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ABSTRACT
This paper describes ongoing research into the application of
machine learning techniques for improving access to govern-
mental information in complex digital libraries. Under the
auspices of the GovStat Project1, our goal is to identify a
small number of semantically valid concepts that adequately
spans the intellectual domain of a collection. The goal of this
discovery is twofold. First we desire a practical aid for infor-
mation architects. Second, automatically derived document-
concept relationships are a necessary precondition for real-
world deployment of many dynamic interfaces. The current
study compares concept learning strategies based on three
document representations: keywords, titles, and full-text. In
statistical and user-based studies, human-created keywords
provide significant improvements in concept learning over
both title-only and full-text representations.

Categories and Subject Descriptors
H.3.7 [Information Systems and Retrieval]: Digital Li-
braries—Systems Issues, User Issues; H.3.3 [Information
Systems and Retrieval]: Information Systems and Re-
trieval—Clustering

General Terms
Design, Experimentation

Keywords
Machine Learning, Information Architecture, Interface De-
sign
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The GovStat Project is a joint effort of the University
of North Carolina Interaction Design Lab and the Univer-
sity of Maryland Human-Computer Interaction Lab. Citing
end-user difficulty in finding governmental information (es-
pecially statistical data) online, the project seeks to create
an integrated model of user access to US government statis-
tical information that is rooted in realistic data models and
innovative user interfaces. To enable such models and in-
terfaces, we propose a data-driven approach, based on data
mining and machine learning techniques. In particular, our
work analyzes a particular digital library—the website of
the Bureau of Labor Statistics2 (BLS)—in efforts to dis-
cover a small number of linguistically meaningful concepts,
or ”bins,” that collectively summarize the semantic domain
of the site.

The project goal is to classify the site’s web content ac-
cording to these inferred concepts as an initial step towards
data filtering via active user interfaces (cf. [13]). Many
digital libraries already make use of content classification,
both explicitly and implicitly; they divide their resources
manually by topical relation; they organize content into hi-
erarchically oriented file systems. The goal of the present
research is to develop another means of browsing the content
of these collections. By analyzing the distribution of terms
across documents, our goal is to supplement the agency’s
pre-existing information structures. Statistical learning tech-
nologies are appealing in this context insofar as they stand
to define a data-driven—as opposed to an agency-driven—
navigational structure for a site.

Our approach combines supervised and unsupervised learn-
ing techniques. A pure document clustering [12] approach
to such a large, diverse collection as BLS led to poor results
in early tests [6]. But strictly supervised techniques [5] are
inappropriate, too. Although BLS designers have defined
high-level subject headings for their collections, as we dis-
cuss in Section 2, this scheme is less than optimal. Thus we
hope to learn an additional set of concepts by letting the
data speak for themselves.

The remainder of this paper describes the details of our
concept discovery efforts and subsequent evaluation. In Sec-
tion 2 we describe the previously existing, human-created
conceptual structure of the BLS website. This section also
describes evidence that this structure leaves room for im-
provement. Next (Sections 3–5), we turn to a description

2http://www.bls.gov



Figure 1: Relation Browser Prototype

of the concepts derived via content clustering under three
document representations: keyword, title only, and full-text.
Section 6 describes a two-part evaluation of the derived con-
ceptual structures. Finally, we conclude in Section 7 by out-
lining upcoming work on the project.

2. STRUCTURING ACCESS TO THE BLS
WEBSITE

The Bureau of Labor Statistics is a federal government
agency charged with compiling and publishing statistics per-
taining to labor and production in the US and abroad. Given
this broad mandate, the BLS publishes a wide array of in-
formation, intended for diverse audiences. The agency’s
website acts as a clearinghouse for this process. With over
15,000 text/html documents (and many more documents if
spreadsheets and typeset reports are included), providing
access to the collection provides a steep challenge to infor-
mation architects.

2.1 The Relation Browser
The starting point of this work is the notion that access

to information in the BLS website could be improved by
the addition of a dynamic interface such as the relation
browser described by Marchionini and Brunk [13]. The re-
lation browser allows users to traverse complex data sets by
iteratively slicing the data along several topics. In Figure
1 we see a prototype instantiation of the relation browser,
applied to the FedStats website3.

The relation browser supports information seeking by al-
lowing users to form queries in a stepwise fashion, slicing and

3http://www.fedstats.gov

Figure 2: The BLS Home Page

re-slicing the data as their interests dictate. Its motivation
is in keeping with Shneiderman’s suggestion that queries
and their results should be tightly coupled [2]. Thus in Fig-
ure 1, users might limit their search set to those documents
about ”energy.” Within this subset of the collection, they
might further eliminate documents published more than a
year ago. Finally, they might request to see only documents
published in PDF format.

As Marchionini and Brunk discuss, capturing the publica-
tion date and format of documents is trivial. But successful
implementations of the relation browser also rely on topical
classification. This presents two stumbling blocks for system
designers:

• Information architects must define the appropriate set
of topics for their collection

• Site maintainers must classify each document into its
appropriate categories

These tasks parallel common problems in the metadata
community: defining appropriate elements and marking up
documents to support metadata-aware information access.
Given a collection of over 15,000 documents, these hur-
dles are especially daunting, and automatic methods of ap-
proaching them are highly desirable.

2.2 A Pre-Existing Structure
Prior to our involvement with the project, designers at

BLS created a shallow classificatory structure for the most
important documents in their website. As seen in Figure 2,
the BLS home page organizes 65 ”top-level” documents into
15 categories. These include topics such as Employment and
Unemployment, Productivity, and Inflation and Spending.

We hoped initially that these pre-defined categories could
be used to train a 15-way document classifier, thus automat-
ing the process of populating the relation browser altogether.



m00M0M

0

1010M10M

10

2020M20M

20

3030M30M

30

4040M40M

40

5050M50M

50

6060M60M

60

m00M0M
0

22M2M
2

44M4M
4

66M6M
6

88M8M
8

1010M10M
10

1212M12M
12

1414M14M
14

Eigenvalue RankMEigenvalue RankM

Eigenvalue Rank

Eigenvlue MagnitudeMEigenvlue MagnitudeM

Ei
ge

nv
lu

e 
M

ag
ni

tu
de

Figure 3: Scree Plot of BLS Categories

However, this approach proved unsatisfactory. In personal
meetings, BLS officials voiced dissatisfaction with the ex-
isting topics. Their form, it was argued, owed more to the
institutional structure of BLS than it did to the inherent
topology of the website’s information space. In other words,
the topics reflected official divisions rather than semantic
clusters. The BLS agents suggested that re-designing this
classification structure would be desirable.

The agents’ misgivings were borne out in subsequent anal-
ysis. The BLS topics comprise a shallow classificatory struc-
ture; each of the 15 top-level categories is linked to a small
number of related pages. Thus there are 7 pages associated
with Inflation. Altogether, the link structure of this clas-
sificatory system contains 65 documents; that is, excluding
navigational links, there are 65 documents linked from the
BLS home page, where each hyperlink connects a document
to a topic (pages can be linked to multiple topics). Based on
this hyperlink structure, we defined M, a symmetric 65×65
matrix, where mij counts the number of topics in which doc-
uments i and j are both classified on the BLS home page. To
analyze the redundancy inherent in the pre-existing struc-
ture, we derived the principal components of M (cf. [11]).
Figure 3 shows the resultant scree plot4.

Because all 65 documents belong to at least one BLS topic,
the rank of M is guaranteed to be less than or equal to
15 (hence, eigenvalues 16 . . . 65 = 0). What is surprising
about Figure 3, however, is the precipitous decline in mag-
nitude among the first four eigenvalues. The four largest
eigenvlaues account for 62.2% of the total variance in the
data. This fact suggests a high degree of redundancy among

4A scree plot shows the magnitude of the kth eigenvalue
versus its rank. During principal component analysis scree
plots visualize the amount of variance capture by each com-
ponent.

the topics. Topical redundancy is not in itself problematic.
However, the documents in this very shallow classificatory
structure are almost all gateways to more specific informa-
tion. Thus the listing of the Producer Price Index under
three categories could be confusing to the site’s users. In
light of this potential for confusion and the agency’s own re-
quest for redesign, we undertook the task of topic discovery
described in the following sections.

3. A HYBRID APPROACH TO TOPIC DIS-
COVERY

To aid in the discovery of a new set of high-level topics for
the BLS website, we turned to unsupervised machine learn-
ing methods. In efforts to let the data speak for themselves,
we desired a means of concept discovery that would be based
not on the structure of the agency, but on the content of the
material. To begin this process, we crawled the BLS web-
site, downloading all documents of MIME type text/html.
This led to a corpus of 15,165 documents. Based on this
corpus, we hoped to derive k ≈ 10 topical categories, such
that each document di is assigned to one or more classes.

Document clustering (cf. [16]) provided an obvious, but
only partial solution to the problem of automating this type
of high-level information architecture discovery. The prob-
lems with standard clustering are threefold.

1. Mutually exclusive clusters are inappropriate for iden-
tifying the topical content of documents, since docu-
ments may be about many subjects.

2. Due to the heterogeneity of the data housed in the
BLS collection (tables, lists, surveys, etc.), many doc-
uments’ terms provide noisy topical information.

3. For application to the relation browser, we require a
small number (k ≈ 10) of topics. Without significant
data reduction, term-based clustering tends to deliver
clusters at too fine a level of granularity.

In light of these problems, we take a hybrid approach to
topic discovery. First, we limit the clustering process to a
sample of the entire collection, described in Section 4. Work-
ing on a focused subset of the data helps to overcome prob-
lems two and three, listed above. To address the problem
of mutual exclusivity of standard clusters, we combine un-
supervised with supervised learning methods, as described
in Section 5.

4. FOCUSING ON CONTENT-RICH DOC-
UMENTS

To derive empirically evidenced topics we initially turned
to cluster analysis. Let A be the n× p data matrix with n
observations in p variables. Thus aij shows the measurement
for the ith observation on the jth variable. As described in
[12], the goal of cluster analysis is to assign each of the n
observations to one of a small number k mutually exclusive
groups, each of which is characterized by high intra-cluster
correlation and low inter-cluster correlation. Though the al-
gorithms for accomplishing such an arrangement are legion,
our analysis focuses on k-means clustering5, during which,

5We have focused on k-means as opposed to other clustering
algorithms for several reasons. Chief among these is the



each observation oi is assigned to the cluster Ck whose cen-
troid is closest to it, in terms of Euclidean distance. Readers
interested in the details of the algorithm are referred to [12]
for a thorough treatment of the subject.

Clustering by k-means is well-studied in the statistical
literature, and has shown good results for text analysis (cf.
[8, 16]). However, k-means clustering requires that the re-
searcher specify k, the number of clusters to define. When
applying k-means to our 15,000 document collection, indi-
cators such as the gap statistic [17] and an analysis of the
mean-squared distance across values of k, suggested that
k ≈ 80 was optimal. This paramterization led to semanti-
cally intelligible clusters. However, 80 clusters are far too
many for application to an interface such as the relation
browser. Moreover, the granularity of these clusters was un-
suitably fine. For instance, the 80-cluster solution derived
a cluster whose most highly associated words (in terms of
log-odds ratio [1]) were drug, pharmacy, and chemist. These
words are certainly related, but they are related at a level
of specificity far below what we desired.

To remedy the high dimensionality of the data, we re-
solved to limit the algorithm to a subset of the collection.
In consultation with employees of the BLS, we continued
our analysis on documents that form a series titled From
the Editor’s Desk6. These are brief articles, written by BLS
employees. BLS agents suggested that we focus on the Ed-
itor’s Desk because it is intended to span the intellectual
domain of the agency. The column is published daily, and
each entry describes an important current issue in the BLS
domain. The Editor’s Desk column has been written daily
(five times per week) since 1998. As such, we operated on a
set of N = 1279 documents.

Limiting attention to these 1279 documents not only re-
duced the dimensionality of the problem. It also allowed
the clustering process to learn on a relatively clean data set.
While the entire BLS collection contains a great deal of non-
prose text (i.e. tables, lists, etc.), the Editor’s Desk docu-
ments are all written in clear, journalistic prose. Each docu-
ment is highly topical, further aiding the discovery of term-
topic relations. Finally, the Editor’s Desk column provided
an ideal learning environment because it is well-supplied
with topical metadata. Each of the 1279 documents con-
tains a list of one or more keywords. Additionally, a subset
of the documents (1112) contained a subject heading. This
metadata informed our learning and evaluation, as described
in Section 6.1.

5. COMBINING SUPERVISED AND UNSU-
PERVISED LEARNING FOR TOPIC DIS-
COVERY

To derive suitably general topics for the application of a
dynamic interface to the BLS collection, we combined doc-
ument clustering with text classification techniques. Specif-
ically, using k-means, we clustered each of the 1279 docu-
ments into one of k clusters, with the number of clusters

computational efficiency enjoyed by the k-means approach.
Because we need only a ”flat” clustering there is little to
be gained by the more expensive hierarchical algorithms. In
future work we may turn to model-based clustering [7] as a
more principled method of selecting the number of clusters
and of representing clusters.
6http://www.bls.gov/opub/ted

chosen by analyzing the within-cluster mean squared dis-
tance at different values of k (see Section 6.1). Construct-
ing mutually exclusive clusters violates our assumption that
documents may belong to multiple classes. However, these
clusters mark only the first step in a two-phase process of
topic identification. At the end of the process, document-
cluster affinity is measured by a real-valued number.

Once the Editor’s Desk documents were assigned to clus-
ters, we constructed a k-way classifier that estimates the
strength of evidence that a new document di is a member
of class Ck. We tested three statistical classification tech-
niques: probabilistic Rocchio (prind), naive Bayes, and sup-
port vector machines (SVMs). All were implemented using
McCallum’s BOW text classification library [14]. Prind is a
probabilistic version of the Rocchio classification algorithm
[9]. Interested readers are referred to Joachims’ article for
further details of the classification method. Like prind, naive
Bayes attempts to classify documents into the most proba-
ble class. It is described in detail in [15]. Finally, support
vector machines were thoroughly explicated by Vapnik [18],
and applied specifically to text in [10]. They define a deci-
sion boundary by finding the maximally separating hyper-
plane in a high-dimensional vector space in which document
classes become linearly separable.

Having clustered the documents and trained a suitable
classifier, the remaining 14,000 documents in the collection
are labeled by means of automatic classification. That is, for
each document di we derive a k-dimensional vector, quan-
tifying the association between di and each class C1 . . . Ck.
Deriving topic scores via naive Bayes for the entire 15 thousand-
document collection required less than two hours of CPU
time. The output of this process is a score for every docu-
ment in the collection on each of the automatically discov-
ered topics. These scores may then be used to populate a
relation browser interface, or they may be added to a tradi-
tional information retrieval system. To use these weights in
the relation browser we currently assign to each document
the two topics on which it scored highest. In future work we
will adopt a more rigorous method of deriving document-
topic weight thresholds. Also, evaluation of the utility of
the learned topics for users will be undertaken.

6. EVALUATION OF CONCEPT DISCOV-
ERY

Prior to implementing a relation browser interface and
undertaking the attendant user studies, it is of course im-
portant to evaluate the quality of the inferred concepts, and
the ability of the automatic classifier to assign documents
to the appropriate subjects. To evaluate the success of the
two-stage approach described in Section 5, we undertook
two experiments. During the first experiment we compared
three methods of document representation for the cluster-
ing task. The goal here was to compare the quality of doc-
ument clusters derived by analysis of full-text documents,
documents represented only by their titles, and documents
represented by human-created keyword metadata. During
the second experiment, we analyzed the ability of the statis-
tical classifiers to discern the subject matter of documents
from portions of the database in addition to the Editor’s
Desk.

6.1 Comparing Document Representations



Documents from The Editor’s Desk column came sup-
plied with human-generated keyword metadata. Addition-
ally, The titles of the Editor’s Desk documents tend to be
germane to the topic of their respective articles. With such
an array of distilled evidence of each document’s subject
matter, we undertook a comparison of document represen-
tations for topic discovery by clustering. We hypothesized
that keyword-based clustering would provide a useful model.
But we hoped to see whether comparable performance could
be attained by methods that did not require extensive hu-
man indexing, such as the title-only or full-text representa-
tions. To test this hypothesis, we defined three modes of
document representation—full-text, title-only, and keyword
only—we generated three sets of topics, Tfull, Ttitle, and
Tkw, respectively.

Topics based on full-text documents were derived by appli-
cation of k-means clustering to the 1279 Editor’s Desk doc-
uments, where each document was represented by a 1908-
dimensional vector. These 1908 dimensions captured the
TF.IDF weights [3] of each term ti in document dj , for all
terms that occurred at least three times in the data. To ar-
rive at the appropriate number of clusters for these data, we
inspected the within-cluster mean-squared distance for each
value of k = 1 . . . 20. As k approached 10 the reduction in
error with the addition of more clusters declined notably,
suggesting that k ≈ 10 would yield good divisions. To se-
lect a single integer value, we calculated which value of k led
to the least variation in cluster size. This metric stemmed
from a desire to suppress the common result where one large
cluster emerges from the k-means algorithm, accompanied
by several accordingly small clusters. Without reason to
believe that any single topic should have dramatically high
prior odds of document membership, this heuristic led to
kfull = 10.

Clusters based on document titles were constructed simi-
larly. However, in this case, each document was represented
in the vector space spanned by the 397 terms that occur
at least twice in document titles. Using the same method
of minimizing the variance in cluster membership–ktitle, the
number of clusters in the title-based representation–was also
set to 10.

The dimensionality of the keyword-based clustering was
very similar to that of the title-based approach. There were
299 keywords in the data, all of which were retained. The
median number of keywords per document was 7, where a
keyword is understood to be either a single word, or a multi-
word term such as ”consumer price index.” It is worth noting
that the keywords were not drawn from any controlled vo-
cabulary; they were assigned to documents by publishers at
the BLS. Using the keywords, the documents were clustered
into 10 classes.

To evaluate the clusters derived by each method of docu-
ment representation, we used the subject headings that were
included with 1112 of the Editor’s Desk documents. Each
of these 1112 documents was assigned 1 or more subject
headings, which were withheld from all of the cluster appli-
cations. Like the keywords, subject headings were assigned
to documents by BLS publishers. Unlike the keywords, how-
ever, subject headings were drawn from a controlled vocab-
ulary. Our analysis began with the assumption that doc-
uments with the same subject headings should cluster to-
gether. To facilitate this analysis, we took a conservative
approach; we considered multi-subject classifications to be

Table 1: Top Editor’s Desk Subject Headings
Subject Count
prices 92
unemployment 55
occupational safety & health 53
international comparisons, prices 48
manufacturing, prices 45
employment 44
productivity 40
consumer expenditures 36
earnings & wages 27
employment & unemployment 27
compensation costs 25
earnings & wages, metro. areas 18
benefits, compensation costs 18
earnings & wages, occupations 17
employment, occupations 14
benefits 14
earnings & wage, regions 13
work stoppages 12
earnings & wages, industries 11
Total 609

Table 2: Contingecy Table for Three Document
Representations

Representation Right Wrong Accuracy
Full-text 392 217 0.64
Title 441 168 0.72
Keyword 601 8 0.98

unique. Thus if document di was assigned to a single sub-
ject prices, while document dj was assigned to two subjects,
international comparisons, prices, documents di and dj are
not considered to come from the same class.

Table 1 shows all Editor’s Desk subject headings that were
assigned to at least 10 documents. As noted in the table,
there were 19 such subject headings, which altogether cov-
ered 609 (54%) of the documents with subjects assigned.
These document-subject pairings formed the basis of our
analysis. Limiting analysis to subjects with N > 10 kept
the resultant χ2 tests suitably robust.

The clustering derived by each document representation
was tested by its ability to collocate documents with the
same subjects. Thus for each of the 19 subject headings
in Table 1, Si, we calculated the proportion of documents
assigned to Si that each clustering co-classified. Further,
we assumed that whichever cluster captured the majority of
documents for a given class constituted the ”right answer”
for that class. For instance, There were 92 documents whose
subject heading was prices. Taking the BLS authors’ classi-
fications as ground truth, all 92 of these documents should
have ended up in the same cluster. Under the full-text repre-
sentation 52 of these documents were clustered into category
5, while 35 were in category 3, and 5 documents were in cat-
egory 6. Taking the majority cluster as the putative ”right”
home for these documents, we consider the accuracy of this
clustering on this subject to be 52/92 = 0.56. Repeating
this process for each topic across all three representations
led to the contingency table shown in Table 2.

The obvious superiority of the keyword-based clustering



Table 3: Keyword-Based Clusters
benefits costs international jobs
plans compensation import employment
benefits costs prices jobs
employees benefits petroleum youth

occupations prices productivity safety
workers prices productivity safety
earnings index output health
operators inflation nonfarm occupational

spending unemployment
expenditures unemployment
consumer mass
spending jobless

evidenced by Table 2 was borne out by a χ2 test on the
accuracy proportions. Comparing the proportion right and
wrong achieved by keyword and title-based clustering led to
p � 0.001. Due to this result, in the remainder of this paper,
we focus our attention on the clusters derived by analysis of
the Editor’s Desk keywords. The ten keyword-based clusters
are shown in Table 3, represented by the three terms most
highly associated with each cluster, in terms of the log-odds
ratio. Additionally, each cluster has been given a label by
the researchers.

Evaluating the results of clustering is notoriously difficult.
In order to lend our analysis suitable rigor and utility, we
made several simplifying assumptions. Most problematic is
the fact that we have assumed that each document belongs
in only a single category. This assumption is certainly false.
However, by taking an extremely rigid view of what con-
stitutes a subject—that is, by taking a fully qualified and
often multipart subject heading as our unit of analysis—we
mitigate this problem. Analogically, this is akin to consid-
ering the location of books on a library shelf. Although a
given book may cover many subjects, a classification system
should be able to collocate books that are extremely similar,
say books about occupational safety and health. The most
serious liability with this evaluation, then, is the fact that
we have compressed multiple subject headings, say prices :
international into single subjects. This flattening obscures
the multivalence of documents. We turn to a more realistic
assessment of document-class relations in Section 6.2.

6.2 Accuracy of the Document Classifiers
Although the keyword-based clusters appear to classify

the Editor’s Desk documents very well, their discovery only
solved half of the problem required for the successful im-
plementation of a dynamic user interface such as the re-
lation browser. The matter of roughly fourteen thousand
unclassified documents remained to be addressed. To solve
this problem, we trained the statistical classifiers described
above in Section 5. For each document in the collection
di, these classifiers give pi, a k vector of probabilities or dis-
tances (depending on the classification method used), where
pik quantifies the strength of association between the ith

document and the kth class. All classifiers were trained on
the full text of each document, regardless of the represen-
tation used to discover the initial clusters. The different
training sets were thus constructed simply by changing the
class variable for each instance (document) to reflect its as-
signed cluster under a given model.

Table 4: Cross Validation Results for 3 Classifiers
Method Av. Percent Accuracy SE
Prind 59.07 1.07
Naive Bayes 75.57 0.4
SVM 75.08 0.68

To test the ability of each classifier to locate documents
correctly, we first performed a 10-fold cross-validation on
the Editor’s Desk documents. During cross-validation the
data are split randomly into n subsets (in this case n = 10).
The process proceeds by iteratively holding out each of the
n subsets as a test collection for a model trained on the
remaining n − 1 subsets. Cross-validation is described in
[15]. Using this methodology, we compared the performance
of the three classification models described above. Table 4
gives the results from cross validation.

Although naive Bayes is not significantly more accurate
for these data than the SVM classifier, we limit the remain-
der of our attention to analysis of its performance. Our
selection of naive Bayes is due to the fact that it appears to
work comparably to the SVM approach for these data, while
being much simpler, both in theory and implementation.

Because we have only 1279 documents and 10 classes, the
number of training documents per class is relatively small.
In addition to models fitted to the Editor’s Desk data, then,
we constructed a fourth model, supplementing the training
sets of each class by querying the Google search engine7 and
applying naive Bayes to the augmented test set. For each
class, we created a query by submitting the three terms
with the highest log-odds ratio with that class. Further,
each query was limited to the domain www.bls.gov. For
each class we retrieved up to 400 documents from Google
(the actual number varied depending on the size of the re-
sult set returned by Google). This led to a training set
of 4113 documents in the ”augmented model,” as we call
it below8. Cross validation suggested that the augmented
model decreased classification accuracy (accuracy= 58.16%,
with standard error= 0.32). As we discuss below, however,
augmenting the training set appeared to help generalization
during our second experiment.

The results of our cross validation experiment are encour-
aging. However, the success of our classifiers on the Editor’s
Desk documents that informed the cross validation study
may not be good predictors of the models’ performance on
the remainder to the BLS website. To test the generality
of the naive Bayes classifier, we solicited input from 11 hu-
man judges who were familiar with the BLS website. The
sample was chosen by convenience, and consisted of faculty
and graduate students who work on the GovStat project.
However, none of the reviewers had prior knowledge of the
outcome of the classification before their participation. For
the experiment, a random sample of 100 documents was
drawn from the entire BLS collection. On average each re-
viewer classified 83 documents, placing each document into
as many of the categories shown in Table 3 as he or she saw
fit.

Results from this experiment suggest that room for im-
provement remains with respect to generalizing to the whole

7http://www.google.com
8A more formal treatment of the combination of labeled and
unlabeled data is available in [4].



Table 5: Human-Model Agreement on 100 Sample
Docs.

Human Judge 1st Choice

Model Model 1st Choice Model 2nd Choice
N. Bayes (aug.) 14 24
N. Bayes 24 1

Human Judge 2nd Choice

Model Model 1st Choice Model 2nd Choice
N. Bayes (aug.) 14 21
N. Bayes 21 4
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Figure 4: Number of Classes Assigned to Docu-
ments by Judges

collection from the class models fitted to the Editor’s Desk
documents. In Table 5, we see, for each classifier, the num-
ber of documents for which it’s first or second most probable
class was voted best or second best by the 11 human judges.

In the context of this experiment, we consider a first- or
second-place classification by the machine to be accurate
because the relation browser interface operates on a multi-
way classification, where each document is classified into
multiple categories. Thus a document with the ”correct”
class as its second choice would still be easily available to
a user. Likewise, a correct classification on either the most
popular or second most popular category among the human
judges is considered correct in cases where a given document
was classified into multiple classes. There were 72 multi-
class documents in our sample, as seen in Figure 4. The
remaining 28 documents were assigned to 1 or 0 classes.

Under this rationale, The augmented naive Bayes clas-
sifier correctly grouped 73 documents, while the smaller
model (not augmented by a Google search) correctly clas-
sified 50. The resultant χ2 test gave p = 0.001, suggesting
that increasing the training set improved the ability of the
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Figure 5: Distribution of Classes Across Documents

naive Bayes model to generalize from the Editor’s Desk doc-
uments to the collection as a whole. However, the improve-
ment afforded by the augmented model comes at some cost.
In particular, the augmented model is significantly inferior
to the model trained solely on Editor’s Desk documents if
we concern ourselves only with documents selected by the
majority of human reviewers—i.e. only first-choice classes.
Limiting the ”right” answers to the left column of Table 5
gives p = 0.02 in favor of the non-augmented model. For
the purposes of applying the relation browser to complex
digital library content (where documents will be classified
along multiple categories), the augmented model is prefer-
able. But this is not necessarily the case in general.

It must also be said that 73% accuracy under a fairly
liberal test condition leaves room for improvement in our
assignment of topics to categories. We may begin to un-
derstand the shortcomings of the described techniques by
consulting Figure 5, which shows the distribution of cate-
gories across documents given by humans and by the aug-
mented naive Bayes model. The majority of reviewers put
documents into only three categories, jobs, benefits, and oc-
cupations. On the other hand, the naive Bayes classifier dis-
tributed classes more evenly across the topics. This behavior
suggests areas for future improvement. Most importantly,
we observed a strong correlation among the three most fre-
quent classes among the human judges (for instance, there
was 68% correlation between benefits and occupations). This
suggests that improving the clustering to produce topics
that were more orthogonal might improve performance.

7. CONCLUSIONS AND FUTURE WORK
Many developers and maintainers of digital libraries share

the basic problem pursued here. Given increasingly large,
complex bodies of data, how may we improve access to col-



lections without incurring extraordinary cost, and while also
keeping systems receptive to changes in content over time?
Data mining and machine learning methods hold a great deal
of promise with respect to this problem. Empirical meth-
ods of knowledge discovery can aid in the organization and
retrieval of information. As we have argued in this paper,
these methods may also be brought to bear on the design
and implementation of advanced user interfaces.

This study explored a hybrid technique for aiding informa-
tion architects as they implement dynamic interfaces such
as the relation browser. Our approach combines unsuper-
vised learning techniques, applied to a focused subset of the
BLS website. The goal of this initial stage is to discover the
most basic and far-reaching topics in the collections. Based
on a statistical model of these topics, the second phase of
our approach uses supervised learning (in particular, a naive
Bayes classifier, trained on individual words), to assign top-
ical relations to the remaining documents in the collection.

In the study reported here, this approach has demon-
strated promise. In its favor, our approach is highly scalable.
It also appears to give fairly good results. Comparing three
modes of document representation—full-text, title only, and
keyword—we found 98% accuracy as measured by colloca-
tion of documents with identical subject headings. While it
is not surprising that author-generated keywords should give
strong evidence for such learning, their superiority over full
text and titles, was dramatic, suggesting that even a small
amount of metadata can be very useful for data mining.

However, we also found evidence that learning topics from
a subset of the collection may lead to overfitted models.
After clustering 1279 Editor’s Desk documents into 10 cate-
gories, we fitted a 10-way naive Bayes classifier to categorize
the remaining 14,000 documents in the collection. While we
saw fairly good results (classification accuracy of 75% with
respect to a small sample of human judges), this experiment
forced us to reconsider the quality of the topics learned by
clustering. The high correlation among human judgments
in our sample suggests that the topics discovered by analy-
sis of the Editor’s Desk were not independent. While we do
not desire mutually exclusive categories in our setting, we
do desire independence among the topics we model.

Overall, then, the techniques described here provide an
encouraging start to our work on acquiring subject meta-
data for dynamic interfaces automatically. It also suggests
that a more sophisticated modeling approach might yield
better results in the future. In upcoming work we will exper-
iment with streamlining the two-phase technique described
here. Instead of clustering documents to find topics and
then fitting a model to the learned clusters, our goal is to
expand the unsupervised portion of our analysis beyond a
narrow subset of the collection, such as The Editor’s Desk.
In current work we have defined algorithms to identify docu-
ments likely to help the topic discovery task. Supplied with
a more comprehensive training set, we hope to experiment
with model-based clustering, which combines the clustering
and classification processes into a single modeling procedure.

Topic discovery and document classification have long been
recognized as fundamental problems in information retrieval
and other forms of text mining. What is increasingly clear,
however, as digital libraries grow in scope and complexity,
is the applicability of these techniques to problems at the
front-end of systems such as information architecture and
interface design. Finally, then, in future work we will build

on the user studies undertaken by Marchionini and Brunk
in efforts to evaluate the utility of automatically populated
dynamic interfaces for the users of digital libraries.
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