An internship is a formal agreement between the student, an employer, and the college resulting in practical work experience on a real job site. Internships may be paid or unpaid at the employer’s discretion, but to receive credit for this internship course you must register and pay for it like any other college course.

Expectations and standards for the internship are entirely set by the employer. This is a pass-fail course, your status being solely determined by your supervisor’s assessment of your performance.
Program Outcomes for Instrumentation and Control Technology (BTC)

#1 Communication
Communicate and express concepts and ideas across a variety of media (verbal, written, graphical) using industry-standard terms.

#2 Time management
Arrives on time and prepared to work; Budgets time and meets deadlines when performing tasks and projects.

#3 Safety
Complies with national, state, local, and college safety regulations when designing and performing work on systems.

#4 Analysis and Diagnosis
Analyze, evaluate, and diagnose systems related to instrumentation and control including electrical and electronic circuits, fluid power and signaling systems, computer networks, and mechanisms; Select and apply correct mathematical techniques to these analytical and diagnostic problems; Select and correctly use appropriate test equipment to collect data.

#5 Design and Commissioning
Select, design, construct, configure, and install components necessary for the proper function of systems related to instrumentation and control, applying industry standards and verifying correct system operation when complete.

#6 System optimization
Improve technical system functions by collecting data and evaluating performance; Implement strategies to optimize the function of these systems.

#7 Calibration
Assess instrument accuracy and correct inaccuracies using appropriate calibration procedures and test equipment; Select and apply correct mathematical techniques to these calibration tasks.

#8 Documentation
Interpret and create technical documents (e.g. electronic schematics, loop diagrams, functional diagrams, P&IDs, graphs, narratives) according to industry standards.

#9 Independent learning
Select and research information sources to learn new principles, technologies, and techniques.

#10 Job searching
Develop a professional resume and research job openings in the field of industrial instrumentation.
Each and every outcome in this course is assessed at a mastery level (i.e. 100% competence)

- Report to work on time, every day, abiding by all worksite policies on safety, attendance, attire, and general behavior. [Ref: Program Learning Outcomes #2, #3, and #10]

- Complete all assigned tasks in a timely and safe manner. [Ref: Program Learning Outcomes #2, #3, and #10]

- Communicate professionally with co-workers. [Ref: Program Learning Outcome #1]

- Demonstrate technical knowledge, skill, and attitude meeting or exceeding supervisor expectations. [Ref: Program Learning Outcomes #4, #5, #7, #8, and #9]
Sequence of second-year Instrumentation courses

Core Electronics -- 3 qtrs
including MATH 141 (Precalculus 1)

INST 200 -- 1 wk
Intro. to Instrumentation

INST 240 -- 6 cr
Pressure/Level Measurement

INST 241 -- 6 cr
Temp./Flow Measurement

INST 242 -- 5 cr
Analytical Measurement

INST 250 -- 5 cr
PID Control

INST 251 -- 5 cr
Final Control Elements

INST 252 -- 4 cr
Loop Tuning

INST 260 -- 4 cr
Data Acquisition Systems

INST 262 -- 5 cr
Digital Control Systems

INST 263 -- 5 cr
Control Strategies

ENGT 134 -- 5 cr
CAD 1: Basics

INST 233 -- 4 cr
Protective Relays (elective)

INST 240 -- 6 cr
Pressure/Level Measurement

INST 241 -- 6 cr
Temp./Flow Measurement

INST 242 -- 5 cr
Analytical Measurement

INST 205 -- 1 cr
Job Prep I

INST 206 -- 1 cr
Job Prep II

Summer quarter
INST 233 -- 4 cr
Protective Relays (elective)

Fall quarter
INST 240 -- 6 cr
Pressure/Level Measurement

INST 241 -- 6 cr
Temp./Flow Measurement

INST 242 -- 5 cr
Analytical Measurement

Winter quarter
INST 250 -- 5 cr
Final Control Elements

INST 251 -- 5 cr
PID Control

INST 252 -- 4 cr
Loop Tuning

Spring quarter
INST 260 -- 4 cr
Data Acquisition Systems

INST 262 -- 5 cr
Digital Control Systems

INST 263 -- 5 cr
Control Strategies

ENGT 134 -- 5 cr
CAD 1: Basics

Prerequisite for all INST24x, INST25x, and INST26x courses

(Only if 4th quarter was Summer: INST25x)

Offered 1st week of Fall, Winter, and Spring quarters

All courses completed? **No**

Graduate!!!
The particular sequence of courses you take during the second year depends on when you complete all first-year courses and enter the second year. Since students enter the second year of Instrumentation at four different times (beginnings of Summer, Fall, Winter, and Spring quarters), the particular course sequence for any student will likely be different from the course sequence of classmates.

Some second-year courses are only offered in particular quarters with those quarters not having to be in sequence, while others are offered three out of the four quarters and must be taken in sequence. The following layout shows four typical course sequences for second-year Instrumentation students, depending on when they first enter the second year of the program:

Possible course schedules depending on date of entry into 2nd year

<table>
<thead>
<tr>
<th>Beginning in Summer</th>
<th>Beginning in Fall</th>
<th>Beginning in Winter</th>
<th>Beginning in Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer quarter</td>
<td>Fall quarter</td>
<td>Winter quarter</td>
<td>Spring quarter</td>
</tr>
<tr>
<td>INST 233 -- 4 cr</td>
<td>INST 200 -- 1 wk</td>
<td>INST 205 -- 1 cr</td>
<td>INST 205 -- 1 cr</td>
</tr>
<tr>
<td>Protective Relays (elective)</td>
<td>Intro. to Instrumentation</td>
<td>Job Prep I</td>
<td>Intro. to Instrumentation</td>
</tr>
<tr>
<td>INST 240 -- 6 cr</td>
<td>INST 240 -- 6 cr</td>
<td>INST 250 -- 5 cr</td>
<td>INST 260 -- 4 cr</td>
</tr>
<tr>
<td>Pressure/Level Measurement</td>
<td>Pressure/Level Measurement</td>
<td>Final Control Elements</td>
<td>Data Acquisition Systems</td>
</tr>
<tr>
<td>INST 241 -- 6 cr</td>
<td>INST 241 -- 6 cr</td>
<td>INST 251 -- 5 cr</td>
<td>INST 262 -- 5 cr</td>
</tr>
<tr>
<td>Temp./Flow Measurement</td>
<td>Temp./Flow Measurement</td>
<td>PID Control</td>
<td>Digital Control Systems</td>
</tr>
<tr>
<td>INST 242 -- 5 cr</td>
<td>INST 242 -- 5 cr</td>
<td>INST 252 -- 4 cr</td>
<td>INST 263 -- 5 cr</td>
</tr>
<tr>
<td>Analytical Measurement</td>
<td>Analytical Measurement</td>
<td>Loop Tuning</td>
<td>Control Strategies</td>
</tr>
<tr>
<td>Job shadow and/or internship strongly recommended</td>
</tr>
</tbody>
</table>

Graduation!
Questions