factor (unitless)
o = Stefan-Boltzmann constant (5.67 x 1078 W / m? - K*)
A = Surface area (square meters)
T = Absolute temperature (Kelvin)

Here is one of the scientific applications where temperature expressed in absolute units is truly
necessary. Radiant energy is a direct function of molecular motion, and so we would logically expect
objects to radiate energy at any temperature above absolute zero. The temperature value used in
this formula must be in units of Kelvin?® in order for the resulting % value to be correct. If degrees
Celsius were used for T instead of Kelvin, the formula would predict zero thermal radiation at the
freezing point of water (0 °C) and negative radiation at any temperature below freezing, which is
not true. Remember that the “zero” points of the Celsius and Fahrenheit scales were arbitrarily set
by the inventors of those scales, but that the “zero” points of the Kelvin and Rankine scales reflect
a fundamental limit of nature.

The emissivity factor varies with surface finish and color, ranging from one (ideal) to zero (no
radiation possible). Dark-colored, rough surfaces offer the greatest emissivity factors, which is why
heater elements and radiators are usually painted black. Shiny (reflective), smooth surfaces offer
the least emissivity, which is why thermally insulating surfaces are often painted white or silver.

Like all heat-transfer modes, radiation is two-way. Objects may emit energy in the form of
radiation, and they may also receive energy in the form of radiation. Everyone knows white-colored
shirts are cooler than black-colored shirts worn on a hot, sunny day — this is an example of how
emissivity affects heat absorption by radiant transfer. A black-colored shirt (high emissivity value)
enhances the receiving of radiant energy by your body from the sun. What is not as obvious, though,
is that a white-colored shirt will keep you warmer than a black-colored shirt on a cold, dark day
because that same decreased emissivity inhibits body heat loss by radiation. Thus, high-emissivity
objects both heat and cool more readily by radiation than low-emissivity objects.

260r in degrees Rankine, provided a suitably units-corrected value for the Stefan-Boltzmann constant were used.
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Conduction

If you have ever accidently touched a hot iron or stove heating element, you possess a very vivid
recollection of heat transfer through conduction. In conduction, fast-moving molecules in the hot
substance transfer some of their kinetic energy to slower-moving molecules in the cold substance.
Since this transfer of energy requires collisions between molecules, it only applies when the hot and
cold substances directly contact each other.

Perhaps the most common application of heat conduction in industrial processes is through the
walls of a furnace or some other enclosure containing an extreme temperature. In such applications,
the desire is usually to minimize heat loss through the walls, so those walls will be “insulated” with
a substance having poor thermal conductivity.

Conductive heat transfer rate is proportional to the difference in temperature between the hot
and cold points, the area of contact, the distance of heat travel from hot to cold, and the thermal
conductivity of the substance:

dQ  KAAT
a1

Where,

% = Conductive heat transfer rate

k = Thermal conductivity

A = Surface area

AT = Difference of temperature between “hot” and “cold” sides

[ = Length of heat flow path from “hot” to “cold” side

Note the meaning of “AT” in this context: it refers to the difference in temperature between two
different locations in a system. Sometimes the exact same symbology (“AT”) refers to a change in
temperature over time in the study of thermodynamics. Unfortunately, the only way to distinguish
one meaning of AT from the other is by context.
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An illustration showing heat conduction through a wall gives context to the variables in the
previous equation. As we see here, A refers to the surface area of the wall, AT refers to the
difference of temperature between either surface of the wall, and [ refers to the thickness of the wall:

Tcold Thot

T - ke
dQ dQ
dt dt

k

= =

In the United States, a common measure of insulating ability used for the calculation of
conductive heat loss in shelters is the R-value. The greater the R-value of a thermally insulating
material, the less conductive it is to heat (lower k value). “R-value” mathematically relates to k
and [ by the following equation:

l
R=z

Rearranging this equation, we see that [ = kR, and this allows us to substitute kR for [ in the
conduction heat equation, then cancel the k terms:

dQ _ kAAT
dt kR
dQ  AAT
dt R

R is always expressed in the compound unit of square feet - hours - degrees Fahrenheit per BTU.
This way, with a value for area expressed in square feet and a temperature difference expressed
in degrees Fahrenheit, the resulting heat transfer rate (%) will naturally be in units of BTU per
hour, which is the standard unit in the United States for expressing heat output for combustion-type
heaters. Dimensional analysis shows how the units cancel to yield a heat transfer rate in BT Us per
hour:

[BTU]  [ft*][°F]

h]  [ft*)hyeF]
(BTU]




2.10. ELEMENTARY THERMODYNAMICS 129

The utility of R-value ratings may be shown by a short example. Consider a contractor trailer,
raised up off the ground on a mobile platform, with a total skin surface area of 2400 square feet
(walls, floor, and roof) and a uniform R-value of 4 for all surfaces. If the trailer’s internal temperature
must be maintained at 70 degrees Fahrenheit while the outside temperature averages 40 degrees
Fahrenheit, the required output of the trailer’s heater will be:

dQ (2400 ft*)(30° F)
dt  4ft>. h-°F/BTU

= 18000 BTU per hour

If the trailer’s heater is powered by propane and rated at 80% efficiency (requiring 22500 BTU
per hour of fuel heating value to produce 18000 BTU per hour of heat transfer into the trailer), the
propane usage will be just over one pound per hour, since propane fuel has a heating value of 21700
BTU per pound.

Convection

Most industrial heat-transfer processes occur through convection, where a moving fluid acts as an
intermediary substance to transfer heat from a hot substance (heat source) to a cold substance
(heat sink). Convection may be thought of as two-stage heat conduction on a molecular scale:
fluid molecules come into direct contact with a hot object and absorb heat from that object through
conduction, then those molecules later release that heat energy through conduction by direct contact
with a cooler object. If the fluid is recycled in a piping loop, the two-stage conduction process
repeats indefinitely, individual molecules heating up as they absorb heat from the heat source and
then cooling down as they release heat to the heat sink.

Special process devices called heat exchangers perform this heat transfer function between two
different fluids, the two fluids circulating past each other on different sides of tube walls. A simple
example of a heat exchanger is the radiator connected to the engine of an automobile, being a water-
to-air exchanger, the engine’s hot water transferring heat to cooling air entering the grille of the car
as it moves.
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Another example of a liquid-to-air heat exchanger is the condenser on a heat pump, refrigerator,
or air conditioner, a photograph appearing here:
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Another common style of heat exchanger works to transfer heat between two liquids. A small
example of this design used to transfer heat from a boat engine is shown here:

The purpose for this heat exchanger is to exchange heat between the liquid coolant of the boat
engine and sea water, the latter being quite corrosive to most metals. An engine would soon be
damaged if sea water were used directly as the coolant fluid, and so heat exchangers such as this
provide a means to release excess heat to the sea without subjecting the engine block to undue
corrosion. The heat exchanger, of course, does suffer from the corrosive effects of sea water, but at
least it is less expensive and more convenient to replace than an entire engine when it reaches the
end of its service life.



2.10. ELEMENTARY THERMODYNAMICS 131

This marine engine heat exchanger is an example of a shell-and-tube design, where one fluid
passes inside small tubes and a second fluid passes outside those same tubes, the tube bundle being
contained in a shell. The interior of such an exchanger looks like this when cut away:

The tubes of this particular heat exchanger are made of copper, a metal with extremely high
thermal conductivity (k), to facilitate conductive heat transfer.

Liquid-to-liquid heat exchangers are quite common in industry, where a set of tubes carry one
process liquid while a second process liquid circulates on the outside of those same tubes. The metal
walls of the tubes act as heat transfer areas for conduction to occur. Metals such as copper with
very high k values (very low R values) encourage heat transfer, while long lengths of tube ensure
ample surface area for heat exchange.
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A common application of liquid-to-liquid heat exchangers is in exothermic (heat-releasing)
chemical reaction processes where the reactants must be pre-heated before entering a reaction vessel
(“reactor”). Since the chemical reaction is exothermic, the reaction itself may be used as the heat
source for pre-heating the incoming feed. A simple P&ID shows how a heat exchanger accomplishes
this transfer of heat:

Y

Reactant "A" ,
feed ¢

Reactor
@ 700 °F

430 °F v 190 °F

@ AN D s

Heat © feed
exchanger

Reaction product
out

550 °F

Another industrial application of heat exchangers is in distillation processes, where mixed
components are separated from each other by a continuous process of boiling and condensation.
Alcohol purification is one example of distillation, where a mixture of alcohol and water are separated
to yield a purer (higher-percentage) concentration of alcohol. Distillation (also called fractionation)
is a very energy-intensive®” process, requiring great inputs of heat to perform the task of separation.
Any method of energy conservation typically yields significant cost savings in a distillation process,
and so we often find heat exchangers used to transfer heat from outgoing (distilled, or fractionated)
products to the incoming feed mixture, pre-heating the feed so that less heat need be added to the
distillation process from an external source.

27Jim Cahill of Emerson wrote in April 2010 (“Reducing Distillation Column Energy Usage” Emerson Process
Expert weblog) about a report estimating distillation column energy usage to account for approximately 6% of the
total energy used in the United States. This same report tallied the number of columns in US industry to be
approximately 40000 total, accounting for about 19% of all energy used in manufacturing processes!
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The following P&ID shows a simple distillation process complete with heat exchangers for
reboiling (adding heat to the bottom of the distillation column), condensing (extracting heat from
the “overhead” product at the top of the column), and energy conservation (transferring heat from
the hot products to the incoming feed):

Cooling 4 o
water
supply Condenser
130 °F
J\ %\/// 122°F
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product
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7 Feed in
274 °F 242 °F
1 Product "A" out
337°F Preheated feed /
205 °F
Distillation
tower 341 °F \ 309 °F
‘ 2/ Product "B" out
550 °F Bojl-u
Steam 646 °F
supply 295 °F
_/
Reboiler 514 °F
Steam  530°F 2\ 466 °F "Bottoms" ¢
return / product
337 °F

Distillation “columns” (also called fractionating towers in the industry) are tall vessels containing
sets of “trays” where rising vapors from the boiling process contact falling liquid from the condensing
process. Temperatures increase toward the bottom of the column, while temperatures decrease
toward the top. In this case, steam through a “reboiler” drives the boiling process at the bottom
of the column (heat input), and cold water through a “condenser” drives the condensing process
at the top of the column (heat extraction). Products coming off the column at intermediate points
are hot enough to serve as pre-heating flows for the incoming feed. Note how the “economizing”
heat exchangers expose the cold feed flow to the cooler Product A before exposing it to the warmer
Product B, and then finally the warmest “Bottoms” product. This sequence of cooler-to-warmer
maximizes the efficiency of the heat exchange process, with the incoming feed flowing past products
of increasing temperature as it warms up to the necessary temperature for distillation entering the
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column.

Some heat exchangers transfer heat from hot gases to cool(er) liquids An example of this type
of heat exchanger is the construction of a steam boiler, where hot combustion gases transfer heat to
water flowing inside metal tubes:

Exhaust stack

Steam

Steam drum

Riser
tubes

Downcomer
tubes

Feedwater <

Here, hot gases from the combustion burners travel past the metal “riser” tubes, transferring heat
to the water within those tubes. This also serves to illustrate an important convection phenomenon:
a thermal siphon (often written as thermosiphon). As water heats in the “riser” tubes, it becomes
less dense, producing less hydrostatic pressure at the bottom of those tubes than the colder water in
the “downcomer” tubes. This difference of pressure causes the colder water in the downcomer tubes
to flow down to the mud drum, and hot water in the riser tubes to flow up to the steam drum. This
natural convection current will continue as long as heat is applied to the riser tubes by the burners,
and an unobstructed path exists for water to flow in a loop.
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Natural convection also occurs in heated air, such as in the vicinity of a lit candle:

Natural convection
near a candle flame

Air motion

Candle

This thermally forced circulation of air helps convect heat from the candle to all other points
within the room it is located, by carrying heated air molecules to colder objects.
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2.10.5 Specific heat and enthalpy

Earlier, we saw how units of heat measurement were defined in terms of the amount of energy gain
or loss required to alter the temperature of a water sample by one degree. In the case of the calorie,
it was the amount of heat gain/loss required to heat/cool one gram of water one degree Celsius. In
the case of the BTU, it was the amount of heat gain/loss required to heat/cool one pound of water
one degree Fahrenheit.

As one might expect, one heat unit might be similarly defined as the amount of heat gain or
loss to alter the temperature one-half of a degree for twice as much water, or two degrees for half as
much water. We could express this as a proportionality:

Q ox mAT

Where,
@ = Heat gain or loss
m = Mass of sample
AT = Temperature change (rise or fall) over time

The next logical question to ask is, “How does the relationship between heat and temperature
change work for substances other than water?” Does it take the same amount of heat to change the
temperature of one gram of iron by one degree Celsius as it does to change the temperature of one
gram of water by one degree Celsius? The answer to this question is a resounding no! Different
substances require vastly different amounts of heat gain/loss to alter their temperature by the same
degree, even when the masses of those substances happen to be identical.

We have a term for this ability to absorb or release heat, called heat capacity or specific
heat, symbolized by the variable ¢. Thus, our heat/mass/temperature change relationship may
be described as a true formula instead of a mere proportionality:

Q = mcAT

Where,
() = Heat gain or loss (metric calories or British BTU)
m = Mass of sample (metric grams or British pounds)
¢ = Specific heat of substance
AT = Temperature change (metric degrees Celsius or British degrees Fahrenheit)

Pure water, being the standard by which all other substances are measured, has a specific heat
value of 1. The smaller the value for ¢, the less heat gain or loss is required to alter the substance’s
temperature by a set amount. That substance (with a low value of ¢) has a low “heat capacity”
because each degree of temperature rise or fall represents a relatively small amount of energy gained
or lost. Substances with low ¢ values are easy to heat and cool, while substances having high ¢
values require much heat in order to alter their temperatures, assuming equal masses.
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A table of specific heat values (at room temperature, 25 degrees Celsius*®) for common substances

appears here:

Substance Specific heat value (c) cal/g-°C or BTU/Ib-°F
Aluminum (solid) 0.215
Iron (solid) 0.108
Copper (solid) 0.092
Lead (solid) 0.031
Tce (solid) 0.50
Water (liquid) 1.00
Methanol (liquid) 0.609
Ethanol (liquid) 0.587
Acetone (liquid) 0.521
Hydrogen (gas) 3.41
Helium (gas) 1.24
Nitrogen (gas) 0.249
Oxygen (gas) 0.219
Steam (gas) 0.476

If a liquid or a gas is chosen for use as a coolant (a substance to efficiently convect heat away
from an object), greater values of ¢ are better. Water is one of the best liquid coolants with its
relatively high ¢ value of one: it has more capacity to absorb heat than other liquids, for the same
rise in temperature. The ideal coolant would have an infinite ¢ value, being able to absorb an infinite
amount of heat without itself rising in temperature at all.

As you can see from the table, the light gases (hydrogen and helium) have extraordinarily high
¢ values. Consequently, they function as excellent media for convective heat transfer. This is why
large electric power generators often use hydrogen gas as a coolant: hydrogen has an amazing
ability to absorb heat from the wire windings of a generator without rising much in temperature.
In other words, hydrogen absorbs a lot of heat while still remaining “cool” (i.e. remains at a low
temperature). Helium, although not quite as good a coolant as hydrogen, has the distinct advantage
of being chemically inert (non-reactive), in stark contrast to hydrogen’s extreme flammability. Some
nuclear reactors use helium gas as a coolant rather than a liquid such as water or molten sodium
metal.

Lead has an extraordinarily low ¢ value, being a rather “easy” substance to heat up and cool
down. Anyone who has ever cast their own lead bullets for a firearm knows how quickly a new lead
bullet cools off after being released from the mold, especially if that same person has experience
casting other metals such as aluminum.

28 An important detail to note is that specific heat does not remain constant over wide temperature changes. This
complicates calculations of heat required to change the temperature of a sample: instead of simply multiplying the
temperature change by mass and specific heat (Q = mcAT or Q@ = mc[T> — T1]), we must integrate specific heat

T
over the range of temperature (Q = m fT2 c¢dT'), summing up infinitesimal products of specific heat and temperature
1
change (c dT') over the range starting from temperature 77 through temperature 7% then multiplying by the mass to
calculate total heat required. So, the specific heat values given for substances at 25 °C only hold true for relatively

small temperature changes deviating from 25 °C. To accurately calculate heat transfer over a large temperature
change, one must incorporate values of ¢ for that substance at different temperatures along the expected range.
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Numerical examples are helpful to better understand specific heat. Consider a case where a
copper pot filled with water receives heat from a small gas burner operating at an output of 5000
BTU per hour (350 calories per second):

Water
c=1.00
m= 3700 grams

\

Starting temperature = 20 °C
> Copper pot
c=0.092

I I I m= 1100 grams

‘;_? = 5000 BTU/h = 350 calfs

Time of heating = 40 seconds

A reasonable question to ask would be, “How much will the temperature of this water-filled pot
rise after 40 seconds of heating?” With the burner’s heat output of 350 calories per second and a
heating time of 40 seconds, we may assume?’ the amount of heat absorbed by the water-filled pot
will be the simple product of heat rate times time:

d 350 cal
Q= (dcf) t = ( Sca ) 40 s = 14000 calories

This amount of heat not only goes into raising the temperature of the water, but it also raises
the temperature of the copper pot. Each substance (water, copper) has its own specific heat and
mass values (¢ and m), but they will share the same temperature rise (AT), so we must sum their
heats as follows:

Qtotal = ont + Qwate'f‘

Qtotal = mpotcpotAT + mwatercwaterAT

Since both the pot and the water start and end at the same temperature, AT is a common
variable to both terms and may therefore be factored out:

Qtotal = (mpotcpot + mwatercwater)AT

29In reality, the amount of heat actually absorbed by the pot will be less than this, because there will be heat losses
from the warm pot to the surrounding (cooler) air. However, for the sake of simplicity, we will assume all the burner’s
heat output goes into the pot and the water it holds.
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Solving this equation for temperature rise, we get:

Qtotal

mpotcpot + Muyater Cwater
14000 cal
1100 g)(0.092-3L) + (3700 g)(1<al
( g)( gTC) +( g)( gTC)

AT =

AT =

AT =3.68°C

So, if the water and pot began at a temperature of 20 degrees Celsius, they will be at a
temperature of 23.68 degrees Celsius after 40 seconds of heating over this small burner.

Another example involves the mixing of two substances at different temperatures. Suppose a
heated mass of iron drops into a cool container’ of water. Obviously, the iron will lose heat energy
to the water, causing the iron to decrease in temperature while the water rises in temperature.
Suppose the iron’s mass is 100 grams, and its original temperature is 65 degrees Celsius. Suppose
the water’s mass is 500 grams, and its original temperature is 20 degrees Celsius:

Water

c=1.00 Iron
m = 500 grams [l < c=0.108
Tgart = 20°C m= 100 grams

\ Tqart = 65 °C

/

Styrofoam cup
(negligible mass and specific heat)

30We will assume for the sake of this example that the container holding the water is of negligible mass, such as a
Styrofoam cup. This way, we do not have to include the container’s mass or its specific heat into the calculation.
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What will the equilibrium temperature be after the iron falls into the water and both their
temperatures equalize? We may solve this by setting two heat equations equal to each other?': the
heat lost by the iron and the heat gained by the water, with the final equilibrium temperature being
T:

Qiron = Qwater

MironCiron Anron = Mayater CwaterATwater

MironCiron (65 OC - T) = MuyaterCwater (T - 20 OC)

Note how the AT term is carefully set up for each side of the equation. In order to make the
iron’s heat loss a positive value and the water’s heat gain a positive value, we must ensure the
quantity within each set of parentheses is positive. For the iron, this means AT will be 65 degrees
minus the final temperature. For the water, this means AT will be the final temperature minus its
starting temperature of 20 degrees.

In order to solve for the final temperature ("), we must distribute the terms, collecting all
T-containing terms to one side of the equation, then factor and isolate T":

mironciron(65) — MironCironT = MuaterCwaterd — mwatercwater(20)
mironciron(65) + mwatercwater(20) = mironcironT + mwatercwaterT

miTOTLCiTOTL(65) + mwatercwater(20) = T(mironciron + mwatercwater)

mironciron(65) + mwatercwate7'(20)
MironCiron + Muwater Cwater

(100 g)(0.108 cal/g’C)(65°C) + (500 g)(1 cal/g”C)(20°C)
(100 g)(0.108 cal/g’C) + (500 g)(1 cal/g°C)

T =

T =

T =20.95°C

Thus, the iron’s temperature falls from 65 degrees Celsius to 20.95 degrees Celsius, while the
water’s temperature rises from 20 degrees Celsius to 20.95 degrees Celsius. The water’s tremendous
specific heat value compared to the iron (nearly 10 times as much!), as well as its superior mass (5
times as much) results in a much larger temperature change for the iron than for the water.

31 An alternative way to set up the problem would be to calculate AT for each term as Tfinat — Tstart, making
the iron’s heat loss a negative quantity and the water’s heat gain a positive quantity, in which case we would have to
set up the equation as a zero-sum balance, with Qi on + Qwater = 0. I find this approach less intuitive than simply
saying the iron’s heat loss will be equal to the water’s heat gain, and setting up the equation as two positive values
equal to each other.
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An analogy to help grasp the concept of specific heat is to imagine heat as a fluid®? that may be
“poured” into vessels of different size, those vessels being objects or substances to be heated. The
amount of liquid held by any vessel represents the total amount of thermal energy, while the height
of the liquid inside any vessel represents its temperature:

Fluid analogy for heat and temperature

!
|

i . Ky TT
A A A A A A
Same heat, different temperature Same temperature, different heat

The factor determining the relationship between liquid volume (heat) and liquid height
(temperature) is of course the cross-sectional area of the vessel. The wider the vessel, the more
heat will be required to “fill” it up to any given temperature. In this analogy, the area of the
vessel is analogous to the term me: the product of mass and specific heat. Objects with larger
mass require more heat to raise their temperature to any specific point, specific heats being equal.
Likewise, objects with large specific heat values require more heat to raise their temperature to any
specific point, masses being equal.

In the first numerical calculation example where we determined the temperature of a pot of water
after 40 seconds of heating, the analogous model would be to determine the height of liquid in a
vessel after pouring liquid into it for 40 seconds at a fixed rate. A model for the second numerical
example would be to calculate the equilibrium height (of liquid) after connecting two vessels together
at their bottoms with a tube. Although the liquid heights of those vessels may be different at first,
the levels will equalize after time by way of liquid passing through the tube from the higher-level
vessel to the lower-level vessel.

32This is not far from the hypotheses of eighteenth-century science, where heat was thought to be an invisible fluid
called caloric.
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Many industrial processes use fluids to convectively transfer heat from one object (or fluid) to
another. In such applications, it is important to know how much heat will be carried by a specific
quantity of that fluid over a specified temperature drop. One common way to express this heat
quantity is called enthalpy. Enthalpy is the amount of heat lost by a unit mass (one gram metric,
or one pound British) of a substance as it cools from a given temperature all the way down to
the freezing point of water (0 degrees Celsius, or 32 degrees Fahrenheit). A sample of water at a
temperature of 125 degrees Fahrenheit, for example, has an enthalpy of 93 BTU per pound (or 93
calories per gram):

Q = mcAT

Q= (11b) <11131$IFJ> (125 °F — 32 °F)

Q =93 BTU

Even if the process in question does not cool the heat transfer fluid down to water’s freezing point,
enthalpy is a useful figure for comparing the thermal energy “content” of hot fluids (per unit mass).
For example, if one were given the enthalpy values for a substance before and after heat transfer, it
would be easy to calculate the amount of heat transfer that transpired simply by subtracting those
enthalpy values. If water at 125 °F has an enthalpy value of 93 BTU/Ib and water at 170 °F has
an enthalpy of value 138 BTU/Ib, we may calculate the amount of heat needed to increase a sample
of water from 125 °F to 170 °F simply by subtracting 93 BTU/Ib from 138 BTU/Ib to arrive at 45
BTU/Ib.

In this rather trivial example, it would have been just as easy for us to calculate the heat
necessary to increase water’s temperature from 125 °F to 170 °F by using the specific heat formula
(Q = mcAT)?, and so it might appear as though the concept of enthalpy sheds no new light on the
subject of heat transfer. However, the ability to calculate heat transfer based on a simple subtraction
of enthalpy values proves quite useful in more complex scenarios where substances change phase, as
we will see next.

33Following the formula Q = mcAT, we may calculate the heat as (1)(1)(170-125) = 45 BTU. This is obviously the
same result we obtained by subtracting enthalpy values for water at 170 °F and 125 °F.
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2.10.6 Phase changes

Scientists often speak of four phases of matter: solid, liquid, gas (or vapor), and plasma. Of these
four, the first three are common to everyday life. Plasma is a phase of matter where the atoms of
a gas are superheated to the point where they become electrically ionized, such as neon gas in an
electric tube light, or the gas comprising stars in space.

Phase changes are very important in thermodynamics, principally because energy transfer (heat
loss or heat gain) must occur for a substance to change states, often with negligible change in
temperature. To cite an example, consider the case of water (a liquid) turning into steam (a vapor)
at atmospheric pressure. At sea level, this phase change will occur at a temperature of 100 degrees
Celsius, or 212 degrees Fahrenheit. The amount of energy required to increase the temperature of
water from ambient up to its boiling point is a simple function of the sample’s mass and its original
temperature. For instance, a sample of water 70 grams in mass starting at 24 degrees Celsius will
require 5320 calories of heat to reach the boiling point:

Q = mcAT

cal

Q=(70g) (1g0C> (100 °C — 24 °C)

@ = 5320 cal

However, actually boiling the 70 grams of water into 70 grams of steam (both at 100 degrees
Celsius) requires a comparatively enormous input of heat: 37734 calories — over seven times as
much heat to turn the water to steam as what is required to warm the water to its boiling point!
Furthermore, this additional input of 37734 calories does not increase the temperature of the water
at all: the resulting steam is still at (only) 100 degrees Celsius. If further heat is added to the 70
gram steam sample, its temperature will rise, albeit at a rate proportional to the value of steam’s
specific heat (0.476 calories per gram degree Celsius, or BTU per pound degree Fahrenheit).

What we see here is a fundamentally different phenomenon than we saw with specific heat. Here,
we are looking at the thermal energy required to transition a substance from one phase to another,
not to change its temperature. We call this quantity latent heat rather than specific heat, because
no temperature change is manifest®*. Conversely, if we allow the steam to condense back into liquid
water, it must release the same 37734 calories of heat energy we invested in it turning the water into
steam before it may cool at all below the boiling point (100 degrees Celsius).

Latent heat has the effect of greatly increasing a substance’s enthalpy. Recall that “enthalpy”
is the amount of heat lost by one pound (mass) of a substance if it happened to cool from its given
temperature all the way down to the freezing temperature of water (0 °C, or 32 °F). Hot water has
an enthalpy of 1 BTU/Ib for every degree of temperature above freezing. Steam, however, possesses
far greater enthalpy because of the latent heat released in the phase change from vapor to liquid
before it releases heat as water cooling down to 32 °F.

34The word “latent” refers to something with potential that is not yet realized. Here, heat exchange takes place
without there being any realized change in temperature. By contrast, heat resulting in a temperature change
(Q = mcAT) is called sensible heat.
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As with specific heat, there is a formula relating mass, latent heat, and heat exchange:

Q=mL

Where,

@@ = Heat of transition required to completely change the phase of a sample (metric calories or
British BTU)

m = Mass of sample (metric grams or British pounds)

L = Latent heat of substance

Each substance has its own set of latent heat values, one® for each phase-to-phase transition.
Water, for example, exhibits a latent heat of vaporization (boiling/condensing) of 539.1 calories per
gram, or 970.3 BTU per pound, at atmospheric pressure (boiling point = 100 °C = 212 °F). Water
also exhibits a latent heat of fusion (melting/freezing) of 79.7 calories per gram, or 143.5 BTU per
pound. Both figures are enormous compared to water’s specific heat value of 1 calorie per gram-
degree Celsius (or 1 BTU per pound-degree Fahrenheit®®): it takes only one calorie of heat to warm
one gram of water one degree Celsius, but it takes 539.1 calories of heat to boil that same gram of
water into one gram of steam, and 79.7 calories of heat to melt one gram of ice into one gram of
water. The lesson here is simple: phase changes involve huge amounts of heat.

A table showing various latent heats of vaporization (all at room temperature, 70 degrees
Fahrenheit) for common industrial fluids appears here, contrasted against their specific heat values
(as liquids). In each case you will note how much larger L is than c:

Fluid (@ 70 OF) Lvaporizationa BTU/lb Lvaporizationa Cal/g Cliquid
Water 970.3 539.1 1
Ammonia 508.6 282.6 1.1

Carbon dioxide 63.7 354 0.66

Butane 157.5 87.5 0.56
Propane 149.5 83.06 0.6

One of the most important, and also non-intuitive, consequences of latent heat is the relative
stability of temperature during the phase-change process. Referencing the table of latent heats of
vaporization, we see how much more heat is needed to boil a liquid into a vapor than is needed to
warm that same liquid by one degree of temperature. During the process of boiling, all heat input
to the liquid goes into the task of phase change (latent heat) and none of it goes into increased
temperature. In fact, until all the liquid has been vaporized, the liquid’s temperature cannot rise
above its boiling point! The requirement of heat input to vaporize a liquid forces temperature to
stabilize (not rise further) until all the liquid has evaporated from the sample.

35Latent heat of vaporization also varies with pressure, as different amounts of heat are required to vaporize a liquid
depending on the pressure that liquid is subject to. Generally, increased pressure (increased boiling temperature)
results in less latent heat of vaporization.

36The reason specific heat values are identical between metric and British units, while latent heat values are not, is
because latent heat does not involve temperature change, and therefore there is one less unit conversion taking place
between metric and British when translating latent heats. Specific heat in both metric and British units is defined in
such a way that the three different units for heat, mass, and temperature all cancel each other out. With latent heat,
we are only dealing with mass and heat, and so we have a proportional conversion of g or % left over, just the same
as if we were converting between degrees Celsius and Fahrenheit alone.
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If we take a sample of ice and add heat to it over time until it melts, warms, boils, and then
becomes steam, we will notice a temperature profile that looks something like this:

Allice = Ice/water mix All water Water/steam mix All steam

Steam
heating

Temperature

Water
heating

Boiling

100°CH

Melting

0°C

Heat applied over time —>
(atmospheric pressure assumed)

The flat areas of the graph during the melting and boiling periods represents times where the
sample’s temperature does not change at all, but where all heat input goes into the work of changing
the sample’s phase. Only where we see the curve rising does the temperature change. So long as
there is a mizture of different phases, the temperature remains “locked” at one value. Only when
there is a single phase of material is the temperature “allowed” to rise or fall.

The sloped areas of the graph reveal the specific heat of the substance in each particular phase.
Note how the liquid (water) portion of the graph has a relatively shallow slope, due to the specific
heat value (c) of water being equal to 1. Both the ice and the steam portions of the graph have
steeper slopes because both of those phases possess smaller values of specific heat (¢ = 0.5 and
¢ = 0.476, respectively). The smaller the value of ¢, the more a sample’s temperature will rise for
any given input of thermal energy. For a certain rate of heat added to a sample, smaller ¢ values
will result in more rapid temperature changes.
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We may employ our liquid-filled vessel analogy to the task of explaining latent heat. Any point
of phase change is analogous to a point along the vessel’s height equipped with a large expansion
chamber, so that the vessel “acts” as if its area were much larger at one point, requiring much more
fluid volume (heat) to change height (temperature) past that one point:

Fluid analogy for specific versus latent heat

Phase change temperature ------ ]

Expansion
chamber

Liquid poured into this vessel will fill it at a rate proportional to the volume added and inversely
proportional to the vessel’s cross-sectional area at the current liquid height. As soon as the liquid
level reaches the expansion chamber, a great deal more liquid must be added to cause level to
increase, since this chamber must completely fill before the liquid level may rise above it. Once that
happens, the liquid level rises at a different rate with addition introduced volume, because now the
phase is different (with a different specific heat value).

Remember that the filling of a vessel with liquid is merely an analogy for heat and temperature,
intended to provide an easily visualized process mimicking another process not so easily visualized.
The important concept to realize with latent heat and phase change is that it constitutes a
discontinuity in the temperature/heat function for any given substance.

A vivid demonstration of this phenomenon is to take a paper®” cup filled with water and place
it in the middle of a roaring fire*®. “Common sense” might tell you the paper will burn through
with the fire’s heat, so that the water runs out of the cup through the burn-hole. This does not
happen, however. Instead, the water in the cup will rise in temperature until it boils, and there
it will maintain that temperature no matter how hot the fire burns. The boiling point of water
happens to be substantially below the burning point of paper, and so the boiling water keeps the
paper cup too cool to burn. As a result, the paper cup remains intact so long as water remains in
the cup. The 7im of the cup above the water line will burn up because the steam does not have
the same temperature-stabilizing effect as the water, leaving a rimless cup that grows shorter as the
water boils away.

37Styrofoam and plastic cups work as well, but paper exhibits the furthest separation between the boiling point of
water and the burning point of the cup material, and it is usually thin enough to ensure good heat transfer from the
outside (impinging flame) to the inside (water).

38This is a lot of fun to do while camping!



2.10. ELEMENTARY THERMODYNAMICS 147

The point at which a pure substances changes phase not only relates to temperature, but to
pressure as well. We may speak casually about the boiling point of water being 100 degrees Celsius
(212 degrees Fahrenheit), but that is only if we assume the water and steam are at atmospheric
pressure (at sea level). If we reduce the ambient air pressure®”, water will boil at a lesser temperature.
Anyone familiar with cooking at high altitudes knows you must generally cook for longer periods of
time at altitude, because the decreased boiling temperature of water is not as effective for cooking.
Conversely, anyone familiar with pressure cooking (where the cooking takes place inside a vessel
pressurized by steam) knows how comparatively little cooking time is required because the pressure
raises water’s boiling temperature. In either of these scenarios, where pressure influences*® boiling
temperature, the latent heat of water acts to hold the boiling water’s temperature stable until all
the water has boiled away. The only difference is the temperature at which the water begins to boil
(or when the steam begins to condense).

Many industrial processes use boiling liquids to convectively transfer heat from one object (or
fluid) to another. In such applications, it is important to know how much heat will be carried by
a specific quantity of the vapor as it condenses into liquid over a specified temperature drop. The
quantity of enthalpy (heat content) used for rating the heat-carrying capacity of liquids applies to
condensing vapors as well. Enthalpy is the amount of heat lost by a unit mass (one gram metric, or
one pound British) of the fluid as it cools from a given temperature all the way down to the freezing
point of water (0 degrees Celsius, or 32 degrees Fahrenheit). When the fluid’s initial state is vapor,
and it condenses into liquid as it cools down to the reference temperature (32 °F), the heat content
(enthalpy) is not just a function of specific heat, but also of latent heat.

Water at its atmospheric boiling point has an enthalpy of approximately 180 BTU per pound.
Steam at atmospheric pressure and 212 °F, however, has an enthalpy of about 1150 BTU per pound:
more than six times as much heat as water at the same temperature. 970 of that 1150 BTU/Ib is
due to the phase change from steam to water, while the rest is due to water’s specific heat as it cools
from 212 °F to 32 °F.

Many technical reference books contain a set of data known as a steam table showing various
properties of steam at different temperatures and pressures. Enthalpy is one of the most important
parameters given in a steam table, showing how much available energy resides in steam under
different pressure and temperature conditions. For this reason, enthalpy is sometimes referred to
as total heat (hy). Steam tables also show saturation temperature (the condensing temperature for
steam at that pressure) and steam density.

39This may be done in a vacuum jar, or by traveling to a region of high altitude where the ambient air pressure is
less than at sea level.

40The mechanism of this influence may be understood by considering what it means to boil a liquid into a vapor.
Molecules in a liquid reside close enough to each other that they cohere, whereas molecules in a vapor or gas are
relatively far apart and act as independent objects. The process of boiling requires that cohesion between liquid
molecules to be broken, so the molecules may drift apart. Increased pressure encourages cohesion in liquid form
by helping to hold the molecules together, while decreased pressure encourages the separation of molecules into a
vapor/gas.
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If the vapor in question is at a temperature greater than its boiling point at that pressure, the
vapor is said to be superheated. The enthalpy of superheated vapor comes from three different
heat-loss mechanisms:

e Cooling the vapor down to its condensing temperature (specific heat of vapor)
e Phase-changing from vapor to liquid (latent heat of phase change)

e Cooling the liquid down to the reference temperature (specific heat of liquid)

Using steam as the example once more, a sample of superheated steam at 500 °F and atmospheric
pressure (boiling point = 212 °F) has an enthalpy of approximately 1287 BTU per pound. We may
calculate the heat lost by one pound of this superheated steam as it cools from 500 °F to 32 °F in
each of the three steps previously described. Here, we will assume a specific heat for steam of 0.476,
a specific heat for water of 1, and a latent heat of vaporization for water of 970:

Heat loss mechanism Formula Quantity
Cooling vapor Q = mcAT (1)(0.476)(500-212) = 137 BTU
Phase change Q=mL (1)(970) = 970 BTU
Cooling liquid Q = mcAT (1)(1)(212-32) = 180 BTU
TOTAL 1287 BTU

Enthalpy values are very useful*! in steam engineering to predict the amount of thermal energy

delivered to a load given the steam’s initial temperature, its final (cooled) temperature, and the mass
flow rate. Although the definition of enthalpy — where we calculate heat value by supposing the vapor
cools all the way down to the freezing point of water — might seem a bit strange and impractical
(how often does steam lose so much heat to a process that it reaches freezing temperature?), it is
not difficult to shift the enthalpy value to reflect a more practical final temperature. Since we know
the specific heat of liquid water is very nearly one, all we have to do is offset the enthalpy value by
the amount that the final temperature differs from freezing in order to calculate how much heat the
steam will lose (per pound) to its load.

Furthermore, the rate at which heat is delivered to a substance by steam (or conversely, the rate
at which heat is required to boil water into steam) may be easily calculated if we take this heat
value in units of BTU per pound and multiply it by the mass flow rate in pounds per minute: as the
unit of “pound” cancels in the multiplication, we arrive at a result for heat transfer rate in units of
BTU per minute.

41 At first it may seem as though the enthalpy of steam is so easy to calculate it almost renders steam tables useless.
If the specific heats of water and steam were constant, and the latent heat of vaporization for water likewise constant,
this would be the case. However, both these values (¢ and L) are not constant, but rather change with pressure and
with temperature. Thus, steam tables end up being quite valuable to engineers, allowing them to quickly reference
heat content of steam across a broad range of pressures and temperatures without having to account for changing c

T
and L values (performing integral calculus in the form of Q@ =m fT2 cdT for specific heat) in their heat calculations.
1
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For example, suppose we were to employ the same 500 °F superheated steam used in the previous
example to heat a flow of oil through a heat exchanger, with the steam condensing to water and
then cooling down to 170 degrees Fahrenheit as it delivers heat to the flowing oil. Here, the steam’s
enthalpy value of 1287 BTU per pound may simply be offset by 138 (170 degrees minus 32 degrees)
to calculate how much heat (per pound) this steam will deliver to the oil: 1287 — 138 = 1149 BTU
per pound:

Heat exchanger application Thermal diagram
° o
00 jﬁf;; BTUD) 500 °F steam T
1149 BTU/lb
Cold oil Hot oil (Heat liberated by steam as
—_— —_— 1287 BTU/Ib it cools from 500 °F to 170 °F)

(Enthalpy of 500 °F steam)

T 170 °F water

l 138 BTU/Ib
(138 BTU/Ib) * (Enthalpy of 170 °F water)

170 °F water 32 °F water Y

Here we see how 500 °F steam has an enthalpy (total heat) of 1287 BTU/Ib, but since the steam
does not in fact cool all the way down to 32 °F in the act of heating oil in the heat exchanger,
we must subtract the enthalpy of the 170 °F water (138 BTU/Ib) to determine the heat actually
delivered to the oil by the steam (1149 BTU/Ib). Calculating heat transfer rate is a simple matter
of multiplying this heat per pound of steam by the steam’s mass flow rate: for example, if the mass
flow rate of this steam happened to be 2 pounds per minute, the heat transfer rate would be 2298
BTU per minute.

If we happen to be dealing with a situation where steam gives up some heat energy to a process
fluid but not enough to cool to the point of condensation, all we need to do to calculate the amount
of heat liberated by the superheated steam as it cools is subtract the enthalpy values between its
hot and cool(er) states.

For example, suppose we have a heat-exchange process where superheated steam enters at 105
PSIG and 600 °F, exiting at 75 PSIG and 360 °F. The enthalpy of the steam under those two sets
of conditions as given by a steam table are 1328 BTU/Ib and 1208 BTU/1b, respectively. Thus, the
heat lost by the steam as it goes through this heat exchanger is the difference in enthalpy values:
1328 BTU/Ib — 1208 BTU/1b = 120 BTU/Ib. Once again, calculating heat transfer rate is a simple
matter of multiplication: if the mass flow rate of this steam happened to be 80 pounds per hour,
the heat transfer rate would be 120 BTU/Ib x 80 lb/hr = 9600 BTU /hr.

By encompassing both specific heat and latent heat into one quantity, enthalpy figures given in
steam tables greatly simplify heat transfer calculations, as compared to evaluating specific heat and
latent heat formulae (Q = mcAT and @ = mL, respectively) for water.
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2.10.7 Phase diagrams and critical points

A comprehensive way of describing the relationship between pressure, temperature, and substance
phase is with something called a phase diagram. With pressure shown on one axis, and temperature
on the other, a phase diagram describes the various phases of a substance in possible equilibrium at
certain pressure/temperature combinations.

Phase diagram for water
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This phase diagram (for water) illustrates some of the features common to all phase diagrams:
curved lines define the boundaries between solid, liquid, and vapor phases; the point of intersection
of these three curves is where the substance may exist in all three phases simultaneously (called the
triple point*?) and points where a curve simply ends within the span of the graph indicate critical
points, where the certain phases cease to exist.

The curved line from the triple point up and to the right defines the boundary between liquid
water and water vapor. Each point on that line represents a set of unique pressure and temperature
conditions for boiling (changing phase from liquid to vapor) or for condensation (changing phase
from vapor to liquid). As you can see, increased pressure results in an increased boiling point (i.e.
at higher pressures, water must be heated to greater temperatures before boiling may take place).

42When H2O is at its triple point, vapor (steam), liquid (water), and solid (ice) of water will co-exist in the same
space. One way to visualize the triple point is to consider it the pressure at which the boiling and freezing temperatures
of a substance become the same.
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In fact, the whole concept of a singular boiling point for water becomes quaint in the light of a
phase diagram: boiling is seen to occur over a wide range of temperatures?, the exact temperature
varying with pressure.

Something interesting happens when the temperature is raised above a certain value called the
critical temperature. At this value (approximately 374 degrees Celsius for water), no amount of
pressure will maintain it in a liquid state. Water heated to 374 degrees Celsius or above can only
exist in a stable condition as a vapor.

A vivid example of critical temperature is this photograph of an ultra-high pressure storage vessel
for oxygen gas, at a rocket engine testing facility:

The critical temperature for oxygen is 154.58 Kelvin, which is equal to -118.57 degrees Celsius
or -181.43 degrees Fahrenheit. Since this pressure vessel is completely uninsulated, we know the
temperature of the oxygen inside of it will be the same (or nearly the same) as ambient temperature,
which is obviously much warmer than -118.57 °C. Since the oxygen’s temperature is well above the
critical temperature for the element oxygen, we may safely conclude that the oxygen inside this
vessel must exist as a gas. Even at the extremely high pressure this vessel is capable of holding
(15000 PSIG), the oxygen cannot liquefy.

The slightly curved line from the triple point up and to the left defines the boundary between
solid ice and liquid water. As you can see, the near-vertical pitch of this curve suggests the freezing
temperature of water is quite stable over a wide pressure range.

Below a certain pressure, called the critical pressure, the possibility of a stable liquid phase
disappears. The substance may exist in solid or gaseous forms, but not liquid, if the pressure is
below the critical pressure value.

43 Anywhere between the triple-point temperature and the critical temperature, to be exact.
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Carbon dioxide exhibits a different set of curves than water on its phase diagram, with its own
unique critical temperature and pressure values:

Phase diagram for carbon dioxide
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Note how the critical pressure of carbon dioxide is well above ambient conditions on Earth. This
means carbon dioxide is not stable in its liquid state unless put under substantial pressure (at least
60.4 PSIG). This is why solid carbon dioxide is referred to as dry ice: it does not liquefy with the
application of heat, rather it sublimates directly into its vapor phase.

Another interesting difference between the carbon dioxide and water phase diagrams is the slope
of the solid/liquid boundary line. With water, this boundary drifts to the left (lower temperature)
as pressure increases. With carbon dioxide, this boundary drifts to the right (higher temperature) as
pressure increases. Whether the fusion temperature increases or decreases with increasing pressure
marks whether that substance contracts or expands as it transitions from liquid to solid. Carbon
dioxide, like most pure substances, contracts to a smaller volume when it goes from liquid to solid,
and its fusion curve drifts to the right as pressure increases. Water is unusual in this regard,
expanding to a larger volume when freezing, and its fusion curve drifts to the left as pressure
increases.
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2.10.8 Thermodynamic degrees of freedom

If we look at the areas bounded by phase transition curves in a phase diagram (solid area, liquid area,
and vapor area), we see that both pressure and temperature may change independent of one another.
A vessel filled with liquid water, for instance, may be at 30 degrees Celsius and 2 atmospheres, or
at 50 degrees Celsius and 2 atmospheres, or at 50 degrees Celsius and 1 atmosphere, all equally
stable. A more technical way to state this is to say the liquid water has two degrees of freedom.
Here, the word “degree” has a completely different meaning than it does when used to denote a unit
of temperature or angle. In this context, “degree” may be thought of loosely as “dimension.” A
cube has three physical dimensions, a square has two and a line has one. A point within a cube has
three degrees of freedom (motion), while a point within a square only has two, and a point along
a line only has one. Here, we use the word “degree” to denote the number of independent ways a
system may change. For areas bounded by phase transition curves in a phase diagram, pressure and
temperature are the two “free” variables, because within those bounded areas we may freely alter
pressure without altering temperature, and visa-versa.

Such is not the case at any point lying along one of the phase transition curves. Any point on a
curve is geometrically defined by a pair of coordinates, which means that for a two-phase mixture
in equilibrium there will be exactly one temperature value valid for each unique pressure value. At
any point along a phase transition curve, pressure and temperature are not independent variable,
but rather are related. This means that for any single substance, there is only one degree of freedom
along any point of a phase transition curve.

To illustrate this concept, suppose we equip a closed vessel containing water with both a
thermometer and a pressure gauge. The thermometer measures the temperature of this water,
while the pressure gauge measures the pressure of the water. A burner beneath the vessel adds heat
to alter the water’s temperature, and a pump adds water to the vessel to alter the pressure inside:

Pressure gauge

Thermometer

To water
pump 2 =
discharge

Togas |, i Burner

fuel supply *

So long as the water is all liquid (one phase), we may adjust its pressure and temperature
independently. In this state, the system has two thermodynamic degrees of freedom.

However, if the water becomes hot enough to boil, creating a system of two phases in direct
contact with each other (equilibrium), we will find that pressure and temperature become linked:
one cannot alter one without altering the other. For a steam boiler, operation at a given steam
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pressure thus defines the temperature of the water, and visa-versa. In a single-component, two-
phase system, there is only one degree of thermodynamic freedom.

Our freedom to alter pressure and temperature becomes even more restricted if we ever reach
the triple point** of the substance. For water, this occurs (only) at a pressure of -14.61 PSIG (0.006
atmospheres) and a temperature of 0.01 degrees Celsius: the coordinates where all three phase
transition curves intersect on the phase diagram. In this state, where solid (ice), liquid (water), and
vapor (steam) coexist, there are zero degrees of thermodynamic freedom. Both the temperature and
pressure are locked at these values until one or more of the phases disappears.

The relationship between degrees of freedom and phases is expressed neatly by Gibbs’ Phase Rule
— the sum of phases and degrees of freedom equals the number of substances (“components”) plus
two:

Nfreedom + Nphase = Nsubstance 1 2

We may simplify Gibbs’ rule for systems of just one substance (1 “component”) by saying the
number of degrees of freedom plus phases in direct contact with each other is always equal to
three. So, a vessel filled with nothing but liquid water (one component, one phase) will have two
thermodynamic degrees of freedom: we may change pressure or temperature independently of one
another. A vessel containing nothing but boiling water (two phases — water and steam, but still
only one component) has just one thermodynamic degree of freedom: we may change pressure and
temperature, but just not independently of one another. A vessel containing water at its triple
point (three phases, one component) has no thermodynamic freedom at all: both temperature and
pressure are fixed?® so long as all three phases coexist in equilibrium.

2.10.9 Applications of phase changes

Applications of phase changes abound in industrial and commercial processes. Some of these
applications exploit phase changes for certain production goals, such as the storage and transport
of energy. Others merely serve to illustrate certain phenomena such as latent heat and degrees of
thermodynamic freedom. This subsection will highlight several different processes for your learning
benefit.

44The triple point for any substance is the pressure at which the boiling and freezing temperatures become one and
the same.

45The non-freedom of both pressure and temperature for a pure substance at its triple point means we may
exploit different substances’ triple points as calibration standards for both pressure and temperature. Using suitable
laboratory equipment and samples of sufficient purity, anyone in the world may force a substance to its triple point
and calibrate pressure and/or temperature instruments against that sample.



2.10. ELEMENTARY THERMODYNAMICS 155

Propane storage tanks

A common example of a saturated liquid/vapor (two-phase) system is the internal environment of a
propane storage tank, such as the kind commonly used to store propane fuel for portable stoves and
gas cooking grills. If multiple propane storage tanks holding different volumes of liquid propane are
set side by side, pressure gauges attached to each tank will all register the exact same pressure:
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This is counter-intuitive, as most people tend to think the fullest tank should register the highest
pressure (having the least space for the vapor to occupy). However, since the interior of each tank
is a liquid/vapor system in equilibrium, the pressure is defined by the point on the liquid/vapor
transition curve on the phase diagram for pure propane matching the tanks’ temperature. Thus,
the pressure gauge on each tank actually functions as a thermometer®®, since pressure is a direct
function of temperature for a saturated liquid/vapor system and therefore cannot change without
a corresponding change in temperature. This is a thermodynamic system with just one degree of
freedom.

Storage tanks containing liquid/vapor mixtures in equilibrium present unique safety hazards. If
ever a rupture were to occur in such a vessel, the resulting decrease in pressure causes the liquid to
spontaneously boil, halting any further decrease in pressure. Thus, a punctured propane tank does
not lose pressure in the same manner than a punctured compressed air tank loses pressure. This
gives the escaping vapor more “power” to worsen the rupture, as its pressure does not fall off over
time the way it would in a simple compressed-gas application. As a result, relatively small punctures
can and often do grow into catastrophic ruptures, where all liquid previously held inside the tank
escapes and flashes into vapor, generating a vapor cloud of surprisingly large volume*”.

Compounding the problem of catastrophic tank rupture is the fact that propane happens to be
highly flammable. The thermodynamic properties of a boiling liquid combined with the chemical

46To be more precise, a propane tank acts like a Class II filled-bulb thermometer, with liquid and vapor coexisting
in equilibrium.

47Steam boilers exhibit this same explosive tendency. The expansion ratio of water to steam is on the order of a
thousand to one (1000:1), making steam boiler ruptures very violent even at relatively low operating pressures.
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property of flammability in air makes propane tank explosions particularly violent. Fire fighters
often refer to this as a BLEVE: a Boiling Liquid Expanding Vapor Ezplosion.
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Class II Filled-bulb thermometers

This same pressure-temperature interdependence finds application in a type of temperature
measurement instrument called a Class II filled-bulb, where a metal bulb, tube, and pressure-sensing
element are all filled with a saturated liquid/vapor mixture:
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Heat applied to the bulb literally “boils” the liquid inside until its pressure reaches the equilibrium
point with temperature. As the bulb’s temperature increases, so does the pressure throughout the
sealed system, indicating at the operator display where a bellows (or some other pressure-sensing
element) moves a pointer across a calibrated scale.

The only difference between the two filled-bulb thermometers shown in the illustration is which
end of the instrument is warmer. The Class ITA system on the left (where liquid fills the pressure-
indicating element) is warmer at the bulb than at the indicating end. The Class IIB system on
the right (where vapor fills the indicating bellows) has a cooler bulb than the indicating bellows.
The long length and small internal diameter of the connecting tube prevents any substantial heat
transfer from one end of the system to the other, allowing the sensing bulb to easily be at a different
temperature than the indicating bellows. Both types of Class II thermometers work the same®®,
the indicated pressure being a strict function of the bulb’s temperature where the liquid and vapor
coexist in equilibrium.

48(Class ITA systems do suffer from elevation error where the indicator may read a higher or lower temperature than
it should due to hydrostatic pressure exerted by the column of liquid inside the tube connecting the indicator to the
sensing bulb. Class IIB systems do not suffer from this problem, as the gas inside the tube exerts no pressure over an
elevation.



158 CHAPTER 2. PHYSICS

Nuclear reactor pressurizers

Nuclear reactors using pressurized water as the moderating and heat-transfer medium must maintain
the water coolant in liquid form despite the immense heat output of the reactor core, to avoid the
formation of steam bubbles within the reactor core which could lead to destructive “hot spots” inside
the reactor. The following diagram shows a simplified*’ pressurized water reactor (PWR) cooling
system:
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In order to maintain a liquid-only cooling environment for the reactor core, the water is held at
a pressure too high for boiling to occur inside the reactor vessel. Typical operating conditions for a
pressurized water reactor are 575 °F and 2100 PSIG. A steam table shows the boiling point of water
at 2100 PSIG to be over 640 °F, which means the water inside the reactor cannot boil if the reactor
only operates at 575 °F. Referencing the phase diagram for water, the operating point of the reactor
core is maintained above the liquid/vapor phase transition line by an externally supplied pressure.

This excess pressure comes from a device in the primary coolant loop called a pressurizer. Inside
the pressurizer is an array of immersion-style electric heater elements. The pressurizer is essentially
an electric boiler, purposely boiling the water inside at a temperature greater® than that reached

49Circulation pumps and a multitude of accessory devices are omitted from this diagram for the sake of simplicity.
50This is another example of an important thermodynamic concept: the distinction between heat and temperature.
While the temperature of the pressurizer heating elements exceeds that of the reactor core, the total heat output
of course does not. Typical comparative values for pressurizer power versus reactor core power are 1800 kW versus
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by the reactor core itself. For the example figure of 2100 PSIG, the pressurizer elements would have
to operate at a temperature of approximately 644 °F to maintain a boiling condition inside the
pressurizer.

By maintaining the water temperature inside the pressurizer greater than at the reactor core,
the water flowing through the reactor core literally cannot boil. The water/vapor equilibrium inside
the pressurizer is a system with one degree of freedom (pressure and temperature linked), while
the water-only environment inside the reactor core has two degrees of freedom (temperature may
vary to any amount below the pressurizer’s temperature without water pressure changing at all).
Thus, the pressurizer functions like the temperature-sensing bulb of a gigantic Class ITA filled-bulb
thermometer, with a liquid/vapor equilibrium inside the pressurizer vessel and liquid only inside the
reactor vessel and all other portions of the primary coolant loop. Reactor pressure is then controlled
by the temperature inside the pressurizer, which is in turn controlled by the amount of power applied
to the heating element array”!.

Steam boilers

Boilers in general (the nuclear reactor system previously described being just one example of a large
“power” boiler) are outstanding examples of phase change applied to practical use. The purpose of
a boiler is to convert water into steam, sometimes for heating purposes, sometimes as a means of
producing mechanical power (through a steam engine), sometimes for chemical processes requiring
pressurized steam as a reactant, sometimes for utility purposes (maintenance-related cleaning,
process vessel purging, sanitary disinfection, fire suppression, etc.) or all of the above. Steam
is a tremendously useful substance in many industries, so you will find boilers in use at almost every
industrial facility.

3800 MW, respectively: a ratio exceeding three orders of magnitude. The pressurizer heating elements don’t have to
dissipate much power (compared to the reactor core) because the pressurizer is not being cooled by a forced convection
of water like the reactor core is.

511n this application, the heaters are the final control element for the reactor pressure control system.
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A simplified diagram of a basic water tube boiler appears here:
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Water enters the boiler through a heat exchanger in the stack called an economizer. This allows
cold water to be pre-heated by the warm exhaust gases before they exit the stack. After pre-heating
in the economizer, the water enters the boiler itself, where water circulates by natural convection
(“thermosiphon”) through a set of tubes exposed to high-temperature fire. Steam collects in the
“steam drum,” where it is drawn off through a pipe at the top. Since this steam is in direct contact
with the boiling water, it will be at the same temperature as the water, and the steam/water
environment inside the steam drum represents a two-phase system with only one degree of freedom.
With just a single degree of freedom, steam temperature and pressure are direct functions of each
other — coordinates at a single point along the liquid/vapor phase transition line of water’s phase
diagram. One cannot change one variable without changing the other.

Consulting a steam table®?, you will find that the temperature required to boil water at a pressure
of 120 PSIG is approximately 350 degrees Fahrenheit. Thus, the temperature of the steam drum will
be fixed at 350 °F while generating steam pressure at 120 PSIG. The only way to increase pressure
in that boiler is to increase its temperature, and visa-versa.

When steam is at the same temperature as the boiling water it came from, it is referred to as
saturated steam. Steam in this form is very useful for heating and cleaning, but not as much for
operating mechanical engines or for process chemistry. If saturated steam loses any temperature at
all (by losing its latent heat), it immediately condenses back into water. Liquid water can cause
major mechanical problems inside steam engines (although “wet” steam works wonderfully well as
a cleaning agent!), and so steam must be made completely “dry” for some process applications.

52Gince the relationship between saturated steam pressure and temperature does not follow a simple mathematical
formula, it is more practical to consult published tables of pressure/temperature data for steam. A great many
engineering manuals contain steam tables, and in fact entire books exist devoted to nothing but steam tables.
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The way this is done is by a process known as superheating. If steam exiting the steam drum
of a boiler is fed through another heat exchanger inside the firebox so it may receive more heat, its
temperature will rise beyond the saturation point. This steam is now said to be superheated:
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Superheated steam is absolutely dry, containing no liquid water at all. It is therefore safe to
use as a fluid medium for engines (piston and turbine alike) and as a process reactant where liquid
water is not tolerable. The difference in temperature between superheated steam and saturated
steam at any given pressure is the amount of superheat. For example, if saturated steam at 350
degrees Fahrenheit and 120 PSI drawn from the top of the steam drum in a boiler is heated to a
higher temperature of 380 degrees Fahrenheit (at the same pressure of 120 PSI), it is said to have
30 degrees (Fahrenheit) of superheat.
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Fruit crop freeze protection

An interesting application of phase changes and latent heat occurs in agriculture. Fruit growers,
needing to protect their budding crop from the damaging effects of a late frost, will spray water
over the fruit trees to maintain the sensitive buds above freezing temperature. As cold air freezes
the water, the water’s latent heat of fusion prevents the temperature at the ice/water interface from
dropping below 32 degrees Fahrenheit. So long as liquid water continues to spray over the trees, the
buds’ temperature cannot fall below freezing. Indeed, the buds cannot even freeze in this condition,
because once they cool down to the freezing point, there will be no more temperature difference
between the freezing water and the buds. With no difference of temperature, no heat will transfer
out of the buds. With no heat loss, water inside the buds cannot change phase from liquid to solid
(ice) even if held at the freezing point for long periods of time, thus preventing freeze damage’.
Only if the buds are exposed to cold air (below the freezing point), or the water turns completely
to ice and no longer holds stable at the freezing point, can the buds themselves ever freeze solid.

53 An experiment illustrative of this point is to maintain an ice-water mixture in an open container, then to insert
a sealed balloon containing liquid water into this mixture. The water inside the balloon will eventually equalize in
temperature with the surrounding ice-water mix, but it will not itself freeze. Once the balloon’s water reaches 0
degrees Celsius, it stops losing heat to the surrounding ice-water mix, and therefore cannot make the phase change
to solid form.
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Evaporative cooling towers

A very common use of a liquid-to-vapor phase change is for cooling purposes: taking hot water
and mechanically forcing that hot water to evaporate in order to remove large quantities of heat
energy from the water, thus cooling it to a lower temperature. Devices called evaporative cooling
towers accomplish this task by causing ambient air to flow past droplets of water. As the rising
air contacts the falling water droplets, some of the water is forced to evaporate, the heat required
of this evaporation being provided by sensible heat within the remaining liquid water. As a result,
the still-liquid water must cool in temperature as it gives up heat energy to the newly-formed water
vapor.
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Smaller evaporative cooling towers use fans to force air upward through the tower, employing
inert “fill” material to provide large amounts of surface area for the liquid water and the air to
contact each other. Some large evaporative cooling towers are self-drafting, the heat of the water
providing enough convective force to the air that no fans are needed.
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The following photograph shows a pair of induced-draft evaporative cooling towers used at a
beer brewery:

This next photograph shows a forced-draft evaporative cooling tower used at a coal-fired electric
power plant. Note the large air fans located around the circumference of the cooling tower, blowing
cool air into the tower from outside. This fan placement eliminates problems arising from having
the fan blades and motor located within the moist air stream:
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2.11 Fluid mechanics

A fluid is any substance having the ability to flow: to freely change shape and move under the
influence of a motivating force. Fluid motion may be analyzed on a microscopic level, treating
each fluid molecule as an individual projectile body. This approach is extraordinarily tedious on a
practical level, but still useful as a simple model of fluid motion.

Some fluid properties are accurately predicted by this model, especially predictions dealing with
potential and kinetic energies. However, the ability of a fluid’s molecules to independently move give
it unique properties that solids do not possess. One of these properties is the ability to effortlessly
transfer pressure, defined as force applied over area.

2.11.1 Pressure

The common phases of matter are solid, liquid, and gas. Liquids and gases are fundamentally distinct
from solids in their intrinsic inability to maintain a fixed shape. In other words, liquids and gases
tend to fill whatever solid containers they are held in. Similarly, both liquids and gases both have
the ability to flow, which is why they are collectively called fluids.

Due to their lack of definite shape, fluids tend to disperse any force applied to them. This stands
in marked contrast to solids, which tend to transfer force with the direction unchanged. Take for
example the force transferred by a nail, from a hammer to a piece of wood:

Hammer

Force
exerted
on nail

Nail

on wood

Wood Force
‘ exerted




166 CHAPTER 2. PHYSICS

The impact of the hammer’s blow is directed straight through the solid nail into the wood below
— nothing surprising here. But now consider what a fluid would do when subjected to the same
hammer blow:
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Given the freedom of a fluid’s molecules to move about, the impact of the hammer blow becomes
directed everywhere against the inside surface of the container (the cylinder). This is true for all
fluids: liquids and gases alike. The only difference between the behavior of a liquid and a gas in the
same scenario is that the gas will compress (i.e. the piston will move down as the hammer struck
it), whereas the liquid will not compress (i.e. the piston will remain in its resting position). Gases
yield under pressure, liquids do not.

It is very useful to quantify force applied to a fluid in terms of force per unit area, since the force
applied to a fluid becomes evenly dispersed in all directions to the surface containing it. This is the
definition of pressure (P): how much force (F') is distributed across how much area (A).

p_k

A
In the metric system, the standard unit of pressure is the pascal (Pa), defined as one Newton (N)
of force per square meter (m?) of area. In the British system of measurement, the standard unit of
pressure is the PSI: pounds (Ib) of force per square inch (in?) of area. Pressure is often expressed
in units of kilopascals (kPa) when metric units are used because one pascal is a rather low pressure

in most engineering applications.
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The even distribution of force throughout a fluid has some very practical applications. One
application of this principle is the hydraulic lift, which functions somewhat like a fluid lever:
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Force applied to the small piston creates a pressure throughout the fluid. That pressure exerts
a greater force on the large piston than what is exerted on the small piston, by a factor equal to
the ratio of piston areas. Since area for a circular piston is proportional to the square of the radius
(A = 7r?), even modest ratios of piston diameter yield large ratios of area and therefore of force.
If the large piston has five times the area of the small piston (large piston diameter 2.236 times
larger than the small piston), force will be multiplied by five. Just as with the lever, however, there
must be a trade-off so we do not violate the Conservation of Energy. The trade-off for increased
force is decreased distance, whether in the lever system or in the hydraulic lift system. If the large
piston generates a force five times greater than what was input at the small piston, it will move
only one-fifth the distance that the small piston does. In this way, energy in equals energy out
(remember that work, which is equivalent to energy, is calculated by multiplying force by parallel
distance traveled).
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For those familiar with electricity, what you see here in either the lever system or the hydraulic
lift is analogous to a transformer: we can step AC voltage up, but only by reducing AC current.
Being a passive device, a transformer cannot boost power. Therefore, power out can never be greater
than power in, and given a perfectly efficient transformer, power out will always be precisely equal
to power in:

Power = (Voltage in)(Current in) = (Voltage out)(Current out)

Work = (Force in)(Distance in) = (Force out)(Distance out)

Fluid may be used to transfer power just as electricity is used to transfer power. Such systems
are called hydraulic if the fluid is a liquid (usually oil), and pneumatic if the fluid is a gas (usually
air). In either case, a machine (pump or compressor) is used to generate a continuous fluid pressure,
pipes are used to transfer the pressurized fluid to the point of use, and then the fluid is allowed to
exert a force against a piston or a set of pistons to do mechanical work:
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To learn more about fluid power systems, refer to section 10.2 beginning on page 624.
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An interesting use of fluid we see in the field of instrumentation is as a signaling medium, to
transfer information between places rather than to transfer power between places. This is analogous
to using electricity to transmit voice signals in telephone systems, or digital data between computers
along copper wire. Here, fluid pressure represents some other quantity, and the principle of force
being distributed equally throughout the fluid is exploited to transmit that representation to some
distant location, through piping or tubing:

Pressure
gauge
Closed bulb
filled with
fluid

O

This illustration shows a simple temperature-measuring system called a filled bulb, where an
enclosed bulb filled with fluid is exposed to a temperature that we wish to measure. A rise in
temperature causes the fluid pressure to increase, which is sent to the gauge far away through
the pipe, and registered at the gauge. The purpose of the fluid here is two-fold: first to sense
temperature, and second to relay this temperature measurement a long distance away to the gauge.
The principle of even pressure distribution allows the fluid to act as a signal medium to convey the
information (bulb temperature) to a distant location.
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2.11.2 Pascal’s Principle and hydrostatic pressure

We learned earlier that fluids tend to evenly distribute the force applied to them. This fundamental
principle is the basis of fluid power and fluid signaling systems, where pressure is assumed to be
transferred equally to all points in a confined fluid. In the example of a hydraulic lift given earlier,
we assume that the pressure throughout the fluid pathway is equal:
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If additional force is applied to the small piston (say, 160 lbs instead of 150 lbs), the fluid
pressure throughout the system will increase, not just the fluid pressure in the vicinity of the piston.
The effect of this additional force will be immediately®* “felt” at all points of the system. This
phenomenon is called Pascal’s principle.

Pascal’s principle is really nothing more than the direct consequence of fluids’ ability to flow. The
only way an additional applied pressure would not be transmitted to all points within a confined fluid
volume is if the fluid molecules were somehow not free to move. Since they are free, any compression
applied to one region of that fluid will propagate to all other regions within that fluid volume. As
fluid molecules are subjected to greater pressure, they naturally try to migrate to regions of lower
pressure where they “bump up” against other fluid molecules, distributing that increased pressure
in the process.

54There is actually a speed of propagation to this increase in pressure, and it is the speed of sound within that
particular fluid.



2.11. FLUID MECHANICS 171

Pascal’s principle tells us any change in applied pressure to a confined fluid volume will be
distributed evenly throughout, but it does not say pressure will be the same throughout all points.
If forces other than those applied to pistons exert pressure on the fluid, we may indeed experience
gradients of pressure throughout a confined fluid volume.

In cases where we are dealing with tall columns of dense fluid, there is another force we must
consider: the weight of the fluid itself. Suppose we took a cubic foot of water which weighs
approximately 62.4 pounds, and poured it into a very tall vertical tube with a cross-sectional area
of 1 square inch:

Water column
weight = 62.4 Ibs

144 ft
(1728 inches)

Cross-sectional )
tube area=1in

Pressure gauge
62.4 PSI

Naturally, we would expect the pressure measured at the bottom of this tall tube to be 62.4
pounds per square inch, since the entire column of water (weighing 62.4 pounds) has its weight
supported by one square inch of area.



172 CHAPTER 2. PHYSICS

If we placed another pressure gauge mid-way up the tube, though, how much pressure would it
register? At first you might be inclined to say 62.4 PSI as well, because you learned earlier in this
lesson that fluids naturally distribute force throughout their bulk. However, in this case the pressure
is not the same mid-way up the column as it is at the bottom:

Water column
weight = 62.4 Ibs

Pressure gauge

(Half-way up) 31.2 PSI

Cross-sectional Pressure gauge

tube area = 1in®
62.4 PS|

The reason for this apparent discrepancy is that the source of pressure in this fluid system comes
from the weight of the water column itself. Half-way up the column, the water only experiences half
the total weight (31.2 pounds), and so the pressure is half of what it is at the very bottom. We never
dealt with this effect before, because we assumed the force exerted by the piston in the hydraulic
lift was so large it “swamped” the weight of the fluid itself. Here, with our very tall column of water
(144 feet talll), the effect of gravity upon the water’s mass is quite substantial. Indeed, without a
piston to exert an external force on the water, weight is the only source of force we have to consider
when calculating pressure.

This fact does not invalidate Pascal’s principle. Any change in pressure applied to the fluid
column will still be distributed equally throughout. For example, if we were to place a piston at the
top of this fluid column and apply a force to the fluid, pressure at all points in that fluid column
would increase by the same amount®. This is not the same as saying all pressures will be equal
throughout the column, however.

55Suppose a 1 square inch piston were set on the top of this tall fluid column, and a downward force of 20 lbs were
applied to it. This would apply an additional 20 PSI pressure to the fluid molecules at all points within the column.
The pressure at the bottom would be 82.4 PSI, and the pressure at the middle would be 51.2 PSI.
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An interesting fact about pressure generated by a column of fluid is that the width or shape of
the containing vessel is irrelevant: the height of the fluid column is the only dimension we need to
consider. Examine the following tube shapes, all connected at the bottom:

Since the force of fluid weight is generated only along the axis of gravitational attraction (straight
down), that is the only axis of measurement important in determining “hydrostatic” fluid pressure.

The fixed relationship between the vertical height of a water column and pressure is such that
sometimes water column height is used as a unit of measurement for pressure. That is, instead of
saying “30 PSI,” we could just as correctly quantify that same pressure as 830.4 inches of water
("W.C. or "H20), the conversion factor being approximately 27.68 inches of vertical water column
per PSI.

As one might guess, the density of the fluid in a vertical column has a significant impact on
the hydrostatic pressure that column generates. A liquid twice as dense as water, for example, will
produce twice the pressure for a given column height. For example, a column of this liquid (twice
as dense as water) 14 inches high will produce a pressure at the bottom equal to 28 inches of water
(28 "W.C.), or just over 1 PSI. An extreme example is liquid mercury, which is over 13.5 times as
dense as water. Due to its exceptional density and ready availability, the height of a mercury column
is also used as a standard unit of pressure measurement. For instance, 25 PSI could be expressed
as 50.9 inches of mercury ("Hg), the conversion factor being approximately 2.036 inches of vertical
mercury column per PSI.

The mathematical relationship between vertical liquid height and hydrostatic pressure is quite
simple, and may be expressed by either of the following formulae:

P = pgh

P=~h

Where,
P = Hydrostatic pressure in units of weight per square area unit: pascals (N/m?) or 1b/ft?
p = Mass density of liquid in kilograms per cubic meter (metric) or slugs per cubic foot (British)
g = Acceleration of gravity (9.81 meters per second squared or 32.2 feet per second squared)
v = Weight density of liquid in newtons per cubic meter (metric) or pounds per cubic foot
(British)
h = Vertical height of liquid column
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Dimensional analysis — where we account for all units of measurement in a formula — validates
the mathematical relationship between pressure, density, and height. Taking the second formula as
an example:

P =~h

NN

As you can see, the unit of “feet” in the height term cancels out one of the “feet” units in the
denominator of the density term, leaving an answer for pressure in units of pounds per square foot.
If one wished to set up the problem so the answer presented in a more common pressure unit such as
pounds per square inch, both the liquid density and height would have to be expressed in appropriate
units (pounds per cubic inch and inches, respectively).

Applying this to a realistic problem, consider the case of a tank filled with 8 feet (vertical) of
castor oil, having a weight density of 60.5 pounds per cubic foot:

8 ft y =605 Ib/ft’

P =777

This is how we would set up the formula to calculate for hydrostatic pressure at the bottom of
the tank:

P=~h

60.5 1b
P= 8 ft
( ft3 ) (8 1)
_ 4841b
2
If we wished to convert this result into a more common unit such as PSI (pounds per square
inch), we could do so using an appropriate fraction of conversion units:

484 1b 1 ft?
P= 2 )
ft 144 in

3.36 1b

in?

= 3.36 PSI
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2.11.3 Fluid density expressions

The density of any substance is defined as the ratio of its mass or weight to the volume occupied by

that mass or weight. When the substance in question is a liquid, a common form of expression for

density is a ratio of the liquid’s density to the density of pure water at standard temperature®®. This

ratio is known as specific gravity. For example, the specific gravity of glycerin may be determined
by dividing the density of glycerin by the density of water:

S . . s a1 Dliquid

pecific gravity of any liquid = ———

water

3
Specific gravity of glycerin = Dytycerin = 8.6 lb/ft3 =1.26
Dwater 62.4 lb/ft

The density of gases may also be expressed in ratio form, except the standard of comparison
is ambient air instead of water. Chlorine gas, for example, has a specific gravity of 2.47 (each
volumetric unit of chlorine having 2.47 times the mass of the same volume of air under identical
temperature and pressure conditions). Specific gravity values for gases are sometimes called relative
gas densities to avoid confusion with “specific gravity” values for liquids.

As with all ratios, specific gravity is a unitless quantity. In our example with glycerine, we see
how the identical units of pounds per cubic foot cancel out of both numerator and denominator, to
leave a quotient with no unit at all.

An alternative to expressing fluid density as a ratio of mass (or weight) to volume, or to compare
it against the density of a standard fluid such as pure water or air, is to express it as the ratio of
volume to mass. This is most commonly applied to vapors such as steam, and it is called specific
volume. The relationship between specific volume and density is one of mathematical reciprocation:
the reciprocal of density (e.g. pounds per cubic foot) is specific volume (e.g. cubic feet per pound).
For example, consulting a table of saturated steam properties, we see that saturated steam at a
pressure of 60 PSTA has a specific volume of 7.175 cubic feet per pound. Translating this into units
of pounds per cubic feet, we reciprocate the value 7.175 to arrive at 0.1394 pounds per cubic foot.

Industry-specific units of measurement also exist for expressing the relative density of a fluid.
These units of measurement all begin with the word “degree” much the same as for units of
temperature measurement, for example:

e Degrees API (used in the petroleum industries)

e Degrees Baumé (used in a wvariety of industries including paper manufacture and alcohol
production)

e Degrees Twaddell (used in the textile industry for tanning solutions and the like)

56Usually, this standard temperature is 4 degrees Celsius, the point of maximum density for water. However,
sometimes the specific gravity of a liquid will be expressed in relation to the density of water at some other temperature.
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The mathematical relationships between each of these “degree” units of density versus specific
gravity®” is as follows:

141.5
Degrees APl = ——————— — 131.5
Specific gravity

Degrees Twaddell = 200 x (Specific gravity — 1)

Two different formulae exist for the calculation of degrees Baumé, depending on whether the
liquid in question is heavier or lighter than water. For lighter-than-water liquids:

140

— — 130
Specific gravity

Degrees Baumé (light) =

Note that pure water would measure 10° Baumé on the light scale. As liquid density decreases,
the light Baumé value increases. For heavier-than-water liquids:

145
Degrees Baumé (heavy) = 145 — ——————
Specific gravity

Note that pure water would measure 0° Baumé on the heavy scale. As liquid density increases,
the heavy Baumé value increases.

Just to make things confusing, there are different standards for the heavy Baumé scale. Instead of
the constant value 145 shown in the above equation (used throughout the United States of America),
an older Dutch standard used the same formula with a constant value of 144. The Gerlach heavy
Baumé scale uses a constant value of 146.78:

144
Specific gravity

146.78
Specific gravity

Degrees Baumé (heavy, old Dutch) = 144 —

Degrees Baumé (heavy, Gerlach scale) = 146.78 —

There exists a seemingly endless array of “degree” scales used to express liquid density, scattered
throughout the pages of history. For the measurement of sugar concentrations in the food industries,
the unit of degrees Balling was invented. This scale was later revised to become the unit of degrees
Brixz, which is directly proportional to the percent concentration of sugar in the liquid. Another
density scale used for expressing sugar concentration is degrees Plato. The density of tanning liquor
may be measured in degrees Bark. Milk density may be measured in degrees Sozhlet. Vegetable oil
density (and in older times, the density of oil extracted from sperm whales) may be measured in
degrees Oleo.

57For each of these calculations, specific gravity is defined as the ratio of the liquid’s density at 60 degrees Fahrenheit
to the density of pure water, also at 60 degrees Fahrenheit.
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2.11.4 Manometers

Expressing fluid pressure in terms of a vertical liquid column makes perfect sense when we use a very
simple kind of motion-balance pressure instrument called a manometer. A manometer is nothing
more than a piece of clear (glass or plastic) tubing filled with a liquid of known density, situated

next to a scale for measuring distance. The most basic form of manometer is the U-tube manometer,
shown here:

U-tube manometer

(vented) (vented) R gl— (vented)
=] Applied =]
= pressure =
% % Height
= = l difference

Pressure is read on the scale as the difference in height (h) between the two liquid columns. One
nice feature of a manometer is it really cannot become “uncalibrated” so long as the fluid is pure
and the assembly is maintained in an upright position. If the fluid used is water, the manometer

may be filled and emptied at will, and even rolled up for storage if the tubes are made of flexible
plastic.
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We may create even more sensitive manometers by purposely inclining one or more of the tubes,
so that the liquid must travel a farther distance along the tube length to achieve the same vertical
shift in height. This has the effect of “amplifying” the liquid’s motion to make it easier to resolve
small pressures:

Inclined manometer

This way, a greater motion of liquid (z) is required to generate the same hydrostatic pressure
(vertical liquid displacement, /) than in an upright manometer, making the inclined manometer more
sensitive. As the similar triangle in the illustration shows, x and h are related trigonometrically by
the sine function:

sinf = ﬁ
T

The difference in fluid column positions measured diagonally along the scale () must always be
greater than the vertical height difference between the two columns (h) by a factor of ﬁ, which
will always be greater than one for angles less than 90°. The smaller the angle 6, the greater the
ratio between z and h, leading to more sensitivity.
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If even more sensitivity is desired, we may construct something called a micromanometer,
consisting of a gas bubble trapped in a clear horizontal tube between two large vertical manometer
chambers:

A simple micromanometer

Gas

/

M
Scale

Pressure applied to the top of either vertical chamber will cause the vertical liquid columns to
shift just the same as any U-tube manometer. However, the bubble trapped in the clear horizontal
tube will move much farther than the vertical displacement of either liquid column, owing to the
huge difference in cross-sectional area between the vertical chambers and the horizontal tube. This
amplification of motion is analogous to the amplification of motion in a hydraulic piston system
(where the smaller piston moves farther than the larger piston), and makes the micromanometer
exceptionally sensitive to small pressures.

The movement of the gas bubble within the clear horizontal viewing tube (z) relates to applied
pressure by the following formula:

— 'YhAlarge
2Asmall

Using water as the working liquid in a standard U-tube manometer, 1 PSI of applied gas pressure
results in approximately 27.7 inches of vertical liquid column displacement (i.e. 27.7 inches of height
difference between the two water columns). This relatively large range of motion limits the usefulness
of water manometers to modest pressures only. If we wished to use a water manometer to measure
the pressure of compressed air in an industrial pneumatic supply system at approximately 100 PSI,
the manometer would have to be in excess of 230 feet talll Clearly, a water manometer would not
be the proper instrument to use for such an application.

However, water is not the only viable liquid for use in manometers. We could take the exact same
clear U-tube and fill it partially full of liquid mercury instead, which is substantially denser than
water. In a mercury manometer, 1 PSI of applied gas pressure results in very slightly more than 2
inches of liquid column displacement. A mercury manometer applied to the task of measuring air
pressure in an industrial pneumatic system would only have to be 17 feet tall — still quite large and
cumbersome®® for a measuring instrument, but not impossible to construct or to use.

58 A colleague of mine told me once of working in an industrial facility with a very old steam boiler, where boiler
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A common form of manometer seen in industrial instrument calibration shops is the well type,
consisting of a single vertical tube and a relatively large reservoir (called the “well”) acting as the
second column:

"Well" manometer

Applied
pressure

'

|
Height h Scale

Well

Due to the well’s much larger cross-sectional area, liquid motion inside of it is negligible compared
to the motion of liquid inside the clear viewing tube. For all practical purposes®®, the liquid level
inside the “well” is constant, and so the liquid inside the tube moves the full distance equivalent
to the applied pressure. Thus, the well manometer provides an easier means of reading pressure:
no longer does one have to measure the difference of height between two liquid columns, only the
height of a single column.

steam pressure was actually indicated by tall mercury manometers reaching from floor to ceiling. Operations personnel
had to climb a ladder to accurately read pressure indicated by these manometers!

59T0o give some perspective on just how little the liquid level changes in the well, consider a well-type manometer
with a 1/4 inch (inside) diameter viewing tube and a 4-inch diameter circular well. The ratio of diameters for these
two liquid columns is 16:1, which means their ratio of areas is 256:1. Thus, for every inch of liquid motion in the
viewing tube, the liquid inside the well moves only % of an inch. Unless the viewing tube is quite tall, the amount
of error incurred by interpreting the tube’s liquid height directly as pressure will be minimal — quite likely less than
what the human eye is able to discern on a ruler scale anyway. If the utmost accuracy is desired in a well manometer,
however, we may compensate for the trifling motion of liquid in the well by building a custom ruler for the vertical
tube — one with a 222 reduced scale (so that 253 of an inch of liquid motion in the tube reads as exactly 1 inch of

256 256
liquid column) in the case of the 1/4 inch tube and 4 inch well dimensions.
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2.11.5 Systems of pressure measurement

Pressure measurement is often a relative thing. When we say there is 35 PSI of air pressure in
an inflated car tire, what we mean is that the pressure inside the tire is 35 pounds per square
inch greater than the surrounding, ambient air pressure. It is a fact that we live and breathe in a
pressurized environment. Just as a vertical column of liquid generates a hydrostatic pressure, so
does a vertical column of gas. If the column of gas is very tall, the pressure generated by it will
be substantial. Such is the case with Earth’s atmosphere, the pressure at sea level caused by the
weight of the atmosphere being approximately 14.7 PSI.

You and I do not perceive this constant air pressure around us because the pressure inside our
bodies is equal to the pressure outside our bodies. Thus our eardrums, which serve as differential
pressure-sensing diaphragms, detect no difference of pressure between the inside and outside of our
bodies. The only time the Earth’s air pressure becomes perceptible to us is if we rapidly ascend
or descend, where the pressure inside our bodies does not have time to equalize with the pressure
outside, and we feel the force of that differential pressure on our eardrums.

If we wish to speak of a fluid pressure in terms of how it compares to a perfect vacuum (absolute
zero pressure), we specify it in terms of absolute units. For example, when I said earlier that the
atmospheric pressure at sea level was 14.7 PSI, what I really meant is it is 14.7 PSIA (pounds per
square inch absolute), meaning 14.7 pounds per square inch greater than a perfect vacuum. When 1
said earlier that the air pressure inside an inflated car tire was 35 PSI, what I really meant is it was 35
PSIG (pounds per square inch gauge), meaning 35 pounds per square inch greater than ambient air
pressure. The qualifier “gauge” implies the pressure indicated by a pressure-measuring gauge, which
in most cases works by comparing the sample fluid’s pressure to that of the surrounding atmosphere.
When units of pressure measurement are specified without a “G” or “A” suffix, “gauge” pressure is
usually®” assumed.

60With few exceptions!
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Gauge and absolute pressure values for some common fluid pressures are shown in this table:

Gauge pressure Fluid example Absolute pressure
90 PSIG Bicycle tire air pressure 104.7 PSIA
35 PSIG Automobile tire air pressure 49.7 PSTA
0 PSIG Atmospheric pressure 14.7 PSTA
at sea level
-9.8 PSIG Engine manifold vacuum 4.9 PSIA
(9.8 PSI vacuum) under idle conditions
-14.7 PSIG Perfect vacuum 0 PSIA
(14.7 PSI vacuum) (no fluid molecules present)

Note that the only difference between each of the corresponding gauge and absolute pressures is
an offset of 14.7 PSI, with absolute pressure being the larger (more positive) value.

This offset of 14.7 PSI between absolute and gauge pressures can be confusing if we must convert
between different pressure units. Suppose we wished to express the tire pressure of 35 PSIG in
units of inches of water column ("W.C.). If we stay in the gauge-pressure scale, all we have to do is
multiply by 27.68:

35PSI  27.68”W.C.
1 1psI

Note how the fractions have been arranged to facilitate cancellation of units. The “PSI” unit

in the numerator of the first fraction cancels with the “PSI” unit in the denominator of the second

fraction, leaving inches of water column ("W.C.) as the only unit standing. Multiplying the first

fraction (35 PSI over 1) by the second fraction (27.68 "W.C. over 1 PSI) is “legal” to do since the

second fraction has a physical value of unity (1): being that 27.68 inches of water column is the same

physical pressure as 1 PSI, the second fraction is really the number “1” in disguise. As we know,

multiplying any quantity by unity does not change its value, so the result of 968.8 ”W.C. we get has

the exact same physical meaning as the original figure of 35 PSI. This technique of unit conversion

is sometimes known as unity fractions, and it is discussed in more general terms in another section
of this book (refer to section 2.4 beginning on page 62).

= 968.8"W.C.

If, however, we wished to express the car’s tire pressure in terms of inches of water column
absolute (in reference to a perfect vacuum), we would have to include the 14.7 PST offset in our
calculation, and do the conversion in two steps:

35 PSIG + 14.7 PSI = 49.7 PSIA

49.7PSIA  27.68"W.C.A
1 1PSIA

The proportion between inches of water column and pounds per square inch is still the same

(27.68) in the absolute scale as it is in the gauge scale. The only difference is that we included the

14.7 PSI offset in the very beginning to express the tire’s pressure on the absolute scale rather than
on the gauge scale. From then on, all conversions were performed in absolute units.

This two-step conversion process is not unlike converting between different units of temperature

(degrees Celsius versus degrees Fahrenheit), and for the exact same reason. To convert from °F to

=1375.7"W.C.A
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°C, we must first subtract an offset of 32 degrees, then multiply by g The reason an offset is involved
in this temperature conversion is because the two temperature scales do not share the same “zero”
point: 0 °C is not the same temperature as 0 °F. Likewise, 0 PSIG is not the same pressure as 0
PSIA, and so an offset is always necessary to convert between gauge and absolute pressure units.

As seen with the unit of pounds per square inch (PSI), the distinction between gauge and absolute
pressure is typically shown by a lettered suffix “G” or “A” following the unit, respectively. Following
this convention, we may encounter other units of pressure measurement qualified as either gauge or
absolute by these letters: kPaA (kilopascals absolute), inches HgG (inches of mercury gauge), inches
W.C.A (inches of water column absolute), etc.

There are some pressure units that are always in absolute terms, and as such require no letter
“A” to specify. One is the unit of atmospheres, 1 atmosphere being 14.7 PSIA. There is no such thing
as “atmospheres gauge” pressure. For example, if we were given a pressure as being 4.5 atmospheres
and we wanted to convert that into pounds per square inch gauge (PSIG), the conversion would be
a two-step process:

4.5atm  14.7 PSIA

X = 66.15 PSTA
1 1 atm

66.15 PSTA — 14.7 PSI = 51.45 PSIG

Another unit of pressure measurement that is always absolute is the torr, equal to 1 millimeter
of mercury column absolute (mmHgA). 0 torr is absolute zero, equal to 0 atmospheres, 0 PSIA; or
-14.7 PSIG. Atmospheric pressure at sea level is 760 torr, equal to 1 atmosphere, 14.7 PSIA, or 0
PSIG.

If we wished to convert the car tire’s pressure of 35 PSIG into torr, we would once again have to
offset the initial value to get everything into absolute terms.

35 PSIG + 14.7 PSI = 49.7 PSIA

49.7 PSIA 760 torr

=2 .
1 X Ta7psIa 20090 torr

One last unit of pressure measurement deserves special comment, for it may be used to express
either gauge or absolute pressure, yet it is not customary to append a “G” or an “A” to the unit.
This unit is the bar, exactly equal to 100 kPa, and approximately equal®! to 14.5 PSI. Some technical
references append a lower-case letter “g” or “a” to the word “bar” to show either gauge pressure
(barg) or absolute pressure (bara), but this notation seems no longer favored. Modern usage typically
omits the “g” or “a” suffix in favor of context: the word “gauge” or “absolute” may be included
in the expression to clarify the meaning of “bar.” Sadly, many references fail to explicitly declare
either “gauge” or “absolute” when using units of bar, leaving the reader to interpret the intended
context. Despite this ambiguity, the bar is frequently used in European literature as a unit of

pressure measurement.

61The origin of this unit for pressure is the atmospheric pressure at sea level: 1 atmosphere, or 14.7 PSIA. The
word “bar” is short for barometric, in reference to Earth’s ambient atmospheric pressure.
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2.11.6 Negative pressure

If a chamber is completely evacuated of any and all fluid molecules such that it contains nothing but
empty space, we say that it contains a perfect vacuum. With no fluid molecules inside the chamber
whatsoever, there will be no pressure exerted on the chamber walls by any fluid. This is the
defining condition of zero absolute pressure (e.g. 0 PSIA, 0 torr, 0 atmospheres, etc.). Referencing
atmospheric air pressure outside of this vessel, we could say that the “gauge” pressure of a perfect
vacuum is -14.7 PSIG.

A commonly-taught principle is that a perfect vacuum is the lowest pressure possible in any
physical system. However, this is not strictly true. It is, in fact, possible to generate pressures below
0 PSIA — pressures that are actually less than that of a perfect vacuum. The key to understanding
this is to consider non-gaseous systems, where the pressure in question exists within a solid or a
liquid substance.

Let us begin our exploration of this concept by considering the case of weight applied to a solid
metal bar:

Applied force Applied force
PP Metal bar PP

= { ) €=

Recall that pressure is defined as force exerted over area. This metal bar certainly has a cross-
sectional area, and if a compressive force is applied to the bar then the molecules of metal inside
the bar will experience a pressure attempting to force them closer together. Supposing the bar in
question measured 1.25 inches wide and thick, its cross-sectional area would be (1.25 in)?, or 1.5625
in?. Applying a force of 80 pounds along the bar’s length would set up an internal pressure within
the bar of 51.2 pounds per square inch, or 51.2 PSI:

80 b {1-25"‘ 80 1b

> <
4

1.25in
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Now suppose we reverse the direction of the applied force to the bar, applying tension to the bar
rather than compression. If the force is still 80 pounds and the cross-sectional area is still 1.5625
square inches, then the internal pressure inside the bar must be -51.2 PSI:

801b {1-25"‘ 801b

—
4.

The negative pressure value describes the tensile force experienced by the molecules of metal
inside the bar: a degree of force per unit area attempting to pull those molecules apart from each
other rather than push them closer together as was the case with a compressive force.

If you believe that the lowest possible pressure is a perfect vacuum (0 PSIA, or -14.7 PSIG), then
this figure of -51.2 PSI seems impossible. However, it is indeed possible because we are dealing with
a solid rather than with a gas. Gas molecules exert pressure on a surface by striking that surface
and exerting a force by the momentum of their impact. Since gas molecules can only strike (i.e.
push) against a surface, and cannot pull against a surface, one cannot generate a negative absolute
pressure using a gas. In solids, however, the molecules comprising the sample exhibit cohesion,
allowing us to set up a tension within that material impossible in a gaseous sample where there is
no cohesion between the molecules. Thus, negative pressures are possible within samples of solid
material even though they are impossible within gases.

1.25in

Negative pressures are also possible within liquid samples, provided there are no bubbles of
gas or vapor anywhere within the sample. Like solids, the molecules within a liquid also exhibit
cohesion (i.e. they tend to “stick” together rather than drift apart from each other). If a piston-and-
cylinder arrangement is completely filled with liquid, and a tension applied to the movable piston,
the molecules within that liquid will experience tension as well. Thus, it is possible to generate
negative pressures (below 0 PSIA) within liquids that are impossible with gases.

Even vertical columns of liquid may generate negative pressure. The famous British scientists
Hooke and Boyle demonstrated a negative pressure of -0.2 MPa (-29 PSI) using a column of liquid
mercury. Trees naturally generate huge negative pressures in order to draw water to their full height,
up from the ground. Two scientists, H.H. Dixon and J. Joly, presented a scientific paper entitled
On the Ascent of Sap in 1895 proposing liquid tension as the mechanism by which trees could draw
water up tremendous heights.

If even the smallest bubble of gas exists within a liquid sample, however, negative pressures
become impossible. Since gases can only exert positive pressures, and Pascal’s Principle tells us that
pressure will be equally distributed throughout a fluid sample, the low-limit of 0 PSTA for gases
establishes a low pressure limit for the entire liquid/gas sample. In other words, the presence of any
gas within an otherwise liquid sample prevents the entire sample from experiencing tension.

One limitation to the generation of negative pressures within liquids is that disturbances and/or
impurities within the liquid may cause that liquid to spontaneously boil (changing phase from liquid
to vapor), at which point a sustained negative pressure becomes impossible.
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2.11.7 Buoyancy

When a solid body is immersed in a fluid, it displaces an equal volume of that fluid. This displacement
of fluid generates an upward force on the object called the buoyant force. The magnitude of this
force is equal to the weight of the fluid displaced by the solid body, and it is always directed exactly
opposite the line of gravitational attraction. This is known as Archimedes’ Principle.

Buoyant force is what makes ships float. A ship sinks into the water just enough so the weight
of the water displaced is equal to the total weight of the ship and all it holds (cargo, crew, food,
fuel, etc.):

~——

Amount of water
displaced by the ship

If we could somehow measure the weight of that water displaced, we would find it exactly equals
the dry weight of the ship:

Expressed mathematically, Archimedes’ Principle states that the buoyant force is the product of
the liquid volume and liquid density:

Fbuoyant - 7V

Where,
Fy, = Buoyant force exerted on object, opposite in direction from gravity

v = Weight density of liquid
V' = Volume of liquid displaced by the submerged object
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We may use dimensional analysis to confirm correct cancellation of British units in the
Archimedes’ Principle formula:

Fbuoyant = VV

[Ib] .3
Ib] = —-1ft
] = 1 ¢
Notice how the units of measurement for weight density (pounds per cubic foot) combine with
the unit of measurement for volume (cubic feet) to cancel the unit of cubic feet and leave us with
force measured in pounds.

Archimedes’ Principle also explains why hot-air balloons and helium aircraft float. By filling a
large enclosure with a gas that is less dense than the surrounding air, that enclosure experiences
an upward (buoyant) force equal to the difference between the weight of the air displaced and the
weight of the gas enclosed. If this buoyant force equals the weight of the craft and all it holds (cargo,
crew, food, fuel, etc.), it will exhibit an apparent weight of zero, which means it will float. If the
buoyant force exceeds the weight of the craft, the resultant force will cause an upward acceleration
according to Newton’s Second Law of motion (F = ma).

Submarines also make use of Archimedes’ Principle, adjusting their buoyancy by adjusting the
amount of water held by ballast tanks on the hull. Positive buoyancy is achieved by “blowing” water
out of the ballast tanks with high-pressure compressed air, so the submarine weighs less (but still
occupies the same hull volume and therefore displaces the same amount of water). Negative buoyancy
is achieved by “flooding” the ballast tanks so the submarine weighs more. Neutral buoyancy is when
the buoyant force exactly equals the weight of the submarine and the remaining water stored in
the ballast tanks, so the submarine is able to “hover” in the water with no vertical acceleration or
deceleration.

An interesting application of Archimedes’ Principle is the quantitative determination of an
object’s density by submersion in a liquid. For instance, copper is 8.96 times as dense as water,
with a mass of 8.96 grams per cubic centimeter (8.96 g/cm?) as opposed to water at 1.00 gram per
cubic centimeter (1.00 g/cm?). If we had a sample of pure, solid copper exactly 1 cubic centimeter
in volume, it would have a mass of 8.96 grams. Completely submerged in pure water, this same
sample of solid copper would appear to have a mass of only 7.96 grams, because it would experience
a buoyant force equivalent to the mass of water it displaces (1 cubic centimeter = 1 gram of water).
Thus, we see that the difference between the dry mass (mass measured in air) and the wet mass
(mass measured when completely submerged in water) is the mass of the water displaced. Dividing
the sample’s dry mass by this mass difference (dry — wet mass) yields the ratio between the sample’s
mass and the mass of an equivalent volume of water, which is the very definition of specific gravity.
The same calculation yields a quantity for specific gravity if weights instead of masses are used,
since weight is nothing more than mass multiplied by the acceleration of gravity (Fieight = mg),
and the constant g cancels out of both numerator and denominator:

Mry Mdryg B Dry weight

Specific Gravity = = =
P VY Mdry — Mawet  Mdryg — Muwerg  Dry weight — Wet weight
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Another application of Archimedes’ Principle is the use of a hydrometer for measuring liquid
density. If a narrow cylinder of precisely known volume and weight (most of the weight concentrated
at one end) is immersed in liquid, that cylinder will sink to a level dependent on the liquid’s density.
In other words, it will sink to a level sufficient to displace its own weight in fluid. Calibrated marks
made along the cylinder’s length may then serve to register liquid density in any unit desired.

A simple style of hydrometer used to measure the density of lead-acid battery electrolyte is shown
in this illustration:

Squeeze bulb

Read density
here

To use this hydrometer, you must squeeze the rubber bulb at the top and dip the open end of
the tube into the liquid to be sampled. Relaxing the rubber bulb will draw a sample of liquid up
into the tube where it immerses the float. When enough liquid has been drawn into the tube to
suspend the float so that it neither rests on the bottom of the tapered glass tube or “tops out” near
the bulb, the liquid’s density may be read at the air/liquid interface.
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A denser electrolyte liquid results in the float rising to a higher level inside the hydrometer tube:

Dense liquid Light liquid
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The following photograph shows a set of antique hydrometers used to measure the density of
beer. The middle hydrometer bears a label showing its calibration to be in degrees Baumé (heavy):

Liquid density measurement is useful in the alcoholic beverage industry to infer alcohol content.
Since alcohol is less dense than water, a sample containing a greater concentration of alcohol (a
greater proof rating) will be less dense than a “weaker” sample, all other factors being equal.
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A less sophisticated version of hydrometer uses multiple balls of differing density. A common
application for such a hydrometer is measuring the concentration of “antifreeze” coolant for
automobile engines, comprised of a mixture of ethylene glycol and water. FEthylene glycol is a
denser compound than water, and so a “stronger” mixture of antifreeze will have a greater bulk
density than a “weaker” density of antifreeze. This style of hydrometer yields a crude measurement
of ethylene glycol concentration based on the number of balls that float:

~—"Squeeze bulb"

P Eyedropper

~Colored balls

A greater number of floating balls represents a “stronger” concentration of glycol in the coolant.
“Weak” glycol concentrations represent a greater percentage of water in the coolant, with a
correspondingly higher freezing temperature.

Similar hydrometers are used to measure the concentration of sulfuric acid in lead-acid battery
electrolyte, comprised of acid and water. The more fully charged a lead-acid battery is, the higher
the concentration of sulfuric acid in the electrolyte fluid. The more discharged a lead-acid battery
becomes, the less sulfuric acid (and the more water) is present in the electrolyte. Since sulfuric acid
is a denser compound than water, measuring electrolyte density with a hydrometer yields a crude
measurement of battery charge state.
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2.11.8 Gas Laws

The Ideal Gas Law relates pressure, volume, molecular quantity, and temperature of an ideal gas
together in one concise mathematical expression:

PV =nRT

Where,
P = Absolute pressure (atmospheres)
V' = Volume (liters)
n = Gas quantity (moles)
R = Universal gas constant (0.0821 L - atm / mol - K)
T = Absolute temperature (K)

For example, the Ideal Gas Law predicts five moles of helium gas (20 grams worth) at a pressure
of 1.4 atmospheres and a temperature of 310 Kelvin will occupy 90.9 liters of volume.

An alternative form of the Ideal Gas Law uses the number of actual gas molecules (V) instead
of the number of moles of molecules (n):

PV = NET

Where,
P = Absolute pressure (Pascals)
V' = Volume (cubic meters)
N = Gas quantity (molecules)
k = Boltzmann’s constant (1.38 x 10723 J / K)
T = Absolute temperature (K)

Interestingly, the Ideal Gas Law holds true for any gas. The theory behind this assumption is
that gases are mostly empty space: there is far more volume of empty space separating individual
gas molecules in a sample than there is space occupied by the gas molecules themselves. This means
variations in the sizes of those individual molecules is negligible. Thus, we may apply either form of
the Ideal Gas Law to situations regardless of the type of gas involved.

To modify the previous example, where 5 moles of helium gas occupied 90.9 liters at 1.4
atmospheres and 310 Kelvin, it is also true that 5 moles of nitrogen gas will occupy the same
volume (90.9 liters) at 1.4 atmospheres and 310 Kelvin. The only difference will be the mass of each
gas sample. 5 moles of helium gas (*He) will have a mass of 20 grams, whereas 5 moles of nitrogen
gas (14Ny) will have a mass of 140 grams.

Although no gas in real life is ideal, the Ideal Gas Law is a close approximation for conditions of
modest gas density, and no phase changes (gas turning into liquid or visa-versa). You will find this
Law appearing again and again in calculations of gas volume and gas flow rates, where engineers
and technicians must know the relationship between gas volume, pressure, and temperature.
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Since the molecular quantity of an enclosed gas is constant, and the universal gas constant must
be constant, the Ideal Gas Law may be written as a proportionality instead of an equation:

PV xT

Several “gas laws” are derived from this proportionality. They are as follows:

PV = Constant Boyle’s Law (assuming constant temperature ')
VT Charles’s Law (assuming constant pressure P)
PxT Gay-Lussac’s Law (assuming constant volume V')

You will see these laws referenced in explanations where the specified quantity is constant (or
very nearly constant).

For non-ideal conditions, the “Real” Gas Law formula incorporates a corrected term for the
compressibility of the gas:

PV = ZnRT

Where,
P = Absolute pressure (atmospheres)
V' = Volume (liters)
7 = Gas compressibility factor (unitless)
n = Gas quantity (moles)
R = Universal gas constant (0.0821 L - atm / mol - K)
T = Absolute temperature (K)

The compressibility factor for an ideal gas is unity (Z = 1), making the Ideal Gas Law a limiting
case of the Real Gas Law. Real gases have compressibility factors less than unity (< 1). What this
means is real gases tend to compress more than the Ideal Gas Law would predict (i.e. occupies less
volume for a given amount of pressure than predicted, and/or exerts less pressure for a given volume
than predicted).
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2.11.9 Fluid viscosity

Viscosity is a measure of a fluid’s resistance to shear. It may be visualized as a sort of internal
friction, where individual fluid molecules experience either cohesion or collision while flowing past
one another. The more “viscous” a fluid is, the “thicker” it is when stirred. Clean water is an
example of a low-viscosity liquid, while honey at room temperature is an example of a high-viscosity
liquid.

There are two different ways to quantify the viscosity of a fluid: absolute viscosity and kinematic
viscosity. Absolute viscosity (symbolized by the Greek symbol “eta” 7, or sometimes by the Greek
symbol “mu” p), also known as dynamic viscosity, is a direct relation between stress placed on
a fluid and its rate of deformation (or shear). The textbook definition of absolute viscosity is
based on a model of two flat plates moving past each other with a film of fluid separating them.
The relationship between the shear stress applied to this fluid film (force divided by area) and the
velocity /film thickness ratio is viscosity:

Force
F » plate Velocity
Y —V
L }_ (stationary)
plate
_FL
= Av

Where,
n = Absolute viscosity (pascal-seconds), also symbolized as
F = Force (newtons)
L = Film thickness (meters) — typically much less than 1 meter for any realistic demonstration!
A = Plate area (square meters)
v = Relative velocity (meters per second)

Another common unit of measurement for absolute viscosity is the poise, with 1 poise being equal
to 0.1 pascal-seconds. Both units are too large for common use, and so absolute viscosity is often
expressed in centipoise. Water has an absolute viscosity of very nearly 1.000 centipoise.
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Kinematic viscosity (symbolized by the Greek letter “nu” v) includes an assessment of the fluid’s
density in addition to all the above factors. It is calculated as the quotient of absolute viscosity and
mass density:

T I3

Where,
v = Kinematic viscosity (stokes)
n = Absolute viscosity (poise)
p = Mass density (grams per cubic centimeter)

As with the unit of poise, the unit of stokes is too large for convenient use, so kinematic viscosities
are often expressed in units of centistokes. Water has a kinematic viscosity of very nearly 1.000
centistokes.

The mechanism of viscosity in liquids is inter-molecular cohesion. Since this cohesive force is
overcome with increasing temperature, most liquids tend to become “thinner” (less viscous) as they
heat up. The mechanism of viscosity in gases, however, is inter-molecular collisions. Since these
collisions increase in frequency and intensity with increasing temperature, gases tend to become
“thicker” (more viscous) as they heat up.

As a ratio of stress to strain (applied force to yielding velocity), viscosity is often constant for
a given fluid at a given temperature. Interesting exceptions exist, though. Fluids whose viscosities
change with applied stress, and/or over time with all other factors constant, are referred to as non-
Newtonian fluids. A simple example of a non-Newtonian fluid is cornstarch mixed with water, which
“solidifies” under increasing stress and then returns to a liquid state when the stress is removed.
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2.11.10 Reynolds number

Viscous flow is when friction forces dominate the behavior of a moving fluid, typically in cases
where viscosity (internal fluid friction) is great. Inviscid flow, by contrast, is where friction within a
moving fluid is negligible and the fluid moves freely. The Reynolds number of a fluid is a dimensionless
quantity expressing the ratio between a moving fluid’s momentum and its viscosity, and is a helpful
gauge in predicting how a fluid stream will move.

A couple of formulae for calculating Reynolds number of a flow are shown here:

~ Dwp
i

Re

Where,
Re = Reynolds number (unitless)
D = Diameter of pipe, (meters)
v = Average velocity of fluid (meters per second)
p = Mass density of fluid (kilograms per cubic meter)
p = Absolute viscosity of fluid (pascal-seconds)

(3160)GQ

R:
e D

Where,
Re = Reynolds number (unitless)
Gy = Specific gravity of liquid (unitless)
@ = Flow rate (gallons per minute)
D = Diameter of pipe (inches)
1 = Absolute viscosity of fluid (centipoise)
3160 = Conversion factor for British units
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The first formula, with all metric units, is the textbook “definition” for Reynolds number. If you
take the time to dimensionally analyze this formula, you will find that all units do indeed cancel to
leave the Reynolds number unitless:

Re — Dup
"
] [12] [ 54
Re = [Pa~£] ]

Recalling that the definition of a “pascal” is one Newton of force per square meter:

[
]
J %)
7]

Recalling that the definition of a “newton” is one kilogram times meters per second squared
(from Newton’s Second Law equation F' = ma):

= 5

Re — [

e [t

kg -m - g2

Re = unitless

The second formula given for calculating Reynolds number includes a conversion constant of 3160,
which bears the unwieldy unit of “inches-centipoise-minutes per gallon” in order that the units of
all variables (flow in gallons per minute, pipe diameter in inches, and viscosity in centipoise) may
cancel. Note that specific gravity (Gy) is unitless and therefore does not appear in this dimensional
analysis:

Re — (100610
o] 2]

Re = [in - cp]

Re = unitless

You will often find this formula, and the conversion constant of 3160, shown without units at
all. Its sole purpose is to make the calculation of Reynolds number easy when working with British
units customary in the United States.
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The Reynolds number of a fluid stream may be used to qualitatively predict whether the flow
regime will be laminar or turbulent. Low Reynolds number values predict laminar (viscous) flow,
where fluid molecules move in straight “stream-line” paths, and fluid velocity near the center of the
pipe is substantially greater than near the pipe walls:

Laminar flow (low Re)

Velocity
"profile"

High Reynolds number values predict turbulent (inviscid) flow, where individual molecule motion
is chaotic on a microscopic scale, and fluid velocities across the face of the flow profile are similar:

Turbulent flow (high Re)

Velocity
"profile”

It should be emphasized that this turbulence is microscopic in nature, and occurs even when the
fluid flows through a piping system free of obstructions, rough surfaces, and/or sudden directional
changes. At high Reynolds number values, turbulence simply happens.

Other forms of turbulence, such as eddies and swirl are possible at high Reynolds numbers, but
are caused by disturbances in the flow stream such as pipe elbows, tees, control valves, thermowells,
and other irregular surfaces. The “micro-turbulence” naturally occurring at high Reynolds numbers
will actually randomize such macroscopic (large-scale) motions if the fluid subsequently passes
through a long enough length of straight pipe.

Turbulent flow is actually the desired condition for many industrial processes. When different
fluids must be mixed together, for example, laminar flow is a bad thing: only turbulent flow will
guarantee thorough mixing. The same is true for convective heat exchange: in order for two fluids
to effectively exchange heat energy within a heat exchanger, the flow must be turbulent so that
molecules from the inner portions of the flow stream will come into contact with the exchanger
walls. Many types of flowmeters require a condition called fully-developed turbulent flow, where
the flow profile is relatively flat and the only turbulence is that existing on a microscopic scale.
Large-scale disturbances in the flow profile such as eddies and swirl tend to negatively affect the
measurement performance of many flowmeter designs. This is why such flowmeters usually require
long lengths of “straight-run” piping both upstream and downstream: to give micro-turbulence the
opportunity to randomize any large-scale motions and homogenize the velocity profile.
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A generally accepted rule-of-thumb is that Reynolds number values less than 2000 will probably
be laminar, while values in excess of 10000 will probably be turbulent. There is no definite threshold
value for all fluids and piping configurations, though. To illustrate, I will share with you some
examples of Reynolds number thresholds for laminar versus turbulent flows given by various technical
sources:

Chapter 2.8: Laminar Flowmeters of the Instrument Engineers’ Handbook, Process Measurement
and Analysis, Third Edition (pg. 105 — authors: R. Siev, J.B. Arant, B.G. Liptdk) define Re < 2000
as “laminar” flow, Re > 10000 as “fully developed turbulent” flow, and any Reynolds number values
between 2000 and 10000 as “transitional” flow.

Chapter 2: Fluid Properties — Part IT of the ISA Industrial Measurement Series — Flow (pg. 11)
define “laminar” flow as Re < 2000, “turbulent” flow as Re > 4000, and any Reynolds values in
between 2000 and 4000 as “transitional” flow.

The Laminar Flow in a Pipe section in the Standard Handbook of Engineering Calculations (pg. 1-
202) defines “laminar” flow as Re < 2100, and “turbulent” flow as Re > 3000. In a later section of
that same book (Piping and Fluid Flow — page 3-384), “laminar” flow is defined as Re < 1200 and
“turbulent” flow as Re > 2500.

Douglas Giancoli, in his physics textbook Physics (third edition, pg. 11), defines “turbulent” flow
as Re < 2000 and “turbulent” flow as Re > 2000.

Finally, a source on the Internet (http://flow.netfirms.com/reynolds/theory.htm) attempts to
define the threshold separating laminar from turbulent flow to an unprecedented degree of precision:
Re < 2320 is supposedly the defining point of “laminar” flow, while Re > 2320 is supposedly marks
the onset of “turbulent” flow.

Clearly, Reynolds number alone is insufficient for consistent prediction of laminar or turbulent
flow, otherwise we would find far greater consistency in the reported Reynolds number values for each
regime. Pipe roughness, swirl, and other factors influence flow regime, making Reynolds number
an approximate indicator only. It should be noted that laminar flow may be sustained at Reynolds
numbers significantly in excess of 10000 under very special circumstances. For example, in certain
coiled capillary tubes, laminar flow may be sustained all the way up to Re = 15000, due to a
phenomenon known as the Dean effect!
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2.11.11 Law of Continuity

Any fluid moving through a pipe obeys the Law of Continuity, which states that the product of
average velocity (), pipe cross-sectional area (A), and fluid density (p) for a given flow stream must
remain constant:

p1AIUT = poAdy = - pr ApUy,

_/\/_

— m) >

\
p 1A1V]_ p2 A ZVZ N

P3AV;

Fluid continuity is an expression of a more fundamental law of physics: the Conservation of
Mass. If we assign appropriate units of measurement to the variables in the continuity equation, we
see that the units cancel in such a way that only units of mass per unit time remain:

_ [kg] [mQ] m kg
o= 1] [2] 2] - 2
m 1 S S
This means we may define the product pAv as an expression of mass flow rate, or W:

W = pAv

In order for the product pAv to differ between any two points in a pipe, mass would have to
mysteriously appear and disappear. So long as the flow is continuous (not pulsing), and the pipe
does not leak, it is impossible to have different rates of mass flow at different points along the flow
path without violating the Law of Mass Conservation. The continuity principle for fluid through a
pipe is analogous to the principle of current being the same everywhere in a series circuit, and for

equivalently the same reason®?.

62The conservation law necessitating equal current at all points in a series electric circuit is the Law of Charge
Conservation, which states that electric charges cannot be created or destroyed.
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We refer to a flowing fluid as incompressible if its density does not substantially change with
modest changes in pressure®®. For this limiting case, p is constant and the continuity equation
simplifies to the following form:

AT1 = Ao

Examining this equation in light of dimensional analysis, we see that the product Av is also an
expression of flow rate:

2 3
m m m
o= [2] 2 [2
[ 1 ] s s
Cubic meters per second is an expression of volumetric flow rate, often symbolized by the variable

Q:

Q= Av

The practical implication of this principle is that fluid velocity is inversely proportional to the
cross-sectional area of a pipe. That is, fluid slows down when the pipe’s diameter expands, and
visa-versa. We readily see this principle manifest in the natural world: deep rivers run slow, while
rapids are relatively shallow (and/or narrow).

More specifically, we may say that the average velocity of a fluid through a pipe varies inversely
with the square of the diameter, since cross-sectional area is proportional to the square of the pipe
diameter. For example, if fluid flows at a velocity of 2 feet per second through a 12-inch pipe, and
that pipe extends to a narrower section only 6 inches (half the diameter of the wide section), the
velocity at the narrower section will be four times as great (8 feet per second), since the area of that
skinnier section is one-quarter the area of the wider section.

63 Although not grammatically correct, this is a common use of the word in discussions of fluid dynamics. By
definition, something that is “incompressible” cannot be compressed, but that is not how we are using the term here.
We commonly use the term “incompressible” to refer to either a moving liquid (in which case the actual compressibility
of the liquid is inconsequential) or a gas/vapor that does not happen to undergo substantial compression or expansion
as it flows through a pipe. In other words, an “incompressible” flow is a moving fluid whose p does not substantially
change, whether by actual impossibility or by circumstance.
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For example, consider a pipe with an inside diameter of 8 inches (2/3 of a foot), passing a liquid
flow of 5 cubic feet per minute. The average velocity (v) of this fluid may be calculated as follows:

Q=Av
5=9
A
Solving for A in units of square feet:
A=mr?

Now, solving for average velocity :

5 ft?
T = Q _ Inin
A zg?
= (o) ()
U= -
min / \ 7 ft2
45 fi f
v = o ,t = 14.32—jE
7T IM1n min

Thus, the average fluid velocity inside an 8-inch pipe passing a volumetric flow rate of 5 cubic
feet per minute is 14.32 feet per minute.

2.11.12 Viscous flow

The pressure dropped by a slow-moving, viscous fluid through a pipe is described by the Hagen-
Poiseuille equation. This equation applies only for conditions of low Reynolds number; i.e. when
viscous forces are the dominant restraint to fluid motion through the pipe, and turbulence is

nonexistent:
APD*
=k
© ( pL )

Where,
@ = Flow rate (gallons per minute)
k = Unit conversion factor = 7.86 x10°
AP = Pressure drop (inches of water column)
D = Pipe diameter (inches)
1 = Liquid viscosity (centipoise) — this is a temperature-dependent variable!
L = Length of pipe section (inches)
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2.11.13 Bernoulli’s equation

Bernoulli’s equation is an expression of the Law of Energy Conservation for an inviscid fluid stream,
named after Daniel Bernoulli®®. It states that the sum total energy at any point in a passive
fluid stream (i.e. no pumps or other energy-imparting machines in the flow path, nor any energy-
dissipating elements) must be constant. Two versions of the equation are shown here:

2 2
(% v
zlpg+§p+P1:Zng+%p+Pz
2 2 P.
R R R A
2 29 v

Where,
z = Height of fluid (from a common reference point, usually ground level)
p = Mass density of fluid
~v = Weight density of fluid (v = pg)
g = Acceleration of gravity
v = Velocity of fluid
P = Pressure of fluid

Each of the three terms in Bernoulli’s equation is an expression of a different kind of energy,
commonly referred to as head:

zZpg Elevation head

2
% Velocity head

P Pressure head

Elevation and Pressure heads are potential forms of energy, while Velocity head is a kinetic form
of energy. Note how the elevation and velocity head terms so closely resemble the formulae for
potential and kinetic energy of solid objects:

E, = mgh Potential energy formula

1
Ep = §m1)2
The only real differences between the solid-object and fluid formulae for energies is the use of
mass density (p) for fluids instead of mass (m) for solids, and the arbitrary use of the variable z for
height instead of h. In essence, the elevation and velocity head terms within Bernoulli’s equation

come from the assumption of individual fluid molecules behaving as miniscule solid masses.

Kinetic energy formula

64 According to Ven Te Chow in Open Channel Hydraulics, who quotes from Hunter Rouse and Simon Ince’s work
History of Hydraulics, Bernoulli’s equation was first formulated by the great mathematician Leonhard Euler and made
popular by Julius Weisbach, not by Daniel Bernoulli himself.
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It is very important to maintain consistent units of measurement when using Bernoulli’s equation!
Each of the three energy terms (elevation, velocity, and pressure) must possess the exact same units
if they are to add appropriately®. Here is an example of dimensional analysis applied to the first
version of Bernoulli’s equation (using British units):

2

v
ng+7p+P

o 2] 5] 2] 2] [ (2

As you can see, both the first and second terms of the equation (elevation and velocity heads)
bear the same unit of slugs per foot-second squared after all the “feet” are canceled. The third term
(pressure head) does not appear as though its units agree with the other two terms, until you realize
that the unit definition of a “pound” is a slug of mass multiplied by the acceleration of gravity in
feet per second squared, following Newton’s Second Law of motion (F = ma):

1b] = gl | 5|

Once we make this substitution into the pressure head term, the units are revealed to be the
same as the other two terms, slugs per foot-second squared:

{lb} % _ [slug}

w2~ 2 ft - 2

In order for our British units to be consistent here, we must use feet for elevation, slugs per
cubic foot for mass density, feet per second squared for acceleration, feet per second for velocity,
and pounds per square foot for pressure. If one wished to use the more common pressure unit of
PSI (pounds per square inch) with Bernoulli’s equation instead of PSF (pounds per square foot),
all the other units would have to change accordingly: elevation in inches, mass density in slugs per
cubic inch, acceleration in inches per second squared, and velocity in inches per second.

Just for fun, we can try dimensional analysis on the second version of Bernoulli’s equation, this
time using metric units:

v2 P
) ]
) )™

Here, we see that all three terms end up being cast in simple units of meters. That is, the fluid’s
elevation, velocity, and pressure heads are all expressed as simple elevations. In order for our metric

65Surely you’ve heard the expression, “Apples and Oranges don’t add up.” Well, pounds per square inch and
pounds per square foot don’t add up either! A general mathematical rule in physics is that any quantities added to
or subtracted from each other must bear the exact same units. This rule does not hold for multiplication or division,
which is why we see units canceling in those operations. With addition and subtraction, no unit cancellation occurs.
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units to be consistent here, we must use meters for elevation, meters per second for velocity, meters
per second squared for acceleration, pascals (newtons per square meter) for pressure, and newtons
per cubic meter for weight density.

Applying Bernoulli’s equation to real-life applications can be a bit daunting for students, as there
are so many different units of measurement to contend with, and so many calculations which must
be precise in order to arrive at a correct final answer. The following example serves to illustrate how
Bernoulli’s equation may be applied to the solution of pressure at a point in a water piping system,
assuming no frictional losses anywhere in the system:

Valve

P, =777

Pipe diameter = 6 inches —»

Elevation difference

i = 3 feet

P, = 46 PSI

Pipe diameter = 10 inches
v, =11 ft/s

We know without a doubt that Bernoulli’s equation will be what we need to evaluate in order to
solve for the unknown pressure P», but where do we begin? A good place to start is by writing the
equation we know we will need, then identifying all known values and all unknown values:

V2 v2
leg+%)+P1=22ﬁ’g+%)+P2
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Here is a list of known values, given to us already:

Known quantity Comments
21 0 ft (arbitrarily assigned as 0 height)
29 3 ft (if 21 is O feet, then 2o is 3 ft above it)
vy 11 ft/s
P 46 PSI (need to convert into PSF so all units match)
g 32.2. ft/s?

The conversion for P from units of PSI into units of PSF is quite simple: multiply 46 PSI by
144 to get 6624 PSF.

Here is a list of values unknown to us at this time:

Unknown quantity Comments
p (needs to be in units of slugs/ft?)
Vg (needs to be un units of ft/s just like vy)
Py (the quantity we are ultimately solving for)

Now all we must do is solve for p and v, and we will be ready to use Bernoulli’'s equation to
solve for P». The important of identifying all the known and unknown quantities before beginning
any calculations cannot be overstated. Doing so allows us to develop a plan for solving the problem.
Without a plan, one has no idea of where or how to proceed, which is a condition many students
repeatedly find themselves in when solving physics-type problems.

We know that p is an expression of mass density for the fluid, and we were told the fluid in this
example is water. Water has a maximum density of 62.4 pounds per cubic foot, but this figure is
not usable in our chosen form of Bernoulli’s equation because it is weight density () and not mass
density (p).

The relationship between weight density v and mass density p is the exact same relationship
between weight (Fy) and mass (m) in a gravitational field (g). Newton’s Second Law equation
relating force to mass and acceleration (F = ma) works well to relate weight to mass and
gravitational acceleration:

F =ma

Fw =mg

Dividing both sides of this equation by volumetric units (V) (e.g. cubic feet) gives us our
relationship between v and p:
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Water has a weight density of 62.4 pounds per cubic foot in Earth gravity (32.2 feet per second
squared), so:

7
p=1
g
624 1b/ft°
P 502 ft /s>

Now we may calculate the total value for the left-hand side of Bernoulli’s equation, representing
the sum total of potential and kinetic heads for the fluid within the 10-inch pipe:

= 1.94 slugs/ft”

2
z1p9 + % + P, = Total head at 10-inch pipe
Head Calculation at 10 inch pipe Value
z1p9 (0 ft) (1.94 slugs/ft3) (32.2 ft/s?) 0 1b/ft?
vip/2 (11 ft/s)? (1.94 slugs/ft3) / 2 117.4 Ib/ft?
Py (46 Ib/in?) (144 in?/1 ft?) 6624 1b/ft?
Total 0 1b/ft? + 6.56 Ib/ft? + 6624 Ib/ft> 6741.4 1b/ft>

Note the absolutely consistent use of units: all units of distance are feet. All units of mass as
slugs. All units of time are seconds. Failure to maintain consistency of units will result in (often
severely) incorrect results!®®

661t is entirely possible to perform all our calculations using inches and/or minutes as the primary units instead of
feet and seconds. The only caveat is that all units throughout all terms of Bernoulli’s equation must be consistent.
This means we would also have to express mass density in units of slugs per cubic inch, the acceleration of gravity in
inches per second squared (or inches per minute squared), and velocity in units of inches per second (or inches per
mianute). The only real benefit of doing this is that pressure would remain in the more customary units of pounds per
square inch. My personal preference is to do all calculations using units of feet and seconds, then convert pressures
in units of PSF to units of PSI at the very end.
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There is one more unknown quantity to solve for before we may calculate values at the 6-inch pipe,
and that unknown quantity is vy. We know that the Continuity equation gives us a mathematical
relationship between volumetric flow (@), pipe area (A), and velocity (v):

Q = Ajv1 = Asvg

Looking at this equation, the only variable we know the value of at this point is vy, and we
need to find vo. However, if we could find the values of 4; and A,, and/or @), we would have the
information we need to solve for v, which in turn would give us the information we would need to
solve for Py in Bernoulli’s equation.

One way to approach this problem is to express the areas and velocities as ratios, eliminating )
entirely so all we need to find are A; and As:

A _ v

A2 - (%
The area of a circular pipe is given by the basic equation A = mr2. Since the problem gives us
each pipe’s diameter (10 inches and 6 inches), we know the radii (5 inches and 3 inches, respectively)

which we may then plug into our ratio equation:
7(5in)? vy
7(3in)2 vy

257’02
971}1

Knowing v; has a value of 11 feet per second, the solution for v is now quite simple:

vg =11 ft/s (295>

vy = (11 ft/5)(2.778) = 30.56 ft/s
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Finally, we have all the pieces necessary to solve for P, in the right-hand side of Bernoulli’s
equation:

2
Za2pg + LPLONS P, = Total head at 6-inch pipe

2
Head Calculation at 6 inch pipe Value
2009 (3 ft) (1.94 slugs/ft3) (32.2 ft/s?) 187.4 1b/ft?
v3p/2 (30.56 ft/s)? (1.94 slugs/ft3) / 2 905.6 1b/ft>
Py (unknown)
Total 187.4 1b/ft? + 905.6 1b/ft*> + P» 1093 Ib/ft> + P,

Knowing that the total head calculated at the first location was 6741.4 1b/ft?, and the
Conservation of Energy requires total heads at both locations be equal (assuming no energy lost to
fluid friction along the way), P, must be equal to:

6741.4 1b/ft” = 1093 Ib/ft> + P,

Py = 6741.4 1b/ft” — 1093 Ib/ft* = 5648.3 1b/ft*

Converting pounds per square foot into the more customary unit of pounds per square inch
(PSI):

1 ft2
P, = (5648.3 1b/ft>
2= ( / )(144 in2)

P, =39.2 1b/in®
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Before discussing the larger meaning of our solution, it would be good to review the problem-
solving plan we followed to calculate Ps:

=Yg

2@9+@+: zpg + W2 +
2 f 2
Convert to
units of PSF

Q:@l =(AJ;

.

First, we identified Bernoulli’s equation as being the central equation necessary for solving Ps.
Then, we identified all the known variables within Bernoulli’s equation given to us in the problem,
and also if there were any unit-conversion operations necessary. Next, we identified any unknown
variables necessary to solve for P, in Bernoulli’s equation. For each of those unknown variables,
we found or developed equations to solve for them, based on variables known to us. The graphic
shown above illustrates our plan of solution, with arrows showing the dependent relationships where
equations supplied values for unknown quantities in other equations.

This is not just a problem-solving technique unique to Bernoulli’s equation; it is a general strategy
applicable to any type of problem where multiple equations must be used to solve for some quantity.
The study of physics is general is filled with problems like this!
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Note how our calculated value for P, at the second gauge is so much lower than the pressure at
the first gauge: 39.2 PSI compared to 46 PSI. This represents nearly a 7 PSI decrease in pressure!
Note also how little vertical distance separates the two gauges: only 3 feet. Clearly, the change in
elevation between those two points in insufficient to account for the large loss in pressure®’. Given
a 3 foot difference in elevation, one would expect a pressure reduction of about 1.3 PSI for a static
column of water, but what we’re seeing in this piping system is a pressure drop of nearly 7 PSI. The
difference is due to an exchange of energy from potential to kinetic form, as the fluid enters a much
narrower pipe (6 inches instead of 10) and must increase velocity.

Furthermore, if we were to increase the flow rate discharged from the pump, resulting in even
more velocity through the narrow pipe, pressure at P, might even drop lower than atmospheric. In
other words, Bernoulli’s equation tells us we can actually produce a vacuum by accelerating a fluid
through a constriction. This principle is widely used in industry with devices known as eductors
or ejectors®®: tapered tubes through which fluid flows at high velocity to produce a vacuum at the
throat.

Venturi producing a vacuum
(an "eductor" or "ejector")

T e

Flow Flow ) Flow

Vacuum produced here

This, in fact, is how a carburetor works in an older automobile engine to vaporize liquid gasoline
fuel into a stream of air drawn into the engine: the engine’s intake air passes through a venturi
tube, where vacuum at the throat of the venturi produces enough negative pressure to draw liquid
gasoline into the stream to produce a fine mist.

67 A simple approximation for pressure loss due to elevation gain is approximately 1 PSI for every 2 vertical feet of
water (1 PSI for every 27.68 inches to be more exact).

68Technically, an eductor uses a liquid such as water to generate the vacuum, while an ejector uses a gas or a vapor
such as steam.
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Ejectors use a high-velocity gas or vapor (e.g. superheated steam) to produce significant vacuums.
Eductors use process liquid flow, such as the eductor shown in this next photograph where wastewater
flow creates a vacuum to draw gaseous chlorine into the stream for biological disinfection:

Here, the eductor helps fulfill an important safety function. By creating a vacuum to draw toxic
chlorine gas from the supply tank into the water stream, the chlorine gas piping may be continuously
maintained at a slightly negative pressure throughout. If ever a leak were to develop in the chlorine
system, this vacuum would cause ambient air to enter the chlorine pipe rather than toxic chlorine
gas to exit the pipe, making a leak far less dangerous than if the chlorine gas piping were maintained
in a pressurized state.
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2.11.14 Torricelli’s equation

The velocity of a liquid stream exiting from a nozzle, pressured solely by a vertical column of that
same liquid, is equal to the free-fall velocity of a solid mass dropped from the same height as the
top of the liquid column. In both cases, potential energy (in the form of vertical height) converts to
kinetic energy (motion):

v (same velocities) lv
—

This was discovered by Evangelista Torricelli almost 100 years prior to Bernoulli’s more
comprehensive formulation. The velocity may be determined by solving for v after setting the
potential and kinetic energy formulae equal to each other (since all potential energy at the upper
height must translate into kinetic energy at the bottom, assuming no frictional losses):

1
mgh = §mv2
1
gh = 5112
2gh = v

v =1+/2gh

Note how mass (m) simply disappears from the equation, neatly canceling on both sides. This
means the nozzle velocity depends only on height, not the mass density of the liquid. It also means
the velocity of the falling object depends only on height, not the mass of the object.
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2.11.15 Flow through a venturi tube

If an incompressible fluid moves through a venturi tube (a tube purposefully built to be narrow in
the middle), the continuity principle tells us the fluid velocity must increase through the narrow
portion. This increase in velocity causes kinetic energy to increase at that point. If the tube is level,
there will be negligible difference in elevation (z) between different points of the tube’s centerline,
which means elevation head remains constant. According to the Law of Energy Conservation, some
other form of energy must decrease to account for the increase in kinetic energy. This other form is
the pressure head, which decreases at the throat of the venturi:

Pressure Pressure Pressure
(greatest) (least) (less than upstream)

Ideally, the pressure downstream of the narrow throat should be the same as the pressure
upstream, assuming equal pipe diameters upstream and down. However, in practice the downstream
pressure gauge will show slightly less pressure than the upstream gauge due to some inevitable energy
loss as the fluid passed through the venturi. Some of this loss is due to fluid friction against the
walls of the tube, and some is due to viscous losses within the fluid driven by turbulent fluid motion
at the high-velocity throat passage.

The difference between upstream and downstream pressure is called permanent pressure loss,
while the difference in pressure between the narrow throat and downstream is called pressure
recovery.
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If we install vertical sight-tubes called piezometers® along a horizontal venturi tube, the
differences in pressure will be shown by the heights of liquid columns within the tubes. Here,
we assume an ideal (inviscid) liquid with no permanent pressure loss:

Piezometer Piezometer Piezometer

Ground leve

L7777 7777777777777 777777777 777777777777

The height of liquid in each piezometer tube represents the amount of potential energy™ in the
fluid at that point along the venturi tube.

69 A piezometer tube is nothing more than a manometer (minus the well or the other half of the U-tube).
"OFor a moving fluid, potential energy is the sum of fluid height and static pressure.
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We may gain more insight into the nature of energy in this moving fluid stream if we add three
more piezometers, each one equipped with its own Pitot tube facing upstream to “catch” the velocity
of the fluid. Rather than represent potential energy by liquid height as the straight-tube piezometers
do, the Pitot tube piezometers represent the total energy (potential plus kinetic) of the fluid. As
such, the liquid heights in these new piezometers are all equal to each other, showing that total
energy is indeed conserved at every point in the system:

+v2+ ( tant)
z —_— — = (constan
29 v

V4] Z Z3

L7777 77777777777 777777777777 7777777777

Here, each of the “heads” represented”’ in Bernoulli’s equation are shown in relation to the
different piezometer heights. The difference in liquid column height between each Pitot tube
piezometer (potential + kinetic energy) and its corresponding straight-tube piezometer (potential
energy alone) reflects the amount of kinetic energy possessed by the fluid stream at that point in
the venturi tube.

2
" The form of Bernoulli’s equation with each term expressed in units of distance (e.g. z = [feet] ; 12’—9 = [feet] ; %

= [feet]) was chosen so that the piezometers’ liquid heights would directly correspond.
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In a real venturi tube, there is some energy permanently lost in the moving fluid due to friction.
Consequently the piezometer measurements in a real venturi tube would look something like this:

| i Ll

z z 5

L7777 7777777777 7777777777777 77777777777

The “energy line” is seen to slope downhill from inlet to outlet on the venturi tube, showing a
degradation in total energy content from beginning to end.
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Chapter 3

Chemistry

Chemistry is the study of matter: in particular how and why atoms join with one another to form
molecules, and the processes by which molecules may be formed and re-formed. Any process where
atoms either join with one another to form molecules, or break apart to become individual atoms,
is called a chemical reaction. Applications of chemistry abound, from the formation of rocks and
minerals in the Earth to industrial processes to the processes of organic life itself. Chemistry plays
a particularly important role in industrial instrumentation in the form of devices called analyzers
which exist to measure concentrations of certain chemicals. Analytical instrumentation is essential
for industrial processes such as wastewater treatment, combustion, and fermentation to proceed
safely and efficiently. Analyzers are also essential for quantitatively tracking pollutants emitted by
industrial processes.

Like so many other areas of physical science, the patterns and limits we see in chemical reactions
are dominated by two fundamental laws of physics: the Conservation of Mass and the Conservation
of Energy. The particles of matter comprising atoms have the ability to store energy in potential
form, and their tendency is to “seek” states having the lowest available energy'. The arrangement of
electrons around the nucleus of an atom is largely dictated by the tendency of electrons to “prefer”
stable energy states, and so is the formation of molecules (atoms bonded together): electrons seeking
energy states least liable to disturbance. The rest, as they say, is mere detail.

We exploit this property of energy storage in the fuels we use. Atoms bound together to
form molecules are in a lower energy state than when they exist as separate atoms. Therefore,
an investment of energy is required to force molecules apart (into separate atoms), and energy is
returned (released) when atoms join together to form molecules. The combustion of a fuel, for
example, is nothing more than a process of the atoms in relatively unstable (high-energy) fuel
molecules joining with oxygen atoms in air to form stable (low-energy) molecules such as water
(H20) and carbon dioxide (COg).

Natural gas, for example, is a relatively stable combination of hydrogen (H) and carbon (C)

1This generally means to seek the lowest gross potential energy, but there are important exceptions where chemical
reactions actually proceed in the opposite direction (with atoms seeking higher energy states and absorbing energy
from the surrounding environment to achieve those higher states). A more general and consistent understanding of
matter and energy interactions involves a more complex concept called entropy, and a related concept known as Gibbs
Free Energy.

221
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atoms, mostly in the form of molecules with a 4:1 hydrogen-to-carbon ratio (CH,4). However, when
placed in the vicinity of free oxygen (O) atoms, and given enough energy (a spark) to cause the
hydrogen and carbon atoms to separate from each other, the hydrogen atoms strongly bond with
oxygen atoms to form water molecules (H20), while the carbon atoms also strongly bond with oxygen
atoms to form carbon dioxide molecules (CO3). These strong bonds formed between hydrogen,
carbon, and oxygen in the water and carbon dioxide molecules are the result of electrons within
those atoms seeking lower energy states than they possessed while forming molecules of natural gas
(CHy). In other words, the electrons binding hydrogen and carbon atoms together to form natural
gas are at higher energy states than the electrons binding hydrogen and carbon atoms to oxygen
atoms to form water and carbon dioxide, respectively. As those electrons attain lower energy states,
they difference of energy must go somewhere (since energy cannot be created or destroyed), and
so the chemical reaction releases that energy in the forms of heat and light. This is what you see
and feel in the presence of a natural gas flame: the heat and light emitted by hydrogen and carbon
atoms joining with oxygen atoms.

The Law of Mass Conservation plays an important role in chemistry as well. When atoms join
to form molecules, their masses add. That is, the mass of a molecule is precisely equal® to the mass
of its constituent atoms. Furthermore, the total mass is unaffected when atoms separate and then
re-join to form different molecules. In our natural gas combustion example, the mass of the CHy
molecules plus the mass of the oxygen atoms they combust with precisely equals the sum total mass
of the water and carbon dioxide molecules produced by the combustion. Another way of saying
this is that all mass entering a chemical reaction must equal the mass exiting that same reaction.
Chemical engineers apply this principle when they calculate mass balance in a chemical process:
accounting for all mass entering and exiting the process based on the safe assumption that no mass
will be gained or lost.

Too many other practical applications of chemistry exist to summarize in these pages, but
this chapter aims to give you a foundation to understand basic chemistry concepts necessary to
comprehend the function of certain instruments (notably analyzers) and processes.

2This statement is not perfectly honest. When atoms join to form molecules, the subsequent release of energy is
translated into an incredibly small loss of mass for the molecule, as described by Albert Einstein’s famous mass-energy
equation E = mc?. However, this mass discrepancy is so small (typically less than one part per billion of the original
mass!), we may safely ignore it for the purposes of understanding chemical reactions in industrial processes.
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3.1 Terms and Definitions

Atom: the smallest unit of matter that may be isolated by chemical means.

Particle: a part of an atom, separable from the other portions only by levels of energy far in
excess of chemical reactions.

Proton: a type of “elementary” particle, found in the nucleus of an atom, possessing a positive
electrical charge.

Neutron: a type of “elementary” particle, found in the nucleus of an atom, possessing no
electrical charge, and having nearly the same amount of mass as a proton.

Electron: a type of “elementary” particle, found in regions surrounding the nucleus of an atom,
possessing a negative electrical charge, and having just a small fraction of the mass of a proton
or neutron.

Element: a substance composed of atoms all sharing the same number of protons in their
nuclei (e.g. hydrogen, helium, nitrogen, iron, cesium, fluorine).

Atomic number: the number of protons in the nucleus of an atom — this quantity defines the
chemical identity of an atom.

Atomic mass or Atomic weight: the total number of elementary particles in the nucleus of an
atom (protons + neutrons) — this quantity defines the vast majority of an atom’s mass, since
the only other elementary particle (electrons) are so light-weight by comparison to protons
and neutrons.

Ion: an atom or molecule that is not electrically balanced (equal numbers of protons and
electrons).

— Clation: a positively-charged ion, called a “cation” because it is attracted toward the
negative electrode (cathode) immersed in a solution.

— Anion: a negatively-charged ion, called an “anion” because it is attracted toward the
positive electrode (anode) immersed in a solution.

Isotope: a variation on the theme of an element — atoms sharing the same number of protons in
their nuclei, but having different numbers of neutrons, are called “isotopes” (e.g. uranium-235
versus uranium-238).

Molecule: the smallest unit of matter composed of two or more atoms joined by electron
interaction in a fixed ratio (e.g. water: HyO). The smallest unit of a compound.

Compound: a substance composed of identical molecules (e.g. pure water).

Isomer: a variation on the theme of a compound — molecules sharing the same numbers and
types of atoms, but having different structural forms, are called “isomers”. For example, the
sugars glucose and fructose are isomers, both having the same formula C¢H1204 but having
disparate structures. An isomer is to a molecule as an isotope is to an atomic nucleus.
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e Mixture: a substance composed of different atoms or molecules not electronically bonded to

each other.

Solution: an homogeneous mixture at the molecular level (different atoms/molecules
thoroughly mixed together). A solution may be a gas, a liquid, or a solid (e.g. air, saltwater,
doped silicon).

— Solvent: the majority element or compound in a solution. Chemists usually consider
water to be the universal solvent.

— Solute: the minority element or compound in a solution (may be more than one).

— Precipitate: (noun) solute that has “fallen out of solution” due to the solution being
saturated with that element or compound; (verb) the process of solute separating from the rest
of the solution. (e.g. Mixing too much salt with water results in some of that salt precipitating
out of the water to form a solid pile at the bottom.)

— Supernatant: the solution remaining above the precipitate.

e Suspension: an heterogeneous mixture where separation occurs due to gravity (e.g. mud).

e Colloid or Colloidal suspension: an heterogeneous mixture where separation does not occur

(or occurs at a negligible pace) due to gravity (e.g. milk).
— Aerosol: A colloid formed of a solid or liquid substance dispersed in a gas medium.
— Foam: A colloid formed of a gas dispersed in either a liquid or a solid medium.
— Emulsion: A colloid formed of a liquid dispersed in either a liquid or a solid medium.

— Sol: A colloid formed of a solid dispersed in either a liquid or a solid medium.
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3.2 Atomic theory and chemical symbols

The three “elementary” particles of matter comprising all atoms are electrons, protons, and neutrons.
Combinations of these three particle types in various whole-number quantities constitute every type
of atom. These fundamental particles are absolutely miniscule in comparison to the macroscopic
existence of human beings. Just to illustrate, the mass of a single proton is approximately 1.67 x 10727
kilograms: written without scientific notation, it would be 0.00000000000000000000000000167 kg.
An electron is even smaller: weighing in at 9.11 x 1073 kg (about 1800 times less mass than a
proton!). Being far smaller in size than a wavelength of visible light®, we cannot see these particles
even with the most powerful optical microscope.

Protons and neutrons are very tightly bound together in the nucleus (center) of an atom. This
bond is so secure that only extraordinary forces are able to pry an atom’s nucleus apart. Suffice it
to say, one cannot disturb the stability of an atomic nucleus by rubbing, cutting, grinding, heating,
smashing, or any other macroscopic physical process. The force binding protons and neutrons
together in the nucleus is known as the strong nuclear force.

Electrons “orbit” the nucleus of atoms, and are held in proximity to those nuclei by electrostatic
attraction (the so-called electromagnetic force), which is many orders of magnitude weaker than
the strong nuclear force. Thus, electrons can be dislodged from or added to atoms through the
agency of macroscopic forces such as rubbing, cutting, grinding, heating, etc. It is the changeable
configurations of electrons that accounts for different atoms joining together to form molecules.

The chemical identity of any atom is a simple and direct function of how many protons that
atom has in its nucleus. Each nitrogen atom, for example, has seven (7) protons in its nucleus. This
quantity is called the atomic number of an atom. In order for an atom to have a net neutral electric
charge, there must be as many electrons orbiting the nucleus as there are protons in the nucleus,
since protons are positively charged and electrons are negatively charged (equal and opposite electric
charges, each). Therefore, a neutral atom of nitrogen will have seven electrons orbiting around the
nucleus, electrically balancing the seven protons within the nucleus.

The number of neutrons within the nucleus of an atom does not affect the atom’s chemical
identity, but it may affect its nuclear properties (e.g. whether or not it is radioactive; to what degree
it captures certain forms of radiation, etc.). For example, most nitrogen atoms have seven neutrons
along with seven protons in their nuclei, giving a total nuclear particle count of fourteen — the atomic
mass of the atom, sometimes called the atomic weight. However, it is possible for a nitrogen atom to
have eight neutrons (an atomic mass of fifteen) and still be “nitrogen,” with all the same chemical
properties.

3In order for a wave of light to be influenced at all by an object, that object must be at least the size of the wave’s
length. To use an analogy with water waves, it would be comparing the interaction of a water wave on a beach against
a large rock (a disturbance in the wave pattern) versus the non-disturbance of that same wave as it encounters a small
buoy.
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A tremendously simplified model of a common nitrogen atom is shown here, with 7 protons and
7 neutrons in the nucleus, and 7 electrons in “orbit” around the nucleus:

The atomic number of this atom (the number of protons in the nucleus) is seven, which is what
defines it as nitrogen. The atomic mass of this atom (the sum of protons and neutrons in the
nucleus) is fourteen. The chemical symbol for this atom is shown here:

Atomic mass (or weight)
(number of protons + neutrons)

N
14

2

Atomic number
(number of protons)

The atomic number is redundant to the letter “N” for nitrogen, since only the element nitrogen
can have an atomic number of seven. The atomic mass is only relevant when we need to distinguish
one isotope of nitrogen from another (variations of elements having the same number of protons but
different numbers of neutrons), and this is seldom because the chemical properties of isotopes are
identical — only their masses differ. For these reasons, you will usually find no left-hand subscripts
or superscripts placed near chemical symbols of elements in chemical expressions.
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By contrast, subscripts and superscripts placed to the right of a chemical symbol have very
important meanings in chemistry. A right-hand subscript refers to the number of atoms bound
together to form a molecule. A right-hand superscript refers to the electrical charge possessed by an
atom (or by a molecule) by virtue of the number of electrons not matching the number of protons:

An Ny molecule may be represented simplistically as follows, the two nitrogen atoms joined by a
mutual sharing of three of its highest-energy (valence) electrons, shown in this illustration as those
electrons residing in the largest-diameter “orbits”. Incidentally, this “triple bond” characterizing
the nitrogen molecule is very strong (the more electrons participating in the joining of two atoms,
the stronger the bond, all other factors being equal):

An N, molecule

Chemical symbol

N 3 AN X

2 ® ®
Nu\mber of atoms

bound together
in a molecule

(Two atoms of Nitrogen bound together by the sharing of electrons)

An N3~ ion is an atom of nitrogen having three more electrons than it normally would when
electrically balanced:

Chemical symbol ® ®

lonic charge
(- means extra electrons,
+ means missing electrons)
3

N R X

(Possesses three more electrons than an electrically balanced atom would)
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A chemical formula is a written description of a molecule’s constituent atoms. Ethanol (ethyl
alcohol), for example, is a conglomerate of two carbon atoms, six hydrogen atoms, and one oxygen
atom. One way to express this structure is to write the following formula for ethanol, the right-hand
subscripts showing the relative quantities of atoms in each ethanol molecule:

CyHgO

This is called a molecular formula, because it shows the proportions of atom types comprising
each molecule.

A more common way to write the formula for ethanol, though, is this:

CoH;0H

Here, an attempt is made to show the physical structure of the ethanol molecule, where one of
the hydrogen atoms is located further away from the others. This is called a structural formula.
If more detail of the bonds between atoms in a molecule is needed, a semi-graphic representation
called a displayed formula (also known as an expanded structural formula) may be used in lieu of a
structural formula:

Displayed formula for ethanol
(C,HsOH)

I
I—0O0—T
I—0O0—T
O
I
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In organic chemistry — the study of molecules principally centered around carbon atoms — a
special type of notation is used to show the structural detail of the molecule with fewer lines and
letters than a displayed formula. This notation is called a line drawing, where each line segment
represents a single electron bond* to a carbon atom, each vertex and line-end represents the location
of a carbon atom, and any hydrogen atoms directly bound to a carbon atom are simply omitted
for simplicity. Compare and contrast these displayed formulae and line drawings for a few different
organic compounds:

Displayed formula Line drawing
Ty
H—(ll—(|3—(|:—H Propane (C3Hg) — >
H H H
I
C

T
H
O
[l O
H P I
H—C o) o
| | y-valerolactone
H-C C—H
¢
H N H
H H

An important principle in organic chemistry is that carbon atoms prefer to form exactly four
bonds with surrounding atoms®. This fact is exploited in line-drawing notation where any bonds
not explicitly shown at a vertex are assumed to be single-bonds with hydrogen atoms, enough of
them to bring the total number of bonds with that carbon atom to four. Since a great many organic
compounds are principally comprised of carbon and hydrogen, the line-drawing symbols for these
molecules tend to be more lines than letters.

4One line represents a single bond, which is one electron shared per bound atom. Two parallel lines represent a
double bond, where each carbon atom shares two of its valence electrons with the neighboring atom. Three parallel
lines represent a triple bond, where each atom shares three of its outer electrons with the neighboring atom.

5Incidentally, nitrogen atoms preferentially form exactly three bonds, and oxygen atoms exactly two bonds. The
reason for this pattern is the particular patterns of electrons orbiting each of these atoms, and their respective energy
levels. For more information on this, see section 3.4 beginning on page 236.
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Chemical engineers often perform mass and energy balance calculations for processes where
mixtures of similar compounds exist. Wastewater treatment is but one example, where an array of
organic compounds must all be treated through oxidation (chemical reaction with oxygen). In such
cases, it is common for chemical engineers to write formulae expressing the average ratios of elements,
so that they may calculate the quantity of reactant(s) needed to complete the desired chemical
reaction with compounds in the mixture. Primary sludge clarified from municipal wastewater, for
example, may be represented by the compositional formula CooHgz9O19N. This does not suggest the
existence of some monstrous molecule consisting of twenty-two carbon atoms, thirty-nine hydrogen
atoms, ten oxygen atoms, and a lone nitrogen atom somewhere in a sample of sludge, but rather
that the combined average carbon, hydrogen, oxygen, and nitrogen quantities in that sludge exist in
a variety of molecular forms in these approximate proportions. This aggregate formula expression
helps the engineer quantify the gross chemical characteristics of the sludge, and from that determine
how much oxygen will be necessary to completely oxidize it.

Sometimes, compositional formulae are written with non-integer subscripts. An example of this
would be the compositional formula C4 gHg 4O5. 2, which also happens to be an average composition
for municipal wastewater sludge (ignoring nitrogen content). The same formula could just as well
have been written CygHgsO92, or even CosH420171, because these subscript values all express the
exact same proportions.
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3.3 Periodic table of the elements

All substances are comprised of various elements in various combinations and proportions. Elements
may thus be thought of as the building-blocks of matter. A Periodic Table of the Elements is a table
listing the known elements in order of their atomic numbers.

H 1 He 2
Hydrogen Periodic Table of the Elements Helium
1.00794 4.00260
1 Metalloids Nonmetals 2

1s 1s’

Li 3 |Be 4 Symbol —~/K 19|~—Atomic number B 5 |c 6N 7]o 8 |F 9Ne 10
Lithium Beryllium __{ Potassium Boron Carbon Nitrogen Oxygen Fluorine Neon
6.941 9.012182 Name 39.0983 < Atomic mass 10.81 12.011 14.0067 | 159994 | 18.9984 | 20.179
P 262 45t averaged according to 2pt 20 2p° 2 2p° 2p°

Electron - occurénce on earth)

Na 11{Mg 12 configuration Al 13si 14 [P 15 (s 6(cl 17 [Ar 18
Sodium | Magnesium Aluminum Silicon [Phosphorug  Sulfur Chlorine Argon

22989768 | 24.3050 26.9815 | 28.0855 | 30.9738 | 32.06 35453 | 39.948
1 2 Metals 1 2 3 4 5 6
3s 3s 3p 3p’ 3p’ 3p’ 3p’ 3p

K 19lca  20|sc 21 Ti 22|v 23[cr  2a|mMn  25|Fe  26[co  27|Ni 28[cu  20|zn  30[Ga 31|Ge 32|As 33[se 3a[Br 35|k 36

Calcium Titanium Chromium Iron Cobalt Nickel | Copper Zinc Gallium  |Germanium| Arsenic | Selenium | Bromine | Krypton

39.0983 | 40.078 [44.955010 | 47.88 50.9415 | 51.9961 | 54.93805 | 55.847 | 58.93320 | 58.69 63.546 65.39 69.723 7261 | 74.92159 | 78.96 79.904 83.80
4s! 4s* 3d'4s’ 3d%4s’ 3d%s’ 3d°s* 3d%s® | 3d°4s” | 3d’4s® | 3d%s® | 3d'%4s' | 3d"%4s® | 4p' 4p° 4p° 4p* 4p° 4p°

RD 37|sr 38|Y 39(zr  40|Nb  41|Mo 42|Tc  43|Ru  44[Rh  45|Pd  46|Ag  47|cd  48|in 49(sn  s0|sb  s51|Te 52| 53(Xe 54
Rubidium | Strontium | Yttrium | Zirconium | Niobium T Ruthenium | Rhodium | Palladium |~ Silver | Cadmium | Indium Tin Antimony | Tellurium | lodine | Xenon
854678 | 87.62 88.90585 | 91.224 | 92.90638 | 95.94 (98) 101.07 [102.90550 | 106.42 | 107.8682 | 112.411 | 114.82 | 118710 | 12175 | 127.60 | 126.905 | 131.30
5s' 55” 4d'ss’ 4d°5s” 4d‘ss* 4d°ss* 4d°5s” 4d’ss" 4d°ss" 4d'%s° | 4d'%s' | 4d'%s’ | sp' 5p° 5p° 5p* 5p° 5p°

Cs 55(Ba 56| 57-71 |Hf  72|Ta 73|w  74|Re 75|0s 76 |ir 77|t 78[Au 79|Hg 80 [TI 8L(Pb  82|Bi 83|Po  84[At 85|Rn 86
Cesium | Barium |Lanthanide | Hafnium | Tantalum | Tungsten | Rhenium | Osmium | Iridium | Platinum | Gold Mercury | Thalium | Lead | Bismuth | Polonium | Astatine | Radon

132.90543 | 137.327 | series 17849 | 180.9479 | 18385 | 186.207 | 190.2 19222 | 195.08 |196.96654 | 20059 | 204.3833 | 207.2 |208.98037 | (209) (210) (222)
6s’ 65’ 5d°6s’ 5d°%6s’ 5d‘6s’ 5d°6s’ 5d°%s” 5d'6s” 5d%s’ 5d'%s' | 5d"%s® | 6p" 6p’ 6p° 6p’ 6p° 6p°

Fr  87|Ra 88| 89-103 |Ung 104|Unp 105|Unh 106 |Uns 107 108 109
Francium | Radium | Actinide |t Unnilpentium | Unnilhexium | Unnilsept
(223) (226) series (261) (262) (263) (262)
7s 7s? 6d°7s’ 6d°7s’ 6d'7s’

La 57|Ce  58|Pr 59 (Nd 60 |Pm  61(Sm 62|Eu  63|Gd 64 |Tb  65|Dy 66 |Ho 67 |Er 68|Tm 69 |Yb 70 (|Lu 71
Lanthanide |L Cerium Europium | Gadolinium| Terbium |D ium| Holmium | Erbium | Thulium | Ytterbium | Lutetium
series 138.9055 | 140.115 |140.90765 | 144.24 (145) 150.36 151.965 | 157.25 |158.92534 | 162.50 |164.93032 | 167.26 |168.93421 | 173.04 | 174.967
5d'6s’ 4f'sd'es® | 4f6s’ 4f'es” 4%6s” 41%s” 4f6s” 4f'5d'6s” | 4f%s” 41%s” 4ft'6s” 4%6s” 4f%s” 4f'es® | af'*sd'es’
Ac  89|Th 90(Pa  91|U 92(Np  93|Pu  94|Am  95|Cm 96 |Bk 97 |Cf 98 |Es 99 |Fm  100|Md 101|No  102|Lr 103
Actinide Actinium | Thorium Uranium i i i Curium i Californium i Fermium Nobelium |L
series (227) | 232.0381 |231.03588 | 238.0289 | (237) (244) (243) (247) (247) (251) (252) (257) (258) (259) (260)
6d'7s’ 6d°7s’ 5f6d'7s® | 5f6d'7s® | 5f'6d'7s” | 5°%6d°7s® | 5('6d°7s® | 5('6d'7s” | 5(%6d°7s” | 5f'%6d°7s | 5''6d°7s® | 5f%6d°7s® | 5f°6d°7s® | 6d°7s’ 6d'7s”

Multiple attributes appear for each element in the table. Two of these attributes — atomic number
and atomic mass — are directly related to the number of particles in the nucleus of each atom. We
will examine the table’s entry for the element potassium (K) to explore these concepts.

Potassium has an atomic number (number of protons in the nucleus of each potassium atom)
of 19. This number defines the element. If we were somehow to add or subtract protons from
the nucleus of a potassium atom®, it would cease being potassium and transmutate into a different
element. Note how every element in the table has its own unique atomic number, and how each of
these numbers is whole (no fractions or decimals).

The atomic mass or atomic weight shown for potassium is 39.0983. This quantity is the sum of
protons and neutrons found in the nucleus of each potassium atom. Like the atomic number (19),
we would logically expect the atomic mass to be a whole number as well, since protons and neutrons

6The amount of energy required to rearrange particles in the nucleus for even just a single atom is tremendous, lying
well outside the energy ranges of chemical reactions. Such energy levels are the exclusive domain of nuclear reactions
and high-energy radiation (subatomic particles traveling at high velocity). The extremely large energy “investment”
required to alter an atom’s nucleus is why atomic identities are so stable. This is precisely why alchemists of antiquity
utterly failed to turn lead into gold: no materials, processes, or techniques they had at their disposal were capable
of the targeted energy necessary to dislodge three protons from a nucleus of lead (g2Pb) to that it would turn into a
nucleus of gold (79Au). That, and the fact the alchemists had no clue about atomic structure to begin with, made
their endeavor fruitless.
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only come in whole quantities. The primary reason we see a non-whole number for potassium’s
atomic mass is that this table reflects the average atomic mass of potassium atoms as found in
nature. Some potassium atoms have atomic masses greater than 39, and some have atomic masses
less than 39. We know that the number of protons in every potassium atom is fixed (which is what
gives potassium its elemental identity), which means the only quantity that may cause the atomic
mass to vary is the number of neutrons in the nucleus. The most common form of potassium (*°K)
atom possesses 19 protons and 20 neutrons in its nucleus, giving it an atomic mass of 39 (19 + 20).
The next most common form of potassium found on Earth is (*'K), possessing 19 protons and 22
neutrons.

We refer to atoms of the same element with differing atomic masses as isotopes. From a chemical
perspective, isotopes are identical. That is to say, they engage in the exact same chemical reactions
in the exact same manner. To use potassium as an example, an atom of 3°K will join with a chlorine
atom (Cl) to form the compound potassium chloride (KCI) just as readily as an atom of 'K will
join with a chlorine atom to form the same compound. The three isotopes of hydrogen (‘H, ?H,
and 3H: hydrogen, deuterium, and tritium, respectively) are all chemically identical: all are highly
flammable, combining with oxygen to create water (HyO). However, deuterium (*H) has twice the
density of normal hydrogen (*H), while tritium (*H) has three times the density of normal hydrogen
and is highly radioactive! Isotopes only differ in their mass and in their nuclear properties (such as
radioactivity: the tendency for a nucleus to spontaneously decay, usually resulting in a loss or gain
of protons that subsequently alters the identity of the decayed atom.).

The Periodic Table is called “periodic” because its configuration reveals a repeating pattern of
chemical behaviors approximately following atomic number. Horizontal rows in the table are called
periods, while vertical columns are called groups. Elements in the same group (vertical column) share
similar chemical reactivities — that is, they tend to engage in the same types of chemical reactions
— despite having different masses and physical properties such as melting point, boiling point, etc.
This periodicity is a function of how electrons are arranged around the nucleus of each atom, a
subject we will explore in more detail later in this chapter. As mentioned previously, chemistry is
the study of how atoms bond together to form molecules, and this bonding takes place through the
interaction of the electrons surrounding the atoms’ nuclei. It makes perfect sense, then, that the
configuration of those electrons determine the chemical (bonding) properties of atoms.
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Some periodic tables show the first ionization energy value for each element — the amount of
energy required to force the first electron of an electrically balanced atom to separate from that atom
— in addition to other attributes such as atomic number and atomic mass. If we note the ionization
energies of the elements, reading each element in turn from left-to-right, starting with period 1
(hydrogen and helium) and progressing to subsequent periods, we see an interesting pattern:

Element Period First ionization energy
(measured in “electron-volts”)

Hydrogen (H) 1 13.5984
Helium (He) 1 24.5874
Lithium (L) 2 5.3917
Beryllium (Be) 2 9.3227
Boron (B) 2 8.2980
Carbon (C) 2 11.2603
Nitrogen (N) 2 14.5341
Oxygen (O) 2 13.6181
Fluorine (F) 2 17.4228
Neon (Ne) 2 21.5645
Sodium (Na) 3 5.1391
Magnesium (Mg) 3 7.6462
Aluminum (Al) 3 5.9858
Silicon (S1) 3 81517
Phosphorus (P) 3 10.4867
Sulfur (9) 3 10.3600
Chlorine (Cl) 3 12.9676
Argon (Ar) 3 15.7596
Potassium (K) 4 4.3407

First ionization energy represents the relative stability of the last electron balancing the electrical
charge of an atom. We see from this table that 24.5874 electron-volts of energy is needed to remove
one electron from an electrically-balanced atom of helium (changing He into He!"), while only
13.5984 electron-volts of energy is required to do the same to an atom of hydrogen. This tells us
the electron configuration of helium is at a lower energy (and therefore more stable) than that of
hydrogen.
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The ionization energies increase with increasing atomic number (with an occasional down-step)
until the last column of the period is reached, and then there is a comparatively enormous down-step
in energy at the first column of a new period. This pattern is clearly evident when the first ionization
energies are plotted against atomic number:

Period 1 Period 2 Period 3 Period 4
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This periodicity suggests that as atoms grow in atomic number, the additional electrons do not
simply pile on in random fashion or in a plain and simple progression from inner orbits to outer
orbits. Rather, they “fill in” a structured energy pattern, with major changes in structure at the
start of each new period. More details of this structured pattern will be explored later in this
chapter.

The low ionization energy values for all the “Group 1”7 elements (far left-hand column) suggest
they are relatively easy to positively ionize, and indeed we find this to be the case through
experimentation. Hydrogen, lithium, sodium, potassium, and the rest all readily become positively-
charged ions upon interaction with other atoms, since their low ionization energy values means they
may easily lose an electron.

The high ionization energy values for all the “Group 18” elements (far right-hand column) suggest
they possess a very stable electron structure, which is also verified by experiment. These are the
noble elements, possessing very little reactive potential”.

Looking at the “Group 17”7 column, just to the left of the noble elements, we notice that they are
all just one electron shy of the stable electron structure enjoyed by the noble atoms when in their
electrically-balanced states. This suggests it might be easy to add one more electron to atoms of these
elements, which (once again!) is a principle validated by experiment. Fluorine, chlorine, bromine,
iodine, and even astatine® all readily ionize negatively, readily accepting an extra electron from
surrounding atoms. As one might expect from this tendency, these elements readily bond through
electrostatic attraction with the “Group 17 elements (hydrogen, lithium, sodium, potassium, etc.),
each “Group 177 atom accepting an extra electron from each “Group 1”7 atom which is readily
provides it. Ordinary table salt (sodium chloride, or NaCl) is an example of a compound formed by
this sort of bond.

"It used to be believed that these elements were completely inert: incapable of forming molecular bonds with other
atoms. However, this is not precisely true, as some compounds are now known to integrate noble elements.

8 All isotopes of astatine (At) are radioactive with very short half-lives, making this element difficult to isolate and
study.
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Thus, Group 1 and Group 17 elements are both highly reactive in a chemical sense, but in
different ways. Group 1 elements easily form bonds with Group 17 elements, but Group 1 elements
do not generally bond (solely) with other Group 1 elements, and likewise Group 17 elements do not
generally bond (solely) with other Group 17 elements. It is the structure of the electrons surrounding
each atom’s nucleus that determines how those atoms will bond with other atoms.
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3.4 Electronic structure

Earlier in this chapter you were shown a model of a nitrogen atom with a dense nucleus (comprised of
protons and neutrons) surrounded by electrons whirling around like satellites around a planet. While
there are some useful features of this model, it is largely in error. A more realistic view of atomic
structure begins with the realization that electrons do not exist as discrete particles, but rather as
wave packets. In a sense, they orbit the nucleus within certain areas of probability, as described by
the principles of quantum mechanics. One way to envision this is to think of an electron’s placement
around the nucleus in the same way you might picture a city shrouded by a layer of fog. The electron
does not have a discrete location (even though there is a discrete number of them found in every
atom), but rather may be found anywhere within a certain region to varying degrees of probability.

Things get even stranger the more electrons there are in an atom. No two electrons may share
the same quantum states in the same atom — a principle called the Pauli Exclusion Principle. This
means the electrons surrounding a nucleus must exist in distinct patterns. Just a few of these
patterns are shown here as orbitals (regions of high probability where up to two electrons may be
found surrounding a nucleus):”

oD
,

Electrons situate themselves around the nucleus of any atom according to one basic rule: the
minimization of potential energy. That is, the electrons seek the lowest-energy positions available
around the nucleus. Given the electrostatic attraction between negative electrons and the positive
nucleus of an atom, there is potential energy stored in the “elevation” between an orbiting electron
and the nucleus, just as there is gravitational potential energy in any object orbiting a planet.
Electrons lose energy as they situate themselves closer to the nucleus, and it requires an external
input of energy to move an electron farther away from its parent nucleus.

In a sense, most of chemistry may be explained by this principle of minimized potential energy.
Electrons “want” to “fall” as close as they can to the positively-charged nucleus. However, there is
limited “seating” around the nucleus. As described by Pauli’s Exclusion Principle, electrons cannot
simply pile on top of each other in their quest for minimum energy, but rather must occupy certain
regions of space allowed by their unique quantum states.

An analogy!'? for visualizing this is to picture an atom as if it were an amphitheater, with the
stage being the nucleus and the concentric array of seats being places where electrons may reside.
All spectators (electrons) desire to be as close to the stage (nucleus) in an amphitheater (atom)
as possible, but since everyone cannot occupy the best seat, people are forced to choose seats at

9These orbitals just happen to be the 1s, 2p, 3d, and 4f orbitals, as viewed from left to right. In each case, the
nucleus lies at the geometric center of each shape. In a real atom, all orbitals share the same center, which means
any atom having more than two electrons (that’s all elements except for hydrogen and helium!) will have multiple
orbitals around one nucleus. This four-set of orbital visualizations shows what some orbitals would look like if viewed
in isolation.

10Please understand that like all analogies, this one merely illustrates a complex concept in terms that are easier to
recognize. Analogies do not explain why things work, but merely liken an abstract phenomenon to something more
accessible to common experience.
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different positions around the stage. As a result, the inner seats fill first, with most empty seats
being furthest away from the stage. The concept of energy fits neatly into this analogy as well: just
as electrons give up energy to “fall into” lower-energy regions around the nucleus, people must give
up money to purchase seats closest to the action on stage.

The energy levels available for orbiting electrons are divided into categories of shells and subshells.
A “shell” (or, principal quantum number, n) describes the main energy level of an electron. In our
amphitheater analogy, this is equivalent to a tier or seating level. A “subshell” (or, subsidiary
quantum number, [) further divides the energy levels within each electron shell, and assigns different
shapes to the electrons’ probability “clouds.” In the amphitheater analogy, a subshell would be a
row of seats within a particular tier. To make the analogy accurate, we would have to imagine each
row of seats in a tier having a different shape (not all arcs or straight lines), with varying degrees
of viewing comfort afforded by each shape. The first row in each tier faces uniformly toward the
stage, allowing easy viewing. Successive rows (subshells) in each tier (shell) contain more seats, but
are bent in such a way that the stage is not as easy to view, making these rows less desirable to
occupy. Electron subshells always have an even-numbered electron capacity, analogous to theater
rows containing even-numbered quantities of seats, because atomic electrons tend to gather in pairs
called orbitals.

Chemists identify electron shells both by number (the value of the quantum number n) and/or
by capital letters: the first shell by the letter K, the second by L, the third by M, and the fourth
by N. Higher-order shells exist for atoms requiring*! many electrons (high atomic number), and the
lettering pattern is alphabetic (fifth shell is O, sixth is P, etc.). Each successive shell has a greater
number of subshells available, like successive amphitheater tiers having more rows: the low-level
tiers closest to the stage having the fewest rows, and the high-level tiers furthest from the stage
having the most rows.

A numbering and lettering system is also used by chemists to identify subshells within each shell
(the ! quantum number value starting with zero, and lower-case letters beginning with “s”): the
first subshell (I = 0) in any shell represented by the letter s, the second (I = 1) by p, the third
(I =2) by d, the fourth (I = 3) by f, and all others by successive lower-case letters of the alphabet!?.
Each subshell of each shell has an even-numbered capacity for electrons, since the electrons in each
subshell are organized in “orbital” regions, each orbital handling a maximum of two'? electrons. The
number of orbitals per shell is equal to twice the [ value plus one. An “s” subshell has one orbital
holding up to two electrons. A “p” subshell has three orbitals holding up to six electrons total. A
“d” subshell has five orbitals holding up to ten electrons total. An “f” subshell has seven orbitals
holding up to 14 electrons total. A “g” subshell has nine orbitals holding up to 18 electrons total.

The number of subshells in any shell is the same as that shell’s n value. Thus, the first (K) shell
has but one subshell, “s”. The second (L) shell has two subshells, an “s” and a “p”. The third (M)

[T [{3N)

shell has three subshells available, an “s”, a “p”, and a “d”; and so on.

1 Truth be told, higher-order shells exist even in simple atoms like hydrogen, but are simply not occupied by that
atom’s electron(s) unless they are “excited” into a higher energy state by an external input of energy.

12The letters s, p, d, and f refer to the words sharp, principal, diffuse, and fundamental, used to describe the
appearance of spectral lines in the early days of atomic spectroscopy research. Higher-order subshells are labeled
alphabetically after f: g, h, and i.

13The two electrons of any orbital have opposite spin values.
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This table shows the first few shells, their subshells, and electron capacities of each:

Shell Subshell Subshell electron capacity
(n value) (1 value) =2(20+1)
| n=1;K | 1=0;s | 2x (2x0+1)=2
n=2;L [=0:s 2x (2x0+1)=2
Il=1;p 2x(2x141)=6
n=3;M l=0:s 2x(2x041)=2
I=1;p 2x(2x141)=6
l=2:;d 2x(2x241)=10
n=4;N 1=0;s 2x(2x041)=2
I=1;p 2x (2x1+1)=6
l=2;d 2x(2x241)=10
[=3;f 2x(2x34+1)=14

Reviewing our amphitheater analogy, atomic shells are like seating tiers (levels), subshells are
like rows of seats within each tier, and subshell electron capacity is like the number of seats in each
row. This simple illustration shows an atom with three shells (K, L, and M) with the respective
subshells represented by differently-shaded rings within each shell, having different numbers of places
for electrons within each one:

This illustration is vastly over-simplified, failing to show the diverse shapes of each subshell,
serving only to show how each successive shell grows in subshells and electron capacities.
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The complete electron configuration for an atom may be expressed using spectroscopic notation,
showing the shell numbers, subshell letters, and number of electrons residing within each subshell as
a superscript. For example, the element helium (with an atomic number of 2) would be expressed
as 1s2, with just two electrons in the “s” subshell of the first shell. The following table shows the
electron structures of the first nineteen elements in the periodic table, from the element hydrogen
(atomic number = 1) to potassium (atomic number = 19):

Element Atomic number Electron configuration
Hydrogen 1 1s!
Helium 2 1s?
Lithium 3 1s%2s!
Beryllium 4 152252
Boron b) 1522s22p!
Carbon 6 1522s%2p?
Nitrogen 7 1s22s522p°
Oxygen 8 1s22522p?
Fluorine 9 1s22s522p°
Neon 10 1522s%2p"
Sodium 11 15225%2pf3s!
Magnesium 12 1522522p%3s?
Aluminum 13 1522522p%3s23p!
Silicon 14 1522s%2p%3s23p?
Phosphorus 15 1522522p®3s23p3
Sulfur 16 1522522p%3s23p?*
Chlorine 17 1522s522p%3523p°
Argon 18 1522522p%3s23p°
Potassium 19 1522522p%3s23p0as!

In order to avoid having to write unwieldy spectroscopic descriptions of each element’s electron
structure, it is customary to write the notation only for subshells that are unfilled. For example,
instead of writing the electron structure of the element aluminum as 1522s22p%3s23p', we might
just as well write a condensed version showing only the last subshell (3p!), since all the previous
subshells are completely full.

Another way to abbreviate the spectroscopic notation for elements is to condense all the shells
below the newest (unfilled) shell as the corresponding noble element, in brackets. To use the example
of aluminum again, we could write its spectroscopic notation as [Ne|3s?3p! since its shell 1 and shell
2 configurations are completely described by the electron configuration of Neon.
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Re-writing our electron shell table for the first nineteen elements using this condensed notation:

Element Atomic number Electron configuration
Hydrogen 1 1s!
Helium 2 152
Lithium 3 [He]2s!
Beryllium 4 [He]2s?
Boron 5 [He]2s?2p!
Carbon 6 [He]2s%2p?
Nitrogen 7 [He]2s22p3
Oxygen 8 [He]2s?2p?
Fluorine 9 [He]2s22p®
Neon 10 [He]2s%2p®
Sodium 11 [Ne]3st
Magnesium 12 [Ne|3s?
Aluminum 13 [Ne]3s?3p!
Silicon 14 [Ne]3s23p?
Phosphorus 15 [Ne]3s23p3
Sulfur 16 [Ne]3s?3p?
Chlorine 17 Nel3s?3p°
Argon 18 Ne|3s23p°
Potassium 19 [Ar]ds?

If we progress from element to element in increasing atomic number, we see that no new shell
begins to form until after we reach the noble element for that period'* at the far right-hand column.
With the beginning of each new period at the far-left end of the Table, we see the beginning of
the next higher-order electron shell. The shell(s) below are represented by whichever noble element
shares that same configuration, indicating a “noble core” of electrons residing in extremely stable
(low-energy) regions around the nucleus.

14Recall the definition of a “period” in the Periodic Table being a horizontal row, with each vertical column being
called a “group”.
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The beginning of the next higher-order shell is what accounts for the periodic cycle of ionization
energies we see in elements of progressing atomic number. The first electron to take residence in a
new shell is very easy to remove, unlike the electrons residing in the “noble” configuration shell(s)
below:

Period 1 Period 2 Period 3 Period 4
Helium
T Negn
20 -
lonization 45 Arggn Krypton

energy (eV)
1

. \

0 rrrrrr 010 rrrrrrrrrirvrrrrvrr1vr1rrr1rirrriTriTTT

Atomic number

Noble elements found at the end of each period have the
most stable (i.e. difficult-to-ionize) electron configurations.

Not only is the “noble core” notation convenient for tersely describing the electron structure of an
element, but it also reveals an important concept in chemistry: the idea of valence. Electrons residing
in lower-order shells are, by definition, at lower energy states than electrons residing in higher-order
shells and are therefore much more difficult to dislodge. Therefore, the electrons in unfilled shells,
being easier to dislodge, play a far greater role in chemical bonds than electrons residing in filled
shells below. These “outer” electrons are called valence electrons, and their number determines how
readily an atom will chemically interact with another atom. This is why elements found in the
same group (having similar outer-electron configurations) bear similar chemical characteristics: the
electrons lying below in the “noble core” configurations have little effect on how the atom will bond
with other atoms. A lithium atom, with its outer-most electron configuration being 2s!, reacts in
much the same way as an atom of sodium having an outer-most configuration of 3s', and much the
same as a potassium atom having an outer-most configuration of 4s'.



242 CHAPTER 3. CHEMISTRY

If we examine the electron structures of atoms with successively greater atomic numbers (more
protons in the nucleus, therefore more electrons in orbit to balance the electrical charge), we notice
that the shells and subshells fill up in an interesting pattern. One might think that all the lower-
order shells get completely filled before any electrons go into a higher-order shell — just as we might
expect people to fill every seat in all the lower tiers of an amphitheater before filling seats in any
of the higher tiers — but this is not always the case. Instead, the energy levels of subshells within
shells is split, such that certain subshells within a higher shell will have a lower energy value than
certain subshells within a lower shell. Referring back to our amphitheater analogy, where seating
tiers represented shells and seat rows of various shape represented subshells, it is as though people
choose to fill the more comfortable rows in higher-level tiers before sitting in the less-comfortable
rows in lowest available tiers, the desire for comfort trumping the desire for proximity to the stage.

A rule commonly taught in introductory chemistry courses called the Madelung rule (also referred
to as Aufbau order, after the German verb aufbauen meaning “to build up”) is that subshells fill
with increasing atomic number in such an order that the subshell with the lowest n + [ value, in the
lowest shell, gets filled before any others.

The following graphic illustrates this ordering;:
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Madelung filling order: 1s — 2s — 2p — 3s — 3p — 4s — 3d — 4p — 5s — 4d — bp — 6s — 4f
— 5d — 6p — 7s — 5f — 6d — Tp — 8 — (etc.)

It should be noted that exceptions exist for this rule. We see one of those exceptions with
the element chromium (24Cr). Strictly following the Madelung rule in progressing from vanadium
(atomic number = 23, valence electron structure 3d®4s?) to chromium (atomic number = 24), we
would expect the next electron to take residence in the “3d” subshell making chromium’s valence
structure be 3d*4s?, but instead we find two more electrons residing in chromium’s 3d subshell with
one less in the 4s subshell (3d°4s!). The sequence resumes its expected progression with the next
element, manganese (atomic number = 25, valence electron structure 3d°4s?). The general principle
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of energy minimization still holds true . . . it’s just that the relative energies of succeeding subshells
do not follow a simple rule structure. In other words, the Aufbau order is an over-simplified view of
reality. To use the amphitheater analogy again, it’s as if someone gave up one of the nice chairs in
tier 4 to be closer to a friend who just occupied one of the less comfortable chairs in tier 3.

The practical importance of electron configurations in chemistry is the potential energy possessed
by electrons as they reside in different shells and subshells. This is extremely important in the
formation and breaking of chemical bonds, which occur due to the interaction of electrons between
two or more atoms. A chemical bond occurs between atoms when the outer-most (valence) electrons
of those atoms mutually arrange themselves in energy states that are collectively lower than they
would be individually. The ability for different atoms to join in chemical bonds completely depends
upon the default energy states of electrons in each atom, as well as the next available energy states
in the other atoms. Atoms will form stable bonds only if the union allows electrons to assume stable
(low-energy) levels. This is why different elements are very selective regarding which elements they
will chemically bond with to form compounds: not all combinations of atoms result in favorable
potential energy levels.

The amount of energy required to break a chemical bond (i.e. separate the atoms from each other)
is the same amount of energy required to restore the atoms’ electrons to their previous (default)
states before they joined. This is the same amount of energy released by the atoms as they come
together to form the bond. Thus, we see the foundation of the general principle in chemistry that
forming chemical bonds releases energy, while breaking chemical bonds requires an input of energy
from an external source. We also see in this fact an expression of the Conservation of Energy:
the amount of energy “invested” in breaking bonds is precisely the same as the amount of energy
“returned” when those same bonds re-form.

In summary, the whole of chemistry is a consequence of electrons not being able to assume
arbitrary positions around the nucleus of an atom. Instead, they seek the lowest possible energy
levels within a framework allowing them to retain unique quantum states. Atoms with mutually
agreeable electron structures readily bond together to form molecules, and they release energy in
the process of joining. Molecules may be broken up into their constituent atoms, if sufficient energy
is applied to overcome the bond. Atoms with incompatible electron structures do not form stable
bonds with each other.
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3.5 Spectroscopy

Much of our knowledge about atomic structure comes from experimental data relating the interaction
between light and atoms of the different elements. Light may be modeled as an electromagnetic
wave, consisting of an oscillating electric field and an oscillating magnetic field. Like any wave, the
relationship between propagation velocity, wavelength, and frequency is described by the following
equation:

v=M\f

Where,
v = Velocity of propagation (e.g. meters per second)
A = Wavelength (e.g. meters)
f = Frequency of wave (e.g. Hz, or 1/seconds)

When applied to light waves, this equation is typically written as ¢ = \f, where c¢ is the speed
of light in a vacuum (= 3 x 10® meters per second): one of the fundamental constants of physics.

Light that is visible to the human eye has wavelengths approximately between 400 nm (400
nanometers) at the violet end of the spectrum and 700 nm at the red end of the spectrum. Given
the speed of light, this equates to a frequency range for visible light between 7.5 x 10'* Hz and
4.286 x 10'* Hz.
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A computer-generated image of the visible light spectrum (plus the ultraviolet and infrared
regions outside of the visible range, shown in grey) appears here. A real spectrum may be generated
by taking “white” light and passing it through either a prism or a diffraction grating so that the
different wavelengths separate from each other:
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Just as buoyant objects are moved up and down by waves of water, electrically-charged objects
may be moved about by waves of electrical fields such as light. In the case of electrons, their positions
around the nucleus of an atom may be altered if struck by light of the necessary wavelength.

One of the major breakthrough discoveries of modern physics was the realization that a ray
of light could be modeled as a stream of particles — each of these “photon” particles possessing a
definite amount of energy — in addition to being modeled as a continuous wave possessing a definite
frequency. The combined work of physicists Max Planck in 1900 and Albert Einstein in 1905 resulted
in the following equation relating a photon’s energy to its frequency:

E = hf

Where,
E = Energy carried by a single “photon” of light (joules)
h = Planck’s constant (6.626 x 1073* joule-seconds)
f = Frequency of light wave (Hz, or 1/seconds)

We may re-write this equation to express a photon’s energy in terms of its wavelength () rather
than its frequency (f), knowing the equation relating those two variables for waves of light (¢ = Af):

he
EF=—
A

Physicists knew that light carried energy, but now they understood that the energy carried by a
beam of light was finely divided into fixed (“quantized”) amounts corresponding to the wavelength
of each particle-wave (photon). That is to say, a beam of monochromatic (single-color, or single-
wavelength) light consists of photons having exactly the same energies, and total beam power is
simply a matter of how many of those photons per second pass by. Varying the intensity of a
monochromatic light beam without changing its wavelength (color) only changes the number of
photons per second, not the amount of energy carried by each photon.
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If the amount of energy carried by a photon happens to match the energy required to make
an atomic electron “jump” from one energy level to another within the atom, the photon will be
consumed in the work of that task when it strikes the atom. Conversely, when that “excited” electron
returns to its original (lower) energy level in the atom, it releases a photon of the same frequency
as the original photon that excited the electron:

Photon strikes an atom . . . Electron jumps to a higher Electron falls back to its
energy level . .. original energy level and
emits another photon . . .

Since the energy levels available for an electron to “jump” within an atom are limited to certain
fixed values by virtue of the atom’s shell and subshell structure, this means only certain specific
frequencies or wavelengths of light will be able to make an electron of a particular atom move to
new shells and/or subshells'®. A startling consequence of this quantum theory of light was that
the ability of a light beam to dislodge electrons from an atom depended on the color (wavelength
or frequency) of the photons, and not the intensity (total power) of the light beam. A light beam
consisting of photons with insufficient individual energy (i.e. frequency too low; wavelength too long;
color too far shifted toward red if visible) is incapable of boosting electrons from a lower energy level
to a higher energy level, no matter how intense that beam may be. This is analogous to shooting
an armored target with slow-moving bullets: so long as the velocity (kinetic energy) of each bullet
is insufficient to penetrate the armor, it does not matter how many bullets are fired at the target,
or how frequently they are fired. However, just a single bullet with sufficient kinetic energy will be
sufficient to penetrate the armor.

15This is the reason silicon-based photovoltaic solar cells are so inefficient, converting only a fraction of the incident
light into electricity. The energy levels required to create an electron-hole pair at the P-N junction correspond to a
narrow portion of the natural light spectrum. This means most of the photons striking a solar cell do not transfer
their energy into electrical power because their individual energy levels are insufficient to create an electron-hole pair
in the cell’s P-N junction. For photovoltaic cells to improve in efficiency, some way must be found to harness a broader
spectrum of photon frequencies (light colors) than silicon P-N junctions can do, at least on their own.
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The discovery of photons having discrete energy values was a major shift in scientific thought,
setting physics down a new path of understanding matter and energy in quantum terms. It was this
new quantum theory of matter and energy that led to the modern understanding of atomic electron
structure, with all its shells, subshells, and orbitals. Later mathematical contributions to quantum
theory from physicists such as Louis de Broglie, Werner Heisenberg, and especially Erwin Schrédinger
provided tools to calculate the probability distributions of electrons within atoms. The oddly-shaped
orbital electron “clouds” discussed earlier in this chapter are in fact solutions to Schrédinger’s wave
equation for electrons at different energy levels:

This is why the notation used in the previous section to describe electron configurations (e.g.
1s%2s22p!) is called spectroscopic notation: the discovery of shells, subshells, and orbitals owes itself
to the analysis of light wavelengths associated with different types of atoms, studied with a device
called a spectroscope constructed to analyze the wavelengths of light across the visible spectrum.
Just as the telescope was the first tool scientists used to explore outer space, the spectroscope was
one of the first tools used by scientists to explore the “inner space” of atomic structure.
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3.5.1 Emission spectroscopy

If we take a sample of atoms, all of the same element and at a low density'® (e.g. a gas or vapor),
and “excite” them with a source of energy such as an electric arc, we will notice those atoms emit
colors of light that are characteristically unique to that element:

Glass tube filled
with hydrogen gas

High-voltage

Only those colors specific to
power supply

hydrogen emitted from arc

This phenomenon is used to make colored discharge (“neon”) lights. While neon gas glows with
a characteristic pink-orange color, other gases glow with their own signature colors. By filling glass
tubes with the right gas(es), a wide variety of colors may be produced.

These colors are unique to their respective gases because the unique electron configurations of
each element creates a unique set of energy values between which atomic electrons of that element
may “jump.” Since no two elements have the exact same electron configurations, no two elements
will have the exact same set of available energy levels for their electrons to occupy. When excited
electrons fall back into lower shell levels, the photons they emit will have distinct wavelengths. The
result is an emission spectrum of light wavelengths, much like a “fingerprint” unique to that element.
Indeed, just as fingerprints may be used to identify a person, the spectrum of light emitted by an
“excited” sample of an element may be used to identify that element.

For example, we see here the emission spectrum for hydrogen, shown immediately below the

continuous spectrum of visible light for convenient reference!”:

Each of the colored “lines” in the emission spectrum for hydrogen represents the photon
wavelength emitted when the excited electron loses energy and falls back into a lower-level position.
The larger the energy difference between energy levels (i.e. the bigger the jump), the more energy
the photon carries away, and consequently the shorter the wavelength (higher the frequency) of the
photon. The violet color line, therefore, represents one of the larger “jumps” while the red color
line represents one of the smaller. Hydrogen happens to emit four different wavelengths within the
visible range (656 nm, 486 nm, 434 nm, and 410 nm), and many others outside the visible range.

16S0lids and liquids tend to emit a broad spectrum of wavelengths when heated, in stark contrast to the distinct
“lines” of color emitted by isolated atoms.
17To create these spectra, I used a computer program called Spectrum Ezplorer, or SPEX.
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This next illustration shows a simplified view of a hydrogen atom, with the lowest-level shell
(n =1, K) representing the ground state and higher-level shells representing “excited” energy states
for its single electron:

Hydrogen atom showing ground-state shell
and higher-level (excited) shells

3
Balmer series
‘\ (emits visible light)

//,‘

n==6

°
Nucleus

Wavelengths of light emitted when an excited electron falls from any high-level shell down to
the second shell of hydrogen (n = 2 ; L) are called the Balmer series of spectral lines. The four
wavelengths previously mentioned are Balmer lines visible to the human eye: 410 nm resulting
from an electron jumping from the sixth shell (n = 6 ; P) to the second shell, 434 nm resulting
from a transition between the fifth and second shells, 486 nm from a transition between the fourth
and second shells, and finally the 656 nm wavelength resulting from a transition between the third
and second shells. Other Balmer-series wavelengths exist'® (electrons transitioning from even higher
shells than the sixth, down to the second), but these wavelengths lie within the ultraviolet range and
are therefore not visible to the human eye. Note the inverse relationship between jump distance and
wavelength: the shortest “jump” (shell 3 to shell 2) yields the photon with the longest wavelength
(656 nm). This is because the shortest jump represents the smallest energy change, which then

18Including wavelengths of 397 nm, 389 nm, and 384 nm.
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results in a photon of comparatively little energy, having a low frequency and therefore a long
wavelength.

You will note that the Balmer series of wavelengths do not involve an electron falling all the
way back to the hydrogen atom’s “ground state” (the normal, or un-excited state of shell n = 1,
the “K” shell). Electrons falling down to the first shell (n = 1; K) from any higher-level shells will
also emit photons, but these photons will be of a far shorter wavelength (higher frequency, higher
energy) than any in the Balmer series, owing to the larger energy gap between the first shell and all
the others. This so-called Lyman series of light wavelengths lies within the region of wavelengths
referred to as “far-ultraviolet,” well outside the range of human vision.

This next graphic shows the emission spectra of several elements contrasted against a continuous
spectrum covering both visible light and portions of the ultraviolet and infrared ranges:
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Note how complex the emission spectra are for some of the elements. Since we know each spectral
line represents a unique change in energy (i.e. a unique “jump distance” from one energy level to
another), the multitude of lines we see for each element shows us the range of “jumps” possible
within certain atoms. Note also how spectral lines for most elements (including hydrogen) extend
past the visible light range. Lines in the ultraviolet range comes from large electron transitions, as
electrons fall from high-level shells to low-level shells and lose much energy. Lines in the infrared
range originate from small electron transitions, as electrons transition between adjacent shells and
lose little energy.

Not only may the wavelengths of photons emitted from “excited” electrons returning to lower-
energy conditions be used to positively identify different elements, but we may also use those
wavelengths as universal standards, since the fundamental properties of elements are not liable
to change. For example, the SI (Systéme International) definition for the base unit of the meter is
standardized as 1650763.73 wavelengths of light emitted by a krypton-86 (3¢Kr) atom as its electrons
transition between the 2p'® and 5d° subshells'’.

19The wavelength of this light happens to lie within the visible range, at approximately 606 nm. Note the shell
levels involved with this particular electron transition: between 2p!9 and 5d°. Krypton in its ground (un-excited)
state has a valence electron configuration of 4p®, which tells us the electron’s transition occurs between an inner shell
of the Krypton atom and an excited shell (higher than the ground-state outer shell of the atom). The wavelength of
this photon (606 nm) resulting from a shell 5 to shell 2 transition also suggests different energy levels for those shells
of a Krypton atom compared to shells 5 and 2 of a hydrogen atom. Recall that the Balmer line corresponding to a
transition from n =5 to n = 2 of a hydrogen atom had a wavelength value of 434 nm, a higher energy than 606 nm
and therefore a larger jump between those corresponding shells.
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3.5.2 Absorption spectroscopy

If we take a sample of atoms, all of the same element and at a low density (e.g. a gas or vapor),
and pass a continuous (“white”) spectrum of light wavelengths through that sample, we will notice
certain colors of light missing from the light exiting the sample:

Glass tube filled
with hydrogen gas

Light source Only those colors specific to
e} —— > hydrogen will be attenuated
(filtered) from the light beam

Not only are these missing wavelengths characteristically unique to that element, but they are
the exact same wavelengths of light found in the emission spectrum for that element! The same
photon wavelengths produced by an atom when “excited” by an external energy source will be
readily absorbed by that atom if exposed to them. Thus, the spectrum of light missing characteristic
wavelengths after passing through a gas sample is called an absorption spectrum, and may be used
to identify elements just as easily?? as an emission spectrum.

The absorption spectrum of hydrogen gas is shown at the bottom of this three-spectrum graphic
image, contrasted against the continuous spectrum of visible light (top) and the emission spectrum
for hydrogen (middle):

Note how the four colored lines in the emission spectrum characteristic of hydrogen appear
as missing colors (black lines) in the absorption spectrum. It is almost as though one hydrogen
spectrum were a photographic “negative” of the other: each of the colors present in the emission
spectrum is distinctly absent?! in the absorption spectrum. Although the color patterns may be
inverted, the positions of the lines within the spectrum are the same, and are uniquely representative
of hydrogen.

The effect is analogous to fingerprints made two different ways: one by pressing a pre-inked finger
onto a clean sheet of paper; the other by pressing a clean finger onto pre-inked paper. In the first
method, the result is a set of dark ink-marks where the fingerprint ridges touched the paper to apply
ink and light areas where skin and paper never touched. In the second method, the result is a set

20In fact, it is often easier to obtain an absorption spectrum of a sample than to create an emission spectrum,
due to the relative simplicity of the absorption spectrometer test fixture. We don’t have to energize a sample to
incandescence to obtain an absorption spectrum — all we must do is pass white light through enough of it to absorb
the characteristic colors.

210ne student described this to me as a “shadow” image of the hydrogen gas. The missing colors in the absorption
spectrum are the shadows of hydrogen gas molecules blocking certain frequencies of the incident light from reaching
the viewer.
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of inverse ink-marks: light where the fingerprint ridges touched the paper to remove ink and dark
where skin and paper never touched. The fingerprint patterns in both cases — if made using the
same finger — will be identical in form, just inverted in color. Likewise, the patterns of emission and
absorption spectroscopy will be the same for any given substance, just inverted in color: emission
spectroscopy shows select wavelengths against an otherwise dark field, while absorption spectroscopy
shows a nearly-full spectrum of color missing (the same) select wavelengths.

Individual atoms are not the only forms of matter possessing uniquely identifying spectra — many
molecules have spectral “signatures” of their own as well. The absorption spectra for molecular
substances are substantially more complex than the absorption spectra of pure elements, owing to
the many more different ways in which light energy may be absorbed by a molecule. In addition
to electron shell and subshell “jumps” capable of absorbing a photon’s energy, the atoms within
a molecule are also able to vibrate, rotate, and twist about each other like mechanical oscillators.
Photons of light possessing just the right frequencies are able to “excite” certain molecules in a
manner not unlike AC electrical waveforms resonating with tuned LC (inductor-capacitor) circuits.
Just as tuned LC circuits absorb and store energy at certain frequencies, molecular oscillators absorb
and store energy from photons.

The multiplicity of energy-absorbing modes for certain molecules gives them wide bands of
absorption in the light spectrum, not just thin “lines” as is the case with individual atoms. These
bands are still unique to each molecule type, but they typically cover a far broader swath of
wavelengths than is typical for atomic absorption spectra.

The absorption of ultraviolet light by ozone gas (O3) high in Earth’s atmosphere is an example
of absorption spectroscopy on a grand scale. These molecules serve as a protective “blanket” against
ultraviolet light rays from the sun which have detrimental effects on life (e.g. sunburn, skin cancer).
The ozone does not absorb light in the visible spectrum, and so its protective effects are not visually
apparent, but the attenuation of ultraviolet light is definitely measurable. This attenuation also
covers far more than just one or two specific wavelengths of ultraviolet light, which is good for life
on Earth because otherwise ozone wouldn’t offer much protection.

Many chemical substances of interest in process industries have well-known absorption signatures
for ultraviolet and infrared light. This makes spectroscopy a powerful tool for the identification (and
quantitative measurement) of chemical composition in process fluids, exhaust gases, and sometimes
even in solid materials. For more detail on the practical application of spectroscopy to analytical
measurement, refer to section 23.4 beginning on page 1713.

An interesting application of optical absorption is the detection of gas leaks using an infrared
camera. Many industrial gases are strong absorbers of infrared light, which means if a leaking
pipe or vessel is viewed through a camera sensitized to infrared light and there is sufficient ambient
infrared light for viewing, the leaking gas will appear on the camera’s image as a dark cloud. The gas
plume appears on the camera’s display the way steam or smoke appears to the naked eye. Several
paraffinic hydrocarbon compounds such as methane, ethane, propane, butane, pentane, and hexane
are detectable with infrared cameras sensitized to light wavelengths of 3.3 to 5 micrometers (pm).
Infrared cameras sensitized to longer wavelengths of light (10 ym to 11 pm) are useful for detecting
leaks of gases such as sulfur hexafluoride, ammonia, chlorine dioxide, FREON-12, and ethylene to
name a few.
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3.6 Formulae for common chemical compounds

Most of these formulae appear in molecular chemical form rather than structural form. For example,
ethanol appears here as CoHgO rather than CoH;OH. Also, the entries for fructose and glucose are
identical (CgH120¢) despite the two compounds having different structures. This means most of the
formulae shown in this section merely represent the ratios of each element in a compound, making
little or no attempt to convey the structure of the molecule.

It should be noted that this list is definitely not exhaustive, but merely attempts to show formulae
for some common compounds.

e Acetone: C3HgO

e Acetylene: CoHo

e Alcohol, methyl (methanol): CH4O

e Alcohol, ethyl (ethanol): CoHgO

e Alcohol, isopropyl (isopropanol): C3HgO
e Alcohol, butyl (butanol): C4H;90

e Alcohol, phenol: CgHgO

e Aluminum oxide (alumina): Al;O3

e Ammonia: NHjz

e Ammonium carbonate: (NH4)2CO3

e Ammonium chloride (sal ammoniac): NH4Cl
e Ammonium nitrate: NoH4O5

e Aromatic hydrocarbons:
Acetylene: CoHs
Ethylene: CoHy
Propylene: C3Hg
Butylene: C4Hg
Benzene: CgHg
Toluene: C;Hg
Styrene: CgHg
Napthalene: CioHg

e Calcium carbonate (limestone, marble): CaCOs3
e Calcium chloride: CaCly
e Calcium hydroxide: Ca(OH)s
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e Calcium oxide (lime or quicklime): CaO
e Calcium sulfate (gypsum): CaSOy

e Carbon monoxide: CO

e Carbon dioxide: COq

e Carbon tetrachloride: CCly

e Carbonic acid: HyCOs5

e Cellulose: (CgH1905)y,

e Clay (or shale): H4Al5SisOg

e Copper oxide (cuprite): CusO

e Copper oxide (tenorite): CuO

e Cyanic acid: HOCN

e Dextrose (synonym for biological glucose): CgH1206
e Ethyl mercaptan: CoHgS

e Ethylene glycol: CoHgOo

e Ethylene oxide: CoH4O

e Ferrous chloride: FeCly

e Ferric chloride: FeClg

e Formaldehyde: CHO

e Folic acid: C19H19N7Og

e Formaldehyde: CHO

e Formic acid: CH304

e Fructose (same molecular formula as glucose): CgH120¢
e Glycerol: C3HgOj3

e Hydrazine: NoH4N

e Hydrocyanic acid: HCN

e Hydrofluoric acid: HF

e Hydrochloric acid: HCI

e Hydrogen peroxide: HoOq



3.6. FORMULAE FOR COMMON CHEMICAL COMPOUNDS 255

e Hydrogen sulfide: HoS

e Iron oxide: FeyO3

e Magnesium hydroxide (milk of magnesia): Mg(OH),
e Nitric acid: HNOg

e Nitric oxide: NO

e Nitrogen dioxide: NOq

e Nitrogen trioxide: NOq

e Nitroglycerine: C3H5N30q
e Nitromethane: CH3NO9

e Nitrous oxide: NoO

e Dinitrogen dioxide: NoOo
e Dinitrogen trioxide: N5Og3
e Ozone: O3

e Paraffinic hydrocarbons:
Methane: CHy
Ethane: CoHg
Propane: C3Hg
Butane: C4H;g
Pentane: CsHqo
Hexane: CgHy4
Heptane: C7Hqg
Octane: CgHig
Nonane: CgHgg

Decane: CigHao
e Phosgene: COCly
e Phosphoric acid: H3POy
e Potassium chloride: KCI
e Potassium cyanide: KCN
e Potassium hydroxide: KOH

e Potassium sulfate: K;SOy
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e Silane: SiHy

e Silica: SiO9

e Silicon carbide: SiC

e Sodium chloride (table salt): NaCl
e Sodium hydroxide: NaOH

e Sodium fluoride: NaF

e Strychnine: CoHooNoOg

e Sucrose: Ci12H92011

e Sulfuric acid: HySOy4

e Sulfur dioxide: SO5

e Sulfur hexafluoride: SFg

e Testosterone: Ci9HogOo

e Turpentine: CjoHig (approx.)

e Zinc sulfate: ZnSOy
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3.7 Molecular quantities

Sample sizes of chemical substances are often measured in moles. One mole of a substance is defined
as a sample having 6.022 x 10?3 (Avogadro’s number) molecules®?. This number is not arbitrary — it
was chosen such that 1 mole of carbon-12 (6.022 x 10?3 individual 2C atoms together in one sample)
would have a mass of exactly 12 grams. In other words, Avogadro’s number is a proportionality
between an element’s atomic mass (measured in amu or Daltons) and the mass of a sample (measured
in grams).

With Avogadro’s number defined as such, we may interpret any element’s atomic mass value as
a conversion factor relating moles to grams. For example, if we look up the element potassium in
a periodic table, we see that it has an average atomic mass of 39.0983 amu (39.0983 Daltons) as
found in nature. This means 1 mole of naturally-occurring potassium atoms equals 39.0983 grams
of mass. Likewise, 5 moles of potassium atoms will have a mass of 195.4915 grams. Note the use of
the equivalence 1 mol potassium = 39.0983 g as a “unity fraction” in the following calculation, used
to cancel the given unit of moles to yield an answer in the unit of grams:

(5 mol potassium) ( 39.0983 g

1 ) =195.4915 g

1 mol potassium

Molar quantities make it convenient to relate macroscopic samples of elements and compounds
with each other. We know, for instance, that one mole of naturally occurring iron (Fe) atoms will
have a mass of 55.8 grams, and that one mole of naturally occurring oxygen (O) atoms will have a
mass of 16.0 grams, because the average atomic mass of naturally occurring iron is 55.8 amu, and
the average atomic mass of naturally occurring oxygen is 16.0 amu. One mole of naturally occurring
oxygen molecules (O2) will have a mass of 32.0 grams, since each molecule is a pair of oxygen atoms
at 16 amu each, and “moles” counts the number of discrete entities which in the case of molecular
oxygen is the number of Oy molecules rather than the number of O atoms. Applying the same
reasoning, one mole of ozone (O3) molecules will have a mass of 48.0 grams.

The same mathematical proportions apply to compounds as they do to elements, since
compounds are nothing more than different elements bound together in whole-number ratios, and
the Conservation of Mass tells us a molecule cannot have a mass greater or less than the sum total of
the constituent elements’ masses. To illustrate this principle, we may calculate the mass of one mole
of iron oxide (Fe2O3), the principal component of rust: 55.8x2 + 16.0x3 = 159.6 grams. Likewise,
we may calculate the mass of five moles of pure glucose (C¢H120g): 5x(12.01x6 + 1.01x12 +
16.0x6) = 900.9 grams. The sum of the atomic masses of a molecule’s constituent atoms is called
the molecular weight or formula weight for that molecule. In the case of iron oxide, the molecular
weight is 159.6 (typically rounded up to 160 grams per mole). In the case of glucose, the molecular
weight is 180.18 (typically rounded down to 180 grams per mole).

22Truth be told, a “mole” is 6.022 x 1023 of literally any discrete entities. There is nothing wrong with measuring
the amount of eggs in the world using the unit of the mole. Think of “mole” as a really big dozen, or more precisely,
a really big half-dozen!
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When referring to liquid solutions, the concentration of a solute is often expressed as a molarity,
defined as the number of moles of solute per liter of solution. Molarity is usually symbolized by an
italicized capital letter M. It is important to bear in mind that the volume used to calculate molarity
is that of the total solution (solute plus solvent) and not the solvent alone.

Suppose we had a solution of salt-water, comprised of 33.1 grams of table salt thoroughly mixed
with pure water to make a total volume of 1.39 liters. In order to calculate the molarity of this
solution, we first need to determine the equivalence between moles of salt and grams of salt. Since
table salt is sodium chloride (NaCl), and we know the atomic masses of both sodium (23.0 amu)
and chlorine (35.5 amu), we may easily calculate the mass of one mole of salt:

1 mole of NaCl =23.0 g+ 35.5g=585¢g

Another way to state this is to say that sodium chloride (NaCl) has a molecular weight of 58.5
amu (58.5 grams of mass per mole).

We may use this equivalence as a unity fraction to help us convert the number of grams of salt
per unit volume of solution into a molarity (moles of salt molecules per liter):

33.1¢g 1 mol salt mol salt
= 0.407————— = 0.407 M (salt
(1.391)( 58.5 g ) (salt)

Another common expression for the concentration of a solute in either a liquid or a gas solution is
related to the concept of percent, expressing the presence of the solute as a ratio of how many “parts”
of solute exist per “parts” of solution. Earth’s atmosphere, for example, contains approximately
20.9% oxygen gas by volume, which means that for every 100 molecules found in a sample of air,
20.9 of those are oxygen molecules. When the concentration of a solute is very small, however, percent
becomes an awkward unit of measurement. In such cases it is common to see low concentrations
of solute expressed as parts per million (ppm) or even parts per billion (ppb). The volumetric
concentration of methane gas in Earth’s atmosphere is a good example where parts-per-million is a
more appropriate expression than percent: for every million molecules found in a sample of air, 2 of
them are methane molecules. As a percentage, this equates to only 0.0002%.

We may use parts-per-unit concentration values as unity fractions just like molecular weights and
just like molarity values, to relate total solution quantity to solute quantity. For example, if we need
to calculate the total mass of hydrogen gas in a compressed air cylinder storing 47000 standard cubic
feet of air, we could multiply the total volume of that air sample (47000 SCF) by the volumetric
concentration of hydrogen in Earth’s atmosphere (0.5 ppm):

1 1000000 parts air

Note how the units of “parts” and “air” cancel out to leave “SCF hydrogen”.

47000 SCF ai 0.5 ts hyd
( alr) ( parts hy Togen) = 0.0235 SCF hydrogen
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An important caveat when using percent, ppm, or ppb is that we must clearly define the “parts”
proportion as either being volume or mass. The concentration of hydrogen gas in the atmosphere
(0.5 ppm) was specified as a volumetric concentration, and so it is appropriate to use this 0.5 ppm
figure to calculate a proportion of the 47000 SCF total volume. If, however, we were given a ppm
mass concentration for hydrogen, we could only use that figure in conjunction with a total mass
quantity for the air sample.

The following photograph illustrates this concept, showing the label on a calibration gas
bottle containing a certified mixture of gases used to check the accuracy of air-safety monitoring
instruments. Note the concentrations of each gas type within the mixture — some expressed in
percent, others in ppm — and how the label states “MOLE %” in the upper-right corner using large
bold print to let you know the concentration values refer to molar quantities (e.g. 18% oxygen
means 18% of the molecules contained in this bottle are oxygen molecules), which for gases closely
corresponds to volumetric quantity rather than mass:
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3.8 Stoichiometry

Stoichiometry is the accounting of atoms before and after a chemical reaction. It is an expression
of the Law of Mass Conservation, in that elements are neither created nor destroyed in a chemical
reaction, and that mass is an intrinsic property of every element. Thus, the numbers, types of atoms,
and total mass exiting a chemical reaction (i.e. the “products” of that reaction) must be the same as
the numbers, types of atoms, and total mass entering that chemical reaction (i.e. the “reactants”).
For example, in the combustion of natural gas in an oxygen-rich environment, the fuel (CHy) and
oxidizer (Og) are the reactants, while water vapor (H2O) and carbon dioxide gas (COs) are the
products:

CH4 4+ 205 — CO4 + 2H50

Reactants Products Mass (per mole of CHy)
Carbon =1 x 1 Carbon =1 x 1 12 grams
Hydrogen =1 x 4 Hydrogen = 2 x 2 4 grams
Oxygen = 2 x 2 Oxygen = (1 x 2) + (2 x 1) 64 grams

As you can see in this example, every single reactant atom (and its mass) entering the reaction
is accounted for in the product molecules. The only exception to this rule is in nuclear reactions
where elements transmutate into different elements, with gains or losses in nuclear particles. No such
transmutation occurs in any mere chemical reaction, and so we may safely assume equal numbers
and types of atoms before and after any chemical reaction. Chemical reactions strictly involve re-
organization of molecular bonds, with electrons as the constituent particles comprising those bonds.
Nuclear reactions involve the re-organization of atomic nuclei (protons, neutrons, etc.), with far
greater energy levels associated.

Often in chemistry, we know both the reactant and product molecules, but we need to determine
their relative numbers before and after a reaction. The task of writing a general chemical equation
and then assigning multiplier values for each of the molecules is called balancing the equation.
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3.8.1 Balancing chemical equations by trial-and-error

Balancing a chemical equation is a task that may be done by trial-and-error. For example, let us
consider the case of complete combustion for the hydrocarbon fuel ethane (CoHg) with oxygen (Oz).
If combustion is complete, the only products will be water vapor (HoO) and carbon dioxide (CO3).
The unbalanced equation representing all reactants and products for this reaction is shown here,
along with a table showing the numbers of atoms on each side of the equation:

CoHg + O3 — HoO 4 COq

Reactants Products
Carbon = 2 Carbon = 1
Hydrogen = 6 Hydrogen = 2
Oxygen = 2 Oxygen = 3

Clearly, this is not a balanced equation, since the numbers of atoms for each element are unequal
between the two sides of the equation.

A good place to start in balancing this equation is to look for an element represented by only
one molecule on each side of the equation. Carbon is an example (present in the ethane but not
in the oxygen molecule on the left-hand side, and in the carbon dioxide but not the water on the
right-hand side) and hydrogen is another.

Beginning with carbon, we see that each ethane molecule contains two carbon atoms while each
carbon dioxide molecule contains just one carbon atom. Therefore, we may conclude that the ratio
of carbon dioxide to ethane must be 2-to-1, no matter what the other ratios might be. So, we double
the number of carbon dioxide molecules on the right-hand side and re-check our atomic quantities:

C2H6 + 02 — HQO + QCOQ

Reactants Products
Carbon = 2 Carbon = 2
Hydrogen = 6 Hydrogen = 2
Oxygen = 2 Oxygen = 5
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Next, we will balance the hydrogen atom numbers, since we know hydrogen is an element found
in only one molecule on each side of the equation. Our hydrogen ratio is now 6:2 (left:right), so we
know we need three times as many hydrogen-containing molecules on the right-hand side. Tripling
the number of water molecules gives us:

CQHG + OQ — 3HQO + 2002

Reactants Products
Carbon = 2 Carbon = 2
Hydrogen = 6 Hydrogen = 6
Oxygen = 2 Oxygen = 7

Unfortunately, the numbers of oxygen atoms on each side of the equation are unequal, and it
is not immediately obvious how to make them equal. We need five more atoms of oxygen on the
left-hand side, but we cannot add exactly five more because oxygen atoms only come to us in pairs
(O2), limiting us to even-number increments.

However, if we double all the other molecular quantities, it will make the disparity of oxygen
atoms an even number instead of an odd number:

2CoHg + Oy — 6H20 4 4CO5

Now it is a simple matter to balance the number of oxygen atoms, by adding six more oxygen

Reactants Products
Carbon = 4 Carbon = 4
Hydrogen = 12 Hydrogen = 12
Oxygen = 2 Oxygen = 14

molecules to the left-hand side of the equation:

Now the equation is balanced: the quantities of each type of atom on both sides of the equation

are equal.

2CoHg + 709 — 6H50 + 4C0O,

Reactants Products
Carbon = 4 Carbon = 4
Hydrogen = 12 Hydrogen = 12
Oxygen = 14 Oxygen = 14
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3.8.2 Balancing chemical equations using algebra

A more mathematically sophisticated approach to stoichiometry involves the use of simultaneous
systems of linear equations. The fundamental problem chemists must solve when balancing reaction
equations is to determine the ratios of reactant and product molecules. If we assign a variable to
each molecular quantity, we may then write a mathematical equation for each element represented
by the reaction, and use algebra to solve for the variable values.

To illustrate, let us balance the equation describing the attack of aluminum metal’s protective
“passivation” layer of oxide by acid rain. When aluminum metal is exposed to oxygen, the outer
surface of the metal quickly forms a layer of aluminum oxide (Al;O3) which acts to impede further
oxidation of the metal. This protective layer, however, may be attacked by the presence of sulfuric
acid (H2SOy4). This acid finds its way into rainwater by way of sulfur compounds emitted during the
combustion of sulfur-laden fuels. The products of this reaction between sulfuric acid and aluminum
oxide are a sulfate molecule (Al(SO4)3) and water (H20), as illustrated in this unbalanced chemical
equation:

HyS04 + Al O3 — AIQ(SO4)3 + Hs0

This equation contains four different molecules (acid, aluminum oxide, sulfate, and water), which
means we ultimately must solve for four different quantities. It also contains four different elements
(H, S, O, and Al). Since the mathematical requirement for solving a system of linear equations is
to have at least one equation per variable, it would first appear as though we could set up a 4 x 4
matrix (four equations of four variables). However, this will not work. If we tried to solve for four
unknown quantities, we would ultimately be foiled by an infinite number of solutions. This makes
sense upon further inspection, since any stoichiometric solution to this chemical reaction will have
an infinite number of correct proportions to satisfy it?>. What we need to do is arbitrarily set one
of these molecular quantities to a constant value (such as 1), then solve for the quantities of the
other three. The result will be ratios or proportions of all the other molecules to the fixed number
we assigned to the one molecule type.

23Take the combustion of hydrogen and oxygen to form water, for example. We know we will need two Ha molecules
for every one Oz molecule to produce two HoO molecules. However, four hydrogen molecules combined with two
oxygen molecules will make four water molecules just as well! Similarly, siz hydrogen molecules combined with three
oxygen molecules also perfectly balance, making sixz water molecules. So long as we consider all three molecular
quantities to be unknown, we will never be able to solve for just one correct answer, because there is no one correct
set of absolute quantities, only one correct set of ratios or proportions.
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As an example, I will choose to set the number of acid molecules to 1, and use the variables z,
y, and z to solve for the numbers of the other molecules (oxide, sulfate, and water, respectively):

1 T = Y z
HyS0, Al O3 — Aly(SOy)3 H,O

Now, I will write four different equations, each one representing the stoichiometric balance of one
element in the chemical equation. The following table shows each of the four elements with their
respective balance equations:

Element Balance equation

Hydrogen 2+ 0x =0y + 2z
Sulfur 140z =3y+0z
Oxygen 44+3x=12y+ 1=z

Aluminum 042z =2y+ 0z

Simplifying each equation by eliminating all zero values and “1” coefficients:

Element Balance equation

Hydrogen 2=2z
Sulfur 1=3y
Oxygen 443z =12y + 2

Aluminum 2z =2y

We can see by examination of the first, second, and fourth equations that z must be equal to 1,

y must be equal to %, and that = and y are equal to each other (therefore, z must be equal to % as
well). Plugging these values into the variables of the third equation confirms this (4 4+ 1 =4+ 1).

Thus, our solution to this multi-variable system of equations is:

= — = — :1
T 3 y 3 z

It makes little sense to speak of fractions of a molecule, which is what the values of z and y
seem to suggest, but we must recall these values represent proportions only. In other words, we
need but one-third as many oxide and sulfate molecules as acid and water molecules to balance this
equation. If we multiply all these values by three (as well as the initial constant we chose for the
number of acid molecules), the quantities will be whole numbers and the chemical reaction will still
be balanced:

Thus, our final (balanced) equation showing the attack of aluminum metal’s passivation layer by
acid rain is as follows:

3H,S0,4 + Al,O3 — Aly(SO,), + 3H,0
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Another example to illustrate this method of balancing chemical equations is the oxidation of
wastewater (sewage) sludge. Here, the reactant is not a single type of molecule, but rather a complex
mixture of carbohydrates, proteins, fats, and other organic compounds. A practical way of dealing
with this problem is to represent the average quantities of carbon, hydrogen, and oxygen in the form
of a compositional formula®* based on a gross analysis of the wastewater sludge:

Ca.8Hg 4020

We know that the products will be carbon dioxide and water, but the question is how much
oxygen will be required to completely oxidize the mixture. The following (unbalanced) chemical
equation shows the reactants and products:

C4.8Hg 4022 + O3 — CO4 + HyO

The non-integer subscripts greatly complicate trial-and-error stoichiometry, but they pose
absolutely no obstacle at all to simultaneous equations. Assigning variables z, y, and z to the
unknown molecular quantities:

1 T = y z
Ca.8Hg.402.0 O3 — CO, H>0O

Now, we may write three different equations, each one representing the stoichiometric balance
of one element in the chemical equation. The following table shows each of the three elements with
their respective balance equations:

Element Balance equation
Carbon 4.8+ 0x =1y + 0z
Hydrogen 8440z =0y + 22
Oxygen 2242x=2y+ 1z

Simplifying each equation by eliminating all zero values and “1” coeflicients:

Element Balance equation
Carbon 48 =y

Hydrogen 8.4 =2z
Oxygen 2242x=2y+z

We may tell from the first and second equations that y = 4.8 and z = 4.2, which then leads to a
solution of x = 5.8 once the values for y and z have been inserted into the third equation. The final
result is this balanced compositional equation for the oxidation of wastewater sludge:

Cy8Hg 4099 + 5.809 — 4.8CO4 + 4.2H,0

My own personal experience with the use of simultaneous linear equations as a tool for
stoichiometry is that it is much faster (especially when balancing complex reaction equations) than
trial-and-error, and relatively easy to set up once the general principles are understood.

24Note that you cannot have a molecule comprised of 4.8 carbon atoms, 8.4 hydrogen atoms, and 2.2 oxygen atoms,
since atoms exist in whole numbers only! This compositional formula merely shows us the relative proportions of each
element in the complex mixture of molecules that make up sewage sludge.
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3.8.3 Stoichiometric ratios

Regardless of the technique used to balance the equation for a chemical reaction, the most practical
purpose of balancing the equation is to be able to relate the reactant and product quantities to each
other. For instance, we may wish to know how much oxygen will be required to completely combust
with a given quantity of fuel, so that we will be able to engineer a burner system capable of handling
the necessary flow rates of fuel and oxygen. Balancing the chemical reaction is just the first part of
the solution. Once we have a balanced equation, we need to consider the ratios of the substances to
each other.

For example, let us consider the balanced (stoichiometric) chemical equation for the combustion
of ethane fuel with pure oxygen:

2CoHg + 709 — 6H50 + 4C0O,

From the balanced chemical equation we can see that for every 2 molecules of ethane, we will
need 7 molecules of oxygen gas to completely combust, producing 6 molecules of water vapor and 4
molecules of carbon dioxide gas. The numerical multipliers preceding each molecule in the balanced
equation tell us the molar ratios of those substances to each other. For oxygen to ethane the ratio
is 7:2, for water to ethane the ratio is 6:2 (or 3:1), for carbon dioxide to water the ratio is 4:6 (2:3),
etc. If for some reason we needed to calculate the number of moles of CO45 produced after burning
80 moles of ethane, we could easily calculate that by multiplying the 80 moles of ethane by the 2:4
(1:2) ethane-to-carbon dioxide ratio to arrive at a figure of 160 moles of COs. If we wished, we could
even solve this using the same method of wunity fractions we commonly apply in unit-conversion
problems, writing the carbon dioxide-to-ethane ratio as a fraction of two equivalent quantities:

1

80 mol ethane 4 molecules carbon dioxide
2 molecules ethane

) = 160 mol carbon dioxide

If any substances involved in the reaction happen to be gases at nearly the same pressure and
temperature®”, the molar ratios defined by the balanced equation will similarly define the volumetric
ratios for those substances. For example, knowing our ideal oxygen-to-ethane molar ratio is 7:2 tells
us that the volumetric flow rate of oxygen to ethane should also be (approximately) 7:2, assuming
both the oxygen and ethane are gases flowing through their respective pipes at the same pressure
and at the same temperature. Recall that the Ideal Gas Law (PV = nRT) is approximately true for
any gas far from its critical phase-change values. So long as pressure (P) and temperature (T') are
the same for both gases, each gas’s volume (V) will be directly proportional to its molar quantity

ni

(n), since R is a constant. This means any molar ratio (E) for two gases under identical pressure

and temperature conditions will be equal to the corresponding volumetric ratio (%) for those gases.

25These assumptions are critically important to equating volumetric ratios with molar ratios. First, the compared
substances must both be gases: the volume of one mole of steam is huge compared to the volume of one mole of
liquid water. Next, we cannot assume temperatures and pressures will be the same after a reaction as before. This
is especially true for our example here, where ethane and oxygen are burning to produce water vapor and carbon
dioxide: clearly, the products will be at a greater temperature than the reactants!
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It is important to understand that these molar ratios are not the same as the mass ratios for the
reactants and products, simply because the different substances do not all have the same mass per
mole.

If we regard each of the multipliers in the balanced equation as a precise molar quantity (i.e.
exactly 2 moles of ethane, 7 moles of oxygen, etc.) and calculate the mass of the reactants, we will
find this value precisely equal to the total mass of the products because the Law of Mass Conservation
holds true for this (and all other) chemical reactions:

2C3Hg = 2[(12)(2) 4 (1)(6)] = 60 grams
7042 = 7[(16)(2)] = 224 grams
6H20 = 6[(1)(2) + 16] = 108 grams

4CO, = 412+ (16)(2)] = 176 grams

Calculating mass based on 2 moles of ethane, we have a total reactant mass of 284 grams (60
grams ethane plus 224 grams oxygen), and a total product mass of 284 grams as well (108 grams
water plus 176 grams carbon dioxide gas). We may write the mass ratios for this chemical reaction
as such:

(ethane) : (oxygen) : (water) : (carbon dioxide)

60 : 224 : 108 : 176

If for some reason we needed to calculate the mass of one of these substances in relation to
the other for this reaction, we could easily do so using the appropriate mass ratios. For example,
assume we were installing a pair of mass flowmeters to measure the mass flow rates of ethane and pure
oxygen gas flowing into the combustion chamber of some industrial process. Supposing the ethane
flowmeter had a calibrated range of 0 to 20 kg/min, what range should the oxygen’s mass flowmeter
be calibrated to in order to match in perfect stoichiometric ratio (so that when one flowmeter is at
the top of its range, the other flowmeter should be also)?

The answer to this question is easy to calculate, knowing the required mass ratio of oxygen to
ethane for this chemical reaction:

20 kg ethane 224 g oxygen
1 60 g ethane

Therefore, the oxygen mass flowmeter should have a calibrated range of 0 to 74.67 kg/min. Note
how the unit of mass used in the initial quantity (20 kilograms ethane) does not have to match the
mass units used in our unity fraction (grams). We could have just as easily calculated the number
of pounds per minute of oxygen given pounds per minute of ethane, since the mass ratio (like all
ratios) is a unitless quantity?°.

) = 74.67 kg oxygen

26Looking at the unity-fraction problem, we see that “grams” (g) will cancel from top and bottom of the unity
fraction, and “ethane” will cancel from the given quantity and from the bottom of the unity fraction. This leaves
“kilograms” (kg) from the given quantity and “oxygen” from the top of the unity fraction as the only units remaining
after cancellation, giving us the proper units for our answer: kilograms of oxygen.
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3.9 Energy in chemical reactions

A chemical reaction resulting in a net release of energy is called exothermic. Conversely, a chemical
reaction requiring a net input of energy to occur is called endothermic. The relationship between
chemical reactions and energy exchange corresponds to the breaking or making of chemical bonds.
Atoms bonded together represent a lower state of total energy than those same atoms existing
separately, all other factors being equal. Thus, when separate atoms join together to form a molecule,
they go from a high state of energy to a low state of energy, releasing the difference in energy in
some form (heat, light, etc.). Conversely, an input of energy is required to break that chemical bond
and force the atoms to separate.

Chemical bonds are considered “strong” if a large input of energy is required to break them.
“Weak” chemical bonds, by contrast, only require modest inputs of energy to disrupt. Thus, the
strength of a bond is inversely proportional to the energy state of the molecule: atoms falling into
very low energy states when joining together to form a molecule enjoy a strong bond because a large
influx of energy is required to raise those atoms’ energy states high enough to sever their bond.

An example of a strong bond is that which exists between two atoms of hydrogen (H) and one
atom of oxygen (O) when forming water (HyO). When hydrogen and oxygen atoms bond together
to form water, they release energy. This, by definition, is an exothermic reaction, but we know it
better as combustion: hydrogen is flammable in the presence of oxygen. A reversal of this reaction
occurs when water is subjected to an electrical current, breaking water molecules up into hydrogen
and oxygen gas molecules. This process of forced separation requires a substantial input of energy to
accomplish, which by definition makes it an endothermic reaction. Specifically, the use of electricity
to cause a chemical reaction is called electrolysis.

An even stronger bond is that formed between aluminum (Al) and oxygen (O) to make alumina
(Al03), a ceramic powder at room temperature. The energy state of this molecule is so low that
the aluminum-oxygen bonds resist dissolution even at extremely high temperatures, explaining the
high melting point and relative non-reactivity of this substance.
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3.9.1 Heats of reaction and activation energy

The amount of energy exchanged (either absorbed or released) in a chemical reaction is often
expressed as a numerical quantity to the right of the equation, labeled AH, usually defined at
a reference temperature of 298 Kelvin (25 degrees Celsius). A negative AH value signifies an
exothermic (heat-releasing) reaction, while a positive AH value signifies an endothermic (heat-
absorbing) reaction. The combustion of hydrogen and oxygen to form liquid water is an example
of the former, and the electrolysis of water to yield hydrogen and oxygen gas is an example of the
latter:

Hy; + O — H,0O AHsgs = —285.8 kJ mol ! (exothermic)

H,O — Hy + O AHsgs = +285.8 kJ mol ™! (endothermic)

This energy value, commonly referred to as the heat of reaction or enthalpy of reaction, is
expressed per mole of the reactants and products shown. The “-1” exponent applied to “mole”
is simply a fancy way of saying “per mole”?”, as an alternative to using a fraction bar.

While the mathematical sign of AH may seem confusing at first (“Why is it negative when energy
is released?”), it makes sense from the perspective of energy states before and after the reaction.
In an exothermic (heat-releasing) reaction, the products are left at a lower state of energy than the
reactants began with, and a negative value of AH signifies this. The sign of AH, then, expresses
the change in energy state from reactants (input) to products (output). Even though the term AH
is called the “heat of reaction” it really refers to the change in potential energy of the matter as a
consequence of the chemical reaction.

27This notation is quite common in scientific and engineering literature, as a way to avoid having to typeset
fractions in a text document. Instead of writing % which requires a fraction bar, we may write kJ mol™! which

is mathematically equivalent. Another common example of this notation is to express frequency in the unit of s—!
(per second) rather than the unit of Hertz (Hz). Perhaps the most compelling reason to use negative exponents in
unit expressions, though, is sociological: scientific studies have shown the regular use of this unit notation makes you
appear 37.5% smarter than you actually are. Questioning statistical results of scientific studies, on the other hand,
reduces your apparent intelligence by over 63%! Now, aren’t you glad you took the time to read this footnote?
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The fact that hydrogen and oxygen as separate gases possess potential energy does not mean
they are guaranteed to spontaneously combust when brought together. By analogy, just because
rocks sitting on a hillside possess potential energy (by virtue of being elevated above the hill’s base)
does not means all rocks in the world spontaneously roll downhill. Some rocks need a push to get
started because they are caught on a ledge or resting in a hole on the side of the hill. Likewise,
many exothermic reactions require an initial investment of energy before they can proceed. In the
case of hydrogen and oxygen, what is generally needed is a spark to initiate the reaction. This initial
requirement of input energy is called the activation energy of the reaction.

Activation energy may be shown in graphical form. For an exothermic reaction, it appears as a
“hill” that must be climbed before the total energy can fall to a lower (than original) level:

Exothermic reaction

v
H,+ 0

Potential T
energy

Activation energy Energy released

by reaction ('AH)

H,O

Example: H, + O - H,0 AH = -285.8 kJ/mol

Before After
reaction Time — reaction



3.9. ENERGY IN CHEMICAL REACTIONS 271

For an endothermic reaction, activation energy is much greater, a part of which never returns
but is stored in the reaction products as potential energy:

Endothermic reaction

T Hy + O

Potential Activation energy
energy

Energy absorbed
by reaction (+AH)

H,0O

Example: H,O - H, + O AH = +285.8 kJ/mol

Before After
reaction Time — reaction

A catalyst is a substance that works?® to minimize activation energy in a chemical reaction
without being altered by the reaction itself. Catalysts are popularly used in industry to accelerate
both exothermic and endothermic reactions, reducing the gross amount of energy that must be
initially input to a process to make a reaction occur. A common example of a catalyst is the
catalytic converter installed in the exhaust pipe of an automobile engine, helping to oxidize unburnt
fuel molecules and certain combustion products such as carbon monoxide (CO) to compounds which
are not as polluting. Without a catalytic converter, the exhaust gas temperature is not hot enough
to overcome the activation energy of these reactions, and so they will not occur (at least not at the
rate necessary to make a significant difference). The presence of the catalyst allows the reactions to
progress quickly at standard exhaust temperatures.

28 Just how catalysts perform this trick is a subject of continuing research. Catalysts used in industrial process
industries are usually selected based on the results of empirical tests rather than by theory, since a general theoretical
understanding of catalysis is lacking at this present time. Indeed, the specific selection of catalysts for high-value
chemical processes is often a patented feature of those processes, reflecting the investment of time, finances, and effort
finding a suitable catalyst for optimizing each chemical reaction.
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The effect of a catalyst on activation energy may be shown by the following graphs, the dashed-
line curve showing the energy progression with a catalyst and the solid-line curve showing the
reaction progressing without the benefit of a catalyst:

Exothermic reaction Endothermic reaction

Potential Potential
ener ivati ener Activation ener
9y AC".\I/SUOT e‘nelrgy Energy released 9y (with cata\yst)gy Energy stored
(with catalyst) by reaction (_AH) by reaction (+ AH)
Before i After Before i After
reaction Time —> reaction reaction Time —> reaction

It should be noted that the presence of a catalyst has absolutely no effect on the net energy
loss or gain resulting from a chemical reaction. That is to say, the heat of reaction (AH) stands
independent of catalytic assistance: with or without a catalyst, the difference in potential energy
before and after a reaction will be the same®’. The only difference a catalyst makes to a chemical
reaction is how much energy must be initially invested to spark the reaction. To use the example
of hydrogen and oxygen gas once again, the presence of a catalyst does not cause the combustion
of hydrogen and oxygen to release more energy. All the catalyst does is make it easier for the
combustion to begin.

291f this were not true, one could construct an over-unity (“perpetual motion”) machine by initiating an endothermic
reaction and then reversing that reaction (exothermic) using a catalyst in either or both portions of the cycle to reap
a net energy release from the system. So trustworthy is the Law of Energy Conservation that we may safely invoke
the impossibility of over-unity energy production as a disproof of any given hypothesis permitting it. In other words,
if any hypothesis allows for an over-unity process (i.e. violates the Law of Energy Conservation), we may reject that
hypothesis with confidence! This form of disproof goes by the name reductio ad absurdum (Latin: “reducing to an
absurdity”).
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3.9.2 Heats of formation and Hess’s Law

As we have seen, the formation of new chemical bonds between atoms is an energy-releasing process
(i.e. exothermic), while the dissolution of chemical bonds is an energy-absorbing process (i.e.
endothermic). Given the fact that the Law of Energy Conservation is universal, it stands to reason
we ought to be able to mathematically balance the potential energy held by reactants, the potential
energy held by the products, and the amount of energy either released or absorbed by the reaction.

Let us begin our exploration of this concept with the formation of carbon dioxide (CO2) from
the combustion of elemental carbon (C) and oxygen molecules (O):

C+ 0y — CO, AH = —393.5 kJ mol !

As we can see, this reaction is exothermic®’: the products have a lower energy than the reactants,
losing 393.5 kilojoules of energy for every mole of carbon dioxide formed by this reaction.

If we are to account for all the energy entering and exiting a chemical reaction, we must have
some means of quantifying the amount of energy stored within both the reactants and the products
as well as the amount of energy released or absorbed by the reaction itself. Quantifying the amount
of chemical potential possessed by atoms and molecules is difficult if not impossible to do in any
absolute sense, and so the common practice is to arbitrarily assign an energy value of zero to
chemical elements in their normal states at standard temperature and pressure (293.15 Kelvin and
1 atmosphere, abbreviated “STP”). This point of reference will be the norm for any subsequent
determinations of chemical potential energy. The standard heat of formation or standard enthalpy
of formation (AH Ji’, or sometimes Ay H°) for any substance is thus defined as the amount of energy
gained or lost when one mole of that substance is formed from its constituent elements at STP. A
superscripted “o” symbol represents conditions of standard temperature and pressure.

We know that the phase of a substance (i.e. solid, liquid, gas) affects how much energy it
contains, and therefore in order to accurately account for all energy we must represent the phase of
each substance when we specify heats of formation. Since the natural state of carbon is solid (s) at
STP while the natural state of oxygen is gas (g) at STP, we will represent those states as letters
within parentheses when defining their heats of formation:

AH; (C,s) =0kJ mol ™! Heat of formation for solid carbon at STP

AHjF (Oy, ) =0kJ mol~!  Heat of formation for gaseous oxygen at STP

Tt takes no gain or loss of energy at all to form solid carbon (C) or gaseous oxygen molecules
(O2) at STP because those elements are already in those forms at STP. The only way we will ever
have a non-zero AH?$ value is if the substance in question is a compound (i.e. comprised of multiple
elements joined by chemical bonds) or if the substance in question is an element in some unusual
energy state (e.g. ionization).

30The heat-releasing nature of this reaction should be evident by inspection of the reaction equation alone, without
reference to the AH figure. Note how the carbon (C) and oxygen (O2) begin as separate entities, but end up as one
combined molecule (COz2). Since we know the formation of new chemical bonds is exothermic, this reaction between
carbon and oxygen to produce carbon dioxide must therefore be exothermic.
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Since we already know the combustion of one atom of carbon with one molecule of oxygen
liberates 393.5 kilojoules of heat energy, we may conclude the heat of formation for carbon dioxide
gas (cooled down to the standard temperature of 293.15 Kelvin) must be —393.5 kJ mol~!, since
this is precisely how much energy is liberated when carbon dioxide is formed from its constituent
elements. Representing all these figures in a table helps us make sense of it all:

Reactant Reactant Reaction Product
C(s) O2(g) - CO2(g)
AH}’ =0 kJ mol™! AH}’ =0kJmol™! | AH® =-393.5 kJ mol~! AH]‘? =-393.5 kJ mol ™!

Stated verbally, the combined heats of formation for all reactants plus the heat of reaction yields
the combined heats of formation for all products. Put into simpler terms, the energy contained by
the reactants plus the change in energy wrought by the reaction gives us the energy left?! inside the
products. The mathematical formulation of this principle is as follows:

b3 [AH}’ (Reactants)| + AH° (Reaction) = % [AH;’ (Products)]

The practical application of this is that we may calculate®? the exact amount of heat liberated
or absorbed by any chemical reaction, if only we know in advance the heats of formation for all the
reactants and products. Fortunately for our reference, chemists have tabulated standard heats of
formation for a great many substances.

Hess’s Law states that this accounting of energy is true regardless of the reaction path. For
example, if the combustion of carbon with oxygen proceeds in one step (C + Oy — COs), the
overall heat of reaction will be precisely the same as for any other series of steps resulting in the
same product(s) from the same reactant(s), for example the partial combustion of carbon to form
carbon monoxide (C + O — CO) followed by the subsequent combustion of carbon monoxide (CO
+ O — COy). Just as we saw with catalytically-aided chemical reactions, the total heat of reaction
is strictly a function of the reactants and the products, not of any process or path by which the
reaction may proceed. The Law of Energy Conservation is indeed iron-clad!

31 At first it may seem non-sensical for the carbon dioxide product of this reaction to have a negative energy, until
you realize the zero values given to both the carbon and oxygen reactants are entirely arbitrary. Viewed in this light,
the negative heat of formation for CO2 is nothing more than a relative expression of chemical potential energy in
reference to the elements from which COz originated. Therefore, a negative AH ;’ value for any molecule simply tells
us that molecule has less energy (i.e. is more stable) than its constituent elements.

32We may also readily tell whether any given reaction will be exothermic or endothermic, based on the mathematical
sign of this AH value.
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Let us investigate a practical application where we employ heats of formation to calculate the
heat of a chemical reaction. In this case, we will consider the combustion of propane fuel gas (C3Hg)
in the presence of pure oxygen gas (O3), producing liquid water (Hz0) and gaseous carbon dioxide
(CO2) as products:

C3Hs(g) +502(g) — 4H20(1) + 3CO2(g)

To begin, we must identify the standard heats of formation for each of these substances at STP
33.

from a suitable reference’:
e Propane gas AH} = —103.8 kJ mol !
e Oxygen gas AH? = 0 kJ mol™!
o Water AH? = —285.8 kJ mol !
e Carbon dioxide gas AH? = —393.5 kJ mol !

Setting these quantities into a table for ease of organization (all heats of formation given in units
of kilojoules per mole):

Reactant | Reactant | Reaction Product Product
C3Hs(g) 502(g) - 4H,0(1) 3C0,(g)
(1)(—103.8) (5)(0) AH° (4)(—285.8) | (3)(—393.5)

Solving for the unknown heat of reaction (AH®):
b3 [AH}) (Reactants)| + AH° (Reaction) = % [AH; (Products)]
[(1)(—103.8) + (5)(0)] + AH® = [(4)(—285.8) + (3)(—393.5)]
[—103.8] + AH® = [-1143.2 + —1180.5]
[—103.8] + AH® = [~2323.7]
AH® = —2323.7+4103.8
AH® = —2219.9 kJ per mole of propane fuel

The large, negative value of AH® tells us the reaction of propane with oxygen will be highly
exothermic.

330f course, it is not necessary to look up AHJ‘? for oxygen gas, as that is an element in its natural state at STP
and therefore its standard heat of formation is defined to be zero. The heat of formation for carbon dioxide gas may
be found from the preceding example, while the heat of formation for water may be found in the “Heats of Reaction
and Activation Energy” subsection of this book. The only substance in this list of which the heat of formation is not
defined as zero or given in this book is propane. Note that many thermochemical reference books will give heats of
formation in units of kilocalories per mole rather than kilojoules per mole. The conversion factor between these is 1
calorie = 4.184 joules.
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3.10 Periodic table of the ions

H + 1 He 2
Hydrogen onizaion s PEFiOMiC Table of the lons Helium
1.00794 4.00260

Metalloids Nonmetals N

1s* 15’

L + 3(Be2+ 4 Symbol —»Kk+ 19|~ Atomic number B 5 [c 6[N 3 7]0 2 8|F - 9|Ne 10
Lithium | Berylium __| Potassium Boron | Carbon | Nitrogen | Oxygen | Fluorine | Neon

6.941 9.012182 Name 39.0983 <|— Atomic mass 10.81 12,011 14.0067 | 159994 | 18.9984 | 20.179

26! 2 46t (averaged according t 20 2 20° 2 20° 2
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3.11 Ions in liquid solutions

Many liquid substances undergo a process whereby their constituent molecules split into positively
and negatively charged ion pairs, the positively-charge ion called a cation and the negatively-charged
ion called an anion>*. Liquid ionic compounds split into ions completely or nearly completely, while
only a small percentage of the molecules in a liquid covalent compound split into ions. The process of
neutral molecules separating into ion pairs is called dissociation when it happens to ionic compounds,
and ‘onization when it happens to covalent compounds.

Molten salt (NaCl) is an example of the former, while pure water (H20) is an example of the
latter. In liquid salt, practically every NaCl molecule splits up into an Na™ and Cl~ ion pair,
whereas with liquid water only a very small percentage of molecules split up into positively and
negatively charged ions — most remain as whole HoO molecules. All the ions present in molten salt
serve as electrical charge carriers, making molten salt a very good conductor of electricity. The
scarcity of ions in a sample of pure water explains why it is often considered an insulator. In fact,
the electrical conductivity of a liquid substance is the definitive test of whether it is an ionic or a
covalent (“molecular”) substance.

The few water molecules that do ionize split into positive hydrogen ions*® (H*) and negative
hydroxyl ions (OH™). At room temperature, the concentration of hydrogen and hydroxyl ions in
a sample of pure water is quite small: a molarity of 10=7 M (moles of hydrogen ions per liter of
solution) each.

Given the fact that pure water has a mass of 1 kilogram (1000 grams) per liter, and one mole
of pure water has a mass of 18 grams, we must conclude that there are approximately 55.56 moles
of water molecules in one liter (55.56 M). If only 10~7 moles of those molecules ionize at room
temperature, that represents an extremely small percentage of the total:

10~7 mol hydrogen ions

5556 mol solution 0.0000000018 = 0.00000018% = 0.0018 ppm (parts per million)

It is not difficult to see why pure water is such a poor conductor of electricity. With so few
ions available to act as charge carriers, pure water is practically an insulator. The vast majority of
water molecules remain un-ionized and therefore cannot transport electric charges from one point
to another.

The molarity of both hydrogen and hydroxyl ions in a pure water sample increases with increasing
temperature. For example, at 60 °C, the molarity of hydrogen and hydroxyl ions increases to 3.1 X
10~7 M, which is still only 0.0056 parts per million, but definitely larger than the concentration at
room temperature (25 °C).

The electrical conductivity of water may be greatly enhanced by dissolving an ionic compound
in it, such as salt. When dissolved, the salt molecules (NaCl) immediately dissociate into sodium
cations (Na™) and chlorine anions (C1™), becoming available as charge carriers for an electric current.

34These names have their origin in the terms used to classify positive and negative electrodes immersed in a liquid
solution. The positive electrode is called the “anode” while the negative electrode is called the “cathode.” An anion
is an ion attracted to the anode. A cation is an ion attracted to the cathode. Since opposite electrical charges tend
to attract, this means “anions” are negatively charged and “cations” are positively charged.

35 Actually, the more common form of positive ion in water is hydronium: HzO%, but we often simply refer to the
positive half of an ionized water molecule as hydrogen (H1).
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In industry, we may exploit this relationship between electrical conductivity and ionic dissociation
to detect the presence of ionic compounds in otherwise pure water.

3.12 pH

Hydrogen ion activity in aqueous (water-solvent) solutions is a very important parameter for a wide
variety of industrial processes. A number of reactions important to chemical processing are inhibited
or significantly slowed if the hydrogen ion activity of a solution does not fall within a narrow range.
Some additives used in water treatment processes (e.g. flocculants) will fail to function efficiently
if the hydrogen ion activity in the water is not kept within a certain range. Alcohol and other
fermentation processes strongly depend on tight control of hydrogen ion activity, as an incorrect
level of ion activity will not only slow production but may also spoil the product. The concentration
of active hydrogen ions®® in a solution is always measured on a logarithmic scale, and referred to as
pH.

pH is mathematically defined as the negative common logarithm of active hydrogen ion
concentration in a solution®”. Hydrogen ion concentration is expressed as a molarity (number of
moles of ions per liter of total liquid solution volume), with “pH” being the unit of measurement for
the logarithmic result:

pH = —log[H]

For example, an aqueous solution with an active hydrogen concentration of 0.00044 M has a pH
value of 3.36 pH.

Water is a covalent compound, and so there is little separation of water molecules in liquid form.
Most of the molecules in a sample of pure water remain as whole molecules (H2O) while a very
small percentage ionize into positive hydrogen ions (H*) and negative hydroxyl ions (OH™). The
mathematical product of hydrogen and hydroxyl ion molarity in water is known as the ionization
constant (K,), and its value varies with temperature:

K, = [H'] x [OH]

At 25 degrees Celsius (room temperature), the value of K,, is very nearly equal to 1.0 x 1074,
Since each one of the water molecules that does ionize in this absolutely pure water sample separates
into exactly one hydrogen ion (H™) and one hydroxyl ion (OH™), the molarities of hydrogen and
hydroxyl ions must be equal to each other. The equality between hydrogen and hydroxyl ions in a
pure water sample means that pure water is neutral, and that the molarity of hydrogen ions is equal
to the square root of K,,:

[HY] = /Ky = V1.0x 10~ = 1.0 x 1077 M

36Free hydrogen ions (H™) are rare in a liquid solution, and are more often found attached to whole water molecules
to form a positive ion called hydronium (H3O%). However, process control professionals usually refer to these positive
ions simply as “hydrogen” even though the truth is a bit more complicated.

37The letter “p” refers to “potential,” in reference to the logarithmic nature of the measurement. Other logarithmic
measurements of concentration exist for molecular species, including pO2 and pCO2 (concentration of oxygen and
carbon dioxide molecules in a liquid solution, respectively).
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Since we know pH is defined as the negative logarithm of hydrogen ion activity, and we can be
assured all hydrogen ions present in the solution will be “active” since there are no other positive
ions to interfere with them, the pH value for water at 25 degrees Celsius is:

pH of pure water at 25 °C = —log(1.0 x 1077 M) = 7.0 pH

As the temperature of a pure water sample changes, the ionization constant changes as well.
Increasing temperature causes more of the water molecules to ionize into H* and OH™ ions, resulting
in a larger K, value and a lower pH value. The following table shows K, and pH values for pure
water at different temperatures:

Temperature Kw pH
0°C 1.139 x 10~ P 7.47 pH
5°C 1.846 x 10~ 15 7.37 pH
10 °C 2.920 x 10-1° 7.27 pH
15 °C 4.505 x 10717 7.17 pH
20 °C 6.809 x 10717 7.08 pH
25 °C 1.008 x 10~ ™ 6.998 pH
30 °C 1.469 x 10~ ™ 6.92 pH
35 °C 2.089 x 10~ 6.84 pH
40 °C 2.919 x 1071 6.77 pH
45 °C 4.018 x 10714 6.70 pH
50 °C 5.474 x 10714 6.63 pH
55 °C 7.296 x 10~ 6.57 pH
60 °C 9.614 x 10~14 6.51 pH

This means that while any pure water sample is neutral (an equal number of positive hydrogen
ions and negative hydroxyl ions) at any temperature, the pH value of pure water actually changes
with temperature, and is only equal to 7.0 pH*® at one particular (“standard”) temperature: 25 °C.
Based on the K, values shown in the table, pure water will be 6.51 pH at 60 °C and 7.47 pH at
freezing.

380ften, students assume that the 7 pH value of water is an arbitrary assignment, using water as a universal
standard just like we use water as the standard for the Celsius temperature scale, viscosity units, specific gravity, etc.
However, this is not the case here. Pure water at room temperature just happens to have an hydrogen ion molarity
equivalent to a (nearly) round-number value of 7 pH.
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If we add an electrolyte to a sample of pure water, molecules of that electrolyte will separate
into positive and negative ions®?. If the positive ion of the electrolyte happens to be a hydrogen ion
(HT), we call that electrolyte an acid. If the negative ion of the electrolyte happens to be a hydroxyl
ion (OH™), we call that electrolyte a caustic, or alkaline, or base. Some common acidic and alkaline
substances are listed here, showing their respective positive and negative ions in solution:

Sulfuric acid is an acid (produces H' in solution)
HQSO4 — 2H+ + SO42_

Nitric acid is an acid (produces HT in solution)
HNOj3 — Ht 4 NO3~

Hydrocyanic acid is an acid (produces HT in solution)
HCN — H* + CN~—

Hydrofluoric acid is an acid (produces HT in solution)
HF — HT + F~

Lithium hydroxide is a caustic (produces OH™ in solution)
LiOH — LiT + OH~

Potassium hydroxide is a caustic (produces OH™ in solution)
KOH — K™ + OH~

Sodium hydroxide is a caustic (produces OH™ in solution)
NaOH — Nat + OH™

Calcium hydroxide is a caustic (produces OH™ in solution)
Ca(OH)y — Ca?t + 20H~

When an acid substance is added to water, some®’ of the acid molecules dissociate into positive
hydrogen ions (HT) and negative ions (the type of negative ions depending on what type of acid
it is). This increases the molarity of hydrogen ions (the number of moles of H ions per liter of
solution), therefore driving the pH value of the solution down to a smaller number. For example, a
sample of acid added to a sample of neutral water at room temperature (7 pH) will drive the pH
value down below 7 due to the increasing molarity of hydrogen ions in the solution. The addition of
hydrogen ions to the solution also decreases the molarity of hydroxyl ions (the number of moles of
OH™ ions per liter of solution) because some of the water’s OH™ ions combine with the acid’s H
ions to form deionized water molecules (H20).

If an alkaline substance (otherwise known as a caustic, or a base) is added to water, some*! of
the alkaline molecules dissociate into negative hydroxyl ions (OH™) and positive ions (the type of
positive ions depending on what type of alkaline it is). This increases the molarity of OH™ ions in

391f the electrolyte is considered strong, all or nearly all of its molecules will dissociate into ions. A weak electrolyte
is one where only a mere portion of its molecules dissociate into ions.

40For “strong” acids, all or nearly all molecules dissociate into ions. For “weak” acids, just a portion of the molecules
dissociate.

41For “strong” bases, all or nearly all molecules dissociate into ions. For “weak” bases, just a portion of the molecules
dissociate.
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the solution, as well as decreases the molarity of hydrogen ions (again, because some of the caustic’s
OH™ ions combine with the water’s HT ions to form deionized water molecules, HoO). This decrease
in hydrogen ion molarity will raise the pH value of the solution. For example, if we were to add a
sample of caustic to a sample of neutral water at room temperature (7 pH), the pH of the solution
would increase with the decreasing hydrogen ion molarity.

The result of this complementary effect (increasing one type of water ion, decreasing the other)
keeps the overall ionization constant relatively constant, at least for dilute solutions. In other words,
the addition of an acid or a caustic to water may change [H'], but it has little effect on K.

A simple way to envision this effect is to think of a laboratory balance scale, balancing the
number of hydrogen ions in a solution against the number of hydroxyl ions in the same solution:

Acid Caustic

When the solution is pure water, this imaginary scale is balanced (neutral), with [H*] = [OH™].
Adding an acid to the solution tips the scale to the left (lower pH value), while adding a caustic to
the solution tips the scale to the right (higher pH value)*?.

421t should be noted that the solution never becomes electrically imbalanced with the addition of an acid or caustic.
It is merely the balance of hydrogen to hydroxyl ions we are referring to here. The net electrical charge for the
solution should still be zero after the addition of an acid or caustic, because while the balance of hydrogen to hydroxyl
ions does change, that electrical charge imbalance is made up by the other ions resulting from the addition of the
electrolyte (anions for acids, cations for caustics). The end result is still one negative ion for every positive ion (equal
and opposite charge numbers) in the solution no matter what substance(s) we dissolve into it.
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If an electrolyte has no effect on either the hydrogen and hydroxyl ion activity of an aqueous
solution, we call it a salt. The following is a list of some common salts, showing their respective ions
in solution:

Potassium chloride is a salt (produces neither HT nor OH~ nor O?~ in solution)
KCl — Kt + CI™

Sodium chloride is a salt (produces neither H* nor OH~ nor O%~ in solution)
NaCl — Nat + Cl™

Zinc sulfate is a salt (produces neither HT nor OH~ nor O?~ in solution)
ZnS0O,4 — Zn?t + SO427

The addition of a salt to an aqueous solution should have no effect on pH, because the ions
created neither add to nor take away from the hydrogen ion activity™?.

Acids and caustics tend to neutralize one another, the hydrogen ions liberated by the acid
combining (and canceling) with the hydroxyl ions liberated by the caustic. This process is called
pH neutralization, and it is used extensively to adjust the pH value of solutions. If a solution is too
acidic, just add caustic to raise its pH value. If a solution is too alkaline, just add acid to lower its
pH value.

The result of a perfectly balanced mix of acid and caustic is deionized water (HyO) and
a salt formed by the combining of the acid’s and caustic’s other ions. For instance, when
hydrochloric acid (HC1) and potassium hydroxide (KOH) neutralize one another, the result is water
(H20) and potassium chloride (KCl), a salt. This production of salt is a necessary side-effect
of pH neutralization, which may require addressing in later stages of solution processing. Such
neutralizations are exothermic, owing to the decreased energy states of the hydrogen and hydroxyl
ions after combination. Mixing of pure acids and caustics together without the presence of substantial
quantities of water (as a solvent) is often violently exothermic, presenting a significant safety hazard
to anyone near the reaction.

43Exceptions do exist for strong concentrations, where hydrogen ions may be present in solution yet unable to react
because of being “crowded out” by other ions in the solution.
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4.1 Electrical voltage

Voltage is the amount of specific potential energy available between two points in an electric circuit.
Potential energy is energy that is potentially available to do work. Looking at this from a classical
physics perspective, potential energy is what we accumulate when we lift a weight above ground
level, or when we compress a spring:

Wall
Mass (m) Spring
Elastic force
e i)
Weight : ; ;
g Height raised Distance
(mg) M) compressed
)

Ground level

In either case, potential energy is calculated by the work done in exerting a force over a parallel
distance. In the case of the weight, potential energy (E,) is the simple product of weight (gravity g
acting on the mass m) and height (h):

E, = mgh

For the spring, things are a bit more complex. The force exerted by the spring against the
compressing motion increases with compression (F' = kx, where k is the elastic constant of the
spring). It does not remain steady as the force of weight does for the lifted mass. Therefore, the
potential energy equation is nonlinear:

1
Ep = 5]{5(,52

Releasing the potential energy stored in these mechanical systems is as simple as dropping the
mass, or letting go of the spring. The potential energy will return to the original condition (zero)
when the objects are at rest in their original positions. If either the mass or the spring were attached
to a machine to harness the return-motion, that stored potential energy could be used to do useful
tasks.

Potential energy may be similarly defined and quantified for any situation where we exert a force
over a parallel distance, regardless of where that force or the motivating distance comes from. For
instance, the static cling you experience when you pull a wool sock out of a clothes dryer is an
example of a force. By pulling that sock away from another article of clothing against the force of
“static cling,” you are doing work, and storing potential energy in the tension between that sock
and the rest of the clothing. In a similar manner, that stored energy could be released to do useful
tasks if we placed the sock in some kind of machine harnessing the sock’s motion as it returns to its
original position on the pile of laundry, pulled by the force of static electrical attraction.
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If we make use of non-mechanical means to move electric charge from one location to another, the
result is no different. Moving attracting charges apart from one another means doing work (a force
exerted over a parallel distance) and storing potential energy in that physical tension. When we use
chemical reactions to move electrons from one metal plate to another in a solution, or when we spin
a generator and electro-magnetically motivate electrons to seek other locations, we impart potential
energy to those electrons. We could express this potential energy in the same unit as we do for
mechanical systems (the Joule). However, it is actually more useful to express the potential energy
in an electric system in terms of how many joules are available per a specific quantity of electric
charge (a certain number of electrons). This measure of specific potential energy is simply called
electric potential or voltage, and we measure it in units of Volts, in honor of the Italian physicist
Alessandro Volta, inventor of the first electrochemical battery.

1 Volt — 1 Joule of potential energy

1 Coulomb of electric charge

In other words, if we forced 1 Coulomb’s worth of electrons (6.24 x 108 of them, to be exact)
away from a positively-charged place, and did one Joule’s worth of work in the process, we would
have generated one Volt of electric potential.



288 CHAPTER 4. DC ELECTRICITY

Electric potential (voltage) and potential energy share a common, yet confusing property: both
quantities are fundamentally relative between two physical locations. There is really no such thing
as specifying a quantity of potential energy at a single location. The amount of potential energy
in any system is always relative between two different points. If I lift a mass off the ground, I can
specify its potential energy, but only in relation to its former position on the ground. The amount of
energy that mass is potentially capable of releasing by free-fall depends on how far it could possibly
fall. To illustrate, we will perform some “thought experiments” where we lift a 1 kilogram mass 1
meter off the ground and then drop that mass to assess its energy. That 1-kilo mass weighs 9.81
Newtons on Earth, and the distance lifted was 1 meter, so the potential energy stored in the mass
is 9.81 joules, right? Consider the following scenario:

Mass (m= 1kg)

Weight

(mg = 9.8 Newtons) Height raised

(h= 1 meter)

Cliff

300 meters to bottom

|

If we drop the mass over the spot we first lifted it from, it will release all the potential energy
we invested in it: 9.81 joules. From this example it seems very clear that the mass possessed 9.81
joules of potential energy when lifted. However, the situation becomes more complicated if we carry
the mass over to the table and release it there. Since the mass can now only fall half a meter, it will
only release 4.9 joules of energy in the process. How much potential energy did the mass have while
suspended above that table? If you argue that the mass possessed a full 9.81 joules of potential
energy at that original height, then why can’t we realize that full potential when dropped over the
table? Can we really say that an object possess potential energy if we cannot realize that potential?

Next, imagine lifting the 1 kg mass 1 meter off the ground, and then carrying it over the edge
of a cliff with a 300 meter drop. If we were to release the mass here, it would fall a full 301 meters
before hitting the ground. This represents 2.95 kilojoules (kJ) of energy! How can we possibly argue
that the mass had a potential energy of 9.81 joules when lifted one meter off the ground, and then
without imparting any more energy to that mass we suddenly are able to realize over 300 times as
much energy?

The answer to this paradox is that potential energy is always relative between the object’s initial
height and its height after falling. It is technically incorrect to say that the mass possesses 9.81 joules
of potential energy when lifted 1 meter off the ground, as though potential energy were an absolute
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quantity. Instead, it is more accurate to say that the mass gained 9.81 joules of potential energy
after being lifted 1 meter off the ground, implying that the mass could have possessed potential
energy (with reference to the cliff’s bottom) even while sitting on the ground (above the cliff).

Likewise, electrical voltage (as an expression of potential energy) is a quantity relative between
two points. Just as we must know the mass’s position relative to its falling point before we can
quantify its potential energy, we must know an electric charge’s position relative to its return point
before we can quantify its voltage. Consider a series of batteries connected as shown:

1.5volts

1.5volts

1.5valts

The voltage as measured between any two points directly across a single battery will be 1.5 volts:
Vap = 1.5 volts
Vec = 1.5 volts
Vep = 1.5 volts

If, however, we span more than one battery with our voltmeter connections, our voltmeter will
register more than 1.5 volts:

Vac = 3.0 volts

Vep = 3.0 volts

Vap = 4.5 volts

Thus we see there is no such thing as “voltage” at a single point in a circuit. The
concept of voltage has meaning only between pairs of points in a circuit, just as the concept of
potential energy for a mass has meaning only between two physical locations: where the mass is,
and where it may potentially fall.
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Things get interesting when we connect voltage sources in different configurations. Consider the
following example, identical to the previous illustration except the middle battery has been reversed:

1.5 volts

1.5 volts

Note the “+” and “—” signs next to the ends of the batteries. These signs show the polarity of
each battery’s voltage. Also note how the two voltmeter readings are different from before. Here we
see an example of negative potential with the middle battery connected in opposition to the other
two batteries. While the top and bottom batteries are both “lifting” electric charges to greater
potential (going from point D to point A), the middle battery is decreasing potential from point C
to point B. It’s like taking a step forward, then a step back, then another step forward. Or, perhaps
more appropriately, like lifting a mass 1.5 meters up, then setting it down 1.5 meters, then lifting
it 1.5 meters up again. The first and last steps accumulate potential energy, while the middle step
releases potential energy.

This explains why it is important to install multiple batteries the same way into battery-powered
devices such as radios and flashlights. The batteries’ voltages are supposed to add to a make a larger
total required by the device. If one or more batteries are placed backwards, potential will be lost
instead of gained, and the device will not receive enough voltage.
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Here we must pay special attention to how we use our voltmeter, since polarity matters. All
voltmeters are standardized with two colors for the test leads: red and black. To make sense of the
voltmeter’s indication, especially the positive or negative sign of the indication, we must understand
what the red and black test lead colors mean:

A positive reading indicates a gain
in potential from black to red.

A negative reading indicates a loss
in potential from black to red.

To

From

Connecting these test leads to different points in a circuit will tell you whether there is potential
gain or potential loss from one point (black) to the other point (red).
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4.2 Electrical current

Current is the name we give to the motion of electric charges from a point of high potential to a
point of low potential. All we need to form an electric current is a source of potential (voltage)
and some electric charges that are free to move between the poles of that potential. For instance, if
we connected a battery to two metal plates, we would create an electric field between those plates,
analogous to a gravitational field except it only acts on electrically charged objects, while gravity
acts on anything with mass. A free charge placed between those plates would “fall” toward one of
the plates just as a mass would fall toward a larger mass:

Gravitational field

Metal plate
Mass
Negative|charge
Electric| field O
+
Earth Metal plate

An electric charge will "fall" in an electric field
just as a mass will fall in a gravitational field.

Some solid substances, most notably metals, have very mobile electrons. That is, the outer
(valence) electrons are very easily dislodged from the parent atoms to drift to and fro throughout
the material. In fact, the electrons within metals are so free that physicists sometimes refer to the
structure of a metal as atoms floating in a “sea of electrons”. The electrons are almost fluid in
their mobility throughout a solid metal object, and this property of metals may be exploited to
form definite pathways for electric currents. Any substance whose electrons are mobile is called a
electrical conductor, while any substance lacking mobile electrons is called an electrical insulator.
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If the poles of a voltage source are joined by a conductor, the free electrons within that conductor
will drift toward the positive pole (electrons having a negative charge, opposite charges attracting
one another). For each electron reaching the positive pole, an electron exits the negative pole of the
source to replenish the total number of electrons in the flow:

Direction of
electron motion ‘
inside metal

+(0 0 0 0 00
@

If the source of this voltage is continually replenished by chemical energy, mechanical energy, or
some other form of energy, the free electrons will continually loop around this circular path. We call
this unbroken path an electric circuit. The drifting motion of electrons in a circuit has the same
average rate of flow (current) at all points in that circuit, because there is only one pathway for the
current. You may think of this like liquid flowing through a circular loop of pipe: since there is only
one pathway for the liquid to flow, the rate of flow at all points in that pathway must be the same.

We typically measure the amount of current in a circuit by the unit of amperes, or amps for
short (named in honor of the French physicist André Ampere. One ampere of current is equal to one
coulomb of electric charge (6.24 x 10'® electrons) moving past a point in a circuit for every second
of time.

Like masses falling toward a source of gravity, these electrons continually “fall” toward the
positive pole of a voltage source. After arriving at that source, the energy imparted by that source
“lifts” the electrons to a higher potential state where they once again “fall down” to the positive
pole through the circuit.
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Like rising and falling masses in a gravitational field, these electrons act as carriers of energy
within the electric field of the circuit. This is very useful, as we can use them to convey energy
from one place to another, using metal wires as conduits for this energy. This is the basic idea
behind electric power systems: a source of power (a generator) is turned by some mechanical engine
(windmill, water turbine, steam engine, etc.), creating an electric potential. This potential is then
used to motivate free electrons inside the metal wires to drift in a common direction. The electron
drift is conveyed in a circuit through long wires, where they can do useful work at a load device such
as an electric motor, light bulb, or heater.

Generator

(Turned by an engine)

{\

(Turns a conveyor belt
or other mechanical load)

U

Motor

Current T lCurrent

Wire —_—

Wire ——

Given the proper metal alloys, the friction that electrons experience within the metal wires may
be made very small, allowing nearly all the energy to be expended at the load (motor), with very little
wasted along the path (wires). This makes electricity the most efficient means of energy transport
known.

The electric currents common in electric power lines may range from hundreds to thousands of
amperes. The currents conveyed through power receptacles in your home typically are no more
than 15 or 20 amperes. The currents in the small battery-powered circuits you will build are even
less: fractions of an ampere. For this reason, we commonly use the metric prefix milli (one one-
thousandth) to express these small currents. For instance, 10 milliamperes is 0.010 amperes, and
500 milliamperes is one-half of an ampere.



4.2. ELECTRICAL CURRENT 295

4.2.1 Electron versus conventional flow

When Benjamin Franklin proposed his single-fluid theory of electricity, he defined “positive” and
“negative” as the surplus and deficiency of electric charge, respectively. These labels were largely
arbitrary, as Mr. Franklin had no means of identifying the actual nature of electric charge carriers
with the primitive test equipment and laboratory techniques of his day. As (bad) luck would have
it, his hypothesis was precisely opposite of the truth for metallic conductors, where electrons are the
dominant charge carrier.

This means that in an electric circuit consisting of a battery and a light bulb, electrons slowly
move from the negative side of the battery, through the metal wires, through the light bulb, and on
to the positive side of the battery as such:

+ —

O Direction of electron flow

Unfortunately, scientists and engineers had grown accustomed to Franklin’s false hypothesis long
before the true nature of electric current in metallic conductors was discovered. Their preferred
notation was to show electric current flowing from the positive pole of a source, through the load,
returning to the negative pole of the source:

+ —

Q Direction of conventional flow
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This relationship between voltage polarity marks and conventional flow current tends to make
more intuitive sense than electron flow notation, because it is reminiscent of fluid pressure and flow
direction:

Conventional flow current notation

-

I+ T .
Voltage — <>q Light
source —— bulb

Conventional flow current notation
l—) Fluid motion
Pump

+

- " Valve }%{

Fluid motion HI

“ 2

If we take the “4” sign to represent more pressure and the “—” sign to represent less pressure,
it makes perfect sense that fluid should move from the high-pressure (discharge) port of the pump
through the hydraulic “circuit” and back to the low-pressure (suction) port of the pump. It also
makes perfect sense that the upstream side of the valve (a fluid restriction) will have a greater
pressure than the downstream side of the valve. In other words, conventional flow notation best
honors Mr. Franklin’s original intent of modeling current as though it were a fluid, even though he
was later proven to be mistaken in the case of metallic conductors where electrons are the dominant
charge carrier.




4.2. ELECTRICAL CURRENT 297

This convention was so well-established in the electrical engineering realm that it held sway
despite the discovery of electrons. Engineers, who create the symbols used to represent the electronic
devices they invent, consistently chose to draw arrows in the direction of conventional flow rather
than electron flow. In each of the following symbols, the arrow heads point in the direction that
positive charge carriers would move (opposite the direction that electrons actually move):

Lo+

NPN bipolar  PNP bipolar Diode SCR
transistor transistor

Jr‘) Jr’l ~!

~ ~
M ~ 1

N-channel P-channel Unijunction Current

IGBT IGBT transistor source

This stands in contrast to electronics technicians, who historically have been taught using electron
flow notation. I remember sitting in a technical school classroom being told by my teacher to always
imagine the electrons moving against the arrows of the devices, and wondering why it mattered.

It is truly a sad situation when the members of two branches within the same field do not agree
on something as fundamental as the convention used to denote flow in diagrams. It is even worse
when people within the field argue over which convention is best. So long as one is consistent with
their convention and with their thinking, it does not matter! Many fine technologists may be found
on either side of this “fence,” and some are adept enough to switch between both without getting
confused.
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For what it’s worth, I personally prefer conventional flow notation. The only objective arguments
I have in favor of this preference are as follows:

Conventional flow notation is a closer analogue to fluid flow in pneumatic and hydraulic
systems. Since instrument technicians need to understand the relationships between pressure
and flow in fluid systems as well as electrical circuits, using conventional flow notation for
electrical circuits makes a lot of sense.

Conventional flow notation matches all device arrows; no need to “go against the arrow” when
tracing current in a schematic diagram.

Conventional flow notation is consistent with the “right-hand rule” for vector cross products
(which are essential for understanding electromagnetics at advanced academic levels). The
so-called “left-hand rule” taught to students learning electron flow notation is mathematically
wrong, and must be un-learned if the student ever progresses to the engineering level in his or
her studies.

Conventional flow notation is the standard for modern manufacturers’ documentation
(reference manuals, troubleshooting guides, datasheets, etc.)!.

Conventional flow notation makes sense of the descriptive terms sourcing and sinking.

This last point merits further investigation. The terms “sourcing” and “sinking” are often used
in the study of digital electronics to describe the direction of current in a switching circuit. A circuit
that “sources” current to a load is one where the direction of conventional flow points outward from
the sourcing circuit to the load device. These terms are also used to characterize the DC input
and output modules of certain industrial control equipment such as programmable logic controllers
(PLCs), and so any technologist working with such equipment will need to properly identify and
connect these module types based on the directions of electric current they are equipped to handle.

11 have yet to read a document of any kind written by an equipment manufacturer that uses electron flow notation,
and this is after scrutinizing literally hundreds of documents looking for this exact detail! For the record, though, most
technical documents do not bother to draw a direction for current at all, leaving it to the imagination of the reader
instead. It is only when a direction must be drawn that one sees a strong preference in industry for conventional flow
notation.
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For example, here are two schematic diagrams showing two different kinds of electronic proximity
switch. The first switch sinks current in from the LED through its output terminal, through its
transistor, and down to ground. The second switch sources current from the positive supply terminal
through its transistor and out to the LED through its output terminal (note the direction of the
thick arrow near the output screw terminal in each circuit):

"Sinking" output LED current "sinks" down to
proximity switch ground through the switch
Brn A
l Output LED
(?) 2avpc
Sensor
circuit 1
| - . Blu
Switch is "sinking” or "NPN" type
"Sourcing" output Switch "sources" current

proximity switch out to the LED

Sensor
circuit

Switch is "sourcing" or "PNP" type

These terms simply make no sense when viewed from the perspective of electron flow notation.
If you were to actually trace the directions of the electrons, you would find that a device “sourcing”
current has electrons flowing into its connection terminal, while a device “sinking” current sends
electrons out to another device where they travel (up) to a point of more positive potential.

In fact, the association between conventional flow notation and sourcing/sinking descriptions is
so firm that I have yet to see a professionally published textbook on digital circuits that uses electron
flow?. This is true even for textbooks written for technicians and not engineers!

2If by chance I have missed anyone’s digital electronics textbook that does use electron flow, please accept my
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Once again, though, it should be understood that either convention of current notation is
adequate for circuit analysis. I dearly wish this horrible state of affairs would come to an end, but
the plain fact is it will not. Electron flow notation may have the advantage of greater correspondence
to the actual state of affairs (in the vast majority of circuits), but conventional flow has the weight
of over a hundred years of precedent, cultural inertia, and convenience. No matter which way you
choose to think, at some point you will be faced with the opposing view.

Pick the notation you like best, and may you live long and prosper.

4.3 Electrical power

Since we often use electricity to convey energy from one location to another, it is important to be
able to quantify and calculate the rate at which energy is delivered by an electric circuit. The rate
at which energy transfers from one location to another is technically referred to as power (P), and
it is typically® measured in the unit of the watt (1 watt = 1 joule of energy per second of time).

The total amount of power (energy per unit time) carried by an electric current is proportional
to the strength of that current as well as the amount of potential (voltage) between the poles of
the electrical source. Thus, power is equal to the product of current and voltage in a formula called
Joules’ Law:

P=1V

Where,
P = Power in watts (joules of energy per second of time)
I = Current in amperes
V' = Voltage in volts

We may prove the correctness of this formula by verifying all the units of measurement agree:
P=1V
[Watts] = [Amperes] x [Volts] or (W] = [A]][V]
Joules | [ Coulombs o Joules or Jl 9 J
Seconds | | Seconds Coulombs s| |s]|C
Note how the basic units for power (joules per second) are indeed equal to the product of voltage

(joules per coulomb) and current (coulombs per second). This process of checking for agreement
between units of measurement in a physics formula is called dimensional analysis.

apologies. I can only speak of what I have seen myself.

3 Although the unit of the “watt” is commonly used for electrical power, other units are valid as well. The British
unit of horsepower is every bit as valid for expressing electrical power as “watts,” although this usage is less common.
Likewise, the “watt” may be used to express measurements of non-electrical power as well, such as the mechanical
power output of an engine. European automobile manufacturers, for example, rate the power output of their cars’
engines in kilowatts, as opposed to American automobile manufacturers who rate their engines in horsepower. This
choice of units is strictly a cultural convention, since any valid unit for power may be applied to any form of energy
rate.
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4.4 Electrical resistance and Ohm’s Law

To review, voltage is the measure of potential energy available to electric charges. Current is the
uniform drifting of electric charges in response to a voltage. We can have a voltage without having
a current, but we cannot have a current without first having a voltage to motivate it*. Current
without voltage would be equivalent to motion without a motivating force.

When electric charges move through a material such as metal, they will naturally encounter some
friction, just as fluid moving through a pipe will inevitably encounter friction®. We have a name for
this friction to electrical charge motion: resistance. Like voltage and current, resistance has its own
special unit of measurement: the ohm, named in honor of the German physicist Georg Simon Ohm.

At this point it would be good to summarize and compare the symbols and units we use for
voltage, current, and resistance:

Quantity Algebraic symbol Unit Unit abbreviation
Voltage V (or E) Volt \Y%
Current 1 Ampere (or Amp) A
Resistance R Ohm Q

Ohm defined resistance as the mathematical ratio between applied voltage and resulting current.
This formula become known as Ohm’s Law, perhaps the most basic formula in all of electrical science
(shown here in three different forms, each one solving for a different variable):

|4 V
R=— V=IR I=—
I R

Verbally expressed, resistance is how much voltage it takes to force a certain rate of current
through a conductive material. Many materials have relatively stable resistances, while others do
not. Devices called resistors are sold which are manufactured to possess a very precise amount of
resistance, for the purpose of limiting current in circuits (among other things).

Here is an example of Ohm’s Law in action: calculate the amount of current in a circuit with a
voltage source of 25 V and a total resistance of 3500 2. Taking 25 volts and dividing by 3500 ohms,
you should arrive at a result of 0.007143 amperes, or 7.143 milliamperes (7.143 mA).

One of the most challenging aspect of Ohm’s Law is remembering to keep all variables in context.
This is a common problem for many students when studying physics as well: none of the equations
learned in a physics class will yield the correct results unless all the variables relate to the same
object or situation. For instance, it would make no sense to try to calculate the kinetic energy of a
moving object (E = %va) by taking the mass of one object (m) and multiplying it by the square of
the velocity of some other object (v?). Likewise, with Ohm’s Law, we must make sure the voltage,

current, and resistance values we are using all relate to the same portion of the same circuit.

4Except in the noteworthy case of superconductivity, a phenomenon occurring at extremely low temperatures.
5Except in the noteworthy case of superfluidity, another phenomenon occurring at extremely low temperatures.
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If the circuit in question has only one source of voltage, one resistance, and one path for current,
we cannot mis-apply Ohm’s Law. Expressing the previous example in a schematic diagram:

Current
7.143 mA
wire l

Resistor
+

25V Dvotage < 35000

source

/[ wire
7.143 mA

Current

Note: arrows point in the direction of conventional flow

However, if we look at a more complex circuit, we encounter the potential for mis-application of
Ohm’s Law because we have multiple resistances in the circuit rather than just one resistance:

5v (0)
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Which resistance do we use to calculate current in this circuit? Do we divide our 25 volts by
3500 ohms like we did last time, or do we divide it by 1500 ohms, or something entirely different?
The answer to this question lies in the identification of voltages and currents. We know that the 25
volt potential will be impressed across the total of the two resistances Ry and R, and since there is
only one path for current they must share the same current. Thus, we actually have three voltages
(Va, Va, and Viptar), three resistances (R, Ra, and Rypa), and only one current (I):

—

|—>
V. RS 35000

—+
25V —) Vtotal I—»
V, R% 1500 Q

5

Note: arrows point in the direction of conventional flow

Using the V' = IR form of Ohm’s Law to relate these three voltages (Vi, Va, and Viotai) to the
one current (I), we end up with three equations for this circuit:

Vi=1I1R,
Vo =1IR;

V;fotal = IRtotal = I(Rl + RQ)

We can only solve for one unknown variable at a time in any equation. This means we cannot
solve for V] yet, because although we do know the value of resistor R; (3500 ohms), we do not
yet know the circuit’s current (I). Likewise for V5, because we do not yet know the value of I.
However, the third equation is solvable, since we happen to know the total voltage as well as both
resistor values, leaving circuit current I as the only unknown variable. Manipulating this equation
and solving for I:

_ ‘/;total _ V;Eotal _ 25V
Riotar  Ri1+ Ry 3500 4 1500 2
Now that we know the amount of current in this circuit, we may solve for V5 and V5 in the other

equations to find that the voltage across resistor R; is 17.5 volts, and that the voltage across resistor
Ro is 7.5 volts.

I =0.005 A =5 mA
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4.5 Series versus parallel circuits

In addition to Ohm’s Law, we have a set of rules describing how voltages, currents, and resistances
relate in circuits comprised of multiple resistors. These rules fall neatly into two categories: series
circuits and parallel circuits. The two circuit types are shown here, with squares representing any
type of two-terminal electrical component:

Series circuit

Parallel circuit

) Equipotential points

= s A

@ C 7

el

>

>0

g

(@]

<

@

2 € ,
\ %4 Equipotential points

The defining characteristic of a series electrical circuit is it provides just one path for current.
This means there can be only one value for current anywhere in the circuit, the exact same current
for all components at any given time®. The principle of current being the same everywhere in a
series circuit is actually an expression of a more fundamental law of physics: the Conservation of
Charge, which states that electric charge cannot be created or destroyed. In order for current to
have different values at different points in a series circuit indefinitely, electric charge would have to
somehow appear and disappear to account for greater rates of charge flow in some areas than in
others. It would be the equivalent of having different rates of water flow at different locations along
one length of pipe’.

6Interesting exceptions do exist to this rule, but only on very short time scales, such as in cases where we examine
the a transient (pulse) signal nanosecond by nanosecond, and/or when very high-frequency AC signals exist over
comparatively long conductor lengths.

"Those exceptional cases mentioned earlier in the footnote are possible only because electric charge may be
temporarily stored and released by a property called capacitance. Even then, the law of charge conservation is
not violated because the stored charges re-emerge as current at later times. This is analogous to pouring water into
a bucket: just because water is poured into a bucket but no water leaves the bucket does not mean that water is
magically disappearing. It is merely being stored, and can re-emerge at a later time.
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Series circuits are defined by having only one path for current, and this means the steady-state
current in a series circuit must be the same at all points of that circuit. It also means that the sum
of all voltages dropped by load devices must equal the sum total of all source voltages, and that the
total resistance of the circuit will be the sum of all individual resistances:

Series circuit (resistors connected in-line)

Voltages add up to equal the total
Via = Vi + Vo t...+V,

Current is the same throughout

Itotal=|1:|2=--'=|n

Resistances add up to equal the total

Rtotalle'i'RZ""'""Rn

The defining characteristic of a parallel circuit, by contrast, is that all components share the
same two equipotential points. “Equipotential” simply means “at the same potential” which points
along an uninterrupted conductor must be®. This means there can be only one value of voltage
anywhere in the circuit, the exact same voltage for all components at any given time®. The principle
of voltage being the same across all parallel-connected components is (also) an expression of a more
fundamental law of physics: the Conservation of Energy, in this case the conservation of specific
potential energy which is the definition of voltage. In order for voltage to differ between parallel-
connected components, the potential energy of charge carriers would have to somehow appear and
disappear to account for lesser and greater voltages. It would be the equivalent of having a “high
spots” and “low spots” of water mysteriously appear on the quiet surface of a lake, which we know
cannot happen because water has the freedom to move, meaning any high spots would rush to fill
any low spots'”.

8An ideal conductor has no resistance, and so there is no reason for a difference of potential to exist along a
pathway where nothing stands in the way of charge motion. If ever a potential difference developed, charge carriers
within the conductor would simply move to new locations and neutralize the potential.

9 Again, interesting exceptions do exist to this rule on very short time scales, such as in cases where we examine
the a transient (pulse) signal nanosecond by nanosecond, and/or when very high-frequency AC signals exist over
comparatively long conductor lengths.

10The exceptional cases mentioned in the previous footnote exist only because the electrical property of inductance
allows potential energy to be stored in a magnetic field, manifesting as a voltage different along the length of a
conductor. Even then, the Law of Energy Conservation is not violated because the stored energy re-emerges at a later
time.



306 CHAPTER 4. DC ELECTRICITY

The sum of all component currents must equal the total current in a parallel circuit, and total
resistance will be less than the smallest individual resistance value:

Parallel circuit (resistors connected across each other)

Voltage is the same throughout
Vtotal :V1:V2: e :Vn

Currents add up to equal the total

ItDta|=I1+|2+"'+In

Resistances diminish to equal the total
Row = (R + R+ + R

The rule for calculating total resistance in a parallel circuit perplexes many students with its
weird compound reciprocal notation. There is a more intuitive way to understand this rule, and it
involves a different quantity called conductance, symbolized by the letter G.

Conductance is defined as the reciprocal of resistance; that is, a measure of how easily electrical
charge carriers may move through a substance. If the electrical resistance of an object doubles, then
it now has half the conductance it did before:

1

¢= R
It should be intuitively apparent that conductances add in parallel circuits. That is, the total
amount of conductance for a parallel circuit must be the sum total of all individual conductances,
because the addition of more conductive pathways must make it easier overall for charge carriers to

move through the circuit. Thus,

Gtotal:G1+G2+"'+Gn

The formula shown here should be familiar to you. It has the same form as the total resistance
formula for series circuits. Just as resistances add in series (more series resistance makes the overall
resistance to current increase), conductances add in parallel (more conductive branches makes the
overall conductance increase).

Knowing that resistance is the reciprocal of conductance, we may substitute % for G wherever
we see it in the conductance equation:

LS S B
Rtotal Rl R2 Rn
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Now, to solve for R;otq;, we need to reciprocate both sides:

lztotal—
1 1 1

For both series and parallel circuits, total power dissipated by all load devices is equal to the
total power delivered by all source devices. The configuration of a circuit is irrelevant to the balance
between power supplied and power lost, because this balance is an expression of the Law of Energy
Conservation.
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4.6 Kirchhoff’s Laws

Two extremely important principles in electric circuits were codified by Gustav Robert Kirchhoff in
the year 1847, known as Kirchhoff’s Laws. His two laws refer to voltages and currents in electric
circuits, respectively.

Kirchhoff’s Voltage Law states that the algebraic sum of all voltages in a closed loop is equal to
zero. Another way to state this law is to say that for every rise in potential there must be an equal
fall, if we begin at any point in a circuit and travel in a loop back to that same starting point.

An analogy for visualizing Kirchhoff’s Voltage Law is hiking up a mountain. Suppose we start
at the base of a mountain and hike to an altitude of 5000 feet to set up camp for an overnight stay.
Then, the next day we set off from camp and hike farther up another 3500 feet. Deciding we’ve
climbed high enough for two days, we set up camp again and stay the night. The next day we hike
down 6200 feet to a third location and camp once gain. On the fourth day we hike back to our
original starting point at the base of the mountain. We can summarize our hiking adventure as a
series of rises and falls like this:

Day Path Altitude gain/loss
Day 1 AtoB +5000 feet

Day 2 Bto C +3500 feet

Day 3 CtoD -6200 feet

Day 4 D to A -2300 feet
(Total) ABCDA 0 feet

Of course, no one would tell their friends they spent four days hiking a total altitude of 0 feet, so
people generally speak in terms of the highest point reached: in this case 8500 feet. However, if we
track each day’s gain or loss in algebraic terms (maintaining the mathematical sign, either positive
or negative), we see that the end sum is zero (and indeed must always be zero) if we finish at our
starting point.

If we view this scenario from the perspective of potential energy as we lift a constant mass from
point to point, we would conclude that we were doing work on that mass (i.e. investing energy in
it by lifting it higher) on days 1 and 2, but letting the mass do work on us (i.e. releasing energy by
lowering it) on days 3 and 4. After the four-day hike, the net potential energy imparted to the mass
is zero, because it ends up at the exact same altitude it started at.
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Let’s apply this principle to a real circuit, where total current and all voltage drops have already
been calculated for us:

A 4 mA v E
— )
NI
+ p— —
1kQ %}w 1kQ }2V{ 1kQ
- + +
15kQ oV
5’ A= |+
6V

Arrow shows current in the direction
of conventional flow notation

If we trace a path ABCDEA, we see that the algebraic voltage sum in this loop is zero:

Path Voltage gain/loss

AtoB - 4 volts

B to C - 6 volts

CtoD + 5 volts

Dto E - 2 volts

Eto A + 7 volts
ABCDEA 0 volts

We can even trace a path that does not follow the circuit conductors or include all components,
such as EDCBE, and we will see that the algebraic sum of all voltages is still zero:

Path Voltage gain/loss
E to D + 2 volts
DtoC - 5 volts
CtoB + 6 volts

B to E - 3 volts
EDCBE 0 volts

Kirchhoft’s Voltage Law is often a difficult subject for students, precisely because voltage itself
is a difficult concept to grasp. Remember that there is no such thing as voltage at a single point;
rather, voltage exists only as a differential quantity. To intelligently speak of voltage, we must refer
to either a loss or gain of potential between two points.

Our analogy of altitude on a mountain is particularly apt. We cannot intelligently speak of some
point on the mountain as having a specific altitude unless we assume a point of reference to measure
from. If we say the mountain summit is 9200 feet high, we usually mean 9200 feet higher than sea
level, with the level of the sea being our common reference point. However, our hiking adventure
where we climbed 8500 feet in two days did not imply that we climbed to an absolute altitude of
8500 feet above sea level. Since I never specified the sea-level altitude at the base of the mountain,
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it is impossible to calculate our absolute altitude at the end of day 2. All you can tell from the
data given is that we climbed 8500 feet above the mountain base, wherever that happens to be with
reference to sea level.

So it is with electrical voltage as well: most circuits have a point labeled as ground where all
other voltages are referenced. In DC-powered circuits, this ground point is often the negative pole of
the DC power source'!. Voltage is fundamentally a quantity relative between two points: a measure
of how much potential has increased or decreased moving from one point to another.

Kirchhoft’s Current Law is a much easier concept to grasp. This law states that the algebraic
sum of all currents at a junction point (called a node) is equal to zero. Another way to state this
law is to say that for every electron entering a node, one must exit somewhere.

An analogy for visualizing Kirchhoff’s Current Law is water flowing into and out of a “tee”
fitting:

70 GPM

So long as there are no leaks in this piping system, every drop of water entering the tee must
be balanced by a drop exiting the tee. For there to be a continuous mis-match between flow rates
would imply a violation of the Law of Mass Conservation.

M But not always! There do exist positive-ground systems, particularly in telephone circuits and in some early
automobile electrical systems.



4.7. ELECTRICAL SOURCES AND LOADS 311

Let’s apply this principle to a real circuit, where all currents have been calculated for us:

A o imE
l4mA U 2mA
1kQ§ 1kQ§'2rmA T%le
15kQ %

WW——(1
B> "> ¢ Y~ ikD m

Arrows show currents in the direction
of conventional flow notation

At nodes where just two wires connect (such as points A, B, and C), the amount of current going
in to the node exactly equals the amount of current going out (4 mA, in each case). At nodes where
three wires join (such as points D and E), we see one large current and two smaller currents (one
4 mA current versus two 2 mA currents), with the directions such that the sum of the two smaller
currents form the larger current.

Just as the balance of water flow rates into and out of a piping “tee” is a consequence of the Law
of Mass Conservation, the balance of electric currents flowing into and out of a circuit junction is a
consequence of the Law of Charge Conservation, another fundamental conservation law in physics.

4.7 Electrical sources and loads

By definition, and source is a device that inputs energy into a system, while a load is a device that
extracts energy from a system. Examples of typical electrical sources include generators, photovoltaic
cells, thermopiles, and primary-cell batteries. Examples of typical electrical loads include resistors,
lamps, and electric motors.

In a working circuit, electrical sources and loads may be easily distinguished by comparison of
their current directions and voltage drop polarities. An electrical source always manifests a voltage
polarity in a direction aiding the direction of charge flow. An electrical source always manifests a
voltage polarity in a direction opposing the direction of charge flow.

The way in which we designate the direction of current (charge flow) becomes very important
here. Since there are two commonly accepted notations — electron flow and “conventional” flow,
exactly opposite of each other — it is easy to become confused.
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First we see a diagram showing a source and a load, using electron flow notation. Electrons,
being negatively charged particles, are repelled by the negative (-) poles of both source and load,
and attracted to the positive (4) poles of both source and load. The difference between source and
load is that the source device motivates the flow of electrons while the load device resists the flow
of electrons:

Shown using electron flow notation

9]

4 Load

Source |
Generator Resistor

15

Electrons are repelled by the (-) poles
and attracted to the (+) poles

In the case of the source (battery), the polarity of the voltage works for the direction of charge
motion. In the case of the load (resistor), the polarity of the voltage drop works against the direction
of charge motion.

Next we see a diagram showing the same source and load, this time using “conventional” flow
notation to designate the direction of current. Here we must imagine positively-charged carriers
moving through the wires instead of electrons. These positive charge carriers are repelled by any
positive (+) pole and attracted to any negative (-) pole. Viewed in this light, we see the exact same
principle at work: the source device is seen to motivate the flow of these positive charge carriers
while the load device resists the flow:

Shown using conventional flow notation

Source +l Load

Generator Resistor

1=

Positive charge carriers are repelled by the
(+) poles and attracted to the (-) poles

Despite using a different notation for charge motion, the concept of source and load remains the
same. In the case of the source (battery), the polarity of the voltage works for the direction of
charge motion. In the case of the load (resistor), the polarity of the voltage drop works against the
direction of charge motion.
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An alternative notation for voltage (other than using “4” and “—” symbols) that many students
find particularly illustrative is the use of curved arrows, where the tip of the curved arrow is the
positive pole and the tail of the curved arrow is the negative pole. This notation is intended to be
used when the direction of current (using “straight” or “angular” arrows) is shown using conventional
flow notation:

— — —
Source T l Load
Generator ; Resistor

T !

—  —  —

Curved arrows show direction of voltage
(electro-motive force, or EMF)

Straight arrows show direction of current
(conventional flow assumed; positive charges moving)

Using arrows to represent voltage polarity in addition to using arrows to represent current
direction is highly intuitive. It shows which way each component in the DC circuit is “pushing”
in relation to the flow of charge carriers. Note how the source’s voltage arrow points in the same
direction as the current: this means the source is motivating the current, causing charge carriers
to flow in this circuit. Note how the resistor’s voltage arrow points opposite to the direction of
current: this means the resistor is opposing the current, in a sense “fighting against” the flow of
charge carriers. This correspondence of voltage-arrow versus current-arrow direction

I personally lament the rare use of this “curved-arrow” notation for voltage, as it greatly aids
comprehension of this critically important distinction between sources and loads. When the voltage
and current arrows point in the same direction, it means the component in question is motivating
charge carriers along and therefore imparts energy to the circuit. When voltage and current arrows
point in opposite directions, it means the component in question opposes charge carrier motion and
therefore acts to extract energy from the circuit.
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If we examine a hydraulic system, where a pump pushes fluid around a pipe loop and an orifice
(called a “restrictor”) restricts the flow of this fluid, we see this same concept in action: the pump’s
pressures at its discharge and suction ports work for the direction of fluid flow, while the pressures
at the upstream and downstream ports of the restrictor work against the direction of fluid flow. The
pump acts as a power source in this hydraulic “circuit” (infusing energy into the system) while the
restrictor acts as a power load (extracting energy from the system):

—1
Source + + Load
Pump ) ( Restrictor

=

Fluid molecules are repelled by high
pressure (+) and attracted to low pressure (-)

We may even see this concept revealed in a simple mechanical system where work is being done.
Examine the case of a crane lifting a heavy weight into the air, shown below. As the crane lifts
the weight upward, the crane’s upward force on the weight is clearly working for the direction of
motion, while the weight’s downward force against the crane is clearly working against the direction
of motion:

Crane lifts weight upward
Fcrane T

motion T

/\

Weight

I:wei ght l

Thus, the crane is doing positive work (acting as a source, infusing potential energy into the
weight) while the weight is doing negative work (acting as a load, absorbing potential energy from
the crane). A rigorous way to demonstrate this is to calculate the work done by each using the
formula W = F - Z or W = Facosf. Since the crane’s force and motion vectors both point in the
same direction, § = 0 and work is a positive quantity Fz. The weight’s force vector, however, points
180° away from the motion vector, and so its work calculation is Fz cos(180°) or —F'z.
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Some electric components have the ability to act as sources and loads at different times. Both
capacitors (see section 4.12 starting on page 338) and inductors (see section 4.13 starting on page
342) have the ability to temporarily contribute to and extract energy from electrical circuits, both
having the ability to act as energy storage devices. One of the key concepts necessary to grasp the
energy-storing abilities of capacitors and inductors is being able to recognize sources and loads at a
glance based on the relationship between voltage polarity and charge motion.

Another practical benefit of clearly comprehending the distinction between electrical sources
and electrical loads is being able to understand and troubleshoot 4-20 mA signal “loop” circuits,
especially circuits containing 2-wire (“loop-powered”) process transmitters. A “2-wire transmitter”
is a device designed to regulate the amount of electrical current through it to a value determined
by some physical variable such as a sensed pressure, temperature, or flow rate. The purpose of such
a device is to represent that physical measurement in the form of an electric current that may be
carried far distances through wires. What makes this device so troublesome for people to understand
is that despite its function to set the value of current in the circuit, it is actually an electrical load
and not an electrical source as one might assume. That is, a 2-wire transmitter relies wholly on some
other source of electrical power in the circuit to function, although the transmitter solely defines how
much current will flow in the circuit by virtue of its function as a regulator. For more information
on this subject, refer to section 13.5 starting on page 818.
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4.8 Circuit fault analysis

Perhaps the most valuable skill an instrument technician can possess is the ability to efficiently
diagnose malfunctioning systems: determining in as short a time as possible the cause of a system’s
malfunction. Since most instrumentation and control systems are based on electricity, a solid
understanding of electrical faults is the foundation of this skill set. In this section we will explore
the two basic types of electrical faults (opens and shorts) and analyze their respective effects in DC
circuits.

An open is an electrical fault whereby the pathway for electrical current is broken, thus preventing
the passage of current. A short is an electrical fault whereby two points in a circuit that are supposed
to be separated are joined together by a conductive pathway. It should be noted that this definition
for the word “short” both is technical and specific. This is important to understand, as many people
tend to use the word “short” to refer to any electrical problem in general. In technical parlance,
a “short” fault is the exact opposite of an “open” fault, and should never be confused one for the
other.

Let us examine the effects of both faults in a simple two-resistor DC circuit. We will begin with
an analysis of the circuit in a healthy condition, showing all values of voltage and current:

10V

R
A + R Cc

VWA
1k ]
10 mA

15v (7)

Tioma R,
—W— =
500 Q

L1
5V

B

Being a series circuit, the current is the same through all components while the two loads’ voltage
drops add to equal the source voltage.
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Now suppose resistor R; fails open. We know that a continuous electric current is able to exist
only where there is a continuous path for that current. If a component fails open, the continuity of
the circuit will be broken, and current must halt. Since this is a series circuit, if current halts in one
location it must likewise halt in all locations:

R
A 1 C
AW
Failed open
15V (D
RZ
VWA
B 500 Q b

We would still expect to measure 15 volts between test points A and B because it is the nature
of a voltage source to maintain a constant voltage across its terminals (i.e. to maintain the same
amount of energy difference per unit charge from one side to the other). We may apply Ohm’s Law
to calculate the voltage across the healthy resistor Ry: since V = IR and I = 0, we may safely
conclude that V = 0 for resistor Rs.

Unfortunately, we cannot apply Ohm’s Law to the failed resistor R; since the resistance of any
failed-open component is infinite. Infinitudes do not lend themselves to arithmetic calculations (how
much is zero times infinity?), and so we must find some other way to determine the voltage dropped
across the open R;. Here we find that Kirchhoff’s Voltage Law applies very nicely: if we know that
the algebraic sum of all voltages in a loop must equal zero, and we know all but one of the voltages
in the loop BACDB, we may calculate the last voltage by simple addition and subtraction:

Path Voltage gain/loss Reason

Bto A + 15 volts Source voltage value

AtoC -15 volts Necessary to satisfy KVL
CtoD 0 volts These points are equipotential
DtoB 0 volts Ohm’s Law: V' =0 amps x 500 ohms
BACDB 0 volts KVL sum = 0

Clearly, the voltage between points A and C (across the failed-open R;) must be -15 volts in
order to satisfy Kirchhoff’s Voltage Law. The negative sign of Va¢ tells us that point C must be at
a lesser potential than point A (i.e. A is positive and C is negative).

15V
Ry
AW

Failed open

p>
O
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Let us suppose now resistor R; fails shorted. This means its two terminals are now directly
connected to each other rather than being separated by 1000 ohms of electrical resistance. In other
words, the two terminals of resistor R; have been made equipotential by the shorted fault. By
extension, this forces points A and C to be equipotential as well. Since points C and D are already
equipotential to each other by virtue of the wire connecting them, points A through D must now be
equipotential:

A Rl Equipotential points C
C AR
Failed shorted
I
¥ H
15v O
=
R, G
g VWA A
500 Q

If points A through D are all equipotential, it means the right-hand terminal of resistor Ry is
directly connected to the positive terminal of the 15 volt source. The left-hand terminal of Ry is
already equipotential with the negative terminal of the source. This means the shorted fault at R;
has placed the full source potential across resistor Rs. An analysis using Kirchhoff’s Law confirms
this:

Path Voltage gain/loss Reason

Bto A + 15 volts Source voltage value

A to C 0 volts Shorting points makes them equipotential
CtoD 0 volts These points are equipotential
DtoB -15 volts Necessary to satisfy KVL
BACDB 0 volts KVL sum = 0

The negative sign of Vpp tells us that point B must be at a lesser potential than point D (i.e.
D is positive and B is negative). Calculating the amount of current in this circuit is now a simple
matter of applying Ohm’s Law to resistor Rs. Given a 15 volt potential across it and 500 ohms of
resistance, the current is equal to 30 milliamps:

30mA R, 30mA
WA
500 Q

(I
15V

D

mﬂ

All DC circuit fault analysis reduces to these simple principles: open faults directly affect current
by interrupting the continuity of the circuit, while shorted faults directly affect voltage by making
points equipotential to each other that were not equipotential before. The rest is merely applying
Kirchhoff’s and Ohm’s Laws to determine consequences of the fault throughout the circuit.
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4.9 Bridge circuits

A bridge circuit is basically a pair of voltage dividers where the circuit output is taken as the
difference in potential between the two dividers. Bridge circuits may be drawn in schematic form in
an H-shape or in a diamond shape, although the diamond configuration is more common:

7.2 <R,

¥ ¥
V excitation <—> 1=~V output I V excitation <—>

R2 % R4

The voltage source powering the bridge circuit is called the excitation source. This source may
be DC or AC depending on the application of the bridge circuit. The components comprising the
bridge need not be resistors, either: capacitors, inductors, lengths of wire, sensing elements, and
other component forms are possible, depending on the application.

Two major applications exist for bridge circuits, which will be explained in the following
subsections.



320 CHAPTER 4. DC ELECTRICITY

4.9.1 Component measurement

Bridge circuits may be used to test components. In this capacity, one of the “arms” of the bridge
circuit is comprised of the component under test, while at least one of the other “arms” is made
adjustable. The common Wheatstone bridge circuit for resistance measurement is shown here:

|:'2adj ust
2N

? 9
1

Galvanometer (

R

Vexcitation CD

Specimen

Fixed resistors R; and Ry are of precisely known value and high precision. Variable resistor
Ragjust has a labeled knob allowing for a person to adjust and read its value to a high degree of
precision. When the ratio of the variable resistance to the specimen resistance equals the ratio of
the two fixed resistors, the sensitive galvanometer will register exactly zero volts regardless of the
excitation source’s value. This is called a balanced condition for the bridge circuit:

Rl o Radjust
R2 Rspecimen

When the two resistance ratios are equal, the voltage drops across the respective resistances will
also be equal. Kirchhoff’s Voltage Law declares that the voltage differential between two equal and
opposite voltage drops must be zero, accounting for the meter’s indication of balance.
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It would not be inappropriate to relate this to the operation of a laboratory balance-beam scale,
comparing a specimen of unknown mass against a set of known masses. In either case, the instrument
is merely comparing an unknown quantity against an (adjustable) known quantity, indicating a
condition of equality between the two:

Many legacy instruments were designed around the concept of a self-balancing bridge circuit,
where an electric servo motor drove a potentiometer to achieve a balanced condition against the
voltage produced by some process sensor. Analog electronic paper chart recorders often used this
principle. Almost all pneumatic process instruments use this principle to translate the force of a
sensing element into a variable air pressure.

Modern bridge circuits are mostly used in laboratories for extremely precise component
measurements. Very rarely will you encounter a Wheatstone bridge circuit used in the process
industries.
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4.9.2 Sensor signal conditioning

A different application for bridge circuits is to convert the output of an electrical sensor into a
voltage signal representing some physical measurement. This is by far the most popular use of
bridge measurement circuits in industry, and here we see the same circuit used in an entirely different
manner from that of the balanced Wheatstone bridge circuit.

Vexcitati on (D

Here, the bridge will be balanced only when Rgeps0r 1S at one particular resistance value. Unlike
the Wheatstone bridge, which serves to measure a component’s value when the circuit is balanced,
this bridge circuit will probably spend most of its life in an unbalanced condition. The output
voltage changes as a function of sensor resistance, which makes that voltage a reflection of the
sensor’s physical condition. In the above circuit, we see that the output voltage increases (positive
on the top wire, negative on the bottom wire) as the resistance of Rgensor increases.
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One of the most common applications for this kind of bridge circuit is in strain measurement,
where the mechanical strain of an object is converted into an electrical signal. The sensor used here
is a device known as a strain gauge: a folded wire designed to stretch and compress with the object
under test, altering its electrical resistance accordingly. Strain gauges are typically quite small, as
shown by this photograph:

Strain gauges are useful when bonded to metal specimens, providing a means of electrically
sensing the strain (“stretching” or “compressing” of that specimen). The following bridge circuit is
a typical application for a strain gauge:

Test specimen

CD V@(citati on

o

m "

Strain
gauge

When the specimen is stretched along its long axis, the metal wires in the strain gauge stretch
with it, increasing their length and decreasing their cross-sectional area, both of which work to
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increase the wire’s electrical resistance. This stretching is microscopic in scale, but the resistance
change is measurable and repeatable within the specimen’s elastic limit. In the above circuit example,
stretching the specimen will cause the voltmeter to read upscale (as defined by the polarity marks).
Compressing the spe