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Abstract

MILES EFRON: Eigenvalue-based Estimators for Optimal Dimensionality Reduction in
Information Retrieval

(Under the direction of Gregory B. Newby)

Latent Semantic Indexing (LSI) extends Salton’s vector space model (VSM) of informa-
tion retrieval, using dimensionality reduction to construct a statistical model of the relation-
ships among the terms in a document collection. Though empirical studies have shown that
such statistical models can improve retrieval over traditional key word-based approaches,
dimensionality reduction raises an important question: if we are to reduce model dimen-
sionality, how aggressively should we do so? Or conversely, what is the optimal value for
k, the number of dimensions in an LSI system? In the unsupervised learning environment
native to information retrieval, notions of model optimality and goodness of fit are difficult
to define.

This dissertation pursues the viability of five statistical methods for estimating the op-
timal dimensionality of LSI systems. Though the five pursued methods entail different
theoretical assumptions, they are all predicated on an analysis of the eigenvalues that arise
naturally during LSI. This thesis contends that LSI’s relation to principal component anal-
ysis makes an analysis of the eigenvalues the natural vehicle for dimensionality estimation.

To judge the utility of eigenvalue-based estimators for dimensionality estimation under
LSI, two groups of experiments were performed. Both rounds of experimentation tested
the accuracy of five dimensionality estimation criteria: eigenvalue-one, parallel analysis,
percent-of-variance, Bartlett’s test of isotrapy, and a novel method dubbed amended parallel
analysis. During the first experiments, these criteria were applied to six standard information
retrieval test collections and evaluated with regard to their accuracy. The second round of

experiments applied each dimensionality estimator to simulated data.



The first round of experiments suggested that the family of estimation techniques based
on the notion that dimensionality reduction is merited to the extent that the indexing fea-
tures violate the VSM’s assumption of statistical independence were especially accurate.
Also during this round, amended parallel analysis yielded statistically significant improve-
ments over traditional parallel analysis. The data simulations supported these findings.
Applying parallel analysis and amended parallel analysis to simulated data of known in-
trinsic dimensionality yielded categorically superior estimates to all other tested estimation

techniques.
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CHAPTER 1

Introduction

One of the foundational approaches to information retrieval (IR), Salton’s vector space
model (VSM) implies a geometrical theory of information seeking (cf. Section2.1). Salton
imagines documents as vectors in a high-dimensional space, with inter-document similarity
measured by the corresponding vector cosine (cf. [131]). For Salton, similarity is thus a
function of the orientation of documents in term space. Documents that are about similar
topics lie near each other in the vector space. Under Salton’s model, information retrieval
is a matter of navigating this space; searchers attempt to locate regions of the vector space
that hold documents relevant to their information needs.

An open question in the IR literature is, what should form the basis of the vector space
that houses documents in an IR system? In Salton’s formulation, documents are typically
represented in the p-space spanned by a corpus’ p indexing terms. However, elaborations on
Salton’s model, notably the generalized vector space model (GVSM) [150], have suggested
that alternatives to this space may be desirable. Due to the non-orthogonality of natural
language terms, proponents of the GVSM argue that a transformation of the observed term
space may improve retrieval.

Out of this conviction, latent semantic indexing (LSI) [32] derives a basis for a corpus’
vector space by means of an orthogonal projection of its p-dimensional document vectors
onto a k-dimensional subspace, where k < p (cf. Section2.2). Proponents of LSI argue that
this dimensionality reduction affords a robust representation of term-document associations,
collocating similar objects by eliminating overspecification error among the observed data.

This dissertation is concerned with the parameterization of k, the number of dimensions

retained during LSI. My analysis is aimed at discovering an effective means for selecting



k, and at considering how this selection reflects on the theoretical underpinnings of LSI.

Throughout this study, I pursue the question:

how effectively can an analysis of the eigenvalues derived during LSI be

used to estimate the optimal representational dimensionality for IR?

Estimating a corpus’ optimal dimensionality via eigenvalue analysis is attractive for a num-
ber of reasons. First, eigenvalues arise naturally during the generation of the derived LSI
space. LSI projects terms and documents onto an orthogonal subspace of the term-document
matrix A by means of the singular value decomposition (SVD, cf. Section2.2). This matrix
factorization calculates the so-called singular values of A, which are the positive square roots
of the eigenvalues of A’A. Thus by virtue of performing the SVD, researchers can easily
determine the eigenvalues of A’A.

Second, a number of eigenvalue-based dimensionality estimators have already been pro-
posed in the statistical literature. The method of principal component analysis (PCA) is
very similar to LSI (cf. Section2.2). Like LSI, PCA is based on the eigenvalue-eigenvector
decomposition of an input matrix. Researchers in multivariate statistics have developed an
advanced literature on the selection of k& during PCA, and almost all of their theorizing
focuses on methods of analyzing the distribution of eigenvalues. This study examines the
suitability of five of these estimators for parameterizing LSI models.

Finally, basing dimensionality reduction on eigenvalue analysis implies a theoretical jus-
tification for truncating representational axes during LSI. As I show in Section 3.3 the
magnitudes of a matrix’s eigenvalues relates to the degree of redundancy among its vari-
ables. Following from this fact, I propose a novel method of dimensionality estimation,
amended parallel analysis (APA). Dimensionality estimation by APA proceeds by analyzing
the observed eigenvalues’ departure from the eigenvalues that we would expect to see if
the indexing terms were independent. The method counsels us to discard those dimensions
whose eigenvalues are significantly smaller than the eigenvalues expected under the condition
of term independence. By promoting APA, I suggest that dimensionality reduction during
LSI is warranted insofar as the data violate the assumption of term orthogonality that is

inherent in the VSM’s conflation of similarity and vector orientation.



The remainder of this section describes the problem of dimensionality estimation in
general terms. I offer several important definitions that limit the scope of this study, and
give an example of the ramifications of selecting a proper dimensionality for IR systems.
In Chapter 2 I describe my area of interest in more depth by reviewing related literature
and pursuing a few extended examples based on my explication of earlier work. Chapter
3 describes the experiments that I undertook in efforts to address my research question.
After this methodological discussion, I turn to an analysis of the experiments’ resultant
data. Chapter 4 describes the data generated by analysis of six standard IR test collections.
To supplement this data analysis, in Chapter 5, I turn to simulated data sets, analyzing
the dimensionality estimation problem in simplified environments where the right answer is
known at the outset. Finally, I offer a synthesis of my findings in Chapter 6. This synthesis
compares the relative merits of each dimensionality estimation technique. It also attempts
to contextualize LSI’s dimensionality reduction and the problem of optimizing LSI models

in the larger domain of VSM-based retrieval.

1.1. Information Retrieval as a Geometrical Problem

Information retrieval systems attempt to discover documents in a corpus that are rel-
evant to a searcher’s stated information need. I discuss IR systems in depth in Section
2.1. Instead of belaboring the details of IR system operation, this section elaborates a geo-
metrical interpretation of the IR task in anticipation of later discussions of dimensionality
reduction. In particular, I introduce the notion of information space (cf. [110]), making
efforts to elucidate some of the fundamental assumptions that inform a geometric theory of
information retrieval.

Much of the difficulty of the IR task stems from the fact that three emphatically abstract
notions inform its most basic mandates. For instance the subject matter of documents
(e.g. books or articles), what Hutchins terms aboutness [74], is not typically open to direct
observation, as is a person’s height or the temperature of a chemical solution. Without a firm
grasp on aboutness the relevance of a document to a query is hard to quantify. Furthermore,

relevance between documents and queries is closely tied to a third abstraction native to the



IR problem—similarity. We intuit that documents that are relevant to a query are in some
way similar to it. And relevant documents are similar to each other. Aboutness, relevance,
and similarity are all crucial to IR, yet in most cases these variables are only latent in the
data at hand. Thus information retrieval begins with the challenge of making inferences

about these abstractions.

1.1.1. Information Spaces. Faced with an abstract problem, many IR systems resort to
a geometrical metaphor to translate the task at hand into a readily computable form. The
first step in this translation is adopting the notion of an information space. As Newby writes,
an information space is the set of concepts and relations among them held by a computer
system [110]. Though the philosophical status of concepts is the matter of ongoing debate
in the field of cognitive science (cf. [92, 123, 115]), Peter Géardenfors has recently advanced
a geometrical theory of conceptualization [56]. According to Gérdenfors, concepts comprise
variables that measure the properties of objects. An information space, then, may be un-
derstood as the set of variables observed by a system and the system’s means of associating
them. So mass, volume, and velocity might be concepts in an information space related
to physical measurement. On the other hand dogs, and cats might be important concepts
in the information space of an IR system related to household pets.

1.1.1.1. The Definition of Dimension. Crucial to the notion of an information space is the
idea of dimension. Following Gérdenfors’ argument, I define a dimension as a measurable
direction in a given space. Thus dimensions provide the structure of the space, and as we
shall see, define the topology that informs common notions of similarity and distance. As
Géardenfors writes, “dimensions form the framework used to assign properties to objects and
to specify relations among them. The coordinates of a point within a conceptual space
represent particular instances of each dimension...” [56].

Dimensions and concepts are thus closely related. They both comprise variables that
describe objects contained in the space. The important point, however, is that a one-to-one
correspondence between concepts and dimensions need not obtain. Thus, for instance, a
particular dimension might be comprised of a linear combination of a number of concepts.

For example, the dimension size might conflate ideas of mass and volume. On the other



| Point | Distance |

2 2.34
2.58
1.49
3.82
3.29
3.27
0.61
9 3.00
10 2.07
TABLE 1.1.1. Euclidean distance in an information space

OO | O O x| W

hand, the dimension motion might simply include the concept velocity. Thus concepts and
dimensions may be coequal, or they may be more loosely coupled.

The dimensions of an information space structure measurements of inter-object prox-
imity within the space. Although specific distance measurements (e.g. Euclidean, Dice,
city-block) vary in implementation, they are all based on the notion that objects are rep-
resented as points in the space spanned by the chosen dimensions. For example, consider
the simulated information space depicted in Figure 1.1.1. These data are drawn from a
multivariate normal distribution. Each observation from this distribution is scored on two
variables: Dimension 1 and Dimension 2. By sampling from this distribution and taking
these variables as dimensions of a fictional information space, we derive the configuration
represented in Figure 1.1.1. Points in the space represent objects, whose location on a given
dimension corresponds to its observed value on that dimension’s constituent variables. This
allows us to discuss the distance between any two points ¢ and j with respect to this space.
Table 1.1.1 shows the Euclidean distance between point 1 and each other point in the space.
Here point 8 is closest to point 1, while point 5 is farthest from it. The crucial idea is that
any distance metric in an information space is necessarily taken with respect to the space’s
dimensions. That is, the distance between two points ¢ and j is defined in terms of each
point’s location on all of the dimensions that define their mutual space.
1.1.1.2. IR as a Spatial Problem. Imagining that data reside in an information space is
useful insofar as we admit some analogy between proximity and similarity. As I discuss in

Section 2.1 Salton’s VSM uses the vector cosine to measure document-document similarity.
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FIGURE 1.1.1. Representation of a simple information space

Geometrically based information retrieval takes as axiomatic the idea that objects that lie
close together in information space are more similar than documents that are far apart.
Thus the distance functions that are defined on the dimensions of an information space also
act as similarity functions, suggesting that a given region of the space contains similarly
informative objects.

As an example, consider Figure 1.1.2. These data represent a simulated collection of
20 documents about two topics, dogs and cats. For the sake of illustration, imagine that
an omniscient indexer (whom we’ll meet again in Section 2.2) has assigned to each of these
documents two real-valued scores, one a variable called dog-ness, and another called cat-ness.

These variables comprise the dimensions of the 2-dimensional information space shown in



Cat—ness
2
|

Dog—-ness

FIGURE 1.1.2. Documents in a 2D information space

the figure. Each document appears as a point plotted at its coordinates on the space’s
dimensions.

Assuming that documents that are near each other in this space are similar, information
retrieval can be understood as a partitioning of this space. That is, a searcher might like
to see documents about dogs, wishing not to be distracted by documents about cats. To
accomplish this, an IR system attempts to isolate the region of information space relevant
to dogs. The black line in Figure 1.1.2 represents such an attempt. According to some
optimality criterion (this line was fitted by linear discriminant analysis) the system defines
a hyperplane in the information space. All documents to one side of the hyperplane are

classified as being about dogs, while those on the other side are assumed to be about cats.



This sort of 2-class classification problem exemplifies an extremely simple form of IR. For
instance it ignores entirely the issue of document ranking. However, it is instructive insofar as
it shows the utility of adopting a geometric approach to information retrieval. Constructing
an information space from observed variables is useful because it manifests the abstractions
discussed above into measurable features. Thus in information space, proximity constitutes
a model of similarity. This model’s approximation is motivated by assuming that aboutness
is a function of the adopted dimensions. Finally, then, relevance is inferable by analyzing the
distribution of similar objects within the space, as exemplified by defining the classification

rule in Figure 1.1.2.

1.1.2. Improving Information Spaces. As exemplified by the successes of Salton’s VSM
(discussed in Section 2.1), modeling the IR problem geometrically offers an apt approach
to retrieval. However, the VSM is not without its detractors. A common critique of the
vector model cites its assumption of term independence. Under Salton’s model, documents
reside in the information space spanned by the system’s indexing terms, and similarity is
defined by the vector cosine. Thus if car and automobile are both present in the indexing
vocabulary, systems based on the standard vector model will fail to retrieve documents
indexed on automobiles for queries about cars.

To see why this is the case, consider the similarity function of the VSM!. Given an n x p
document-term matrix A and a p-dimensional query vector q, Equation 1.1.1 gives the VSM

similarity function:
(1.1.1) s=qA’

where s is the n-vector of similarity scores. Under the standard VSM, dimensions of term
space are assumed to be orthogonal; the model assumes that terms are statistically indepen-

dent. Equation 1.1.1 may be re-written to emphasize its assumption of term independence:

(1.1.2) s=ql,A’"

IThis discussion is based on the treatment of similarity models given in [77].



In this expression, the identity matrix articulates the assumed independence among the cor-
pus’ indexing variables. That is, no transformation is applied to q to account for correlation
among the terms. In the case of car and automobile our intuition warns us that this model
is not accurate. Rather these terms seem to have a great deal in common. If this is the case,
perhaps this intuition should inform the system’s similarity function.

In fact, Wong et al. argue in [150] that term co-occurrence information should inform
the model of information space. Extending Salton’s theory, Wong proposes the so-called

generalized vector space model (GVSM):
(1.1.3) SGVSM = qRAI

where R is the p X p term correlation matrix calculated from A. According to the GVSM,
if car and automobile tend to co-occur in a corpus, an IR system ought to reflect their
relationship. For Wong, the sample correlation matrix provides a model of the relationships
that obtain among the corpus’ indexing terms. Thus the GVSM attempts to improve Salton’s
model by altering the axes of information space to account for inter-term correlation. That
is, by replacing the identity matrix of Equation 1.1.2 with the correlation matrix R, the

GVSM mitigates the error introduced to the VSM by assuming term independence.

1.1.3. LSI as a model of the Population Correlation Matrix. If the GVSM removes
error from Salton’s theory by accounting for the observed term correlations, LSI removes
error from the GVSM by fashioning a model of the population correlation matrix based on

the observed sample. Under LSI, we have the similarity function:
(1.1.4) sps1 = Ry A’

where Ry is the best rank-k approximation of R, in the least-squares sense, and k <
rank(A). Section 2.2, treats the derivation of Rg. For now, suffice it to say that the
similarity model defined by Equation 1.1.4 supplements the traditional VSM with a linear
model of the correlational structure among the columns (terms) of A. Choosing an optimal

value of k thus amounts to a problem of statistical model building. That is, the optimal



dimensionality of an LSI system will result in the best approximation of the population
term-term correlation matrix.

LSI’s improvement over Salton’s VSM may be understood as deriving from two mech-
anisms. First, if & = k4 then LSI converges on the GVSM. Thus LSI alters Salton’s
approach to IR by rotating the data onto independent axes. Instead of assuming that the
terms of a collection are independent, LSI projects the documents onto an orthogonal in-
formation space. Second, LSI attempts to improve the GVSM model of term correlations
by means of dimensionality reduction. When it employs a k-dimensional representation,
LSI assumes that the sample correlation matrix R is similar to the population correlation
matrix, modulo some perturbation. LSI’s dimensionality reduction, may thus be under-
stood as an effort to remove artifacts of this perturbation in efforts to derive the best model
of the multivariate probability density function (PDF) that generated the data. In both
mechanisms—its orthogonal projection and its dimensionality reduction—LSI is concerned

with deriving the optimally oriented information space.

1.2. Dimensionality Reduction for Information Retrieval

Dimensionality reduction involves discarding putatively misleading dimensions from an
information space. Because the features of the derived LSI space are orthogonal, they convey
most of the variance of the observed (non-orthogonal) data using relatively few dimensions.
By retaining only the k dimensions with the largest corresponding eigenvalues, LSI discards
dimensions that capture small amounts of variation in the observed data. LSI’s supporters
argue that these dimensions contain mostly random noise, and that removing them from the
representation effectively mitigates the problem of overfitting the model of the population
correlation matrix.

As an example of dimensionality reduction, consider the earlier discussion of the dimen-
sions of an information space describing physical systems. There I discussed conflating two
features, mass and wolume, onto a single new variable, size. This is the same operation
performed by LSI. Each dimension of LSI’s derived factor space is a linear combination of

the input variables. If the first derived factor corresponds to a latent variable size, then,
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FIGURE 1.2.1. Simulated 2-class document collection in term space

the coefficients for mass and volume might be large, while the coefficient for velocity would
be small. Having conflated mass and volume onto a single variable, we are left with an in-
formation space of reduced dimensionality. Whereas before, the example information space
was spanned by the dimensions mass, volume, and velocity, a better model might use the
two-dimensional representation spanned by the inferred dimensions size, and motion (on
which mass and volume presumably score low, while velocity scores high).

To ground this discussion in an example related to IR, consider Figure 1.2.1. Here we
see 20 documents in a simulated 2-dimensional term space. In this case, the dimensions of
the space are the terms obedience and training. The documents in this imaginary corpus

are of two classes, those about dogs (shown as D’s) and those about cats (the C’s). Each
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document’s location in the space is comprised of its (for now undefined) score on each
dimension. As is evident from the figure, obedience and training are not independent;
they appear to be positively correlated. In fact, the coefficient of correlation between these
variables is r = 0.96. As I discuss in Section 2.1 such a correlation is worrisome insofar as the
cosine similarity metric is predicated upon the orthogonality of a space’s dimensions. The
problem arises because the dimensions, obedience and training, are largely measuring the
same thing. Thus applying a distance-based metric on the space spanned by these variables
effectively counts the same information twice, giving skewed measurements of inter-object
similarity.

If using both variables introduces error into the similarity model, perhaps we should
only use one of the variables to represent our documents. The question then becomes,
which variable to choose? The total variance of these data is 9.12, which is divided almost
equally between the two dimensions; the variance of obedience is 4.1, or 45% of the total
variance, while training captures the remaining 55%. Discarding either dimension of the
space would thus incur a significant loss of measurement accuracy.

The grey lines in Figure 1.2.1 visualize the LSI approach to solving this problem. The
lines represent new dimensions for the information space. They were generated by finding
the two mutually orthogonal vectors in the space that capture maximal variance. Thus the
first factor (the axis with a positive slope) is the vector that minimizes the squared distance
between itself an each point in the space, while passing through the mean vector of the
data. The second factor is the best least-squares fit that is orthogonal to the first factor?.
The grey lines in Figure 1.2.1 comprise new dimensions for the information space. These
dimensions were constructed by analyzing the covariance between the observed data, and
rotating the axes to account for this correlation.

Figure 1.2.2 suggests why axis rotation leads to dimensionality reduction. The figure
shows the 20 documents, projected onto the 1-space spanned by the first inferred dimension.
As is evident from the orientation of documents in this space, this single dimension appears

to capture the variation in the original data quite well. In fact, of the original 9.12 units

2 discuss the notion of least-squares fitting in Section 2.2.
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FIGURE 1.2.2. Simulated 2-class document collection in inferred 1-space

of variance, this factor describes 8.92 units, or 98% of the total variance. Thus the second
inferred factor accounts for only 2% of the total variation. As stated above, we suspect
that representing documents in the information space spanned by obedience and training
introduces error into the VSM’s distance measurements due to their statistical correlation.
However, we worried about discarding either of the observed dimensions since they both
captured a significant proportion of the variation among the data. By rotating the axes to
derive two new dimensions, LST makes the selection of an appropriate factor much easier.
By rotating the data we obtain variables that describe 98% and 2% of the total variance,

respectively.
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Proponents of LSI argue that the 2% variance described by factor number 2 is negligi-
ble, that it probably describes sampling error among the data, as opposed to a systematic
correlational pattern. In other words a model of term correlations that includes dimension
number 2 would thus include random error, risking the problem of becoming overfitted to
the observed data. Under LSI we would truncate the representation, projecting documents
onto the 1-space defined by the first inferred dimension. The vertical grey line in Figure
1.2.2 shows a classification hyperplane in this 1-space; documents to the left of the line are
assumed to be about cats while documents to its right are assumed to be about dogs. Thus
dimensionality reduction has not made the classification task qualitatively harder. And if
dimensionality reduction is merited, removing the second (weakly descriptive) dimension
from the similarity function derives a superior model of the term correlations that obtain in
the population. Proponents of LSI argue that this reduced-rank model will thus generalize
to new data (i.e. new queries) more accurately than the model based on the full-rank sample

correlation matrix.

1.3. Eigenvalues and Dimensionality Reduction

Closely related to techniques such as principal component analysis [81] and multidimen-
sional scaling [29], LSI is based on the singular value decomposition of an input matrix,
which I discuss in Section 2.2. Given an n X p matrix A of rank r let the singular value

decomposition of A be given in Equation 1.3.1:
(1.3.1) A =TID’

where T is an n X r orthogonal matrix, ¥ is an r X r diagonal matrix, and D is an r X r
orthogonal matrix. Matrices T and D contain the left and right singular vectors of A,
respectively, and the main diagonal of X contains the singular values, which are the positive
square roots of A’A and AA’ (which I shall call the co-occurrence matrices of A). As
shown in [67] and [116] the singular vectors of A define the rotated axes shown in the
example above. Likewise, the eigenvalues of the co-occurrence matrices are the amount of

variance described by each dimension in the rotated space. Because each dimension of the
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FIGURE 1.3.1. Scree plot of Cystic Fibrosis data

inferred space maximizes the available variance, o; the diagonal elements of X, decrease in
magnitude as 7 goes from 1 to r. Thus o1 > 092 > --- > o,. As demonstrated in [37] and
[105] the eigenvalues of matrices in IR applications tend to follow a power-law distribution.
Thus the magnitude of an eigenvalue is related inversely and exponentially to its rank. This
trend is visible in Figure 1.3.1, which is based on the eigenvalue decomposition of the Cystic
Fibrosis database, a collection of 1239 medical documents (cf. Section2.4). Figure 1.3.1
is a so-called scree plot. It graphs the magnitude of the k* eigenvalue versus its rank.
The eigenvalues decrease in size quickly as we move from left to right along the graph.

Because the eigenvalues describe the amount of variance captured by the corresponding

dimensions, LSI’s advocates suggest that one may improve an information space’s model of
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term correlations by ignoring axes with small eigenvalues. This hypothesis is contentious,
but borne out by LSI’s improvements in performance over traditional vector-based models.

By removing dimensions with small corresponding eigenvalues, Deerwester et al. report
significant improvement over the VSM on several standard data sets [32]. Likewise, Dumais
has applied LSI to several problems in the Text Retrieval Conferences (TREC), with promis-
ing results [38, 39, 40|. Dumais reports a 31% advantage over keyword-based methods for
the filtering task, and a 16% improvement for ad hoc retrieval (cf. [10]). Ding reports
improvements in performance of 30% above traditional VSM-based systems on the ad hoc
retrieval task [36, 37|. Landauer and Dumais apply a variant of LSI to a vocabulary learning
problem. They find that an LSI system is able to learn new vocabulary with accuracy above
50% [90]. What is particularly interesting about the study by Landauer and Dumais is
the relationship between their system’s dimensionality and its performance. As I discuss in
Section 2.3, Landauer and Dumais find that retaining approximately 300 dimensions yields
the best accuracy for the vocabulary inference problem. While it is not surprising that such
a system requires more than one or two dimensions, Landauer and Dumais find that when &k
becomes much larger than 300, performance declines. They cite this decline as evidence that
the factors corresponding to small eigenvalues contain essentially random noise. Theoretical
and empirical work by Ding [36, 37] and Story [140] corroborates this hypothesis. In all
of these studies, research suggests that selecting a proper value for k is crucial for good
LSI performance. Thus an optimal LSI model would include factors whose corresponding
eigenvalues are large, discarding those eigenvalues that are small.

The purpose of the present study is to analyze statistical methods for defining what con-
stitutes a “small” eigenvalue for IR applications. In most LSI applications, system designers
choose k, the number of retained dimensions, in some ad hoc manner. For instance the sem-
inal work of, Deerwester et al., calls the selection of an appropriate dimensionality “crucial”
for good retrieval under LSI. Moving from k = 1 to k = 100 yields a 30% improvement in
Deerwester’s system performance. Yet their criterion for this parameterization is informal,

to say the least. “We have reason to avoid both very low and extremely high numbers of
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dimensions,” they write. “In between we are guided only by what appears to work best.
What we mean by 'works best’ is ... what will give the best retrieval effectiveness” [32].

This approach is common in applications of LSI. Unfortunately, in practice it is difficult
to judge what does work best. In the case of Deerwester et al. or Landauer and Dumais,
selection of k was performed by recourse to pre-classified data. That is, these experiments
make use of training data and test data that have been classified in advance, thus allowing
the researchers to judge a given parameterization retrospectively by observing its accuracy
on the test data. This approach is unsatisfying in two respects. First, from a practical
standpoint, most operational IR systems do not have ready access to the type of relevance
judgements that inform the retrospective performance analysis used by Deerwester et al.
Second, we desire a more theoretically sound motivation for dimensionality reduction.

I argue that the eigenvalues that arise during LSI are useful on both of these counts;
they allow researchers to estimate the optimal dimensionality for a data set without recourse
to pre-classified data. Second, as I discuss in Sections 2.3.3 and 3.3, the method that I
propose—amended parallel analysis (APA)—implies a theoretical justification for LSI. APA
operates by judging the deviation of each observed eigenvalue );, from the corresponding
eigenvalue expected if the data were independent. The method rejects all eigenvalues that
are significantly smaller (in the statistical sense) than their counterparts under the null
hypothesis of independence. As noted above, dimensionality reduction is useful when the
observed dimensions are non-orthogonal. Thus I suggest that analyzing eigenvalues for their
departure from the eigenvalues expected given independent data provides a good estimate
of the best parameterization of k. One goal of this dissertation, then, involves testing this

hypothesis.

1.4. Intrinsic Dimensionality and Optimal Representations for IR

The difficulty inherent in the proposed research lies in knowing what constitutes “the
best” parameterization of k. Does some optimal value of k exist, as a function of the matrix
A? If so, how can one ascertain it? Or does optimal k£ perhaps depend on the task that

the LSI system will ultimately perform? To address these issues, I offer several definitions
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in this section. First, I introduce the notion of a data set’s intrinsic dimensionality (also
known as its effective dimensionality, cf. [108]). This notion is common in the literature of
principal component analysis (cf. [81, 79, 116]) and multivariate statistical theory [3, 107].

Following Fukunaga [54] Bishop describes the notion of intrinsic dimensionality as follows:

Suppose we are given a set of data in a d-dimensional space, and we apply
principal component analysis and discover that the first d' eigenvalues
have significantly larger values than the remaining d —d' eigenvalues. This
tells us that the data can be represented to a relatively high accuracy by
projection onto the first d’' eigenvectors. We therefore discover that the
effective dimensionality of the data is less than the apparent dimensionality
d, as a result of correlations within the data.... More generally, a data set
in d dimensions is said to have an intrinsic dimensionality equal to d' if

the data lies entirely within a d’-dimensional subspace. [12]

Departing slightly from this definition, I define intrinsic dimensionality as a function of the
multivariate probability density function (PDF) responsible for the n x p matrix A. The
intrinsic dimensionality of A is thus the number of statistically uncorrelated variables in the
probability density function of A. Assuming that A is drawn from a multivariate normal
distribution, this is equivalent to the number of independent variables in A. Alternatively, we
may understand the intrinsic dimensionality of A to be the number of non-zero eigenvalues
in the population covariance matrix for the PDF that generated A. Because the intrinsic
dimensionality is defined on the PDF of A, it is a parameter—I abbreviate it k,p;—which I
hope to estimate by recourse to statistical analysis of A. The methods of eigenvalue analysis
proposed in the current study provide techniques for computing such statistics.

As an example of the idea of intrinsic dimensionality and how it pertains to eigenvalue
analysis, I generated two 1000 x 5 data sets, A5 and As. Each data matrix thus contained
1000 observations on 5 variables. Both matrices were drawn from a multivariate normal
distribution with mean vector g = 0. The difference between these matrices lay in the
covariance matrices of the distributions that generated them. Dataset As was created with

covariance matrix X5 = I5. Thus the 5 variables of the distribution are independent, modulo
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sampling error. The intrinsic dimensionality of Ay is thus 5. On the other hand, matrix Aj

was generated from a distribution with covariance matrix Xs:

11100\
11100
(1.4.1) Z3=(1110 0
00010
00001)

which has the first three variables positively correlated with each other, with the last two
independent. I call this a distribution of intrinsic dimensionality 3, counting the 3 correlated
variables as a single dimension. That Ajg is three dimensional is clear by inspection of its

eigenvalues:
(1.4.2) A’3=(3 110 0).

Matrix Ajs has 5 variables, but only 3 non-zero eigenvalues. Thus due to inter-variable
correlation, its intrinsic dimensionality is three, two less than its observed dimensionality.
Data generated from a PDF parameterized with covariance As will thus be defined to be
essentially three-dimensional.

Scree plots of As and Agz appear in Figure 1.4.1. For the matrix with intrinsic dimen-
sionality of 5, all 5 eigenvalues are approximately equal. As discussed in the section about
APA, this is what we would expect, and it constitutes APA’s null hypothesis—that all five
eigenvalues are non-zero in the population. On the other hand, matrix Ag, with an intrinsic
dimensionality of 3 has strongly descending eigenvalues. Most notably, it has 3 eigenvalues
that are non-zero. This example constitutes an extreme case of the influence of intrin-
sic dimensionality on eigenvalues; under less artificial circumstances, sampling error would
probably raise the values of several of the eigenvalues in both matrices (choosing n = 1000
on data with low variance induced this behavior). The point, however, is that eigenvalues

for dimensions that exceed the intrinsic dimensionality of a matrix will tend to be small.
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FIGURE 1.4.1. Scree plots of matrices with differing intrinsic dimensionali-
ties.

In contrast to kep¢, which is defined on the PDF of A, I also define the observed optimal
dimensionality of A with respect to IR performance metric m. Under operational circum-
stances, we do not know the PDF that generated a given term-document matrix. But we
can observe how well a certain estimation of k,,; fares when it is applied to a retrieval prob-
lem. As I discuss in Section 2.4, evaluating the performance of information retrieval systems
is an unsolved problem. Due to the abstract imperatives of the task, judging the quality
of a system’s performance is non-trivial, and in many instances subjective. Nonetheless in
Section 3.2 I discuss three performance metrics that informed my analysis during this study:
average precision, the harmonic mean of precision and recall, and average search length.

For a given corpus C, we may apply each of these metrics at all possible parameterizations

20



of k. By tracking the performance of a given metric m at each value of k and noting the
dimensionality that optimizes the given performance measurement, we derive the observed
optimal dimensionality of A with respect to m. A major element of this dissertation involves
using retrospective performance analysis to judge the quality of various eigenvalue-based es-
timates of intrinsic dimensionality. That is, the experiments described in Chapters 3 and 4
use observed optimal dimensionality with respect to three evaluation metrics as a surrogate
for knowledge of the true intrinsic dimensionality to enable comparison of the accuracy of

five eigenvalue-based dimensionality estimators.

1.5. Conclusion

Automatic information retrieval systems face a difficult challenge: to offer a computa-
tional treatment of documents’ aboutness, similarity, and relevance. While approaches to
this task run a wide gamut, a large number of IR systems rely on geometric models such
as those outlined in this chapter. Under these geometrically motivated models, retrieval is
seen as a problem of navigation in information space. Thus similar documents are assumed
to reside close together in the vector space spanned by the system’s representational axes.
Despite the success of the geometrical approach to IR, however, deriving the optimal model
of information space remains an open problem.

Salton’s foundational VSM sacrifices realism for the sake of simplicity when it assumes
statistical independence among terms. In contrast, Wong’s GVSM extends Salton’s model,
rotating the axes of its information space by including a model of term associations based
on the sample correlation matrix. Finally, LSI extends the GVSM, attempting to improve
the model by constructing a statistical model of the population correlation matrix via di-
mensionality reduction.

In a number of empirical studies LSI’s statistical modeling approach has been shown
to improve retrieval over traditional keyword-based techniques. However, dimensionality
reduction saddles researchers with an important question. If we are going to reduce model
dimensionality, how aggressively should we do so? Or conversely, what is Koy, the optimal

number of dimensions to retain under LSI? In the unsupervised learning environment of IR,
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defining notions of model goodness of fit and optimality is non-trivial. Although ad hoc stud-
ies have shown good performance using k ~ 100 - - - 300, a sound criterion for model selection
during LST has not been forthcoming. This dissertation attempts to remedy this omission.
Specifically, I pursue the question of how best to estimate the intrinsic dimensionality of a
corpus by recourse to a statistical analysis of its eigenvalues.

This study approaches the problem of dimensionality estimation for IR broadly, method-
ologically speaking. After a more thorough discussion of my research domain in Chapter
2, Chapter 3 outlines a series of experiments undertaken to compare the utility of five
eigenvalue-based dimensionality estimators. Next, Chapter 4 reports the results of these
experiments, comparing attempts to predict the observed optimal dimensionality of six test
corpora, with respect to three performance metrics, via five eigenvalue-based statistical es-
timators. My goal in this analysis is to note conditions under which certain estimators
succeed or fail in predicting the observed optimal dimensionality for retrieval. In Chapter 5
I supplement Chapter 4’s empirical analysis by conducting similar experiments on simulated
data whose intrinsic dimensionality is known beforehand. Finally, I conclude in Chapter 6
by synthesizing and interpreting my findings.

Throughout these experiments I give particular attention to interpreting the performance
of my own proposed method, amended parallel analysis (cf. Sections 2.3.3 and 3.3). I
suggest that due to APA’s ability to account not only for the magnitude of eigenvalues,
but also for their variability, the technique yields an accurate estimate of a corpus’ effective
dimensionality, and by extension, a superior estimate of its observed optimal dimensionality
for retrieval. Such an analysis will hopefully prove useful for practitioners insofar as the
selection of an appropriate value of k is a crucial step during LSI. However, I argue that this

approach will also solidify the theoretical motivation for dimensionality reduction in IR.
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CHAPTER 2

Literature Review

While the matter of dimensionality reduction for information retrieval has generated
its own body of research, a full understanding of its intricacies demands reading across
literatures. Of course information retrieval researchers do address LSI and its attendant
intricacies; but scientists in machine learning have also made strides that shed light on em-
pirically determined dimensionality estimation. Since the work of R. A. Fisher, statisticians
have formulated theories of linear models, of which LSI is a special case [50]. Finally, math-
ematical work on the theory of eigensystems provides a foundation for any rigorous analysis
of least-squares modeling, such as LSI. This chapter aims to contextualize my discussion
by offering some background on the research areas germane to empirical dimensionality
reduction.

The first of the following sections paves the way for my analysis of LSI by surveying
the theory that underpins the vector space model of information retrieval. An extension of
the generalized vector space model [150] (cf. Section 1.1.3), LSI owes its formulation and
implementation not only to research within the IR community, but to a tradition of statistical
and mathematical work in linear models and the theory of eigenvalues; Section 2.2 describes
the mathematical and conceptual framework that informs LSI. Of particular importance
to understanding and implementing LSI is the matter of dimensionality reduction: given a
corpus with n documents and p terms, what is &y, the dimensionality of the optimal LSI
model? A body of techniques for identifying a corpus’ intrinsic dimensionality forms the
subject of Section 2.3. In Section 2.4 T turn to the problem of evaluation in information
retrieval systems. If a goal of IR research is to discover good models, it pays to be rigorous in

our definitions—what does it mean to evaluate a model? What does it mean for one model



to improve on another? Section 2.4 surveys consensus and contention wvis a vis evaluation

of IR systems.

2.1. Intelligent IR via the Vector Space Model

Information retrieval systems search databases for documents that are relevant to a user’s
stated information need [4, 118]. Following Baeza-Yates, I adopt a “logical” definition of
basic IR vocabulary, “[using] the term document to denote a single unit of information,
typically text in a digital form, but [inclusive of] other media” [4, p. 141]. I consider
queries to be analogous to documents, both mathematically and conceptually; that is, for our
purposes, queries may be considered “pseudo-documents.” In older IR systems, documents
entailed just a few key words, titles, or abstracted surrogates of longer works [22, 101].
But thanks to improved computing resources and the growth of electronic corpora such as
the World Wide Web, documents in many newer IR systems contain a full reproduction of
electronic texts!.

While the advent of richer document representations extended the possible merits of
information retrieval systems, it also raised the challenges facing IR researchers. Early IR
efforts, based on controlled vocabularies and well-structured document surrogates, resem-
bled standard database systems. Retrieving documents from these systems entailed a simple
lookup table—an inverted index—against which query terms could be compared using set-
theoretic operations. This led to the traditional Boolean approach to IR. Commenting
on the inadequacies of Boolean systems, W. S. Cooper wrote in 1988, “it should be pos-
sible to improve considerably upon the fundamental design features of most present day
retrieval systems” [26]. Cooper suggests that modern IR—what I term “intelligent informa-
tion retrieval”—should use a priori knowledge about language to improve upon the Boolean
model.

As Cooper recommends, intelligent information retrieval systems borrow from machine
learning, artificial intelligence, and linguistic research. The volume and complexity of re-

search into intelligent IR prohibits a general treatment of the subject. Instead, anticipating

lFor that matter, documents need not be textual at all. However, multimedia retrieval lies outside the scope
of this study. For discussions of multimedia retrieval, see [103].
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FIGURE 2.1.1. Pets data as vectors

our discussion of LSI, this section describes research into IR systems that build upon the

vector space model of retrieval.

2.1.1. The Vector Space Model. Salton’s vector space model (VSM) of IR imagines
retrieval in linear algebraic terms [125, 131, 129]. Under Salton’s model, each document
represents a vector in a p-dimensional vector space, where p is the number of indexing terms
used by the system. The location of the i document d; along the j** axis corresponds to
the presence or absence of the j%* term in the i** document. The simplest expression of the
vector space model treats terms as binary data. Thus d;; = 1 if the 4§ term appears in the

ith document. Otherwise d;; = 0.
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| Document | Contents |

The Iguana: man’s best friend
Guide to raising a dog
Raininig Cats and Dogs

A Cat-lover’s Guide to Cats
TABLE 2.1.1. The pets data

= W DN =

Table 2.1.1 contains an imaginary, very small document collection, that I call the pets
data. Figure 2.1.1 depicts the pets data as points in a vector space. In this example, four
documents are represented by two terms, cat and dog. The vector space shown in Figure

2.1.1 is defined as the space spanned by the rows of matrix A:

00

10
(2.1.1) A=

11

01

Matrix A is known as a term-document matrix; the i column of A represents the i
indexing term in document space. On the other hand, the j* row represents document j as
a vector in term-space. Document number 1 contains neither indexing term, and thus the
system locates it at vector (0, 0). On the other hand document 3 contains both cat and dog,
and thus becomes (1, 1). Under the vector space model, similarity between two documents
i and j is defined as the inner product between the i*” and j* document vectors:

t
(2.1.2) sim(i, j) =1-J= Y im " jm-
m=1
If the document vectors have been normalized to unit length, then Equation 2.1.2 becomes
the vector cosine:
i-]

J
131

Thus sim(1, 4) = 0, while sim(3, 4) = 0.71. This notion of similarity is intuitively appealing

(2.1.3) sim(i, j) = cos;j =

insofar as it conflates ideas of geometrical proximity and lexicographic content; documents

that share indexing terms are considered close together in term space. Documents 1 and 4
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| Document | Sim(q,di) |

3 1
4 0.71
2 0.71
1 0

TABLE 2.1.2. Query-document similarity

share no terms, whereas documents 3 and 4 share one term. Thus documents 3 and 4 are
closer together than documents 1 and 4 under Salton’s model.

Given some document d;, we may rank all other documents d; in a collection by their
pairwise similarity with d; via Equation 2.1.3. It is often useful in IR settings to obtain a list
of all documents, ordered by their similarity to some d;. This is particularly common in ad
hoc retrieval situations, where the system is to be presented with a user’s query. Here, the
query is represented as a “pseudo-document,” g;. After translating a query into g;, vector
space retrieval entails calculating sim(g;, d;) for all d;. The system then presents items to
the user, ranked by their similarity to g;.

Returning to the pets example, imagine a query: titles about ‘dogs’ or titles about ‘cats

and dogs.” Projecting this query into the vector space spanned by A yields query vector q:

Ranking each document against q using Equation 2.1.3 yields the query-document similarity
table shown in Table 2.1.2. A system based on the vector model would present documents
to the author of q in this order.

Variations of Salton’s model have performed well experimentally [130], and have become
a mainstay of IR research. The vector space model is especially important in the histor-
ical development of academic IR due to its formalization of the notion of inter-document
similarity. Unlike Boolean approaches (based on set-theoretic ideas, cf. [118, chs. 3, 5|),
Salton’s vector space method implies that similarity is analogous to geometric proximity;

inter-document similarity is a matter of degree, and sim/(d;, dy) = sim(dy, d;) for all 1 # '
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| Document | sim(q, d;) |

3 0.95
2 0.9
4 0.45
1 0

TABLE 2.1.3. Query-document similarity

This implication lends vector space IR intuitive and mathematical appeal (discussed be-
low), but it also bears unfavorable baggage. By defining document-document similarity as
the vector cosine, Salton suggests that similarity is linear on the collection’s indexing fea-
tures. That is, vector space IR assumes that indexing terms are statistically independent.
This assumption is patently false [102, 111, 26, 27|, although it is unclear exactly how
grievously the assumption of term independence degrades the performance of IR systems

[96].

2.1.2. Elaborating on Linearity: Term Weighting and Query Expansion as Prim-
itive Data Reduction. In the previous example, we represented the pets data using the
binary matrix A. However, a more realistic model defines A as real-valued, where a;; is,
for example, an integer that records the number of times that the i*? term occurs in the 5%

document. Such a scenario locates the pets documents in R? via matrix A,

00
10
A, =
11
0 2

The vector space described by A, is shown in Figure 2.1.2, and query ¢ is shown in vector

form as:

qr =

Figure 2.1.3 shows the relevance table under this model. The user has requested titles

about ‘dogs’ or titles about ‘cats and dogs’. By storing term-document count information,
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FIGURE 2.1.2. Pets data as integer-valued vectors

the new model gives a novel ranking for the same data, effectively weighting dogs in the
user’s query. Whether this ranking is better than the original is difficult to say. Instead, the
important point is that by altering the mechanics of our document representation, we have
imposed two different semantic models on the same data. In fact the vector space model
thus refers to a general family of retrieval models, whose notions of similarity are analogous
but distinct.

While term-document counts provide more information than binary data, in practice
IR systems tend to use more elaborate methods of term weighting. Salton argues that

“distinctions must be introduced between individual terms, based on their presumed value
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as document descriptors” [126]. Viable term weights tend to be based on several factors;

Salton identifies two in particular:

e term frequency: how many times the term appears in the document

e inverse document frequency: how often the term appears in the database

By taking these factors into account, Salton argues, IR systems may develop weights whose
interactions provide suitably realistic models of natural language semantics.

Even the earliest work in IR recognized the importance of term frequency (¢f) data for
text analysis. In the mid-1950s, H. P. Luhn argued that the most important terms in a
document were those that occur with middling frequency [99, 100]. Extremely common
terms such as the, in, and it are over-represented in almost all English corpora; their presence
or absence thus conveys very little information about document “aboutness.” On the other
hand, many terms in a corpus will occur rarely, once or perhaps twice. These so-called
hapaz legomena provide too little information for useful text processing. Instead, Luhn
suggests that those terms that occur with mid-range frequency should be weighted when
computing inter-document similarity. Thus Salton argues that any term weighting model
should account for term frequency.

In [82, 83] Karen Sparck Jones introduces the notion of inverse document frequency
(idf). According to Sparck Jones it is not sufficient to consider a term’s global frequency
(tf) when estimating its usefulness for discrimination. She argues that some analysis of
a term’s distribution across documents should supplement ¢f analysis. This consideration
stems from the possibility that a term could be quite common, but present in only a small
subset of a corpus’ documents. A purely tf-based model would demote such a term due to
its common appearance, although its localized distribution suggests that it could serve as
a useful marker for a subclass of document. Thus “the idf factor,” writes Salton, “varies
inversely with the number of documents n to which a term is assigned in a collection of N
documents. A typical idf factor may be computed as log N/n” [126].

Having identified two components of a term weighting model, Salton offers the general
idea of term discrimination as a weighting scheme for IR [132]. A term with high dis-

crimination value is “able to distinguish certain individual documents from the remainder of
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the collection. This implies that the best terms should have high term frequencies but low
overall collection frequencies” [126]|. As an estimate of a term’s discrimination value, Salton
recommends the product of its ¢f and idf scores (¢f x idf). Although the use of tf x idf
term weighting continues to draw criticism due to its lack of theoretical foundation [28, 14|
it also sees widespread use in IR research [13, 78, 114].

In its simplest, binary articulation, the vector space model imagines that all terms are
equally important, and that their mere presence or absence—as opposed to the frequency of
their repetition—determines the conceptual content of a document. The term discrimination
model attempts to remedy this oversimplification. By accounting for the number of times
a term appears in a document (#f), the term discrimination model implies that terms that
appear often in a document convey more of the document’s content than do terms that
appear just once. And by analyzing each term’s distribution across documents (idf), the
model accounts for a feature’s semantic range, suggesting that those terms that are heavily
used in a small group of documents will be strong discriminators for retrieval purposes.

We may understand the development of term weighting schemes as a primitive effort to
improve an IR system’s native language model via data reduction. Without term weighting,
an IR system has little choice but to represent each document in p-space, where p is the total
number of terms in the collection. However, many words in a corpus are only marginally
useful for IR purposes. Thus stop-lists [4, 129, 125] are useful for removing high-frequency
terms. Likewise, the use of stemming [113] can reduce p by mapping variants of a stem
down to a single form. In both cases, researchers hope to eliminate document features
that introduce noise into the document ranking process. Term weighting schemes provide a
statistical means of effecting the same result. “Is the determination of the terms weights,”
asks Salton, “capable of distinguishing the important terms from those less crucial for content
identification?” [126]. Assuming that our weighting model is up to the task, we may derive
the k most important features in a collection by ranking the terms by idf weight and keeping
the top k.

To demonstrate the utility of removing variables from a document representation con-

sider the following simulated data set. This imaginary corpus contains 300 documents, each
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| Class | Mean Vector | Cov. Matriz |

1 [1,0] I,
2 1, 3] I
3 [1,-3] I,

TABLE 2.1.4. Distributions for feature selection simulation

of which belongs to one of three semantic classes—say, documents about dogs, cats, and
mice. There are 100 documents in each class. Each document in this example is represented
as a 2-vector, where one variable is intended to be useful for discriminating between classes,
and the other variable is the same across classes—i.e. it constitutes a noise variable. Doc-
uments were drawn from three multivariate normal distributions, described in Table 2.1.4.
Obviously variable number 2 provides better evidence for classifying these documents than
does variable 1, as is evident in Figures 2.1.3 and 2.1.4, which show the simulated data in
alternate 1-spaces.

Figure 2.1.3 shows the 300 simulated documents (with each class in a distinct character)
represented only by variable 1, the noise variable. Defining a classification rule for these data
would be almost impossible. On the other hand, Figure 2.1.4 represents each document by its
score on variable 2, a rendering that isolates the classes quite well. That variable 2 constitutes
a better indexing variable (for this classification task) than variable 1 is also expressible
numerically. I subjected this simulated data set to the k-means clustering algorithm twice.
The first time I clustered the data using only variable 2. This clustering yielded a 94.3%
classification accuracy. During the second clustering, both variables were used. Adding
variable 1 to the data representation yielded almost no improvement in classification; this
round of clustering classified 94.7% of the data correctly. Representing the data using only
variable 1 would reduce the classification process to sheer guesswork. For the purposes of
document classification, then, we would do well to set more stock in each observation’s score
on variable 2 than on its variable 1 score. This is the end result of a feature weighting model.
But for that matter, we might ignore variable 1 altogether, which corresponds to dropping
those variables with low discrimination values.

The point of this somewhat gratuitous example is to suggest that all variables are not

created equal. The binary vector space model expressed in Figure 2.1.1 assumes that each
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FIGURE 2.1.3. Simulated data in noisy 1-space

variable is as important as its neighbor. On the other hand, the term weighting models
described in this section admit a more nuanced semantics. Not only does it matter how
many times a term appears in a document, for the term discrimination model, it matters
how many documents contain the term. Such a model allows an IR system to restrict its
analysis to those terms deemed promising discriminators. By reducing its document model
from a vector in p-space to a vector in k-space, where k < p (whether via outright variable
exclusion, or by judicious feature weighting), an IR system stands to mitigate the effect of
so-called “function words,” freeing resources for analysis of “content words,” words likely to

convey topical information about a document’s semantics.
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FIGURE 2.1.4. Simulated data in 1-space

2.1.3. Thesauri and Query Expansion. Singling out good indexing terms is a prerequi-
site for robust indexing. Without this step, a system may be led astray by purely functional
(as opposed to topical) words. However, the methods described so far do nothing to address
the assumption of linearity inherent in the vector space model. Joining Cooper’s earlier
criticism [27], Salton suggests that in addition to term discrimination models IR systems

should account for statistical dependencies among terms.

In most of the early [IR]| experiments, single terms alone were used for
content representation, often consisting of words extracted from the texts
of documents and from natural language query formulations....Ultimately,

however, sets of single terms cannot provide complete identifications of
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document content. For this reason, many enhancements in content analy-
sis and text indexing procedures have been proposed over the years in an

effort to generate complex text representations. [126]

Salton identifies four means of extending the vector space model to include term-term cor-

relation information:

(1) Generating sets of related terms by observing co-occurrence data from online cor-
pora (cf. [94, 117, 21]).

(2) Deriving n-gram features (cf. |[84]). i.e. Identifying common n-word phrases and
considering them indexing features akin to individual words.

(3) Use of online thesauri (cf. [2, 84, 53, 49]).

(4) Construction of knowledge bases or other encodements of logical relations among

indexing terms (cf. [30, 31]).

These techniques address the vector model’s assumption of term independence by articulat-
ing relationships between terms at a global (i.e. corpus-wide) level. Thus a thesaurus-based
system might observe, thanks to its a priori encoded knowledge of term relationships, that
car and automobile tend to co-occur. When such a system encounters a document or query
d; that contains automobile but not car, the system might supplement its representation to
obtain d;, a representation identical to d;, except that the vector entry for car would show a
positive value (instead of the observed 0 value). In the final analysis, such a system still re-
sorts to a linear similarity function. However, under the models discussed here, some notion
of non-linearity is imposed through the application of a priori knowledge about term-term
correlations.

Closely related to such methods of enhancing document representation is the family of
techniques known as query expansion [4, ch. 5]. These methods address shortcomings in
the VSM by local analysis (i.e. interrogating a query-specific neighborhood of documents).
Under the vector space model, variants of the Rocchio approach to relevance feedback [121]
have been particularly successful [127]. In thesaurus-aided retrieval, documents are aug-
mented by recourse to previously observed term-term relationships. Relevance feedback

takes another approach. Here the goal is to fashion an optimal query, o by analyzing
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| Symbol | Meaning

D, set of relevant documents among retrieved documents
D, set of non-relevant documents among retrieved documens
C, set of all relevant documents
| Dy|,| Dp|,|Cr| | number of elements in each set of documents
a, B, constant parameters

TABLE 2.1.5. Notation for Rocchio Relevance Feedback

the content of the set of documents, C,, that are retrieved by a given query q. Table 2.1.5
is adapted from [4] and [121]; it describes notation used in Equation 2.1.4. The Rocchio
method begins by imagining that we have knowledge of the relevance value vis a vis query ¢
for every document in our corpus. Assuming that this is the case, Rocchio proves Equation

2.1.4:

(214) qopt

G X e XA

VdJECT vd;!eC,
The optimal query is thus a weighted sum of relevant and non-relevant document vectors,
where the weights depend on the size of C, in relation to the size of the collection. In
practice, however, we do not have access to the requisite sets of relevant and non-relevant
documents. In practice, the final query vector under Rocchio expansion is thus generated

by Equation 2.1.5.

(2.1.5) am

IR

Vd e, VdjeDn

Whether derived via Equation 2.1.5 or by another method (cf. [75]) the goal of relevance
feedback is to infer relationships between terms. By utilizing what amounts to weighted
averages of the feature vectors associated with relevant and non-relevant documents, these
methods estimate the degree to which each indexing term participates in the topic addressed
by the query g. The idea here is that ¢ is over-specified. That is, ¢ contains non-zero entries
only on those terms that the user has chosen to name explicitly. But there may be many
terms that are related to ¢ implicitly; an optimal query, under the Rocchio model, should
model this implicit evidence. Thus ¢ refers to an intangible conceptual topic, but it provides

incomplete evidence about this reference; the query vector is parsimonious in its topical

36



representation. Thus relevance feedback constructs an idealized solution vector q,,, which
is the best linear approximation of qqp; insofar as q,, maximizes the similarity between itself
and the centroid of the set of relevant documents while maximizing its distance from the
centroid of the set of non-relevant documents.

Query expansion and relevance feedback methods attempt to remedy the linearity in-
herent in the vector space model of IR. Just as term weighting models permit important
feature selection operations, these techniques improve the VSM language model. The goal
in all of the schemes addressed here is to improve the orientation of the vector space spanned
by the features of a document-term matrix A. Because natural language terms exhibit non-
linear relationships, researchers use query expansion and relevance feedback to augment the
VSM. These augmentations are intended to improve the information space spanned by the
columns (terms) of A by modeling its implicit correlational structure. In this section I
have discussed improvements of a fairly primitive nature. The following section treats more

advanced means of improving an information space.

2.2. Latent Semantic Indexing

It has been argued extensively that term-based information discovery places undue cog-
nitive burden upon end-users, whose interest tends to lie in abstract concepts rather than in
specific words [55, 110]. Arguing that modern IR should account for linguistic and psycho-
logical developments in the cognitive sciences, Newby calls for “computerized representations
of data sets (e.g. document collections) that are consistent with human perception of the
data sets” [110]. Toward this goal, Newby identifies two useful notions, which I adopt in
this discussion. An information space is the set of concepts and relations among them held
by a computer system. Information spaces are comprised of words, documents, and the
relations among them. In an information space, documents are represented in term space,
while terms are represented as vectors in document space. On the other hand, a cognitive
space is the set of concepts and relations among them held by a human. Although it is
difficult to identify the fundamental elements of cognitive spaces, Newby finds a high degree

of similarity among psychometric analyses of individual habits of linguistic association. This
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finding is in keeping with a body of psychological research that has advanced the notion of
conceptualization as a statistical association of language and experience [122, 124, 149|.

Latent semantic indexing begins with the assumption that modeling the term correla-
tions in IR reduces the cognitive burden on searchers. While a full treatment of the psycho-
metric validity of LSI is beyond the scope of this dissertation (cf. [90, 89, 91, 51, 56]),
the LSI approach to retrieval assumes that accounting for the correlational structure of a
document-term matrix A improves the representation afforded by the vector space model.
Latent semantic indexing thus takes an empirical approach to addressing the gap between
information spaces and cognitive spaces. As discussed in Sections 1.1.2 and 1.1.3 LSI con-
structs a statistical model of the population term correlation matrix by the method of
least-squares. Proponents of dimensionality reduction argue that such a model improves the
representation of the VSM by mitigating the error introduced by the assumption of term
independence.

In efforts to improve the representation of terms and documents, latent semantic indexing
[32, 10, 73] extends the VSM by means of statistical modeling. Closely related to principal
component analysis, multidimensional scaling, and factor analysis, LST derives a low-rank
approximation, ;&k, of the term-document matrix, A, where ;&k provides the best rank-% fit
of A, in the least-squares sense. By projecting a system’s information space onto the low-
rank Kk, LSI achieves two putative benefits over the standard vector model: a rotation onto
independent axes, and dimensionality reduction. Describing LSI, Deerwester et al. argue

the merits of these transformations:

A fundamental deficiency of current information retrieval methods is that
the words searchers use often are not the same as those by which the
information they seek has been indexed. There are actually two sides to

the issue; we will call them broadly synonymy and polysemy. [32]

Synonymy intrudes on retrieval when a searcher uses different terms in a query than an
author or indexer used in a relevant document. Thus elementary retrieval systems would
fail to deliver documents about automobiles when presented with a query about cars. On

the other hand, retrieval suffers due to polysemy because natural language terms tend to
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have several meanings, or senses. The term car can imply quite different topics in different
contexts; for example, documents about railroad cars are of little interest to searchers hoping
to buy a new automobile.

Although its goals are more complex than this brief outline suggests, the aim of LSI
is in essence to negotiate such vagaries of natural language. The remainder of the current
section describes the method of LSI, emphasizing first its conceptual basis, then moving on
to a treatment of the mathematics behind the derivation of an appropriate Kk. Because
many earlier studies [32, 10, 90| have explained LSI clearly and thoroughly, I take a more
specialized approach. Anticipating a later treatment of optimal dimensionality reduction,
my goal throughout this discussion is to articulate the details of LSI in the context of

statistical model selection.

2.2.1. Rationale behind LSI—Improving the Vector Space Model via Statistical
Modeling. To ground their introduction to LSI, Deerwester et al. describe their method

programatically:

The proposed approach tries to overcome the deficiencies of term-matching
retrieval by treating the unreliability of observed term-document associ-
ation data as a statistical problem. We assume there is some underlying
latent semantic structure in the data that is partially obscured by the

randomness of word choice with respect to retrieval. [32]

The goal of LSI is thus to construct a statistical model. With this model we may estimate
the degree to which a document d; (or a term ¢;) participates in a given topic, or factor
fr. If the model is well-formed, the set of derived factors F' will, Deerwester et al. argue,
approximate the set of concepts present in a human user’s cognitive space. From a statistical
standpoint, we may understand this argument in terms of the representation of the term-
term correlation matrix. That is, the optimal LSI model yields the best representation of the
relationship between terms that obtains in the probability density function that generated
the data. An IR system may use such a model for retrieval purposes by allowing it to inform
its model of inter-item similarity. Under traditional vector space models, documents reside

in term space. LSI replaces this arrangement by locating each document in the inferred
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factor space. That is, each document d; is represented by its vector of scores obtained from
the model. Likewise, each term t; resides at the vector defined by its fitted parameters under
each of the models.

The literature on statistical modeling is vast, and a full exploration of it is beyond
the scope of this study. Instead, I present a brief discussion of the major results from the
literature, emphasizing their applicability to information retrieval under LSI.

A statistical model approximates the dynamics of a variable, stochastic system. Accord-

ing to Neter et al. [109], statistical models contain two components:

e A Functional Element. The model expresses the relations among system variables
as a mathematical function.
e A Stochastic Element. We assume that the behavior of the system is non-deterministic,

but rather that its dynamics is in part governed by a set of probability distributions.

A mathematical model describes a system deterministically. For example, we may construct
a model to calculate a firm’s monthly income based on the number of products sold that

month. Such a model defines two variable types:

e Dependent Variables. We predict the value of a dependent variable based on given
knowledge of other variables in the system. In this case, the value of monthly
income depends on monthly sales. As such, it acts as a dependent, or response
variable.

e Independent Variables. Independent variables, also called predictors, provide the
information by which we predict the value of a dependent variable. Here, monthly

sales is an independent variable.

To predict y, monthly income, based on monthly sales, x, we might define the function
y = fi1(z) = price * x, where price is a constant. Setting price =$2, for example, we can
predict y via fi(z), as shown in Figure 2.2.1. The points in Figure 2.2.1 represent the data
points for this deterministic system for x = 1, 2,...,50, while the solid line represents the
corresponding predictions under fi(z). Due to the non-random behavior of this system, the

data observations and the model predictions are identical.
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FIGURE 2.2.1. A Mathematical Model of Company Income

Unlike mathematical models, statistical models include some fuzziness. They describe
what Bhattacharyya and Johnson term “semi-deterministic” systems [11]. Suppose that
again we wish to predict income based on monthly sales. However, our company has now
moved online, conducting all transactions on Ebay. Because we operate by auction now,
price is no longer a constant factor. Instead, it becomes a random variable, subject to some
distribution. For the sake of argument, assume that price follows a Gaussian distribution;
thus price oc N (price,o?), where price is the population mean of price and var(price) = o2.
The behavior of such a system is shown in Figure 2.2.2 for a set of simulated data. Under such

circumstances, our deterministic model no longer provides a perfect fit to the data; the data

points do not lie upon a straight line. While we could derive an extremely elaborate function
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FIGURE 2.2.2. Statistical Model of Company Income

to describe these data as a deterministic system, we suspect that a simpler explanation is
more appropriate. Instead of a deterministic model we use statistical methods to derive a
useful approzimation of the data.

We might model the system using the function y = fo(z) = price * x + ¢, where € is
a random variable called the error-term. We thus assume that a functional relationship—a
systematic correlation among variables—drives the behavior of the system, but that some
random noise obscures direct observation of the function. Moreover, we assume that the
system’s randomness is structured insofar as it is governed by a probability distribution.
The goal of statistical modeling is thus to estimate the functional portion of the system.

The straight line visible in Figure 2.2.2 approximates the trend visible in the stochastic data,
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assuming that their underlying relationship is still governed by fo(x), which is to say that
e=0.

The process of building a statistical model is empirical. We begin by observing data and
using this observation to draw conclusions about them. The process of observation includes

3 main steps [79, 116, 109]:

e We must choose the family of functional relations likely to describe the system’s
behavior. Although a large variety of functions have been explored [104, 19, 67,
145], the family of linear functions are widely used, due to their mathematical
tractability and descriptive power [109, 116].

e The researcher must identify the probability distribution that governs the variabil-
ity of the system.

e A method of parameterizing the model function must be chosen.

The method of linear regression is one of the most commonly applied modeling procedures,
and is closely related to LSI. Using linear regression we predict a dependent variable y based
on a linear combination of the p predictor variables, 1,2, ...z,. I shall return to the p-
variate regression problem momentarily. But I first motivate our discussion by describing
the mathematics of simple linear regression, where we recognize only a single predictor, z.
A similar discussion of the relation between retrieval and linear regression is available in
[140].

Simple linear regression formalizes the notion of correlation between variables [109, 11].

The model is expressed by Equation 2.2.1:

(2.2.1) ¥i = Bo + Bizi + €

where y; is the i** response, fy and S, are fitted parameters, ; is the i*" observation, and ¢;
is the i** error term. The linear regression model makes several assumptions about the error
terms, which appear in table 2.2.1. Thus y; is a random variable, with E(y;) = Bo + Biz;
and var(y;) = o2 and cov(y;,y;) = 0 for all i # j.

Fitting the regression model entails suitable parameterization—assigning to the regres-

sion coeflicients By and [1 values that lead to a “good” approximation of the observed
g pPp
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| Eg)=0fori=12,..,n |

Var(e) =0 fori=1,2,...,n
Cov(ej,ej) =0 for all i # j

TABLE 2.2.1. Assumptions on Regression Error Terms

data. To parameterize the model, linear regression employs the method of least-squares
[109, 116, 79, 52, ch. 9]. Thus we choose those regression coefficients that minimize the
squared error between the observed data, and the predictions at each observation z;. For
each z;, we define a fitted value for the response, 7; = By + B1z;. Let Equation 2.2.2 define

the sum of squared errors (SSE) under a given parameterization of our model:

(2.2.2) SSE = (v — 7:)°

To find the least-squares estimate of the regression parameters, we choose those values that
give min(SSE). By definition, the model parameters that minimize SSE, BO and ,8\1 (i.e.
those that minimize the so-called residual deviance of the model), are the optimal estimates
in the least-squares sense. Minimizing the SSE is feasible using numeric or analytical meth-
ods, and interested readers are refered to [50, 67, 79, 109] for a complete discussion of this
matter.

The method of least squares is attractive because, under the previously stated assump-
tions about the regression model, the fitted values that it derives comprise the best linear un-
biased estimates of the true regression coefficients. In other words, E(Eo) = Bo, E(Bl) = b,
and o2 (BO) and 02(,/8\1) are the lowest variances of all possible linear estimators.

In many cases, however, a system contains not one predictor variable, but, p > 1 vari-
ables. This will be the case I describe the relation between regression and LSI. The simple
regression model is easily generalized to the p-variate case. To describe the multiple regres-
sion procedure, we use the following matrix notation. Let X be the n X p matrix of data
observations. Let y be the n-vector of responses on X, such that the i element of y is
the response observed for the i** row of X, the p-vector x;. Our regression parameters form

the p-vector B, and the error terms are defined by the n-dimensional vector €. Given this

44



notation, the regression model may be written as Equation 2.2.3:
(2.2.3) y=XB+e

This model is approximated empirically by selecting optimal regression coefficients, yielding

Equation 2.2.4:
(2.2.4) y = Xp.

As shown in [79, 109, 116] the least-squares estimate of the p regression coefficients is

derivable via Equation 2.2.5:
(2.2.5) B =(X'X)"X'y.

Matrix X'X describes the covariance among the data, and X'y is used to obtain the covari-
ance between the dependent and independent variables?.

Having developed a statistical model it is often of interest to quantify its descriptive
power. Although a variety of measures aid in this regard [16]| perhaps the simplest is the
coefficient of multiple determination, or R?, defined by Equation 2.2.6:

(2.2.6) R? = M

yy—ny
Equation 2.2.6 gives the proportion of the variance observed in the data that is captured by
the model. The numerator measures the squared deviation of the model’s fitted values from
the sample mean g, while the denominator measures the squared deviation of the observed
y's from 7. The statistic R? thus measures the percent of the sample variance described by
a given model.

A statistical model provides an approximation of a system. Linear regression uses the
matrix of predictors, X, to approximate the vector of responses, y. The R? statistic mea-
sures the fidelity of this approximation. Linear models thus allow us to generalize from

observation. This is precisely the goal of LSI, where we assume that authors’ word choices

2This Equation assumes that matrix X is non-singular, a condition that holds, provided that n > p+1 and
that X is of full rank.
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| dog | canine | bark | paw | cat | dog | cat | misc. |

1 1 1 1 0 1 0 0
1 1 1 0 0 |07 (02| 01
1 0 0 0 0 (06 03| 01
0 0 0 0 1 ]103]05]| 02
0 0 0 0 0 (03|07 0
0 1 0 0 1 ]01]07] 02
0 0 0 1 1 0 1 0
0 0 1 0 0 0 102] 08

TABLE 2.2.2. A pre-classified document collection

are partially random and partially governed by a latent semantic structure native to the
strictures of language. LSI employs a linear model to approximate this structure. At the
risk of oversimplification, we may characterize LSI as a process analogous to multiple linear
regression. As I shall show in another section, this analogy is more than casually apt®. At
this point, however, I demonstrate only the conceptual relation between these two methods,
using a simplified, but hopefully illustrative example.

Let A be the term-document matrix defined by the first five columns of Table 2.2.2.
For the sake of illustration, imagine that documents in this collection may only be “about”
three topics—dog, cat, and miscellanea; this is a small semantic universe. Stretching the
fiction a bit further, imagine that an omniscient indexer has classified each document d; in
A, assigning to it three scores: D;, C;, and M;, which describe the degree to which d; is
about each topic, dog, cat, and miscellanea, respectively. These scores are shown in the
three rightmost columns of table 2.2.2.

Under the standard vector space model, we represent documents in the term space of
matrix A. However the scenario at hand gives us extra information to work with: the
document classifications. To improve the representation of this information space, we may
use this information to construct a statistical model of the relation between terms and
topics. Instead of representing documents in term space, we construct three models and

project documents into the 3-space that they define. To predict a document d;’s score on

3Sections 2.2.2 and 2.2.3 demonstrate that LSI is, like linear regression, a linear statistical model of the
input data.
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| | & [ do [ ds [ ds [ ds [ ds [ dr | ds ]
dog | 1.57 | 1.39 | 1.30 | 0.09 | 0.37 | 0.37 | 0.28 | 0.19
cat | 0.30 |-0..01| 0.57 | 1.10 | 1.14 | 1.25 | 1.41 { 0.40
misc. | -0.08 | 0.79 |-0.10|-0.95 | 0.41 | 0.21 | 0.08 | 2.05

TABLE 2.2.3. Fitted values for linear topic mode

topicy, we construct the linear regression model shown in Equation 2.2.7:
(2.2.7) topicy; = Bo + Bidog; + Bacanine; + Bzbark; + Bapaw; + Bscat; + €;.

Thus regression coefficient By; describes the relation between the i** term and the k™ topic.
A large positive fg; implies that term ¢ is highly correlated with topic k, while a negative
score implies that the i*® term rarely appears in documents that are about topic k.

The fitted values derived by applying the method of least-squares to our example data
appear in table 2.2.3. Let As be the 3 x 8 topic-document matrix defined by table 2.2.3.
Each column vector d; of Az represents a document in our new model space. This modeling
procedure amounts to a projection of our 5-dimensional vector space onto a newly devised
3-space that we may represent visually, as in Figure 2.2.3, where the documents appear in
the 2-space defined by the dog and cat models. Figure 2.2.3 shows a nicely segmented
space, with documents mostly about dogs close together, yet distanced from documents
about cats. The one document that is mostly about miscellanea (dg) appears in relative
isolation.

To project a new document or query, ¢, into this model space, we simply generate a
predicted value for each topic model based on the query’s term vector q. Figure 2.2.4 shows
the location in 2-space of a vector for a query containing the term canine. Note this query’s
proximity to the other documents that are mostly about dogs.

Projecting documents into model space amounts to changing the representational axes
of the system. This projection removes error from the VSM representation by accounting
for the correlational structure of the input data. Thanks to the omniscient indexer we know
the true dimensionality of this information space; there are only three topics in this abbre-
viated semantic universe. Under the standard vector space model, we assume a one-to-one

relationship between observed indexing features and topics of potential interest (hence the
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FIGURE 2.2.3. Documents in derived 2-D topic space

need to choose good indexing features). However, a casual inspection of our data reveals re-
dundancy among the observed terms. For instance, dog, canine, and bark all refer to aspects
of dog-ness, while paws appear on both dogs and cats. Our one-to-one correspondence of
word to topic seems wrong. Thus constructing a new space based on a statistical model of
feature correlations is appealing

As a final example of the utility of linear regression to augment the vector space approach
to IR, imagine that our previously infallible indexer admits that he might have been wrong
in his assignment of topics to documents. In particular, he has second-guessed himself and
is no longer sure that the miscellaneous topic should exist in this little universe. A more

hard-nosed indexer, he admits, would only recognize the dog and cat topics. Miscellanea

48



0 ol
—
2
o3
equery
o |
—
@)
@)
)
1 |
o
» b
of
B
A

00 02 04 06 08 10 12 14

CAT

FIGURE 2.2.4. A query in 2-D topic space

was just a catch-all category he invented because document 8 didn’t seem to fit anywhere
else.

Not eager to be fooled twice, we want to decide for ourselves how viable the miscella-
neous topic really is. Table 2.2.4 shows one means of making such a decision. The table
lists the adjusted R? for each of our three models. This metric shows the proportion of vari-
ance in the training data that is described by a given model, also taking into account the
number of degrees of freedom used by the model. A high adjusted R? implies that a given
model is likely to be useful for descriptive purposes. The models derived for the dog and
cat topics score nearly identical adjusted R? coefficients, while the fit of the miscellaneous

model is approximately half of the other two. This suggests that we are not gaining much
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| Topic | Adjusted R? |

Dog 0.43
Cat 0.42
Misc. 0.23

TABLE 2.2.4. Adjusted R? for linear topic models

descriptive power from our miscellaneous model, and that its role in inter-document simi-
larity calculations is suspect. Using linear models for document representation allows us to
exploit such variance-based diagnostic measures. By projecting our 5-dimensional document
representation onto a 2- or 3-dimensional topic space, we effect a dimensionality reduction
in our system, thus omitting error introduced by treating redundant vectors as though they
were orthogonal. Using statistical model selection techniques gives us a rationale for re-
jecting dimensions. Given a faulty indexer (or no indexer at all, as we shall see), we retain
those models whose descriptive power accounts for a “large” portion of the observed variance

among our data (I leave the term “large” undefined for now).

2.2.2. Principal Component Analysis and Matrix Approximation. In the previous
section I discussed how linear models can be used to improve the similarity model of a
VSM-based IR system. However, that discussion assumed the availability of an omniscient
indexer. In particular, the method of linear regression depends on the presence of dependent
variables in order to define its notion of goodness of fit. Thus in the previous example, we
discovered our model parameters by minimizing the squared vertical distance between the
vector of observed document scores on a given topic t; and their predicted values 1), under
a given linear combination of term weights m;. Thus we needed t; to serve as a dependent
variable in order for the model to be defined. In ad hoc IR applications, however, we usually
lack authoritative topical classifications of documents.

The method of principal components analysis (PCA) allows us to extend the notion of
linear modeling to data that lack dependent variables. This is precisely how LSI operates,
and thus I offer the following extension of my earlier example to initiate of our discussion of

the mathematics of LSI.
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| | dog | canine | bark | paw | cat |
dog 0.63 | 0.29 | 0.29 | 0.10 | -0.38
canine | 0.29 | 0.63 | 0.29 | 0.10 | -0.04
bark | 0.29 | 0.29 | 0.63 | 0.10 | -0.38
paw | 0.10 | 0.10 | 0.10 | 0.75 | 0.10

cat |-0.38| -0.04 |-0.38|0.10| 0.63
TABLE 2.2.5. Sample covariance matrix

| Group | Terms (in order of importance) |

1 dog, canine, bark
2 cat
3 paw

TABLE 2.2.6. Putative term associations

I begin discussion of PCA informally, returning to the term-document matrix A defined
by the first five columns of table 2.2.2. For the present discussion I assume that the omni-
scient indexer has been fired, and thus we no longer have access to the previously discussed
topical categories; for all we know, each of the five terms corresponds to a unique topic.
Given this state of affairs, it is tempting to revert to the standard vector space model.
However, we can do better than this.

Table 2.2.5 shows the covariance matrix for this document collection. By scanning the
first column of the table, we see that the terms canine and bark are positively correlated with
dog, which is in turn negatively correlated with cat. It seems as if dog, canine, and bark have
something in common. Moreover, the bloc comprised by these terms seems quite distinct
from cat. Finally, the term paw gives us little information about its habits of association; it
is equally likely to appear with dog or cat.

This cursory analysis suggests that there are roughly three patterns of term co-occurrence
in our data. These patterns are summarized in Table 2.2.6. If we are willing to admit that
these groupings are due to something more meaningful than chance, we are on our way to
defining an ad hoc version of our previous model of topic space. Instead of the response
variables dog, cat, and miscellaneous, we now have simply “factors” 1, 2, and 3. As initial
guesses at the weights of such a model of topic space we could import the scores from our

covariance matrix, thus predicting a given document d;’s score on factor 1 via Equation
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| Document | Factor 1 Score |

1.85
1.85
0.96
-0.58
0.00
-0.14
-0.58
8 0.44
TABLE 2.2.7. Documents in an ad hoc 1-space

|| O [ W DN —

2.2.8.

(2.2.8) factor;; = 0.63(dog) + 0.29(canine) + 0.29(bark) — 0.38(cat)

Table 2.2.7 shows our eight documents projected into the one-dimensional topic space defined
by Equation 2.2.8. Equation 2.2.8 gives a linear combination of the original variables.
Due to its reliance on the correlational structure of the data, we suspect that this linear
combination is in a sense a natural axis of the data. In other words, by analyzing the
corpus’ term-term covariance we have derived a new variable, a factor defined by Equation
2.2.8. Despite its highly provisional nature, this one-dimensional representation collocates
the “dog” documents (documents 1, 2, and 3), while keeping them at some remove from
the “cat” documents (documents 4, 5, 6, and 7). Finally, the “miscellaneous” document 8,
appears in between the other two sets.

By analyzing the term-term covariance in the observed data, we have discovered several
putative axes along which we may represent the documents. Using this ad hoc method we
discovered linear combinations of terms that comprised a new set of variables that repre-
sents the variance among our data more concisely than the observed variables (terms) did.
Principal component analysis uses the method of least squares to effect the same result in a

well-defined fashion:

In principal component analysis, we seek to maximize the variance of a
linear combination of the variables....In regression, we have linear com-

binations of the independent variables that best predict the dependent
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variable(s)....Principal components, on the other hand, are concerned only
with the core structure of a single sample of observations on p variables.
None of the variables is designated as dependent....In seeking a linear
combination with maximal variance, we are essentially searching for a di-
mension along which the observations are maximally separated or spread

out. [116]

Applying principal component analysis generates a matrix D that defines a rotation of A
onto independent axes.

Deriving the principal components of the n x p matrix A, where rank(A) = p, is an
example of the eigenvalue-eigenvector problem [79, 141]. Given a square matrix M of rank
7, it can be proved [141, 148| that r scalars comprising the vector A and and r non-zero

n-vectors that comprise the matrix v exist that satisfy Equation 2.2.9.
(2.2.9) Mv = Av

The elements of A are the eigenvalues of M, and the r columns of matrix v contain its
eigenvectors.

k** principal component of the n x p matrix A (assuming that the

Finding zg, the
data have been centered around their means) involves an orthogonal projection via equation

2.2.10.
(2.2.10) Zp = Dak

where ay, is the k** column of A and D is an orthogonal matrix, such that D'D = I,
and d; -d; = 0 for all 4 # j [116]*. We thus seek the orthogonal matrix D such that
z = DA yields the matrix z whose columns contain the p uncorrelated variables such that
each variable p; captures maximal variance among all variables orthogonal to each p;, i # j.
In other words, we seek a transformation of A that yields z with a diagonal covariance

matrix S,.

4For a discussion of orthogonal projections and the properties of orthogonal matrices, see [141].
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We diagonalize the covariance matrix S by use of the spectral decomposition (cf. [116,
ch. 2| and [141]). If S is the p x p covariance matrix of A and z = DA, then S, = DSD’

is diagonal, as shown in Equation 2.2.11.

s2, 0 0
s2 0

(2.2.11) S, = DSD' = &
0 0 52,

By definition of the spectral decomposition D contains the normalized eigenvectors of S
and S, is diagonal, containing the eigenvalues of S. Thus the eigenvalues of the covariance
matrix provide the desired orthogonal projection matrix D. The principal components are
derived by projecting A into the orthogonal space spanned by its eigenvectors: z;3 = d}A,
z=dyA, .., z=dA.

According to Rencher, “since the [PCA| rotation lines up with the natural extensions
of the swarm of points, z;... has the largest (sample) variance and z, ... has the smallest
sample variance” [116]. Thus by retaining only the first £ < p principal components we
achieve the best rank-k approximation of the covariance matrix, in the least squares sense.
Let §k = D 3;D), , where Dy, contains the first k eigenvectors of S, and Xy is diagonal,
containing the first k eigenvalues arranged in descending order of magnitude. Given this
definition §k is the k-dimensional least-squares approximation of the sample covariance
maftrix.

Such an approximation is useful insofar as it addresses the difference between the pop-
ulation and sample. “If the variables [of a p-dimensional matrix| are highly correlated,”
writes Rencher, “the essential dimensionality is much smaller than p; that is, the first few
eigenvalues will be large...[thus they will account for a large portion of the sample variance].
On the other hand, if the correlations among the variables are small, the dimensionality
is close to p and the eigenvalues will be nearly equal. In this case, no useful reduction in
dimension is achieved, because the principal components essentially duplicate the variables”

[116]. This point is reinforced in [79, 3, 35]. Dimensionality reduction is merited insofar
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| Document | Score on first PC |
-1.89
-1.63
-0.18
1.37
0.65
0.75
1.11
8 -0.18
TABLE 2.2.8. Example documents along their first principal component

|| O [ W DN ==

| PC | Cumulative Percent of Variance |

1 0.458
2 0.714
3 0.870
4 0.973
) 1.000

TABLE 2.2.9. Variance of example principal components

as our sample contains random error. Although we have observed p dimensions, the multi-
variate PDF that generated the data has k < p dimensions. Thus by projecting our data
onto the first k eigenvectors, we are implicitly stating that the last p — k dimensions are the
product of sampling error. If this is true then the reduced rank model §k yields a model of
the population covariance matrix that is superior to the sample covariance matrix S.
Table 2.2.8 shows the scores of the documents from our earlier example (cf .table 2.2.2) on
their first principal component. If we compare table 2.2.8 with our ad hoc linear combination
shown in table 2.2.8 we see a high degree of correspondence. Like our ad hoc model, the
first principal component groups documents about dogs together, while isolating them from
documents about cats, as is evident in Figure 2.2.5, which represents the documents from
Table 2.2.2 along their first two principal components. And as we can see from Table 2.2.9,
the first two or three principal components account for the lion’s share of the variance in the
data. A two-dimensional representation of these data accounts for over 70% of the variance
observed on five variables. By adding a third principal component, our model captures 87%

of the variation.
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FIGURE 2.2.5. Example data in principal component space

The motivation behind PCA’s dimensionality reduction stems from the belief that the
observed covariance matrix contains artifacts of sampling error. In our ongoing example we
observed five variables (terms). However, the covariance among these terms suggests that
the PDF that generated the data contains & < 5 non-zero eigenvalues. Given unlimited
data from this distribution, we expect that one or more eigenvalues would converge on zero.
Due to inter-term correlation, then, representing these data in 5-space constitutes error in
the vector space model. Projecting the data onto the first £ < 5 principal components thus
implies a model of the population covariance matrix that is based on, but not identical to the
sample covariance matrix. Insofar as the intrinsic dimensionality of these data is less than

their observed rank, this reduced model thus constitutes a representational improvement.
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2.2.3. The Singular Value Decomposition. Whereas principal component analysis uses
the data’s correlational structure to approximate a square matrix, latent semantic indexing
derives a low-rank approximation of the n x p matrix A. To affect its dimensionality re-
duction, LSI uses the singular value decomposition (SVD), a standard least-squares matrix
factorization method from linear algebra [58, 52, 141, 10].

Let A be an n X p matrix of rank r. The singular value decomposition of A:
(2.2.12) A =TID’

where T and D are orthogonal matrices. T is n X r, with columns #; containing the left
singular vectors of A. D is an rxr matrix with columns d; called the right singular vectors of
A. Finally matrix ¥ is an r X r diagonal matrix, with diagonal elements o1 > g2 > ...0, >0
called the singular values [32, 10, 67, 102].

It is worth noting the similarity between PCA and SVD. In the previous section we de-
rived the principal components of the square matrix S = A’A, the term-term co-occurrence
matrix in the case of vector space IR. We could just as well have defined it in terms of
S = AA’, the document similarity matrix. The singular value decomposition yields both
solutions simultaneously |67, p. 487|. Assuming centered, normalized data, the columns
of TX are the principal components of A’A, while DX gives the principal components of
AA’. Not surprisingly, then, the singular values of A are the positive square roots of the
eigenvalues of A’A and AA’.

In the case of IR, matrix A is a term-document matrix. Thus SVD yields a number of
desirable properties. The factorization derives the r axes of the data that capture maximum
variance while maintaining mutual orthogonality. Thus each singular vector comprises an
artificial variable, or factor; like PCA, SVD derives—by the method of least-squares—an
orthogonal factor space. The left singular vectors serve as a projection matrix for the rows
of matrix A, while the right singular vectors project the documents onto the subspace. In
the standard vector space model, documents reside in term-space, while terms reside in

document-space. Using the SVD-derived projection matrices, LSI represents both terms
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and documents in the same factor space. This permits us to define not only document-
document similarity, but also term-document similarity as the inner product between two
vectors [32]. It also enables us to project new documents (or queries) into the derived factor
space by means of a simple matrix multiplication [10]. Finally, by virtue of its relation to
the eigensystem of A, the matrix of singular values 3 acts as an indication of the amount of
variance described by each factor k in the derived factor space [79]. As I discuss below, this
property of the SVD is useful when selecting singular vectors to retain during dimensionality
reduction.

According to Deerwester et al., because most entries of ¥ are very small (cf. [73, 77]),
we may omit them and their corresponding singular vectors from further analysis, “leading
to an approximate model that contains many fewer dimensions. In this reduced model all
the term-term, document-document and term-document similarities are now approximated
by values on this smaller number of dimensions” [32, p. 395]. As in the case of PCA, we

thus use SVD to derive a least-squares approximation of A:
(2.2.13) Ay = T,X;D),

where Ty, contains the first k£ columns of T, 3 contains the first k£ rows and columns of 33,
and Dy, has the first £ columns of D. Under this reduced-rank model, we define document-
document similarity as before in Equation 2.1.2. The similarity between two document
vectors ?1, and aj is simply the inner product between the i** and j** rows of ﬁk = DkE%.

A new document, or pseudo-document such as an ad hoc query q, may be projected into

the factor space via Equation 2.2.14[10]:
(2.2.14) aGr = q4'TiXs.

Having defined the projection of a query into factor space, we may then calculate the simi-
larity between the query and each document in the corpus by applying Equation 2.2.14 to

find sim (e, dix), where dj is the i" row of Dy.
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Assuming that k < r, Kk will provide a loose approximation of the observed relation-
ships between terms and documents. Proponents of LSI argue that by virtue of the random-
ness inherent in natural language, such an approximation yields a more robust similarity
model than is native to the standard vector space approach to IR, where similarity judge-
ments are prone to error due to the overdetermined nature of a given corpus [10, 32, 90].
The matrix approximation used in LSI affords a least-squares model of the linguistic system
that generated the term-document matrix A. Such a model augments standard vector space
retrieval to include an analysis of the correlational structure of the input data. In this way
it is an extension of Wong’s generalized vector space model [77, 150] (cf. 1.1.2). Insofar as
this model is well built and applied to appropriate data (the subject of our next section),
such an approach improves similarity judgements by supplementing the VSM with the best
model of the population term correlation matrix, in the least-squares sense.

Before turning to a discussion of building the LST model, I conclude this introduction to
linear modeling for IR with a return to our ongoing numerical example. Let matrix A be the
5 X 8 term-document matrix defined by taking the transpose of the matrix analyzed in our
previous example regarding PCA. The singular value decomposition of this matrix is given in
Figure 2.2.6. Figure 2.2.7 shows the projection of these terms and documents into the 2-space
spanned by the first singular vectors of the SVD. As in the case for PCA, the SVD-derived
factor space arranges the documents in a way amenable to semantic discrimination. We can
easily construct a linear discriminator to distinguish dog documents from cat documents.
For instance, I applied the k-means clustering algorithm to the 2-dimensional matrix derived
by retaining the first two singular triplets of A. The k-means procedure grouped together
documents 1, 2, and 3 (those documents that seem mostly to be about dogs). It also isolated
documents 4, 5, 6, and 7 (our putative cat documents). Admittedly the k-means approach
does include document 8, our dark horse document, with the dog set. However, this is not
surprising, as document 3 and document 8 map onto the same location in 2-space. That
this occurs is understandable if we consider that document vector 3 and document vector 8
each have a non-zero entry for only a single term. Although each vector’s non-zero entry is

for a different term, they are each for terms that occur only in dog documents. Thus, the
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FIGURE 2.2.6. SVD of example term-document matrix

SVD model appears to have derived something akin to dog-ness as one of its initial factors;
documents 3 and 8 both contain the same amount and quality of evidence for this factor. If
we—perhaps too easily—interpret the second factor as cat-ness, document’s 3 and 8 again
map to the same location.

Several things are worth noting about this example. The low-dimensional model seems
to do a good job in isolating classes of terms and documents that have similar correlational
patterns. Thus the model infers that bark provides about the same information as does
dog; queries about barking would map to the semantic region devoted to dog-ness, without
needing to contain the word dog. A similar, but weaker pattern emerges between dog and
canine. The ability of LSI to identify such topical clusters of terms and documents is among
its strong suits.

However, the example also points out a problem inherent in dimensionality reduction
methods. In our derived 2-space, documents 3 and 8 map to the same location, despite
the fact that they contain distinct term vectors in the original data. By analyzing ma-

trix D in Figure 2.2.6 we can see the cause of this problem. The vectors for documents
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FIGURE 2.2.7. Terms and documents in SVD-derived 2-space

3 and 8 are indeed identical in matrix D, except for their scores on the fourth singular
vector. By truncating our representation to a two-dimensional model, we have thus elided
the information that allows documents 3 and 8 to remain distinct. By omitting the third,
fourth, and fifth, singular vectors, we assumed that we were removing erroneous data from
our model. By and large this may be true, as the 2-dimensional representation otherwise
seems to capture the correlational structure of the data well. However, we have, in a sense,
allowed the model to infer too much. By limiting our document representation to the first
two singular vectors, we have thrown useful information out of the system. As Deerwester
et al. note, “the representation of a conceptual space for any large document collection will

require more than a handful of underlying independent ‘concepts’ ... [thus| the amount of
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dimension reduction, the choice of k, is crucial to [LSI].” Choosing a dimensionality that
manifests the correlational structure of the population from which a data sample is drawn

is an open problem in the LSI literature.

2.3. Discovering the Optimal Dimensionality

The goal of LSI is to improve retrieval by projecting the term-document matrix A of rank
r onto an orthogonal subspace of rank k where k < r. According to LSI’s proponents, the
resultant matrix approximation, Kk, represents the semantics of the corpus more faithfully
than does the putatively overspecified observed matrix. However, k, the dimensionality
of the subspace is a poorly understood free parameter in applications of LSI. Arguments
in favor of LSI typically suggest that dimensionality reduction removes ‘“noise” from the
representation of term-document relationships. However, the source and characteristics
of this noise are difficult to identify. And unlike in classic regression analysis, even the
distribution of such error is obscure [73, 37, 102]. Without a clear sense of what the
singular values and singular vectors represent, discarding the last r — k of them seems risky
at best.

This section treats the details of dimensionality reduction under LSI. Earlier I articulated
the motivation behind dimensionality reduction. Here I discuss a more detailed problem:
the choice of k—how this choice impacts LSI performance and techniques for identifying a
suitable dimensionality for a given corpus. First I review what is at stake in the selection
of k, showing that the choice of an appropriate dimensionality bears heavily on LSI perfor-
mance. I then turn to a discussion of several efforts to put the singular value truncation
on firm theoretical ground. Finally I discuss several methods of dimensionality estimation
that arise in the literature of principal component analysis. As mentioned earlier, PCA is
closely related to LSI, and I argue that its attendant techniques for selecting an appropriate

representational dimensionality should be of interest to researchers in IR.

2.3.1. Optimal k—Selecting an Appropriate Dimensionality for LSI. Since Deer-
wester et al. proposed the idea of LSI, researchers have noted that properly parameterizing

k, the representational dimensionality of an LSI system, is a vital part of so-called latent
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semantic analysis. Deerwester and his co-authors call this parameter “crucial” to successful
application of LSI [32], noting a 30% improvement in average precision as they changed
k from 1 to 100 on the Medline dataset. It is not surprising that setting & = 2 deprives
a model of important descriptive power to perform robust retrieval. And in light of our
earlier discussion about statistical models, it is not surprising that a relatively low number
of factors, k = 100, yields good performance.

What is not obvious is the fact that setting too high a value for £ may also lead to de-
creased retrieval quality. Describing their analysis of SVD applications for language learning,
Landauer and Dumais write, “using too many factors [for LSI representations| also resulted
in very poor performance” [90]. They note that setting £k = 1 leads to accuracy slightly
below 16% on a synonym learning test. In the region of £ =~ 300, Landauer and Dumais
report accuracy above 50%. However, as they increase k, letting it approach the full dimen-
sionality of their corpus, accuracy dips back to the 15% level. Landauer and Dumais test the
validity of this “strong nonmonotonic relation between [the] number of LSA dimensions and
[the] accuracy of simulation,” by recourse to a statistical hypothesis test, noting a p-value
below 0.0002. Their work formalizes a pattern that emerges often applied LSI research: for
many collections there exists a region of optimal dimensionality less than the rank of the
data. Setting k below this region deprives the system of important descriptive power, while
setting a value of k that is too high appears to overfit the model, causing it to learn spurious
term-document relations, and thus impeding its predictive ability.

Other researchers have discovered the same phenomenon. For instance, Ding notes that
adding factors to an LSI model quickly improves performance until a certain threshold is
reached. After this region of optimality, performance decreases steadily as one adds more
singular vectors [36, 37|. Likewise, Manning and Schiitze mention a region of optimality
with regard to parameterizing k in LSI systems. These observations suggest that observing
the performance of an LSI system at various parameterizations of k gives us information
about the intrinsic dimensionality of a corpus. As I discuss in Section 3.2, T denote the

value of k that optimizes observed LSI performance with respect to a given metric observed

5T discuss precision and other IR performance metrics below.
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optimal dimensionality, or observed kop;. Throughout the data analysis of Chapter 4 I rely
on observed kop; to estimate the intrinsic dimensionality of a corpus.

In most early LSI work, researchers were content to approximate k,p; by recourse to ad
hoc methods. Deerwester et al. note the presence of a region of optimal dimensionality,
which they aim to approximate by choosing k wisely. “We have reason to avoid both very
low and extremely high numbers of dimensions,” they write. “In between we are guided only
by what appears to work best. What we mean by 'works best’ is ... what will give the best
retrieval effectiveness” [32]. Likewise, Landauer and Dumais note that identifying kqp for a

given corpus is a highly complex matter:

How much improvement results from optimal dimensionality choice de-
pends on empirical issues, the distribution of inter-word distances, the fre-
quency and composition of their context in natural discourse, the detailed
structure of distances among words estimated with varying precision, and

so forth. [90] (cf. [51, 91])

Arguing that ko is an intractably complex parameter, Landauer and Dumais suggest that
it is discernible mostly in its effect. Thus they discover a region of optimal dimensionality
by finding a value of k that results in good system performance. This amounts to finding
the intrinsic dimensionality by using training and test data. While this is common to much
machine learning research (cf. [106]) its use for LSI parameterization is somewhat unsat-
isfactory. Most problematic is the method’s reliance on query-specific evaluation methods
(see discussion of IR evaluation below). That is, the ad hoc methods cited here depend
on pre-classified test data to define a well-constructed model. While retrospective evalu-
ation is common to IR (and will form part of my analysis), we desire a notion of model
goodness-of-fit that is applicable to the unsupervised learning environment of LSI.
Nonetheless, parameterizing k by retrospective, Cranfield-style analysis is the norm for
applied LSI problems (cf. [45, 59]). In IR, this has led to a fairly standard range for esti-
mates of kqpt. For collections on the order of several thousand documents, a dimensionality

4

reduction of approximately 95% is common. As Manning and Schiitze note, “values of k

that are frequently chosen are 100 and 150” [102]. Deerwester et al. mention a similar
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range [32, 41]. The problem of estimating ko for larger applications yields less consensus.
Large corpora appear to demand a larger k-value than modest data sets do. But the rate
of optimal k’s increase appears to be sub-linear on the rank of the term-document matrix.
Describing her application of LSI to the routing and ad hoc retrieval problems in several
meetings of TREC (the Text Retrieval Conference), Dumais needs more representational
detail than 100 factors can afford [39, 40, 38|. To represent a 742,331 document by 104,533
term matrix, Dumais derives a smaller, more tractable matrix by document sampling. Ana-
lyzing these sampled matrices by SVD, Dumais chooses values of k ranging from 200 to 300
[39]. Dumais’ results suggest that while larger corpora demand more factors, this increase
is sub-linear. Whereas small collections might perform well under k ~ 5% of the number
of documents, representing a large corpus may only require k& ~ .005% of the number of
documents. However, in [77]| Jiang and Littman find no evidence for kqp; < 800 on the

TREC AP 1990 data. Their results call into question the generality of Dumais’ findings.

2.3.2. The Theoretical Basis for Dimensionality Truncation. Although some con-
sensus about likely values of k., has emerged in the LSI literature, the matter of dimension-
ality selection remains an open and important problem. As Hofmann notes in the context
of fitting LST models, “[deriving] conditions under which generalization on unseen data can
be guaranteed is actually the fundamental problem of statistical learning theory” [68, p.
51]. Theorizing the relation between LSI and Bayesian regression, Roger Story suggests
that “there is a certain amount of ‘art’ in LSI procedures which selectively round [singular
values| to zero ...” [140, p. 329|. Likewise Ding calls dimensionality estimation a central
and unsolved question in LSI research [36, 37].

Particularly vexing is the fact that dimensionality reduction for IR lacks a rigorous
theoretical basis. Several authors have tried to put LSI’s dimensionality truncation on
firmer theoretical ground. Common to most of these attempts is the notion of statistical
likelihood [11, 72, 104]. Fitting a model by the method of maximum likelihood involves
choosing those parameter values that define the model most likely to have generated the
observed data. The approaches to selecting kop; that I discuss in this section operate by the

method of maximum likelihood.
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In [70] Hofmann articulates a common critique of LSI’s theoretical underpinning:

While SVD by itself is a well-understood and principled method, its ap-
plication to count data in LSA remains somewhat ad hoc. From a statis-
tical point of view, the utilization of a Le-norm approximation principle
is reminiscent of a Gaussian noise assumption which is hard to justify in

the context of count variables.

Hofmann’s criticism stems from the normality assumption native to least-squares methods.
As Manning and Schiitze note [102] the link between the normal distribution and least-

squares is evident in the definition of the Gaussian density function:

1 1 z—p

(23.1) (e ,0) = ——enpl—5 (Y

g

where pu is the mean and ¢ is the variance. Due to the numerator in the final term of the
equation, the smaller the squared deviation from the mean, the larger the probability of
observing X = z. The method of least-squares minimizes a model’s squared error, (z — u)2.
Thus the least-squares solution is identical to the maximum likelihood solution, if the data
are normally distributed.

However, term-document associations are notoriously non-normal in their distribution.
A well-known result from computational linguistics holds that term count data tend to follow
a Zipf-like distribution [102, 85, 151, 152, 105, 37|. The Zipf distribution is a so-called
power law model, which suggests that the rank and frequency of terms in a corpus will be
inversely and exponentially related. Thus many terms occur once or twice, while only a few
terms occur often. Figures 2.3.1 and 2.3.2 exemplify Zipfian term distributions.

These figures show the relation between term rank and frequency in the Cystic Fibrosis
database, a corpus of 1239 documents and roughly 45,000 terms (after removing stop-words).
The z-axis of Figure 2.3.1 shows the log of all observed word counts in the collection. The
sharp decline in frequency as we increase the rank of a term is the hallmark of the Zipf
distribution. As a member of the power-law family of distributions, Zipfian data is linearly
expressible on a log-log scale. Thus Figure 2.3.2 plots the log-rank versus log-frequency.

The solid line in the figure depicts the least-squares fit of these data. Although the model is
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FIGURE 2.3.1. Word frequency for CF Data

somewhat skewed due to the preponderance of data at the left end of the plot, the model still
accounts for a large portion of the overall variance, scoring R? = 0.78. For larger data sets,
the linear fit on a log-log scale is apt to be more pronounced [152]. Nonetheless, although
78% fit is fairly weak in the world of power-law distributions, it does suggest that these data
are far from Gaussian. Without Gaussian data, the application of a least-squares fitting
method is indeed, as Hofmann notes, an ad hoc proposition® .

To motivate dimensionality reduction for IR more properly, Hofmann proposes so-called

probabilistic LSA (PLSA) [68, 69, 70]. PLSA uses a mixture model known as the aspect

6Instead of modeling term-document data via the Gaussian distribution, Bookstein and Swanson suggest
the two-Poisson model [14]. Other approaches use the negative binomial distribution to model term count
data [20].
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FIGURE 2.3.2. Power law distribution for CF Data terms

model, “a latent-variable model for co-occurrence data” that posits the influence of k latent
class variables, c1, ¢, ..., ¢ on the generation of the term-document matrix A. Under the
aspect model, each term-document observation is assumed to be generated by a probabil-
ity distribution, conditioned on the likelihood of choosing a particular word w; given the
influence of latent class variable ¢;. Hofmann uses a version of the EM (expectation max-
imization) algorithm [33] to parameterize the latent class variables C. Under Hofmann’s
model, the k factors derived by LSI “are seen to correspond to the mixture components of
the aspect model.” As such, “the mixing proportions in PLSA substitute for the singular

values of the SVD in LSA” [70, p. 184]. Thus stronger latent classes exert more influence
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over the generative document model than do weaker classes. This suggests that by omit-
ting the weakest r — k classes, the model rejects the weakest correlational patterns in the
observed data. An interesting corollary of this approach: Hofmann finds the best retrieval
performance by using a linear combination of models, each fitted with a different k-value
(68, 69, 70].

Hofmann’s approach is reminiscent of a more general class of probabilistic explanations
of LSI [36, 37, 68, 69, 112|. These models imagine the influence of k latent variables over
the distribution of terms and documents in a corpus. Such probabilistic models help us
understand LSI more rigorously. Informed by this work, we may consider each document d;
to have been generated by a linear combination of latent document class distributions. Under
LSI these distributions are estimated by the singular vectors derived under SVD. Thus during
LSI we approximate each latent class ¢, via the method of least-squares, whereas Hoffman’s
approach derives the k latent classes by the Kullback-Leibler projection [68, 69, 70]. The
precise means of projection—orthogonal versus an objective projection—need not concern
us here. Instead, the important point is that probabilistic models of LSI suggest that the
role of the singular values of A is to weight the influence of each latent class variable on
the likelihood of seeing a given document. Thus small singular values for a latent class c;
suggest that low likelihood that the j** class is responsible for much variation in the data.

Like Hofmann, Ding uses the method of maximum likelihood to justify dimensionality
reduction for retrieval. Unlike Hofmann, however, Ding proposes a theoretical model for
LSI itself, omitting mention of any alternative method. Although LSI may violate certain
assumptions inherent in the least-squares model, it’s good performance and its mathemat-
ical simplicity (as a least-squares method) argue for its merits, claims Ding. To motivate
dimensionality reduction under LSI, Ding proposes a “dual probabilistic model” [36, 37|,
finding that LSI is the optimal solution of the model.

As in Hofmann’s model, Ding begins with the assumption that the term-document ma-

trix bears the influence of k latent class variables, or “characteristic document vectors,”
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c1...cx (collectively called Cy). For Ding, each document in A, a;, is drawn from a proba-

bility distribution such that:
(2.3.2) Pr(ag|cy...ci) = %)’ _el@ )’ 1 7(Cy)

where Z(C},) is a normalization constant. Thus the probability of seeing document a; is pro-
portional to its similarity to ci...ck. This leads to Equation 2.3.3 which shows the likelihood

for a k-dimensional generative model for documents under LSI:
(2.3.3) LUk) =X +---+ A —nlog Z(Uyg)

where ); is the j eigenvalue of A’A. The generative model for term vectors is defined
analogously to this, but instead of depending on the term-term similarity matrix A’A, the
term’s model is based on AA’, the document similarity matrix. Omitting discussion of
nlog Z (Uy) here (Ding excludes it from analysis on the basis of its slowly changing nature),
we note that both term and document probability models have the same maximum log-

likelihood:
(2.3.4) by=0p+ - +o;

where oy, is the kth singular value of A. Thus the solution given by SVD gives the maximum
likelihood solution under Ding’s formulation. Despite the data’s putative lack of normality,
then, Ding shows that LSI’s least-squares projection is in fact the model generated via
maximum likelihood.

A useful consequence of Ding’s model is that we acquire a precise definition of the contri-
bution of each singular vector to the overall representation. As Ding writes, “the contribution
(or the statistical significance) of each LSI dimension is approximately the square of its sin-
gular value” [37, p. 11|. By analyzing the eigenvalues of A’A or AA’, we gain insight
into the statistical significance of each LSI factor. This provides a more formal meaning to
the ad hoc argument used earlier, that small singular values were insignificant because their
associated singular vectors described only a little variance. Now we may understand the

singular value truncation in LSI in terms of model likelihood. Due to Equation 2.3.4 adding
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weak singular vectors increases the model likelihood only a small amount, while using up
an additional degree of freedom (corresponding to the normalization constant of Equation
2.3.2). Because of this relation, adding small eigenvalues actually reduces the overall like-
lihood of the model. Ding thus defines ko as the value for k that maximizes Equation
2.3.4.

Applying his model, Ding finds encouraging results. Perhaps most importantly, he
discovers strong evidence of the existence of an “intrinsic semantic subspace” in several test
collections. Ding finds fairly close correspondence between his theoretical predictions of kqp¢
and those discovered by more traditional ad hoc methods [36, 37]. However, in several
cases, his model appears to overestimate the observationally derived k,p;. Nonetheless, his
model predicts the same “nonmonotonic relation” between dimensionality and performance
observed by Landauer and Dumais.

Ding’s model is satisfying in many respects. Its argument that the model likelihood
attributable to a singular vector is proportional to its corresponding eigenvalue is especially
interesting. This means that each factor’s statistical significance is guided by a quadratic
relation to the magnitude of its corresponding singular value. Thus small singular values
correspond to wery small eigenvalues, and as such, to negligible improvements in model
likelihood. Ding’s work thus puts dimensionality reduction by SVD in a stronger position,
theoretically speaking.

However, Ding’s model does not solve the problem of selecting k for an LSI system. Nor
is his analysis clear on the characteristics of a collection A that bear on kp;. Of particular
concern is the generative model given in Equation 2.3.2. This model still depends implicitly
on the assumption of normality. The likelihood of a given document a; is proportional to its
similarity to the latent characteristic vectors ¢;...cx. Ding’s similarity metric here is the dot
product, the same measure that informs the standard vector model. Thus the identity of
the maximum likelihood solution and the least-squares-derived eigenvalues is not surprising
insofar as the characteristic document vectors (i.e. the latent class variables) are assumed
to be those that are closest to the most documents. In other words, the eigenvectors are

the maximum likelihood solution precisely because the principal of least-squares defines
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the principal of likelihood under the model. Thus, although Ding’s approach gives the most

satisfying theory for LSI’s dimensionality reduction, it does not solve the problem completely.

2.3.3. Selecting an Optimal Semantic Subspace-Methods from Multivariate Sta-
tistics. Although Ding’s model does not answer every question about choosing optimal k,
it gives us a strong apparatus for undertaking an analysis of this choice. In particular, let
us begin with Ding’s observation that the eigenvalues of the similarity matrices that arise
during SVD describe the model likelihood attributable to a given factor fi. Following the
mainstream of literature from multivariate statistics I suggest that the best means of se-
lecting factors for inclusion in a model of reduced dimensionality is by recourse to analysis
of their associated eigenvalues; large eigenvalues correspond to factors that exert strong
influence over the generative model of terms and documents.

Rencher argues that the amount of dimensionality reduction warranted by a particular
corpus is proportional to the degree of correlation among its variables. “If the variables are
highly correlated,” he writes, “the essential dimensionality is much smaller than p [the matrix
rank]; that is, the first few eigenvalues will be large .... On the other hand, if the correlations
among the variables are all small, the dimensionality is close to p and the eigenvalues will
be nearly equal. In this case, no useful reduction in dimension is achieved, because the
principal components essentially duplicate the variables” [116]. For Rencher and others (cf.
[3, 35, 79]) the key to choosing the severity of dimensionality reduction lies in an analysis
of inter-variable correlation among the data. Although a number of methods could enable
this analysis, the most frequently employed techniques make use of the data’s eigenvalues.

Figure 2.3.3 shows the eigenvalues of the covariance matrix for data gathered in a study of
the physiology of athletes. The data are from [116]. Each of these 60 observations measures 6
variables: head width, head circumference, front-to-back depth of skull, ear-to-crown height,
and jaw width. The z-axis of the plot is simply the rank of a given eigenvalue, \; = 1...6.
The y-axis shows the magnitude of the k' eigenvalue. Figure 2.3.3 is known as a scree
plot, a name attributed to Cattell [17]. Although the magnitude and number of eigenvalues
vary according to the rank of data matrices and the amount of variance they describe, their

general shape is highly characteristic [105, 37]. Figure 2.3.4 shows a more realistic scree plot
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FIGURE 2.3.3. Scree plot for athletic physiology data

for IR applications. This example shows the eigenvalues for the document similarity matrix
from the CF database. As in these examples, the first few eigenvalues of a data set usually
capture the lion’s share of system variance. Quickly, then, the size of eigenvalues decreases,
usually reaching a near-horizontal plateau. Assuming that large eigenvalues improve the
accuracy of statistical approximations, the bulk of statistical analysis of eigenvalues for
dimensionality estimation operates by trying to discover the “elbow” in a scree plot—that
point where “large” eigenvalues give way to “small” ones [18]. The literature of principal
component analysis offers several candidate criteria. Given the similarity between LSI and
PCA articulated above in Section 2.2.2, the remainder of this section details several such

criteria.
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FIGURE 2.3.4. Scree plot for CF data

Perhaps the simplest (and also most popular) method of identifying significant principal
components is the so-called “eigenvalue-one criterion”, also known as the Kaiser-Guttman
rule [61]. Under this technique we retain all factors whose corresponding eigenvalues are
greater than the average of all the eigenvalues. The technique’s name stems from its ap-
plication to principal component analysis on correlation matrices; in such a situation, the
mean eigenvalue, A = 1. Thus retaining all eigenvalues greater than the average implies

retaining correlation matrix eigenvalues greater than 1.
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To understand the motivation behind eigenvalue-one, consider a common result from

linear algebra:
(2.3.5) trace(S) = Z Ai

where trace(S) is the sum of the diagonal elements of the square symmetric matrix S [141,
148, 116]. Thus if S is the covariance matrix of A, the average among S’s eigenvalues is the
average variance among the variables of A. Retaining all eigenvectors whose corresponding
eigenvalues are greater than A entails keeping those factors (i.e. those artificial variables)
that describe more variance than the average observed variable in A.

Why should the average eigenvalue constitute this stopping point for principal com-
ponent inclusion? Arguing from a psychometric standpoint, Dickman [34] defends the
eigenvalue-one approach. Insofar as principal components comprise “fundamental” dimen-
sions, Dickman argues that it is unreasonable to retain any factors whose variance is less
than the unity accorded to an observed variable in the standard score space (cf. [71]). Ac-
cording to Kaiser, “for a principal component to have positive KR-20 internal consistency,
it is necessary and sufficient that the associated eigenvalue be greater than one” [86]. Horn
argues in [71] that unity thus entails the upper bound for psychometric interpretability of
principal components.

But eigenvalue-one is especially useful due to its statistical motivation. Describing the

Kaiser-Guttman rule, Jolliffe writes:

The idea behind the rule is that if all elements of [A] are independent,
then the principal components are the same as the original variables and
all have unit variances in the case of a correlation matrix. ... If the data
set contains groups of variables having large within-group correlations,
but small between group correlations, then there is one PC associated
with each group whose variance is > 1, whereas any other PCs associated
with the group have variances < 1. Thus the rule will generally retain

one, and only one, PC associated with each such group of variables....[81]
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If the columns of A are orthogonal, then all eigenvalues are equal, and Kaiser-Guttman
advocates a model of full dimensionality. Likewise, if all columns of A are linearly de-
pendent, then rank(A) = 1, and Kaiser-Guttman delivers a 1-dimensional model. These
cases—orthogonality and complete linear dependence of variables—display the extrema of
eigenvalue-one behavior. Between these extremes lie cases of middling inter-variate correla-
tion, under which eigenvalue-one delivers models of middling complexity. The crucial point,
however, is that by using eigenvalue-one, we assume that dimensionality reduction is merited
because the variables of A are correlated; the severity of an optimal dimensionality trunca-
tion is proportional to the degree of inter-variable correlation. Thus, under eigenvalue-one,
we consider dimensionality reduction to be a form of error correction for the standard VSM.
Insofar as Salton’s model assumes mutual orthogonality among the terms, it incurs some
amount of error when applied to non-orthogonal data. When we use eigenvalue-one, then,
we assume that the difference between k,p and p (the number of terms) is proportional to
the amount of error incurred by the VSM’s assumption of independence.

The eigenvalue-one criterion is laudable for its rigor and its simplicity’. Moreover, its
demonstrated accuracy has led to widespread deployment of Guttman’s approach. However,
eigenvalue-one evinces a glaring defect. To make his analysis more tractable, Guttman
elides the distinction between samples and populations in his exposition. “In this paper,”
he writes, “we do not treat the problem of ordinary sampling error....We assume throughout
that population parameters are used, and not sample statistics” [61]. However, in common
practice we work with samples, not parameters. Problems in applications of eigenvalue-one
arise because Guttman’s procedure does not recognize the distinction between the observed
correlation matrix R and the population correlation matrix P.

In 1965 Horn proposed an adaptation of the eigenvalue-one criterion, suited for appli-
cation to sample correlation matrices [71] (cf. [35, 142]). Horn’s method, called parallel
analysis, is a resampling procedure (cf. [43, 44, 67]) which is closely related to my own

method (proposed in Section 3.3). To perform parallel analysis on the principal components

"Guttman’s approach is based on a rigorous optimization of the common factor analysis problem. Because
factor analysis entails a different model than LSI and PCA, I omit a full treatment of Guttman’s results,
instead referring readers to the canonical literature found in [61, 62, 86, 93, 8].
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of R, the correlation matrix of A, we generate many, say B, n X p data sets Aj from a mul-
tivariate normal distribution with the mean vector of A and I, for a covariance matrix. In
other words, the variables of each Aj are uncorrelated, modulo sampling error. For each Aj
we calculate the principal components with corresponding “null” eigenvalues Agy, Ajg, * + * Agy-
Since the variables of Aj are uncorrelated, E(Af;) = 1. But due to sampling error, the first
p/2 eigenvalues will be greater than one, while the remainder will be less than one. The

analysis proceeds by averaging the eigenvalues Aj;, Ajq, - - - Aj, across all B samples, to de-

p
rive X;, a vector of eigenvalues generated from p independent variates. To complete the
analysis the scree plot of X; is superimposed on the plot generated by the observed data.
Horn suggests that k,p; corresponds to the last eigenvalue before the two superimposed scree
plots cross one another.

Although I discuss the motivation behind parallel analysis in more depth in Section 3.3,
it is worth stressing the fundamental similarity between parallel analysis and the eigenvalue-
one criterion. As noted in [142], because the columns of Af are independent, the expected
value of a given null eigenvalue Afj, is 1. That is, because the population correlation matrix
is I, the population null eigenvalues are all 1 (since the eigenvalues of a diagonal matrix are
the elements of the main diagonal, cf [141]). Due to sampling error,however, the observed
correlation matrix R will evince some opportunistic correlation, leading to p/2 eigenvalues
greater than 1, and p/2 less than 1. If A were infinitely large—i.e. if we had unlimited
data—then by the law of large numbers R converges on the population correlation matrix,
and the null eigenvalues converge on unity. Under the condition of infinite data, parallel
analysis thus converges on the eigenvalue-one criterion. We may understand parallel analysis
as in improvement upon eigenvalue-one insofar as parallel analysis accounts for the fact that
n < 0.

Although eigenvalue-one and parallel analysis diverge in their definition of the null case,
they rely on the same rationale. They both imply that LSI’s dimensionality reduction en-
tails a removal of error from the VSM. The source of this error is the VSM’s assumption
that the terms (columns) of A are orthogonal. That is, both criteria assume that dimen-

sionality reduction is merited to the extent that the data depart from independence. For
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FIGURE 2.3.5. Parallel analysis on athletic data

each technique, ko is defined by the number of observed eigenvalues that do not fall below
the respective null condition. The methods differ with respect to how they define the null
case. While eigenvalue-one treats the observed covariance matrix as a population param-
eter, parallel analysis accounts for the fact that we have access only to a sample. As I
argue in Section 3.3, my own method of amended parallel analysis improves upon both of
these methods by defining another, more realistic null condition for implementation of the
error-correction rationale.

Figure 2.3.5 shows the result of performing parallel analysis on the athletic physiology

data. The simulation shown here used B = 100 resampling rounds. In other words, Aj was
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calculated 100 times to settle on X;, whose values appear as triangles in Figure 2.3.5, along-
side the observed eigenvalues, which appear as circles. This approach predicts an intrinsic
dimensionality of kop; = 2. It is worth noting that using lower values for B produced similar
results (even B = 2 yielded the same kop; prediction). How many resampling iterations are
required is an open question in the statistical literature. However, setting B = 100 is a
standard approach [43, 44|. I return to the number of bootstrap samples required during
parallel analysis in Section 4.2.2.1.

To gauge the accuracy of eigenvalue-one and parallel analysis, I shall compare their
estimates to estimation techniques with different rationales. Omne such method is what
Dillon and Goldstein term “the percentage-of-variance criterion” [35]. With this method,
the researcher chooses a cut-off point, m, the proportion of observed variance that the final
model should describe; the researcher retains the fewest eigenvalues sufficient to account
for m% of the variation among the original data. This is easy to implement since we can
calculate the percent of variance captured by the first k eigenvalues via Equation 2.3.6:

DY YT
AM+X+-+ Xy

(2.3.6) myg

A common value of m is 90% or 95% [116, 76]. For LSI model selection, however, initial
experiments suggest that a 95% of variance criterion is too liberal. As Jolliffe notes, complex
data sets with numerous variables are probably amenable to more aggressive dimensionality
reduction, with m = 85% a good value [81]. However, this equivocation raises an important
criticism of the percent-of-variance approach to dimensionality estimation. The choice of
m for such a criterion is inherently ad hoc. As Jackson argues in [76], the percent-of-
variance approach to model selection is unhelpful insofar as it tells us nothing about why
dimensionality reduction is called for in an application. In other words, a model selected by
the percent-of-variance criterion is difficult to interpret.

The use of the eigenvalue-one and percent-of-variance criteria is widespread in applied
statistics, often comprising the default method of dimensionality estimation in statistical
software packages. Figure 2.3.6 shows the application of each method to the athletic phys-

iology data. Figure 2.3.7 applies these methods to the eigenvalues from the CF database.
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FIGURE 2.3.6. Eigenvalue-one and percent-of-variance criteria for athletic
data

In both figures, the eigenvalue-one estimation of k., appears as a dot, with a vertical line
showing the location of the associated cut-off. The percentage-of-variance criterion, with
m = 85%, appears as a grey triangle. While both methods appear to work quite well on
the athletic data (identifying fair approximations of where the “elbow” in the scree plot
appears), they seem to over-estimate the dimensionality of the data for the much larger
CF dataset. Without more rigorous evaluation it is premature to conjecture any particular
true dimensionality of the CF data. Yet the elbow near £ ~ 150 seems pronounced, and
both methods fail to identify it accurately. As we shall see, such over-estimation of effective

dimensionality is common to many IR applications of eigenvalue-based estimators.
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FIGURE 2.3.7. Eigenvalue-one and percent-of-variance criteria for CF data

In addition to the percent of variance approach, we may compare eigenvalue-one and
parallel analysis to a technique based on parametric hypothesis testing. The idea here is
to see whether the (p — k) smallest eigenvalues are equal. Thus we test the null hypothesis
Hy : Mpy1 = A2 = -+ = Xp. As Krzanowski notes, “if Hy is true, then there exists no one
preferred direction in the subspace spanned by the last (p — k) eigenvectors, so there is no
reason to choose any one eigenvector in preference to any of the others. Thus we should
reduce dimensionality to k dimensions, or not reduce dimensionality at all” [87, pp. 257-8].
To put it another way, if Hy is true, then the last (p — k) eigenvalues comprise a “shelf” in
the scree plot, suggesting that the desired elbow in eigenvalue magnitude has already been

reached by the time we reach the k' factor.
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Although a number of hypothesis tests for eigenvalue equality exist, the most common is
known at Bartlett’s test of isotropy [5, 6, 7]. The analysis begins by calculating the average

of the last (p — k) eigenvalues:

(2.3.7) e = zp: A

S k)

where ); is the it? eigenvalue of S. Under Bartlett’s method we wish to decide whether any
of the last (p — k) eigenvalues are significantly different from . To test this, we calculate

the test statistic:

)(klnxk— zp: ln/\z)

i=k+1

2 11
(2.3.8) u=(n-— p-fl;

where n is the number of data observations. Bartlett argues that for traditional PCA
applications, the statistic u is approximately y2-distributed. We thus reject Hy if u > ch,w
where v = §(p—k—1)(p—k+2). To find ko by Bartlett’s isotropy, we test Hoo 1 Ap—1 = Ap.
If Hy; yields adequate confidence, we test Hoz : Ay 2 = Ay 1 = Ap, and so on until we find
Hy where we are no longer sufficiently confident that the last (p — k) eigenvalues are equal,
assuming that our stopping point corresponds to ko (cf. [3, 79]).

While the method of Bartlett’s hypothesis test is more satisfying theoretically than the
percentage-of-variance criteria, the technique is prone to stark over-estimation of a data’s in-
trinsic dimensionality [116]. As in our comparison of eigenvalue-one and percent-of-variance,
Bartlett’s method appears to work well on the fairly simple athletic data set, as shown in
Figure 2.3.8. However, Bartlett’s performance on the CF data is nearly useless. Even set-
ting a high confidence level, & = 0.001, yields almost no dimensionality truncation. As is
evident from Figure 2.3.9 applying this test to the CF data yields an estimation of 1237 (out
of a possible 1239) for the intrinsic dimensionality. Because of its tendency to eschew even
highly merited parsimonious representations, Bartlett’s method is rarely used in practice
(60, 142].

As Ding shows, the eigenvalues of the similarity matrices of A, i.e. A’A and AA’
provide a natural vehicle for estimating the intrinsic dimensionality of a dataset. From

linear algebra we know that the k** eigenvalue is the amount of variance described by the
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FIGURE 2.3.8. Bartlett’s test of isotropy applied to athletic data

kth principal component. Ding relates this result specifically to LSI, showing that the k"

eigenvalue gives the amount of model likelihood attributable to the k** LSI factor. Because
these eigenvalues comprise the squares of the singular values of A, a small \; suggests that
the k' factor is wery weakly (the relationship is quadratic) associated with the generative
model of the documents and terms of A. The methods discussed here attempt to define
where “large” eigenvalues give way to “small” ones.

Analyses of eigenvalue significance have a long history in the multivariate statistical lit-
erature. The eigenvalue-one and parallel analysis criteria approach dimensionality reduction
form a principled and well-articulated theory. Moreover, they have evinced good results in

previous studies. But many other promising dimensionality estimators exist as well, with
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FIGURE 2.3.9. Bartlett’s test of isotropy applied to the CF data

their own motivations and assumptions. Implementations of the percent-of-variance criterion
suffer some problems due to their heuristic nature. But as this discussion has shown, they
have performed well enough to see widespread deployment in standard software packages.
On the other hand Bartlett’s test of isotropy provides a basis for dimensionality truncation,
basing the selection of & on a traditional, parametric hypothesis test. But Bartlett’s ap-
proach appears to scale poorly to large data sets, suggesting that the x? distribution of its
test statistic does not hold in all cases.

To prepare our comparison of these estimation techniques, the remainder of this chapter
turns to a description of methods for evaluating IR systems. The goal of this dissertation is

to discover how various methods of estimating kop; bear on LSI performance. To accomplish
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this, my analysis will rely on the Cranfield style of IR performance evaluation. I wish to dis-
cover which values of k lead to good performance under LSI. To define “good performance,”
my analysis will make use of the most standard methods of system evaluation in the field of

experimental IR.

2.4. IR Evaluation

Most performance evaluation in retrieval involves analyzing the quality of a system’s
output. For instance, it is often the case that we have two models or systems M; and
M5 whose performance we wish to compare. Perhaps Ms makes use of a novel indexing
method, whose value we would like to measure against the performance of a baseline system
M. In the present study M7 and Ms might be LSI systems parameterized with different
k-values. The goal of IR evaluation is to analyze the performance of a system with an eye
toward quantifying its merits in an operational setting. As William Cooper writes, “an ideal
evaluation methodology must somehow measure the ultimate worth of a retrieval system
to its users in terms of an appropriate unit of utility” [25]. If we meet this expectation,
measuring performance will give the researcher an apparatus with which to compare models
and to argue for the benefits or disadvantages of a particular model.

As Van Rijsbergen notes, an important assumption underpins the mainstream of IR

evaluation:

It is a general assumption in the field of IR that should a retrieval strategy
fare well under a large number of experimental conditions then it is likely

to perform well in an operational situation. [118, ch. 7]

Nowhere is this assumption more evident than in the so-called Cranfield model of IR evalua-
tion. Named for a series of experiments performed by Cleverdon during the 1960’s |23, 22|,
Cranfield has become the mainstay of performance evaluation in IR. Not only was the Cran-
field model vital to the historical development of IR methods (cf. [4, 129]), it continues
to guide research in the field by its incorporation into TREC, the text retrieval conferences
[64, 146]. Due to its canonical status in current IR (David Ellis goes so far as to called Cran-

field the “archetypal model” of IR evaluation [46]), in this section I describe the assumptions
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and methods associated with Cleverdon’s measurements, with the goal of adapting them to
the problem of choosing kyp; in an LSI system.

The starting point of Cranfield-style evaluation is the idea of relevance [66]. In gauging
IR performance, Cleverdon aims to measure a system’s ability to deliver relevant information—
to discriminate between relevant and non-relevant documents. Thus good performance im-
plies that a system is able to discern and act favorably upon a user’s stated information
need. For Cleverdon’s studies, however, relevance is a simplified ideal: “it has to be assumed
in [IR research| that we are considering idealized conditions, and do not have to take into
account losses due to human error” [23|. Instead of any intuitive, subjective notion of rele-
vance, Cleverdon implicitly posits a binary, objective relevance function : for a given query
g; and a given corpus D comprised of n documents d;, j = 1...n, there exists a function
R(g;, d;) such that R(g;,d;) =1 if document j is relevant to ¢;, and R(g;,d;) = 0 otherwise.

It is important to note that the problem of relevance continues to receive attention in the
IR literature (cf. [139, 133, 66]). Obviously the assumption of binary, objective relevance
between queries and documents is problematic. As described by Schamber et al., relevance
is in fact a highly subjective construct [135, 134]. Contextual details of a search bear
heavily on whether a searcher finds a given document relevant to his or her information
needs. Likewise, a user’s idea of what constitutes relevant information is liable to change
over time, as he or she encounters new data [144].

Noting the disjunction between psychological relevance and Cleverdon’s operational-
ized objective variety, Harter argues that Cranfield-type evaluation is prone to egregious
measurement error [65]. However, empirical research has demonstrated that despite its
shortcomings, evaluation based on objective, binary relevance does yield useful information
for IR research. As noted by Salton and Lesk [128]| and more recently by Voorhees [146],
objective relevance judgements provide strong information about the comparative benefits
of one IR system over another. That is, testing an individual model’s ability to perform on
a single data set based on objective relevance yields little in the way of useful measurement.
However, in comparing between two or more systems, metrics based on objective relevance

appear to provide good evidence about the relative merits of each model vis a vis the other
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| Test Collection | Abbreviation | Subject Matter |

Communications of the ACM CACM Computer Science
Cystic Fibrosis CF Cystic Fibrosis (medicine)
Cystic Fibrosis (full text version) | CF_FULL | Cystic Fibrosis (medicine)
Institute of Scientific Information CISI Information Science
Cranfield CRAN Aeronautics
Medline MED Medicine

TABLE 2.4.1. IR Test Collections

models. Because my aim in the present study lies in comparing the performance of LSI
systems parameterized with different dimensionalities, such an analysis is highly desirable.

Capitalizing on the assumption that results from experimental data translate to similar
results in operational settings, evaluation in the Cranfield tradition makes use of so-called
test collections [4]. Table 2.4.1 lists six test collections that informed this study. These
collections provide the data necessary to deploy an IR system on realistic data, while also
giving the researcher information with which to measure the effectiveness of his or her model.

Thus test collections usually include three components:

e A corpus of documents
e A set of queries

e A set of relevance judgements

For instance, the Cystic Fibrosis (CF) test collection [138] includes a corpus of 1239 docu-
ments. The corpus contains all documents from the National Library of Medicine’s Medline
database that are indexed with the subject heading ’cystic fibrosis.” The CF collection
also includes 100 queries, statements of information need generated by subject experts in
medicine. The relevance judgements contain a list of all documents judged relevant to each
of the 100 queries by a panel of expert reviewers. Statistics for the test collections used in
this study appear in table 2.4.2. By the standards of today’s web-based IR research para-
digm, these collections are small. For instance, the largest of these collections, CACM uses
2.2 megabytes of storage space. On the other hand, the data used for TREC-6 occupied
over a gigabyte of disk [4]. The matter of performing LSI on large corpora is a research area
in its own right [9, 73]. While studying kept in TREC-sized data sets would be desirable,

doing so in an intensive, systematic fashion is computationally impractical at the current

87



| Collection | Num. Docs | Num. Terms | Num. Queries |

CACM 3200 4867 64
CRAN 1400 4612 225
CF 1239 5116 100
CF_FULL 379 9549 100
MED 1033 5831 30
CISI 1460 5615 112

TABLE 2.4.2. Statistics from IR test collections

time. My interest lies in comparing estimates of intrinsic dimensionality in a wide range
of settings, and thus demands the use of several corpora. Despite their small size, the col-
lections shown in table 2.4.2 were useful for this analysis by virtue of their diversity. With
regard to corpus size, topical domain, and document representation, these collections span
a large area. Moreover, they have become standard in the IR literature [4]. Finally, several
of these collections have informed the most significant theoretical studies of dimensionality
reduction in IR [70, 37]. I discuss my rationale for choosing these test collections in more
depth in Section 3.1.

Although the method of gathering relevance judgements varies from collection to collec-
tion [146], the result is the same: test collections give the researcher information about the
documents that a system should retrieve when presented with a given query. Armed with
putatively exhaustive relevance judgements, IR researchers typically employ two measures

to evaluate their systems:

e Precision: the proportion of relevant to non-relevant documents in the set of re-
trieved documents
e Recall: the proportion of relevant documents in the retrieved set to the total number

of relevant documents.

To define precision and recall formally I adopt the notation shown in table 2.4.3. Given a
query ¢ and an exhaustive list of relevance judgements, we define the following variables:
Following Van Rijsbergen [118] I define precision and recall for a collection with n documents

by the contingency table of Table 2.4.4. This allows the following definitions:

|Rel N Ret|

(2.4.1) precision = Rel
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| Symbol | Definition

Rel the set of relevant documents
Rel the set of non-relevant documents
Ret the set of retrieved documents
Ret | the set of non-retrieved documents

TABLE 2.4.3. Notation for IR evaluation metrics

| | Relevant | Non-Relevant | |
Retrieved Rel N Ret Rel N Ret Ret
Non-retrieved | Rel N Ret Rel N Ret Ret

Rel Rel n
TABLE 2.4.4. Precision/recall contingency table

| Model | Ranking

M, NRRRNNNNRNRNNNNRNRNRNNRNNRNNNN
Mo RRRNRNNNRNRNNNNRNRNNNNRNNRNNNN
TABLE 2.4.5. Two fictional document rankings

| Rel N Ret|

24.2 ll=
( ) reca Rel

Under these definitions, precision and recall are mutually dependent measures. Because most
IR systems rank documents against queries, we may measure precision at a given recall level.
Likewise, we measure recall for a given level of precision. Thus we might define precisiong s
to be the ratio of relevant documents to the total number of documents retrieved when 50%
of the relevant documents for query ¢ have been retrieved.

Not surprisingly, precision and recall exhibit a negative correlation. It is trivial to achieve
100% recall by retrieving every document in a collection. However, doing so without recourse
to a more sophisticated ranking strategy is liable to force a user to view many non-relevant
documents before finding the relevant ones. Because of the inverse relationship between
precision and recall, many studies describe performance by reporting the observed precision
at a variety of recall levels. For example, consider the fictional document rankings of Table
2.4.5. This simulated data set contains 30 documents. Of those 30, 10 have been judged
relevant to a given query. Table 2.4.5 lists the ordered output of two retrieval systems M;

and M, where R represents a relevant document and N represents a non-relevant document.
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Given these data, we would calculate precisiong.; for each model by calculating the precision
score at that point in the ranking where ten percent (i.e. 1) of the relevant documents has
been retrieved. For model M; we calculate precision on the ranking M;(0.1) = N R. Thus
precisiong1(M1) = 1/2. On the other hand calculating precision for the ranking while
M;1(0.1) = R yields precisiong.1(M;) = 1/1. At the 10% recall level, then, My yields better
precision than M;.

A common goal of performance evaluation is to discover which model, M; or My, is
better overall. This is a complicated construct to measure. But a typical approach to such
measurement involves graphical inspection (and associated statistical analysis [129]) of a
precision/recall plot. Figure 2.4.1 shows a graphical representation of the data from Table
2.4.5. This plot shows the precision obtained by each model at five levels of recall (0.1,
0.25, 0.5, 0.75, and 1.0). By virtue of its higher precision scores model My seems better
than M at low levels of recall. However as we observe precision at higher levels of recalls,
the margin of improvement afforded by My becomes negligible, disappearing altogether at
precision g = 0.4.

In the previous example, I plotted precision versus recall for a given query ¢;. Of course
standard test collections come with a variety of queries g;, 7 = 1...n. Thus when evaluating a
given model M, we usually create a precision/recall curve in which each point is the average
precision at recall level r across each of the n queries. Thus we plot the average precision

at each recall level r by:
" prec;
(2.4.3) prec, (M) = z; Tm
1=

where prec;; is the observed precision at recall r for the ith query.

Although precision /recall graphs are ubiquitous in the IR literature, the use of precision
and recall is often criticized. A common criticism of the recall /precision metric involves the
need for interpolation in its use. As noted in [4, p. 78] the most common means of reporting
precision is at 11 standard recall levels, r;,j € {0.0, 0.1, 0.2,..., 1.0}. However, depending
on the number of documents that are relevant to a query g;, distinct precision values may

not be defined at each r;. Returning to our earlier example, consider a new query, g; for
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FIGURE 2.4.1. Fictional precision/recall graph

| Model | Ranking

M, RNNRRNNNNNNNNNNNNNNNNNNNNNNNNN
Mo RRERNNNNRNNNNNNNNNNNNNNNNNNNNNNN
TABLE 2.4.6. Two fictional document rankings

which only three documents are relevant. This situation might yield the rankings shown in
Table 2.4.6. Considering the ranking of M, after retrieving the first relevant document, we
have precision = 1.0, with recall ~ 0.33. Because so few documents are relevant to g,
recall at 10%, for instance, is undefined. If we want to measure precision at the 11 standard
recall intervals, we need to derive interpolated approximations of the returned set at each

level of recall. Following Baeza-Yates and Ribiero-Neto [4], I define interpolated precision
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for a given level of recall:
(2.4.4) precy; = maz(precr; <r<r;,,)

such that the interpolated precision at the j** recall level is the maximum known precision
at any recall level between the j** and j** 4 1 levels. In our example, then, the first known
precision level for M; is precyss = 1. By Equation 2.4.4 precyo(My) = -+ = precos(M1) =
1. The need for such interpolation renders the use of precision/recall curves somewhat
problematic, as artifacts from the interpolation process can color the evaluation process.

Another criticism of precision/recall is the interdependent relationship between its two
measures. According to Salton, many critics dismiss the idea of contingency-table based
metrics due to the confusing nature of their interrelated elements [129, 97]. Instead of
precision and recall, critics argue that an ideal effectiveness measure would express retrieval
effectiveness as a single number. Moreover, that number should be independent of any
specific cutoff point in the retrieval process [143, 15, 119, 120].

Perhaps the simplest single-valued performance metric in IR involves simply reporting
precision at a given (and ostensibly important) level of recall. For instance, we might
compare two systems by calculating prec, 5 for each and noting the difference between the
resultant values. In some sense this measure offers an “average” picture of the recall /precision
ratio for a given model. But a more sophisticated approach (one used much more frequently)
is to calculate average precision across several levels of recall:

,
(2.4.5) avPrec = 2i=1 PTeC
T

where prec; is the across-query-averaged precision at recall level 7, and r is the number of
recall levels observed. As Losee argues, reporting avPrec tends to provide a less biased
account of retrieval performance than simply relying on prec;, insofar as prec; amounts to
taking a heavily weighted average of precision scores at various recall levels, where such a
weighting may not be warranted [98].

However, other single-term performance measures exist in the IR literature. Closely

related to the precision/recall measure is the metric known as F', the harmonic mean of
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precision and recall. As discussed in [4] the harmonic mean of precision and recall for the
4™ document in the ranked list of n documents is given by Equation 2.4.6

(2.4.6) F(j) = i
r(G) * P@)
where r(j) is the recall measured at the j%* document in the ranking and P(j) is precision at
the j* document. Until a relevant document is retrieved, F' = 0. And if all documents up to
point j are relevant, then F'(j) = 1. As discussed in [4] and [137], F' approaches 1 when most
of the ranked documents are relevant. Thus reporting maz(F(j)) for j = 1---n is common
insofar as it offers a good compromise between precision and recall. This measure—the
maximum value of F' found under a given model—is known as optimal F.

Another important single-number performance metric is the Average Search Length
(ASL), which describes the expected position of a relevant document in the ranked out-
put from a given retrieval system [97, 98]%. In the example shown in Table 2.4.5 we see
two document rankings. We compute the ASL for each by summing the position of each
relevant document in each ranking and dividing by the number of relevant documents. Thus
ASL(M,) = 13.2, while ASL(M>) = 11.4. On average, then, M, moves relevant documents
closer to the front of the ranked list than M7 can. Thus because its ASL is lower, we consider
M> an improvement on M7, with respect to ASL. Because the units of ASL are documents
Losee argues that the measure is easily interpreted, “the ASL is measured in units of ‘docu-
ments’; knowing that the average position of a relevant document is 23 or 500 or 2 million
documents into the ranked list of documents conveys useful information to the searcher”
[98]. In addition to its ready interpretability, ASL has been shown to correlate well with
other metrics, thus giving a good, albeit highly digested, picture of system performance in
a single measure [97, 98|.

Performance evaluation in IR is clearly prone to certain subjectivities. It’s reliance on
the idea of relevance problematizes the notion of good retrieval. However, despite the ob-

viously oversimplified idea of relevance that enables Cranfield-style evaluation, a good deal

8As Losee mentions ASL is related to Cooper’s expected search length measure [24].
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of empirical work [128, 146| suggests that the errors introduced by such an operational-
ization of relevance are not too egregious. I argue that measures such as precision/recall
and ASL provide strong evidence for the comparative evaluation of IR systems. In other
words, achieving 80% precision at 20% recall is meaningless without greater contextualiza-
tion. However, if two systems that vary only with respect to a single parameter consistently
score analogously on a variety of measures taken on a variety of test collections, I argue that
this evidence implies a real difference between the methods. Such differences suggest that
the variable in question will continue to bear on performance in an analogous fashion even

in a non-experimental, fully operational setting.

2.5. Conclusion

This chapter has contextualized the problem of estimating the optimal dimensionality for
an LSI system by pursuing a survey of the relevant literatures. The discussion began with an
overview of the vector space model of IR. Section 2.1.1 gave a basic introduction to the VSM.
In Sections 2.1.2 through 2.1.3 I argued that extensions of the VSM such as query expansion
and relevance feedback comprise early efforts to mitigate some of the oversimplifications in
the most basic articulation of Salton’s model. Most notably, these extensions address the
assumption of term independence in the VSM. This discussion paved the way for my analysis
of principal component analysis and LSI in Section 2.2. Statistical modeling techniques
allow LSI to derive a representation of the population term correlation matrix, a model
that stands to improve retrieval over the standard VSM by describing the dynamics of
inter-term relationships in a given corpus. However, model building under LSI is a poorly
understood problem. Unlike traditional linear regression, for example, the unsupervised
learning environment of LSI lacks a native measure of model goodness of fit. Thus in
Section 2.3 I detailed several approaches to estimating kop¢, the intrinsic dimensionality of a
corpus. Finally, in Section 2.4 I offered an overview of the Cranfield model of IR performance
evaluation. The research reported in this dissertation is concerned with identifying optimal
LSI models. My analysis, described in Chapter 3, relies heavily on the techniques developed

to enable Cranfield-style performance evaluation.
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Dimensionality reduction under LSI is a vital topic in IR. As an extension to the VSM,
LSI marks an advanced point in the evolution of geometrically based retrieval models. It has
been shown to improve keyword-based retrieval in many instances. But in order to function
properly, the LSI model must be well constructed. In particular, k, the dimensionality
of an LSI system is crucial to the effective use of dimensionality reduction for retrieval.
Too few dimensions robs the model of important descriptive power, while models of too
many dimensions risk becoming overfitted to the sample. Thus parameterizing k is a classic
example of the bias-variance trade off in statistical modeling. Each method of eigenvalue
analysis described in Section 2.3.3 offers a rationale for selecting a given value of k. In the
remaining chapters of this study, I turn to an experimental comparison of these estimation
techniques, with an eye towards describing their suitability for practical IR applications and

their respective theoretical implications.
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CHAPTER 3

Methods

As described in Chapter 1, the current study addresses the question:

how effectively can an analysis of the eigenvalues derived during LSI be

used to estimate the optimal representational dimensionality for IR?

To assess the suitability of such metrics I analyzed a variety of data by a variety of measures.
Because the best means of measuring IR performance is open to debate, I approached this
analysis broadly, arguing that if a method performs well on a variety of data according to a
variety of criteria it is apt to perform well in operational settings, too. Likewise if a method
performs well under certain conditions but not others, I suggest that such disparity merits
further reflection.

My analysis began by estimating ky; for the six data sets described in Section 2.4. To
generate these estimates I used the four eigenvalue-based statistics of Section 2.3. In addi-
tion, in this chapter I describe a novel eigenvalue-based dimensionality estimator, amended
parallel analysis (discussed in Section 3.3 below). Having derived five estimates of kop; for
each collection, I then used Cranfield-style methodology described in Section 2.4 to eval-
uate performance at a broad range of k values. My goal, then, was to note how well the
eigenvalue-based dimensionality estimations correlated with the best observed LSI perfor-
mance.

Under the rubric of my general research question are three related questions, which this

study also aimed to address:

(1) Do performance measures based on Cranfield-style evaluation agree on the optimal
dimensionality for performing LSI on each data set?
(2) If an intrinsic dimensionality seems evident from the Cranfield-style performance

analysis, which eigenvalue-based estimators best predict it?



| | CACM| CF | CF_FULL| CISI | CRAN | MED |

number docs 3204 1239 392 1460 1398 1033
number terms 4867 5116 9549 5615 4612 5831
median term freq. 17 17 26 15 28 12
maz term freq. 41 49 126 46 67 42
variance term freq. | 30.707 | 41.128 | 197.468 | 28.817 | 68.704 | 28.256
median doc length 12 41 536 34 43 52
maz doc length 966 3307 6268 1942 1595 834
median docs/term 13 12 13 12 18 9
variance docs/term | 12.925 | 11.269 12.459 12.3 | 17.142 | 8.967

TABLE 3.1.1. Summary statistics of IR test collections

(3) In what ways does the suitability of a given measure depend on the statistical

characteristics of the data set to which it is applied?

This section describes in detail the methods I used to address these research questions. In
Section 2.4 I mentioned the test collections that informed this analysis. In Section 3.1 I mo-
tivate the selection of these data in greater detail, discussing the appealing characteristics
about each corpus. In Section 3.2 I describe the IR performance metrics that are relevant
to this study, discussing my rationale for choosing this particular battery of measures. In
Section 3.3 the discussion turns to a full description of my own proposed dimensionality
estimation method, amended parallel analysis (APA). Finally, Section 3.5 treats the com-

putational tools that enabled my experiments.

3.1. IR Test Collections

Because optimal k depends on the correlational structure of the input matrix, I hypoth-
esized that different corpora will demand different representational dimensionalities. My
aim was to evaluate eigenvalue-based dimensionality estimators for operational settings (not
for a particular corpus), so I undertook experiments on a variety of corpora. Table 2.4.2
describes the test collections that were used to conduct this study. To motivate my selection
of these collections Tables 3.1.1 and 3.1.2 display more information about each data set.

The first two rows of Table 3.1.1 show the number of documents and the number of
indexing terms in each test collection. The number of indexing terms is the final number of

features used to represent each document after removing stop-words and eliminating words
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| | CACM| CF | CF_FULL| CISI [ CRAN | MED |
number of queries 64 100 83 76 225 30
median rel docs/query 12 6 3 30.5 7 22.5
variance rel docs/query | 154.531 | 212.126 36.056 1308.373 | 29.031 | 75.821
TABLE 3.1.2. Query-related statistics for IR test collections

that occur only once in the corpus. No stemming was used to derive these counts. By
scanning the first rows of the table 3.1.1 it is clear that these collections are quite different
with regard to the number of constituent documents and the size of their vocabulary. If
the intrinsic dimensionality of a data set bears some relation to these characteristics, such
a spread is desirable.

The third through fifth rows of Table 3.1.1 describe term-related aspects of each data
set. For instance, row three, median term frequency, shows the number of times that a term
with middling frequency appears in each database. Likewise variance of term frequency gives
the variance of term frequencies across all terms in a given collection. Finally, mazimum
term frequency is the number of occurrences of the most common term in the collection.
Again, the selected data sets evince a wide variety of values on these criteria. For instance,
although CRAN contains a similar number of documents to CF, its term variance is much
higher than CF’s. On the other hand, CACM contains many more documents than CRAN,
yet its term variance is relatively low.

Rows six and seven of Table 3.1.1 relate information about each collection’s document
characteristics. Thus median document length is based on a count of the number of distinct
terms per document. The variance of distinct word counts per document is given in variance
of document length.

The last two rows of Table 3.1.1 pertain to the relationship between terms and docu-
ments. Row eight, median documents per term describes, on average, how many documents
a given term appears in. Thus for CACM, the average (i.e. median) term occurs at least
once in 13 documents, 0.4% of the total number of documents. On the other hand, MED-
LINE’s median term occurs in only 9 documents, which is 0.8% of that collection’s total
document count. CRAN’s median-frequency term occurs in 18 documents, approximately

1.3% of its total document population.
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In choosing my test collections I relied on the metrics of Table 3.1.1 as a rough approx-
imation of several informal corpus characteristics. First, to maximize the diversity of my
experimental parameters, I aimed for data sets that were of various sizes, both with regard
to document count and vocabulary size. At the outset I suspected that the intrinsic dimen-
sionality of a data set would be substantially less than the rank of the data set. But it was
of interest to note how k,,; relates to these features of a data set, and how various dimen-
sionality predictors fare on data of diverse rank. Second, I desired input data with distinct
patterns of term distribution. I hoped that such distributions would reflect distinct domains
of coverage across these databases. By selecting data sets with varying numbers of docu-
ments per term, I tried to ensure that a different relationship between terms, documents,
and concepts obtained among the various collections.

While the criteria that bear on the intrinsic dimensionality of a data set are, I believe,
query-independent, I also consulted the data shown in Table 3.1.2 when selecting test collec-
tions. This table describes the relationship between queries and documents in each data set.
Because Cranfield-style evaluation is query-specific, the identification of an observed kqpt
may be colored by the statistical relationship between queries and documents. As shown
in Table 3.1.2, T have selected test collections that vary not only in the overall number of
queries, but also in the median number of relevant documents per query and in the variance
of this measure. As discussed in Section 4.1, this distribution came to the fore in the anal-
ysis of the CISI data, where the observed k,y; measurements showed signs of interpolation
artifacts.

It is also worth noting that four of the selected test collections, CACM, CISI, CRAN,
and MED, were also appealing because they have been used in Ding’s theoretical work on
dimensionality reduction for IR [36, 37]|. Thus using these collections for my own analysis
allows direct comparison with the results obtained under other studies of similar problems.
Finally, in addition to these four collections, I included two versions of the Cystic Fibrosis
database, CF and CF_FULL, because of their unique relationship. That is, in many re-
spects, CF is quite similar statistically to other selected collections. However, I include it

because it makes an interesting baseline with which to describe the intrinsic dimensionality
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of CF_ FULL, the only selected database that represents documents in their entirety, instead
of simply reporting abstracts or titles. Thus it will be of particular interest to compare the
intrinsic dimensionality of these two data sets that treat identical material, but that do so

in differing formats.

3.2. Performance Measures

Eigenvalue-based methods of estimating a corpus’ intrinsic dimensionality are especially
attractive because they are query independent. While most ad hoc approaches to dimen-
sionality estimation in LSI depend on analyzing system performance on a pre-classified test
collection of documents, the methods described in Section 2.3 may be applied without re-
course to pre-existing relevance judgements. For example, we may use the eigenvalue-one
rule or parallel analysis to estimate the intrinsic dimensionality of any corpus, regardless of
the presence or absence of relevance judgements.

Nonetheless, of special interest during my analysis was judging the quality of each di-
mensionality estimation technique using traditional, Cranfield-style evaluation. My goal was
to discover IR models—i.e. dimensional parameterizations—that optimize retrieval perfor-
mance. To align this analysis with the mainstream of IR research, I define observed optimal
performance in terms of Cranfield-based metrics. In particular, I offer the following defini-

tion:

e Optimal Observed Performance (observed kopt(cy,p;)): An IR system is performing
at its observed optimum with respect to a corpus ¢, and a given performance
measure p; if its current parameterization m; yields the best value of p; across all

observed parameterizations, mj,j =1---n.

For the purposes of this study, I have based the identification of observed optimal perfor-
mance on the performance measures listed in Table 3.2.1. Descriptions of these measures is
given in Section 2.4. To discover the optimal observed performance of a given LSI model
requires that we employ a single-measure yardstick for IR performance. This allows us to
take such a measurement at each parameterization of k, and to define the observed kop; as

that value of k that gives the best measured performance. It is important to stress that
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| Measure | Abbreviation | Description |

Average Precision PR average precision at 25%, 50%, and 75% recall
Optimal F opt. F max. observed harmonic mean of precision & recall
Av. Search Length ASL avg. location of a rel. doc. in ranked output

TABLE 3.2.1. Analyzed performance measures

[ [4SL] F [ Pr |
ASL | 1.000 |-0.906 | -0.883
F 1-0.906 | 1.000 | 0.997
Pr |-0.883 | 0.997 | 1.000
TABLE 3.2.2. Correlation between ASL, opt. F, and PR on MEDLINFE data

observed k,p; is taken with respect to a given corpus and a given performance metric. In this
sense it is distinct from the intrinsic dimensionality of the corpus (which I denote simply as
kopt), a parameter whose value is invariant across performance metrics.

I have selected the metrics shown in Table 3.2.1 for a number of reasons. First, average
precision has become the lingua franca of IR research. As such, defining performance in
terms of precision and recall is appealing insofar as it aligns my results with the majority
of work in the field. However, there is little theoretical basis to the use of average precision.
Thus I supplement my analysis with two other metrics (optimal F and ASL) in hopes of
assessing the validity of my observations. In other words, it will be of interest to note
whether observed optimal performance with regard to precision, ASL and optimal F' comes
at similar parameterizations of k. If the notion of observed optimal performance is valid—
that is, if observed optimality relates to the intrinsic dimensionality of a corpus—I expect
to see overlap among the three performance measures. Such a hypothesis is borne out by
Figures 3.2.1, 3.2.2 and 3.2.3, which show performance according to each measure as k is
increased (in increments of 15 dimensions) from 1 to kpq, on the MED data.

As is evident in these plots, there seems to be a strong correspondence between the three
measures. All three show poor performance for very low values of k. Adding the first hundred
singular triplets improves performance according to all three measures, as well. Moreover,
all three measures decline as k increases from approximately k = 150 to k = kp,q- Table

3.2.2 shows the correlation matrix for these data. The strong monotonicity among ASL,
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FIGURE 3.2.1. Pr for increasing k-values on Medline data

optimal F, and Pr suggests that all three metrics are measuring the the same phenomenon.
Insofar as these measures agree on a range of optimality in the vicinity of £ ~ 150 they
suggest that the intrinsic dimensionality of the MEDLINE data is also in this range. Thus
the bulk of my analysis involved comparing the five eigenvalue-based estimations of kqpt

against this observation.

3.3. Amended Parallel Analysis

In this section I describe amended parallel analysis (APA), a novel method for estimat-

ing the intrinsic dimensionality of a data set. Like other eigenvalue-based criteria, APA

102



0.6

L0
9 -
<
n o
x
@
z (90]
O -
N
o
- ]
o | | | | | |
0 200 400 600 800 1000
k Value

FIGURE 3.2.2. Optimal F for increasing k-values on MEDLINE data

attempts to discover which of the r eigenvalues derived from the n X p matrix A are “sig-
nificant.” Dimensionality reduction then proceeds by discarding singular vectors associated
with insignificant eigenvalues. As the name suggests, APA is based on Horn’s so-called
parallel analysis which was introduced in Section 2.3. The technique involves estimating
for each eigenvalue )\ its departure from Agx, the k** eigenvalue expected if the variables
(columns) of A were statistically independent. The goal of APA is to reject those principal
components (or singular vectors, in the case of LSI) whose corresponding eigenvalues are
significantly less than the eigenvalues expected under the null case of independence. How-

ever, the proposed method differs from Horn’s insofar as we derive confidence intervals for
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Aok- Under APA a given eigenvalue A is rejected if it lies below the lower bound of the
1 — a% confidence interval for \gy.

Defining the null case in terms of confidence intervals leads APA to offer equal or higher
dimensionality estimates than those afforded by traditional parallel analysis. This is some-
what at odds with the mainstream of research on parallel analysis. As described in [47] and
[57], a number of statisticians have noted the tendency of parallel analysis to overestimate
the number of factors. These researchers have proposed methods of adapting parallel anal-
ysis to produce lower dimensionality estimates. However, I argue that the IR task—with

its extremely large, sparse matrices—presents a dimensionality estimation problem that is

104



substantively different from the psychometric tasks studied in the mainstream PA litera-
ture. Initial research suggested that parallel analysis tends to underestimate the intrinsic
dimensionality for IR data. Thus amended parallel analysis seeks to moderate PA’s dimen-
sionality truncation. As described in the following sections, this approach not only yields
larger models (as I hypothesize IR requires), but also brings the apparatus of traditional

hypothesis testing to the problem of dimensionality estimation.

3.3.1. The Method of APA. To estimate the intrinsic dimensionality of the n X p matrix
A we begin by computing the eigenvalues A1, Ag,--- , A, of the p X p covariance matrix S of
rank r. As discussed in Section 2.3 each eigenvalue A; is the amount of variance captured
by the k¥ principal component of S. To estimate the intrinsic dimensionality of A we wish
to discriminate between “large” eigenvalues and “small” ones. Thus the problem involves
deriving a suitable criterion for judging the significance of principal components based on
the magnitude of their corresponding eigenvalues.

APA begins with the assumption, noted in [3, 71, 79, 116] that the utility of dimen-
sionality reduction is predicated on the presence of correlation among the variables of A.
That is, if the p columns of A were independent there would be no room for representational
improvement by projecting A onto a low dimensional subspace because the columns of A
would, in such a case, already be its principal components. For example, consider a data set
that possesses five independent variables, represented by the n x 5 matrix A, with covariance

matrix S = I5:

(1000 0
01000
S=|100100
00010
0000 1

As an identity matrix S is orthogonal, so that S8’S = SS’ = I. A standard result from linear
algebra reminds us that the eigenvalues of a diagonal matrix are in fact the elements that

appear on its main diagonal. Thus constructing a scree plot for the principal components
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F1GURE 3.3.1. Scree plot for orthogonal data

of A yields Figure 3.3.1. This scree plot shows that the eigenvalues of S divide the variance
of the matrix equally. Because the columns of A are orthogonal to begin with, there is no
redundancy among the data. Thus the principal components are equally significant, and
there is no rationale for discarding any of them.

In practice, such a matrix as A is unlikely to exist. Even a matrix generated from
an independent probability distribution will display some opportunistic correlation due to
sampling error. It is the degree to which such an independent matrix deviates from true
orthogonality that bears on the slope of its scree plot. To examine this phenomenon, consider
Figure 3.3.2, which displays scree plots for three simulated 10-variate data sets. Each data

set was drawn from a distribution with mean vector equal to 0 and covariance matrix Iyy.
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FIGURE 3.3.2. Scree plots of simulated independent data

The black points in Figure 3.3.2 are the eigenvalues from a data set with only 20 observations.
On the other hand, the grey triangles derive from 100 observations. Finally, the dark grey
pluses were obtained from a sample of 2000 data points. For each sampled data set let S
be the observed covariance matrix. Because of the law of large numbers, as the number of
observations in the sample grows, S will approach the identity matrix that parameterized
the data. Thus Figure 3.3.2 shows that as the data approach independence, their scree plot
will become less steep. Figure 3.3.1 marks the extreme case of this behavior. Amended
parallel analysis operates by assuming that we desire to reduce dimensionality to account
for term correlations, and that we may estimate the degree of term correlation in the data

by recourse to analysis of the slope of the corpus’ scree plot.

107



Assuming that dimensionality reduction is warranted due to correlation among variables,
APA operates by rejecting principal components whose eigenvalues are significantly smaller
than the corresponding eigenvalues expected under the null hypothesis: the wvariables of
A are independent. As in Horn’s parallel analysis, amended PA uses the fact that the
eigenvalues of a matrix with independent variates will decrease in magnitude at a different
rate than the eigenvalues of a matrix with significant inter-variable correlation (as shown
above in Figures 3.3.1 and 3.3.2). As described in Section 2.3.3 the point where the observed
eigenvalues become less than the null eigenvalues gives an estimate of the amount of error
incurred by application of the VSM’s assumption of term independence.

To estimate the magnitude of eigenvalues under the null hypothesis, parallel analysis uses
a statistical simulation. Let p be the p-dimensional mean vector of A and s be the vector
of variances for each column of A. Also let o = s'I, be a p x p diagonal matrix with the
variances of A on the main diagonal. We thus generate the n x p matrix Af by sampling n p-
vectors from the multivariate normal distribution with mean vector g and covariance matrix
o. The matrix Aj is drawn from a distribution very similar to the estimated distribution of
A, with the caveat that the distribution of Af has no parameterized covariance among the
data (sampling error will generate some erroneous covariance). Having obtained the matrix
drawn from an independent distribution, we calculate S§ the sample covariance matrix of
Aj. Next we find A, the vector of eigenvalues of S§. This vector comprises an estimate of
the eigenvalues expected if A had independent variables.

Parallel analysis proceeds by calculating Aj many times, across a number of generations
of Aj. Having calculated Aj B times, we finally calculate X;, the average of our B ob-
servations of Aj. Thus 3\\31 is the average magnitude of the first eigenvalue of Sj across B
samples.

Horn defines significant eigenvalues to be those that are greater than their corresponding
entry in X; As discussed above, Figure 2.3.5 gives a visual representation of traditional
parallel analysis. Shown in black are the eigenvalues derived from the athletic physiology
data, while in grey are the values of 3\3 after B = 100 simulations. Parallel analysis instructs

us to discard all eigenvalues to the right of the point where the two scree plots in Figure
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2.3.5 cross each other. Horn’s approach retains the first and second principal components
because they are greater than the first and second entries of X;

Parallel analysis is a powerful method for dimensionality selection. It has been shown to
perform well on a variety of data [1, 76, 142]. However, Horn’s method is prone to error due
to the somewhat arbitrary nature of the cutoff point that it defines. The method defines as
crucial the point where the scree plot of observed data crosses the scree plot of the simulated,
independent data. Another way to understand this is to consider that parallel analysis is
concerned with the distance between each Ay and :\\(’;k. Under Horn’s method, we retain all
principal components where the corresponding Ag —Xsk > 0. Let G, = Mg —Xak be a random
variable of unspecified distribution with mean A\, — //\\3,c and variance ¢2. Horn’s method
gives a point estimate of G. Traditional parallel analysis retains all principal components
with corresponding G = g > 0. This is unsatisfying insofar as basing our decision on g, a
point estimate, fails to account for the variability of G.

The proposed method of amended parallel analysis answers this problem by deriving
confidence intervals for :\\(‘;k. By extension this gives a confidence interval for G. APA
thus operates by retaining all principal components whose A is significantly less than the
corresponding nga in the traditional statistical sense. Thus the researcher may derive, say,
a 95% confidence interval on G, which results in APA rejecting those principal components
for whom the corresponding Ay lies below 95% confidence interval for X(’;k This technique
is useful insofar as it applies a more rigorous rationale to the prediction of the intrinsic
dimensionality than one based on a point estimate. It is also helpful because it leads to higher
estimations of ko than does traditional, point-based parallel analysis. I anticipate that in
the highly complex arena of IR, a less aggressive dimensionality is merited than traditional
PA is prone to give. Thus the confidence interval-based approach described here constitutes
a well motivated amendment to horn’s technique that will improve its applicability to the
task at hand.
3.3.1.1. The Idea of Confidence Intervals. Confidence intervals (CI’s) are integral to the field
of inferential statistics [11]. Closely related to hypothesis testing, CI’s bring the theory of

probability to bear on the matter of predicting a population parameter based on a statistic
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calculated on a random sample. For example, consider a researcher who wishes to estimate
the average height of Americans. Let X be the random variable height, which we shall
assume is normally distributed N (g o). Thus p is the true average height of Americans,
while ¢ is the true standard deviation of X. To estimate y we might take a random sample
of, say, 1000 Americans. For each member of the sample, we calculate X = z, his or her
height. In such an experiment we derive a point estimate of u by:

>ict @i
1000

T =

which is simply the sample mean height. Due to the distribution of X and the unbiasedness
of the statistical average, F(X) = E(%) = p. Inferential statistics allows us to estimate the
accuracy of our estimate T. That is, having estimated p by calculating T, we now wish to
know something about the relationship between our statistic and the parameter it estimates.

Crucial to understanding confidence intervals is the notion of a statistic’s standard error.
To find this, we consider our calculated average T to be a sample from the random variable
X, the population of means calculated on samples from X. What we wish to know, then, is
how likely is it that our observed Z is close to the population parameter . By treating X
as a random variate in its own right with T as a point estimate of X, we can use probability
theory to estimate their relation.

The central limit theorem of univariate statistical theory [11, 44| states that the distri-

bution of the statistic X is normal:

X“N(Mﬁ)

The expected value of X is thus the population parameter u. However, the standard de-

o

viation of X = —. Thus the expected values of X and X are the same, pu. However, the

ﬂ

standard deviation of X is smaller than the deviation of X. This is why averages are useful;

they use our data to tell us more about y by virtue of having less spread around the true

parameter value. In this example, the standard deviation of X = -Z; thus as n becomes

vn’
large, observations Z from X will be centered more closely around the population mean p.

The standard deviation of a statistic is called the standard error of the statistic.
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Speaking more formally, let 4 be an unknown parameter of the population X, from
which we have a random sample X1, Xo,--- X,,. A confidence interval for u is an interval
C = (L, U) that includes the unknown true value of y with a pre-specified probability 1— .

Formally, we have:
PL<p<U]l=1-a

Thus C = (L,U) gives a 100(1 — a)% confidence interval for .

To construct a 95% confidence interval we begin with an unbiased point estimate of u, Z.
We also consider the standard error of X = % Due to the central limit theorem we know
that X will tend to be centered around p. The definition of the Normal distribution states
that with probability 0.95 a normal random variable will lie within 1.96 standard deviations

of its mean. Thus for X:

g

g
Plp—1.96—— < F <+ 1.96—=] = 0.95
[ N ﬁ]
which is equivalent to:
PlF—1.96-— < p <7+ 1.96——] = 0.95

Vi v

which in turn leads to the following confidence interval for u:

g g
7—1.96-, T+1.96-—
(= 19672, 7+ 19677

where 1.96 is the so-called z-score for the 95% confidence level. This interval informs us

)

that with probability 0.95, the population mean y lies within 1.96 standard errors of our
observed point estimate .

Returning to the matter of amended parallel analysis, we wish to obtain confidence
intervals on statistics other than average height. In this case we wish to estimate the
accuracy of the statistic ng, the k' element of the vector of eigenvalues averaged across

simulations of independent data.
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It would be tempting to fashion a 95% confidence interval fori(*;k via:

(e — 1.96——, Nt + 1.96——

VB VB

where s is the standard deviation of the k** eigenvalues across B simulations. However,

)

such a confidence interval is unjustified in the case of parallel analysis because we have little
reason to believe that ng is normally distributed. Consider Figure 3.3.3, which shows a
histogram of the magnitude of the /):36 after 100 simulations on the athletic physiology data.
The distribution appears skewed to the right and possibly bimodal. This informal check
for normality is in agreement with a large body of literature that suggests that eigenvalues

cannot be assumed to follow a Gaussian distribution [105, 80, 147, 42]. Without the
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| Symbol | Meaning |

X* Boostrap sample from X
0* Statistic # calculated from bootstrap sample
0*(b) | Caclulation of € from the bth iteration of X*
TABLE 3.3.1. Bootstrap confidence interval notation

assumption of normality, adopting the 95% Z-score 1.96 is unfounded and is thus likely to
give an improper confidence bound.

3.3.1.2. Bootstrap Confidence Intervals. Without some idea of the distribution of our eigen-
values, we turn to non-parametric methods of deriving confidence intervals. In particular,
APA makes use of the bootstrap [43, 44|, a computer-intensive resampling method that
allows us to estimate the standard deviation of an eigenvalue Ax without recourse to assump-
tions about its distribution. Resampling techniques estimate the variability of a statistic 6
by drawing observations (with replacement) from a sample X to derive a simulated sample
X*. Having constructed X*, bootstrap analysis proceeds by calculating 8 on X* to find
0*. By repeating this process B times, one can achieve a quantifiable appreciation of the
variability of 8 without depending on parametric assumptions.

Before proceeding I offer a brief summary of notation related to the bootstrap. Table
3.3.1 shows several symbols that inform the following analysis. Thus, for instance, X*(b) is
the b bootstrap sample taken by selecting n rows at random (with replacement) from the
n X p matrix X.

Bootstrapping is common in many areas of inferential statistics, and it is not surprising
that it has found its way into the problem of selecting significant principal components.
For instance Lambert et al. use bootstrapping of eigenvalues to augment the eigenvalue-
one criterion [88]. They suggest that the stopping point of A = 1 is arbitrary, and that
our cutoff should account for the variability of each A. Thus they use the bootstrap to
derive a confidence interval for each Ay, suggesting that those principal components should
be retained whose corresponding A has a confidence interval that is entirely greater than
1. Likewise Jackson uses bootstrap analysis of A to augment the hypothesis test approach
described earlier as Bartlett’s test of isotrapy [76]. Arguing that we should discard all

eigenvalues that are not appreciably different from their neighbors, Jackson suggests that
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we retain those principal components whose eigenvalues’ confidence intervals lie outside
the confidence intervals of their neighbors. Thus Jackson’s approach amounts to a non-
parametric hypothesis test of equality between Ay and Ag41.

Under parallel analysis we wish to derive confidence intervals for Ag, the eigenvalues of
independent data as specified by Horn’s Ag. To begin building the confidence interval, we
define the following variables. Let A(b) be the b bootstrap sample of Ag. Let ng be
the average magnitude of the k** eigenvalue across our B samples. Also define the standard

~
error of A0k

(3.3.1) sep = ) Nk(b) — Xgpl?/(B — 1))2
b=1

where A} (b) is the k' eigenvalue of the ™ bootstrap sample.

To construct the confidence interval we use the so-called bootstrap-t approach, discussed
in [44, ch. 12] (on which the following discussion draws heavily). In the discussion above,
I noted that its lack of normality prohibits us from adopting the standard Z-score in our

estimation of the variability of the statistic Ay,. Under the bootstrap-t method, we instead

calculate ¢*(b), a non-parametric estimate of the likelihood of observing the bt observation
of Aj:

* b _ A*
(3.3.2) t*(b) = M

We thus find the o percentile of ¢*(b) by the value #%) (i.e. the bootstrap-t) such that
(3.3.3) #{t*(b) <t Y}/B = o

In other words if we have B = 100 bootstrap iterations, the estimate of the fifth percentile
point is the fifth largest value of t*(b) and the 95th percentile is given by the 95th largest
t*(b). This approach essentially allows us to construct a pseudo-probability table, tailored to
the distribution of the observed data. In other words, we observe the variability of our test
statistic over a wide number of iterations, generating ¢*(b) for each of our B = b samples.

Based on these calculations we derive probability estimates.
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Having thus used our pseudo-table of #*(b) values to derive an appropriate #®), our

bootstrap-t confidence interval is given by Equation 3.3.4.
(3.3.4) e — 2@ Xg, — 702,

So with probability 1 — a we state that if given infinite data from the same distribution that
gives A, the k' null eigenvalue \ox would lie within the interval specified by Equation 3.3.4.

Performing APA involves rejecting those principal components whose associated eigen-
values A\ lie below the confidence interval of the corresponding Ag;. Whereas Horn’s tradi-
tional parallel analysis gives us a point estimate of the cutoff between meaningful and non-
meaningful principal components, amended parallel analysis supplements this point estimate
by accounting for the sampling distribution of the null eigenvalues. Thus APA operates by
rejecting those principal components whose variance—i.e. whose eigenvalue—is significantly
smaller than the variance of principal components expected under the assumption of term

independence.

3.3.2. An Alternate understanding of APA. It may be objected that the distribution
of two null eigenvalues A\gr and Aoy k # k', are not independent. Therefore taking separate
confidence intervals on each statistic is inappropriate. However, I argue that the effect of
this problem is mitigated by the fact that the variables of Ay are by definition independent,
and therefore any correlational structure in A is due to sampling error. Thus the sampling
distribution of a given null eigenvalue Ay, will be negligibly affected by the distribution of
the remaining null eigenvalues.

To demonstrate that this is the case, I offer an alternative definition of the APA proce-
dure that obviates the problem of null eigenvalue correlation. Applications of this alternate
version of APA yield approximately the same dimensionality estimate as the articulation
given above, modulo a small implementation-specific difference.

Instead of calculating a confidence interval on each null eigenvalue, one may estimate
the data’s intrinsic dimensionality by calculating D*(b), the value of k£ at which the observed
eigenvalues become smaller than the null eigenvalues generated by the b** bootstrap sample.

We may think of this as the distance along the z-axis of a scree plot between the origin and
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| | CACM | CF | CF_FULL | CISI | CRAN | MEDLINE |

Standard APA 698 76 45 80 94 87
Alternate APA | 698 75 45 80 88 83
TABLE 3.3.2. Estimates derived by two implementations of APA

the point of crossing. Calculating D* over B replications gives a vector of estimates of D,
the true crossing point of observed and null eigenvalues. Using the bootstrap-t approach
described above, then, one can construct a 1 — a% confidence interval on D. That is, the
standard error of D* is given by:

B

(3.3.5) sep = {>ID"(b) - DP/(B - 1)}

b=1

where D" is the mean of the B observations of D*. Given this standard error, confidence

intervals are based on the bootstrap-t score given in Equation 3.3.6.

(3.3.6) py= 2O -0
Sep

And a 1 — a% confidence interval is computed by:
(3.3.7) (D" — 3, D" — (1))

where 1) is given above in Equation 3.3.3.

In terms of a scree plot, the original definition of APA given above is concerned with
the relationship between the observed eigenvalues and the null eigenvalues on the y-axis.
This alternate definition of APA is concerned with the z-axis. This approach obviates the
the matter of null eigenvalue correlation insofar as it takes only a single measurement D* at
each of the B bootstrap replications.

The single-measure approach to APA yields a nearly identical solution to the method
proposed above. Table 3.3.2 shows the estimates of intrinsic dimensionality for each our the
six corpora tested in this experiment. Clearly the two definitions of APA yield very similar
results. Moreover, I argue that the results could be made even more similar by means of
interpolation. That is, the alternate definition of APA measures D*, which is an integer-

valued variable, corresponding to a particular dimensionality. On the other hand, the original
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definition of APA is concerned with Aj,, which is real-valued. This difference in measurement
adds to the divergence of estimates given by each of the methods. If instead of individual
points corresponding to each eigenvalue, D were measured on a continuous function defining
the distribution of observed and null eigenvalues in a scree plot, the actual point of crossing
between real and null eigenvalues might occur between two values of k. By interpolating
the slope of each function it would thus be possible to improve the correspondence between
each approach to APA. Even without such interpolation, however, the methods yield very
similar answers. A paired t-test on equality of treatments of the values given in table3.3.2
yielded p = 0.14, suggesting that the two methods are statistically indistinguishable for our
data. For the simulated data described in Chapter 5 both definitions of APA gave identical
results for all parameterizations.

Although the alternate definition of APA is attractive insofar as it obviates the problem
of null eigenvalue correlation, in the remainder of this dissertation I report results obtained
by pursuing the first articulation of the method. I prefer the original definition of APA
because it does not necessitate any interpolation. As noted in the previous paragraph,
neither method is statistically different from the other; thus I retain the original definition

in the remainder of this study.

3.3.3. An Example of Amended Parallel Analysis. Figure 2.3.5 shows a visual rep-
resentation of traditional parallel analysis as performed on the athletic physiology data. In
this example, Horn’s method dictates that we retain the first two principal components be-
cause the scree plots of the observed data and the data generated under the null hypothesis
of independence overlap after eigenvalue number two.

To perform amended parallel analysis on these data, we begin with the same scree plot

as Horn’s. Thus we note that the observed eigenvalues are:

)\'2(1.6 1.17 0.97 0.82 0.57 0.36).

The null eigenvalues appear in Table 3.3.3, along with corresponding 95% confidence inter-
vals. These confidence intervals were obtained via the bootstrap-¢ method described above,

after 100 resampling iterations.
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| 95% CI | Dot | Aoz | Aoz | Aos | Aos | Aos |
Lower Bound 1.10 { 0.98 | 0.98 | 0.92 | 0.81 | 0.69
Observed eigenvalue | 1.17 | 1.11 | 1.06 | 0.96 | 0.86 | 0.79
Upper Bound 1.27(1.16 | 1.08 | 0.99 | 0.95 | 0.86
TABLE 3.3.3. Confidence intervals on simulated null data

Under amended parallel analysis, we begin inspecting eigenvalues at the small end and
work backwards. Thus we note that with 95% confidence 0.69 < Mg < 0.86. Because
the corresponding observed eigenvalue is smaller than the lower bound on Aypg we reject
Xs. We continue in this fashion, rejecting each eigenvalue that lies below the corresponding
null eigenvalue, until we reach A3. Note that A3 = 0.97 lies inside the confidence interval
for Ag3. Thus we conclude that the third eigenvalue is not significantly smaller than the
corresponding null eigenvalue. Moreover, all the remaining eigenvalues follow suit. Thus
we conclude that the remaining eigenvalues are significant and should be retained. Under
APA we would therefore conclude that the fourth through sixth principal components are
not significantly different in magnitude than what we would expect under the null case of
independence. As such we reject them, concluding that only the first three components of
the athletic physiology data are significant, and set &k = 3.

Figure 3.3.4 depicts the amended parallel analysis process. Asin Figure 2.3.5, eigenvalues
for the observed data appear as black dots, while the simulated null eigenvalues appear as
grey triangles. Unlike in Horn’s analysis, however, Figure 3.3.4 also shows the confidence
intervals for each eigenvalue. Figure 3.3.4 thus re-enforces the point discussed above; APA
leads us to estimate the intrinsic dimensionality of the athletic data as 3, a figure that is
greater than the estimate of 2 provided by Horn’s method. I argue that a dimensionality
truncation less aggressive than Horn’s is in order due to the variability of eigenvalues derived
during the bootstrap resampling phase of this analysis. Thus I argue that APA improves

upon traditional parallel analysis by accounting for null-eigenvalue sampling error.

3.4. Methods of Data Analysis

This section offers a brief overview of the methods of data analysis that were undertaken

during the experimental phase of this study. A complete report is given in Chapter 4. My
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FIGURE 3.3.4. Amended parallel analysis on the athletic physiology data

data analysis involved two major efforts, which were mutually reinforcing. First, I analyzed
LSI's performance at a range of dimensionalities on six standard test collections. This
yielded an estimate of each collection’s optimal dimensionality for IR. Next I attempted
to determine how each eigenvalue-based predictor correlated with the performance-based
analysis of optimal k. In other words, if average precision, ASL, and optimal F all suggest
that kep¢ = 200 for a given data set, my analysis judged how close to 200 were the predictions
derived from the eigenvalue-one criterion, the percent-of-variance rule, Bartlett’s test of
isotrapy, parallel analysis, and APA.

My analysis employed the six test collections described in Table 3.1.1. For each collection

I estimated the intrinsic dimensionality by employing the eigenvalue-based predictors shown
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| Name | Abbreviation |

eigenvalue-one EV1
Bartlett’s test of isotrapy (o = 0.01) Bartlett’s
percent of variance=80 85% Var
parallel analysis PA
amended parallel analysis (o = 0.05) APA

TABLE 3.4.1. Selected eigenvalue-based metrics for experimentation

in table 3.4.1. Details about each of these metrics are discussed above in Section 2.3.3. With
regard to parameterization of these methods, I adopted the following rationale. Bartlett’s
test is known to admit spurious principal components. As such, I used it only with a
very high confidence level, @ = 0.01. At the outset of this research I anticipated testing
the percent-of-variance criterion at a variety of parameterizations. However, preliminary
research suggested that an 85% approach yielded results that were consistently superior to
other likely percentages, such as 70% or 95%. Thus in my description of the percent-of-
variance criterion’s performance (Section 4.2.2.3) I describe how other parameterizations
would have worked for each data set, but I omit extended consideration of these alternate
parameterizations.

APA also requires that the researcher choose a confidence level prior to analysis. To
motivate my analysis, I define @ = 0.05 as a baseline throughout this experiment. In
the following data analysis, unless otherwise specified, descriptions of APA assume a 95%
confidence interval. However, APA is a new approach to dimensionality estimation, and so
in Section 4.2.2.1 I offer an analysis of how choices of a affect APA’s accuracy.

This dissertation is concerned with the suitability of eigenvalue-based dimensionality es-
timators for information retrieval applications. To address my research question, the study
used the six test collections, the three performance metrics, and five dimensionality estima-
tion techniques described in this chapter. As described in Chapter 4, the goal of my data
analysis was twofold. First, I analyzed each corpus with respect to its observed optimal di-
mensionality. The second stage of analysis involved a comparison of each eigenvalue analysis
technique. If a given corpus evinced a clearly optimal semantic subspace of kp; dimensions,
I attempted to judge how well each eigenvalue selection criterion estimated this intrinsic

dimensionality? In light of the complex data derived from this process, Chapter 5 offers a
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more simplified analysis of the dimensionality estimation problem, focusing attention on the

performance of eigenvalue-based estimators on simulated data.

3.5. Computational Tools

Before turning to the results of these experiments, however, a discussion of the compu-
tational resources that enabled this research is in order. A variety of hardware and software
was used to perform the described analyses. This section reviews salient infrastructural
choices that T have made, with an eye toward offering help to future researchers interested
in pursuing the matter of dimensionality estimation. I first describe the hardware that was
used to conduct the experiments. Next I introduce the software, describing the program-
ming environments, pre-existing software, and my own scripts that were used to conduct
this study. Finally, I address several choices related to the indexing of documents, such as
the use of stop-lists, term weighting schemes, morphological analysis, etc.

All of the experimentation was performed on a Sun 280R Sun Fire server. The machine
is equipped with 4 gigabytes of memory, 600 gigabytes of disk, and dual 770 Sparc III
processors each of which uses a sparcv9 floating point processor. This configuration allowed
the system to perform a singular value decomposition (using software described below) on
a 5831-term by 1033-document matrix (retaining all 1033 factors) in under an hour of CPU
time.

To perform the singular value decomposition and attendant information retrieval tasks, I
used the LSI software package available from Telcordia Industries. Although LSI is a propri-
etary product, the software is available under a limited license for research purposes. Licenses
may be requested via the Internet at http://1si.research.telcordia.com. The LSI soft-
ware contains several modules, all of which I make ample use. First, the suite contains a
robust program called pindex that converts a corpus of documents into a term-document
matrix. Given a properly formatted test collection, pindex generates a representation of the
collection in the Harwell-Boeing sparse matrix format. Pindex uses this sparse matrix to
perform the singular value decomposition via the single-vector Lanczos method (cf. [9, Sec-

tion 3.4]), storing the resulting singular vectors and singular values in a compressed format.
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Pindex is written in C. However, the limited research distribution does not provide source
files, instead giving only pre-compiled binaries for the Solaris operating system.

The Telcordia LSI software also includes shell scripts for performing Cranfield-type IR
experiments on a database derived by pinder. The script called runeval invokes several C
programs that project stored queries into the LSI space derived by pindex. The script then
ranks all documents against the query. As its output, runeval creates a three-column file
containing the ranked output for each query (i.e. a separate file for each query). The first
column of row % in this file is the document number of the i*® most similar document to
the query. The second column shows the cosine similarity in k-space between the query
and document i. The third column contains the relevance judgement for the i** document
against this query, given a priori by the test collection.

To interpret the output of runeval I have written Perl scripts to compute the performance
measures discussed in Section 3.2. I have also written a wrapper script that allows me to
invoke runeval many times, increasing the value of k used for each round of retrieval. In
this way I was able to perform the analysis of observed optimal dimensionality discussed
in Section 3.4. For a given data set, I thus perform Algorithm 1 to observe performance

quality across a range of dimensionalities.

Algorithm 1 Algorithm for calculating observed optimal dimensionality

(1) For k = 1...kyqy Tepeat:

(2)  For each query g: repeat:

(3) Calculate precision at four levels of recall for query q.
(4) Calculate ASL for query gq.
(5)
(6)

Calculate F for query g¢.
Average each metric across all queries to derive a single value for K = k.

All of the software used for predicting k,,; based on eigenvalue analysis has been written
using the R programming language. R is an open source statistical scripting language, avail-
able for download from http://www.r-project.org . It is an object-oriented programming
environment that is based closely on the S language from Bell Labs. Although R lacks the
speed and efficiency of compiled code, I have used it in my research due to its powerful
features for conducting statistical analysis. Figure 3.5.1 shows an example R script. This

program is used to calculate the bootstrap-t confidence interval described in Section 3.3.
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# returns a vector of the upper and lower bounds for a 1-alphaj, CI
# on the eigenvalues specified in input vector thetaStar
#
# usage: bootstrapCI(1lStar[,1], 0.05)

bootstrapCI_function(thetaStar, alpha) {
# number of bootstrap samples
b <<- length(thetaStar);
cutoffDown <<- b * (l-alpha) - 1;
cutoffUp <<- b * alpha - 1;

thetaStarHat <<- mean(thetaStar);

# get our deviations from the mean of thetaStar
zStar <<- thetaStar - thetaStarHat;

# get our estimate of the standard error of the stat thetaStar
seStar <<- sqrt(sum((zStar)~2)/(nrow(1Star)-1));

# get our vector of pseudo z-scores
zStarVec <<- zStar / seStar;

pctileDown <<- sort(zStarVec) [length(thetaStar) - cutoffDown];
pctileUp <<- sort(zStarVec) [length(thetaStar) - cutoffUpl;

down <<- thetaStarHat - (pctileDown * seStar);
up <<- thetaStarHat - (pctileUp * seStar);

return(c(up, down));

FIGURE 3.5.1. Sample R code

Despite being an interpreted language (and despite its lack of sparse matrix optimization),
R is useful for my analysis because of its native ability to treat statistical objects such as
linear models, confidence intervals, and probability distributions.

When preparing each document collection for indexing and latent semantic analysis, a
number of operational choices needed to be made. Table 3.5.1 lists these choices, along with
the values that I selected for each parameter. The values shown for term length criteria were
simply the defaults for the pinder software, and I saw no reason to alter them. Although it

is likely that better retrieval is possible with another term weighting scheme I chose tf x idf
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| Parameter | Chosen value | Description

min term length 2 minimum length (in characters) for an indexing term
max term length 1000 number of characters after which a term is truncated
local term weight tf weighting for the ith term in the jth document
global term weight idf overall weight for the ith term in the database
stop list SMART list of stop-words

TABLE 3.5.1. Text processing parameters for the study

due to its wide use in the IR literature. In a future study it would be interesting to compare
predictions and observations of kqpy; using various weighting methods, but here my goal is
simply to keep this variable constant across data sets. To remove common words from the
analysis, I employed the stop-list that comes standard with the SMART system. Like my
adoption of ¢f x idf, this choice stems not from any conviction that the SMART stop list
is better than any other, but because it is commonly used in IR experiments and will thus

improve the comparability between my study and other research.

3.6. Final Methodological Discussion

The experiments described here treated six standard IR test collections. The study
measured both the observed optimal dimensionality (via Cranfield-style evaluation) and the
optimal dimensionality predicted by five eigenvalue-based estimators. The goal of my anal-
ysis was to describe the suitability of each eigenvalue analysis technique for parameterizing
operational IR systems. Thus the discussion in the following chapters begins with an attempt
to ascertain the dimensionality of each corpus’ optimal semantic subspace retrospectively.
If such a subspace is in evidence, I measure the relationship between its optimal dimen-
sionality and the estimates afforded by each eigenvalue-based predictor. I hypothesize that
eigenvalue-based dimensionality estimators will provide strong evidence for parameterizing
LSI models in the absence of a priori relevance judgements. In particular, I am eager to
assess the performance of the proposed novel method of amended parallel analysis. Based
on the already successful parallel analysis, APA promises even greater accuracy and stronger
theoretical motivation due to its reliance on non-parametric hypothesis testing to derive an

estimate of a given corpus’ Kop;.
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This is an ambitious agenda, but it marks only an initial step in a longer study. The
research described here is concerned with finding optimal models of IR. Operating on a
variety of corpora under a variety of performance criteria allows this research to address this
question explicitly. However, LSI has implications for many other unsupervised learning ap-
plications such as synonym identification, word sense disambiguation, information filtering,
and automatic classification. By way of full disclosure, then, before I discuss the outcome
of this research, I remind the reader that the following analysis can hope to illuminate only
a portion of its problem domain. In Section 6.4, I offer a more detailed account of exactly

what this experiment speaks to and what my future efforts will address.
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CHAPTER 4

Results and Analysis

The experiments described in Section 3 yielded a large, complex body of data. In this
chapter I analyze these data to judge the utility of eigenvalues for estimating the intrinsic
dimensionality of IR systems. In response to my initial research question, I found that
a statistical analysis of a corpus’ co-occurrence matrix eigenvalues provides useful informa-
tion for optimizing the dimensionality of LSI systems. In particular, the proposed method of
amended parallel analysis (APA) gave many accurate estimates of optimal model dimension-
ality while implying a strong theoretical basis for LSI. Overall, the family of dimensionality
estimators comprised by APA, PA, and the EV1 criterion fared especially well. However, I
also discovered that different corpora respond to dimensionality reduction in complex and
idiosyncratic ways. Several corpora (e.g. MEDLINE) saw great improvement in retrieval
performance after a 90% dimensionality reduction. On the other hand, corpora such as
CF, performed best under the full-rank model. Still other data sets such as CACM and
CISI sent conflicting messages. For CACM and CISI the ASL metric was optimized under
a low-rank model, while average precision and the optimal F' measure required models of
higher dimensionality.

Because dimensionality reduction met with mixed success in my experiments, judging
dimensionality estimators via retrospective, Cranfield-style analysis demands nuanced atten-
tion. To apply such attention, this chapter begins with a general comparison of IR perfor-
mance under reduced-rank and full-rank models for each of the six test corpora described in
Section 3.1. T address the ability of LSI to improve retrieval by discovering a low-dimensional
model of each corpus, giving special attention to the way in which Cranfield-style perfor-
mance evaluation bears on the ability to judge an LSI model’s goodness of fit. In Section 4.2

I move to a systematic comparison of each eigenvalue analysis technique’s dimensionality



estimates. Following this high-level comparison, Section 4.2.2 offers more detailed analyses
of the strengths and weaknesses of each dimensionality estimation method. Finally, Section
4.3 summarizes the data presented here, articulating how my findings bear on the research

questions articulated in Section 1 and on the theory of LSI more generally.

4.1. Evidence of Optimal Semantic Subspaces for IR

This section considers the effect of dimensionality reduction on IR performance for each
of the test corpora. Overall I found evidence that dimensionality reduction improved re-
trieval moderately. Yet the dynamics of this improvement—and the concomitantly implied
dimensionality of each corpus’ optimal semantic subspace—was complex. This complexity
is to be expected. Despite the intuitive and theoretical appeal of LSI, its ability to improve
retrieval over the classic vector space model has never been conclusively proven. Instead,
Deerwester et al. suggest that dimensionality reduction is well suited to certain corpora,
while offering little benefit for others [32|. Parry Husbands, for instance, has argued that
in its most basic articulation LSI is poorly equipped to model extremely large corpora [73].
On the other hand, Susan Dumais reports excellent performance in her application of LSI
on several TREC experiments [38, 39, 40|.

Confronted with these conflicting reports, it is not surprising that LSI’s performance
on the six corpora described in Section 3.1 ran a wide gamut. I found that aggressive
dimensionality truncation was merited in the case of the MEDLINE data, for instance; while
the full-text CF data brooked relatively little dimensionality reduction. In still other cases—
e.g. CACM and CRAN—retrospective, Cranfield-style performance measures disagreed on

optimal k, offering widely divergent interpretations of the system’s intrinsic dimensionality.

4.1.1. Overview of Observed Optimal Dimensionality Findings. In this section I
analyze the ability of LSI to discover what Ding terms an optimal semantic subspace of each
corpus [36, 37]. At issue here is whether, for a given corpus, LSI’s low-rank approximation
of the term-document matrix A improved the similarity model over the full-rank model. If
LSI did improve a system’s similarity function, I attempt to ascertain which value of k led

to the most marked improvement.
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CACM CF | CF_FULL| CISI| CRAN | MED
Docs 3204 | 1239 392 | 1460 1398 | 1033
Terms 5831 5116 9549 | 5615 4612 | 3204
Fopt (ASL) 271 1067 212 | 751 121 o1
ASL at kop (ASL) | 386.61 | 345.34 171.41 | 385.24 | 329.03 | 60.43
kmaz — kopt (ASL) 2933 172 180 709 1277 942
var at kopt (ASL) 04| 095 064 073| 019| 0.16
overfit (ASL) -71.96 | -6.65 -1.44 | -4.52 | -24.58 | -58.33
kopt (Pr) 1936 872 257 | 1276 661 151
Fmaz — Fopt (PT) 1268 | 367 135| 184| 737| 882
Pr at Koyt (Pr) 0.1375 | 0.0838 0.0446 | 0.1302 0.136 | 0.5599
var at kopt (Pr) 1 0.87 0.74 0.96 0.71 0.25
overfit (Pr) 0.002 | 0.0003 0.012 | 0.0006 | 0.003 | 0.0366
fopt (F) 2660 | 872 957 | 1411 | 811| 151
kmaz — kopt(F) 544 367 135 49 o587 882
F at kopt (F) 0.2171 | 0.1391 0.068 | 0.2092 | 0.2289 | 0.5823
var at kopt (F) 1 0.87 0.74 0.99 0.8 0.25
overfit (F) 0| 0.0008 0.0038 | 0.0004 | 0.001| 0.029

TABLE 4.1.1. Evidence of optimal semantic subspaces

Using Cranfield-style evaluation to gauge the utility of dimensionality reduction sug-
gests that overall, reduced-rank models improved retrieval over full-rank models. However,
the amount of improvement afforded by LSI and the amount of dimensionality reduction
needed to obtain an optimal model varied widely across corpora. Table 4.1.1 summarizes
my findings with respect to observed k,,;. For each of the three performance metrics de-
tailed in Section 3.2 Table 4.1.1 reports five statistics: the value of k£ that led to optimal
performance with respect to the measure, the amount of dimensionality reduction called for
by the metric (i.e. kmezr — kopt), the actual value of the performance metric observed for
k = kopt, the proportion of total variance captured by this k-dimensional model, and the
difference between performance at k = kop; and performance at k = Kpag. Thus kepr(m)
gives the observed optimal dimensionality for corpus ¢ with respect to measure m. The row
labeled var at kopt(m) gives the percent of total variance captured by measure m’s optimal
model. And owverfit(m) approximates the strength of overfitting effect seen for measure m
on corpus c.

Two important results are clear in Table 4.1.1. First, the rank of a data set and its

observed optimal dimensionality appear to be approximately linear in their relationship.
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The correlation between each corpus’ rank and the optimal dimensionality according to
average precision was 0.9. For optimal F' the correlation was 0.94. The second important
result evident in Table 4.1.1 is disagreement among the evaluation metrics. In many cases
the three performance metrics were optimized at widely different dimensionalities. Overall,
ASL calls for models of lower dimensionality than do average precision and optimal F. Thus
no linear relationship was evident between matrix rank and ASL’s optimal dimensionality.
While the close agreement between average precision and optimal F might tempt us to
discount ASL because of its divergence from their values, the ASL metric has proven robust
in several analyses (cf. [98, 97]). Before turning to a general analysis of Table 4.1.1, then,
I argue that our attention will need to seek a balance between the models called for by each
performance metric.

Among the data of Table 4.1.1, the most aggressive dimensionality reduction was mer-
ited for the MEDLINE corpus. Using the ASL measure, MEDLINE’s observed optimal
dimensionality was 91, merely 8.8% of the total possible dimensions. Similar results were
obtained via the precision and optimal F' metrics, with kopi(Pr) = kope(F) = 151, or 14%
of the full-rank model. Figure 4.1.1 shows interpolated recall /precision graphs of three re-
trieval models. Performance of the full-rank model is shown with black dots, while ASL’s
optimal model appears as dark grey triangles, and performance for k = kgt (Pr) is light
grey pluses. While the full-rank model appears to have some advantage at very low levels of
recall, the results suggest that LSI’s reduced model improves retrieval for MEDLINE across
a broad spectrum of recall levels. This is in step with suggestions by Deerwester et al. that
MEDLINE is especially amenable to dimensionality reduction because it was constructed by
a series of keyword queries. This implies that a set of well-defined concepts may be evident
in the MEDLINE data, a fact that works in LSI’s favor [32]. Evidence that MEDLINE is
well-suited for dimensionality reduction is also manifest in the fact that the precision/recall
curves obtained by setting k = kopt(Pr) are nearly identical to those for k = kopt(ASL).
The agreement between the performance metrics suggests that in the case of MEDLINE,

Cranfield-style analysis detects the optimal semantic subspace in the vicinity of k£ = 100.
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FIGURE 4.1.1. Precision and recall for MEDLINE data

Dimensionality reduction also yielded a large improvement in retrieval for the full-text
CF data. Overall, this corpus yielded very poor performance for all models. However, as
seen in Figure 4.1.2, L.SI’s reduced rank approach improves recall and precision dramatically
over the full-rank model. Again, setting k = kopi(ASL) and k = kop(Pr) yields very similar
performance. Based on retrospective analysis, then, it seems that there is a pronounced
subspace of approximately 200 dimensions that comprises a good model for retrieval on the
CF FULL data. Yet as can be seen from Table 4.1.1, in contrast to the MEDLINE data,
an optimal model for CF_ FULL retains about 70% of the total possible variance—a modest

dimensionality reduction. Although the notion of an optimal subspace appears to be valid
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FIGURE 4.1.2. Precision and recall for the CF_FULL data

for these data, then, it is important to note that the dimensionality of this space is quite
different across data sets.

Furthermore, in analyzing performance on the CF_FULL data, we see a wholesale im-
provement over full-rank retrieval when using dimensionality reduction, suggesting that LSI’s
benefit comes to the fore given a larger vocabulary. This is especially interesting insofar as
no comparable benefit was seen on the standard CF data. When the CF data were repre-
sented only by titles and abstracts, I found no appreciable difference in performance between
the full-rank and reduced-rank models. Insofar as the subject matter and query types were
constant across these corpora, this finding suggests that characteristics of the termspace

bear significantly on the suitability of dimensionality reduction.
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In these experiments, corpora with redundant vocabularies reaped the greatest benefit
from dimensionality reduction. The data in Table 4.1.1 show a tendency towards smaller
models for corpora with greater amounts of term repetition. Across the six tested corpora,
the correlation between the median frequency of terms and the overfitting effect accord-
ing ASL was 0.71. Thus collections with greater repetition of terms benefited more from
dimensionality reduction. Likewise, I found a 64% negative correlation between the mag-
nitude of overfitting effect (measured by optimal F') and the median number of documents
that a corpus’ terms appear in (measuring performance improvement via average precision
and ASL yielded correlations of -59% and -22%, respectively). Collections with low median
term-document frequency benefited the most from dimensionality reduction. Consider, for
instance the CF and CRAN corpora. Although the number of terms and documents are
similar for each of these data sets, they responded to dimensionality reduction in distinct
ways; the optimal LSI model of CF improved ASL by only 6.65 documents, while LST im-
proved ASL for CRAN by 24.5 documents. As shown in Table 3.1.1, median term frequency
in CRAN is higher than in CF. Likewise, CRAN’s median term-document frequency is 18,
versus CF'’s term-document frequency of 12. In other words, CRAN displays more term
repetition than does CF. LSI’s advantage on the CRAN data may thus be attributable in
part to the redundancy of CRAN’s terms.

I also found that large termspaces lent advantage to dimensionality reduction. The
data show a 45% correlation between the number of terms in a corpus and the amount of
benefit (measured as ASL improvement) afforded by LSI. This measure is quite distinct
from the correlation between matrix rank and LSI advantage reported above, insofar as
for all collections, rank was determined by the number of documents. The correlations
between term-count and dimensionality reduction’s improvement in average precision and
the optimal F' measure were similar (30%, and 48%, respectively). For example, CF FULL
had by far the largest termspace. It also evinced a large improvement (relative to its overall
poor performance) by use of dimensionality reduction. On the other hand, CACM had a

small termspace (especially considering its large document space). Yet according to average
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precision and optimal F, the CACM data benefited very little, if at all from dimensionality
reduction.

In this study, then, corpora with large, or redundant term spaces were especially ripe
for LSI. To understand how the size and distribution of the termspace bears on retrieval,
we may think of LSI’s effect as entailing two parts. Given a corpus C' and a query g,
traditional keyword retrieval will derive one document ranking, R;, while LSI will give
another ranking Ry. The differences between R; and Ry will be due to two mechanisms.
First, LSI alters the weights of each cell in the term-document matrix described by C, which
will change the document ordering. I call this LSI’s “mechanism-one” effect. Mechanism
one improves retrieval in the presence of large amounts of term redundancy. Second, LSI
creates dense representational vectors for each document. Thus, as I mention in Section
2.2, queries and documents may match under LSI despite sharing no indexing terms. By
inferring term-document associations, then, LSI may rank documents highly that the classic
VSM omits from ranking entirely. I call this “mechanism-two.” In a corpus with a large
vocabulary, this second mechanism appears to come into play. For example, given its 9549-
term vocabulary, the opportunity for a CF_FULL query term to “miss” an exact match with
relevant documents is increased above, say, the 5116-term CF corpus. A larger termspace,
then, implies a greater opportunity for synonymy to impede retrieval.

Regardless of these generalizations, my goal is to gauge the intrinsic dimensionality of
each corpus. The fact that the Cranfield-style performance metrics were not always in
agreement about k. complicates this task. Consider the CACM corpus. As mentioned
above, CACM yielded little benefit from dimensionality reduction, at least so far as average
precision and optimal F' were concerned. But from Table 4.1.1 it can be seen that according
to ASL, dimensionality reduction did improve retrieval performance for CACM. To help us
understand the dynamics of dimensionality reduction, Figure 4.1.3 compares reduced-rank
and full-rank retrieval performance as measured by precision and recall for the CACM data.
Here dimensionality provides no discernible advantage, with the precision-optimized LSI
model and the full-rank solution showing nearly identical behavior. On the other hand the

ASL-optimized LSI model gives significantly worse results than the full-rank model for low
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FIGURE 4.1.3. Precision and recall for the CACM data

recall levels. All three models converge on comparable performance for high levels of recall,
with the ASL-optimized representation offering a very slight benefit. Figure 4.1.3 shows
that for the CACM data, a heavy dimensionality reduction deprives the model of important
discriminatory power, while failing to offset this deprivation with a comparable improvement
based on mechanism-two effect.

The optimal LSI models discerned via the three retrospective metrics were widely di-
vergent for CACM. Average precision and optimal F' called for very little dimensionality
reduction (kept(Pr) = 1936, and kopt(F) = 2660), while ASL called for a much more dras-
tic dimensionality reduction, of kqp:(ASL) = 271. Because Figure 4.1.3 plots performance

for CACM in terms of precision and recall, it gives the ASL-optimized model an inherent
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disadvantage. This suggests that one must be circumspect in identifying the dimensional-
ity of CACM’s optimal semantic subspace. In fact, the disagreement between performance
metrics and the failure of any of them to demonstrate a convincing improvement over the
full-rank model by means of dimensionality reduction implies that Cranfield-style analysis
may not be sufficient for identifying the intrinsic dimensionality of this corpus. This is not
surprising, as CACM only uses 64 queries, the second-lowest count among the set of test
collections. And CACM’s median number of relevant documents per query is only 12, in
the face of the largest number of total documents among the tested corpora. Thus it seems
likely that the supplied queries were not adequate to gather a complete picture of CACM’s
intrinsic dimensionality.

A similarly complex portrait emerged as I analyzed the observed optimal dimensionality
for the CISI and CRAN databases. In both cases, the three performance measures disagree
on how many dimensions an optimal model should retain. As seen in Table 4.1.1, CISI’s
best model in terms of ASL is 751-dimensional, while average precision is optimized for
k = 1276, and optimal F' performs best with 1411 dimensions. Likewise, the CRAN data
require 121, 661, and 811 dimensions to optimize ASL, precision, and optimal F), respectively.
However, this disagreement is understandable if we compare the precision/recall behavior
for each of these corpora. In both cases, dimensionality reduction appears to yield almost no
benefit or detriment to retrieval performance. That is, the difference in document rankings
afforded by each measure’s optimal model is very slight. For CRAN and CISI, then, two
things are apparent. First, query-document matching (for the supplied queries) appears to
be resistant to an overfitting effect. Secondly, and somewhat confusingly, these corpora also
appear resistant to degradation of performance by selecting parsimonious models?.

This apparent idiosyncrasy is perhaps ascribable to problems native to Cranfield-style
evaluation. In Table 3.1.2 we see that of CRAN’s 225 supplied queries, the median number of

relevant documents per query is only 7, by far the lowest number among the corpora tested

11t bears mentioning that CRAN contains a large number of documents that are not relevant to any queries.
In many studies researchers remove these documents prior to analysis. However, I did not remove these
universally non-relevant documents. In retrospect I believe that including these documents increased the
observed optimal dimensionality of CRAN, thus penalizing PA and APA’s low-dimensional models. The
findings reported here, for instance, report an observed kop: vis a vis average precision that is significantly
higher than that reported by Jiang and Littman [77].

135



Frequency
15 20 25 30
|

10

0 50 100 150

Number of Relevant Documents

FIGURE 4.1.4. Distribution of relevant documents per query (CISI)

here. Thus Cranfield-style performance metrics for this corpus will be heavily influenced
by the location in a given ranking of only a few documents, leading to possibly erratic
measurement, and a high degree of randomness in the results. Likewise, the CISI database
is prone to noisy analysis via Cranfield-style evaluation. CISI contains 76 queries, with the
median number of relevant documents per query of 30.5. But the variance of the number of
relevant documents per query is 1308.373, over six times the next largest variance observed.
In fact a small number of CISI’s queries have many relevant documents, while many have
only a handful of positive hits, as is evident in Figure 4.1.4.

My suspicion that the Cranfield methodology provides a very noisy portrait of the intrin-

sic dimensionality of corpora is borne out by an interesting result. The correlations between
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| | CACM| CF | CF_FULL| CISI | CRAN | MEDLINE |
ASL % retained | 0.085 | 0.861 0.541 0.514 | 0.087 0.088
ASL % improved | 0.157 | 0.019 0.008 0.117 0.07 0.491
PR % retained 0.604 | 0.704 0.656 0.874 | 0.473 0.146
PR % improved | 0.016 | 0.0036 0.365 0.0046 | 0.022 0.699
F % retained 0.83 0.704 0.656 0.966 | 0.58 0.146
F % improved 0.0 0.0058 0.06 0.0019 | 0.0044 0.05
TABLE 4.1.2. Summary of observed optimal dimensionality findings

the strength of each performance metric’s observed overfitting effect and the number of
queries in a given corpus were high. For instance, across the six corpora, the correlation be-
tween the overfitting effect noted under ASL and the number of queries was 0.31. Likewise,
collections with fewer queries showed less improvement under LSI as measured by average
precision and optimal F. These correlations were both -0.48. Thus the amount of improve-
ment afforded by dimensionality reduction in my data appears to owe almost as much to the
number of supplied queries as it does to the size of the termspace. This suggests that for
corpora with skewed distributions of relevant documents and queries Cranfield-style analysis
may not yield an accurate picture of intrinsic dimensionality. Comparing the accuracy of
each dimensionality estimation technique thus demands an admission that my instrument

of measurement is inherently noisy.

4.1.2. Summary of Observed Optimal Dimensionality Findings. Table 4.1.2 pro-
vides a digest of my findings on the matter of observed optimal dimensionality, as discussed
in detail above (cf. Section 4.1.1). For each corpus, Table 4.1.2 reports six statistics, two
per performance metric. Rows labeled m % retained show the percentage of possible dimen-
sions retained under the optimal model given by metric m. The rows named m % improved
reports the percent of improvement over the full-rank model afforded by the metric m’s
optimal model. In general, ASL calls for more drastic dimensionality reduction than aver-
age precision or optimal F. Also, the percentage of total dimensions retained across corpora
varies widely.

LST’s dimensionality reduction gives the most conclusive improvement for the MEDLINE
data, where low-rank models improved performance greatly, and where all three performance

metrics were in close agreement about the dimensionality of the optimal model, concurring
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that ko ~ 100. The CF_FULL data also benefited decisively from dimensionality re-
duction, as seen in Figure 4.1.2, with the concomitant region of observed optimality near
k =~ 250. The ASL metric indicated the the CRAN data merited a 92% dimensionality
reduction, yielding a 7% improvement over the full-rank model. On the other hand, the
CF data appear to respond poorly to dimensionality reduction; none of the performance
metrics noted strong evidence of a low-rank optimal semantic subspace for CF. Finally,
CACM and CISI appear to give fairly noisy data when I applied Cranfield-style analysis to
them. Due to the unusual distributions of relevant documents and queries for these corpora,
I suspect that CACM and CISI may well possess low-rank semantic subspaces, but that
the dimensionality of these spaces is obscured by the performance measurement process.
That said, CACM appeared to benefit from a 92% dimensionality reduction with respect to
ASL, yielding kopt(ASL) = 270. CISI’s kopt(ASL) of 751 (a 49% reduction) yielded an 11%
benefit in observed ASL over the full-rank model.

Overall, Cranfield-style evaluation suggests that the notion of a corpus’ optimal semantic
subspace is valid, and that it is partially observable by retrospective performance analysis
of ad hoc retrieval runs. However, there appears to be no simple way of choosing the
dimensionality of such a subspace a priori. Although I found a strong relationship between
the rank of a matrix and its optimal dimensionality via average precision, ASL frequently
disagreed with these findings. Some corpora required only 8% of their eigenvectors to yield
optimal performance, while others tolerated no significant dimensionality reduction. Thus
query-independent dimensionality estimation methods such as those described in Table 3.4.1
appear crucial for applying LSI. However, due to the inherent noisiness of Cranfield-style
analysis, evaluating the performance of eigenvalue-based dimensionality estimators will be
non-trivial. In Section 4.2 I use the performance metrics reported here to undertake such
an evaluation. To supplement these findings with less complex analysis, Chapter 5 uses

simulated data of known dimensionality to validate my empirical findings.
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4.2. Performance of Eigenvalue-Based Dimensionality Estimators

As noted in Section 4.1, my experimental results show that discerning the dimensionality
of a corpus’ optimal semantic subspace via Cranfield-style performance analysis is a complex
task. However, I found enough consistency among the results of such analysis to suggest
that retrospective performance evaluation does provide useful, if incomplete, information
about the intrinsic dimensionality of the test collections described in Section 3.1. In this
section, I use ASL, average precision, and optimal F' to compare the quality of dimensionality
estimates afforded by the eigenvalue analysis techniques outlined in Table 3.4.1. I argue that
my proposed method—amended parallel analysis—provides the best dimensionality estimate
for those cases where Cranfield-style analysis yields the most decisive picture of a low-rank
optimal semantic subspace. Moreover the family of estimators based on an error correction
rationale—APA, PA, and EV1—form a bloc of decisively good performers.

I begin my data analysis with a high-level discussion in Section 4.2.1. This section
forms the bulk of the treatment, and concerns the conditions under which one estimation
technique appears to outperform the others. Next I turn to a more detailed analysis of
amended parallel analysis, noting the differences and similarities in its estimates and those
afforded by traditional parallel analysis. I then pursue an individual analysis of the other

proposed estimation techniques in Sections 4.2.2.2 through 4.2.2.4.

4.2.1. Quality and Suitability of Eigenvalue analysis Techniques. Across the six
corpora, the five tested eigenvalue analysis techniques yielded distinct estimates of corpus
dimensionality. Despite this variation, however, these methods also exhibited some con-
sistency in their predictions. Thus parallel analysis always yielded the most parsimonious
model, followed by amended parallel analysis. On the other extreme, Bartlett’s test of
isotrapy was effectively a non-performer, always delivering models of near-full complexity.
Between these extremes, EV1 and 85% Var gave models of middling size, with EV1 pre-
dicting lower dimensionalities than 85% Var. This behavior led to a complex portrait of
estimator accuracy. To begin my comparison of each eigenvalue analysis technique’s per-
formance, consider Figure 4.2.1, which shows estimation accuracy for the MEDLINE data.

The z-axis is k, the number of dimensions included in the LST model. In all of the exper-
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FIGURE 4.2.1. ASL versus k for MEDLINE data

iments reported in this chapter, ¥ was measured from k& = knip ... kmag in increments of
fifteen?. On the y-axis I have plotted the value of ASL observed at k. Not surprisingly,
a two-dimensional model provides inadequate information for retrieval on the MEDLINE
data. But as k increases we see a dramatic improvement in retrieval performance. As shown
in Table 4.1.1, ASL on the MEDLINE data is optimized for k = 91. After this point on

the z-axis, a marked overfitting effect appears, causing ASL to increase (i.e. degrade) as

2The 15-dimensional increment was chosen primarily for practical reasons. While it would have been feasible
to test every possible dimensionality, iterating over the domain of £ by increments of fifteen was much more
efficient, and still yielded a nuanced picture of each corpus’ dimensional profile. That is, I found that
performance changed as a function of & in a stable fashion, suggesting that the chances of missing important
dynamics between k and k+15 were slim. Moreover, in [90] Landauer and Dumais perform a similar analysis
using 30-dimensional increments. Thus I hypothesized that a 15-dimensional increment provided suitable
granularity of analysis.
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I add more dimensions. Thus the full-rank model offers ASL performance inferior to the
91-dimensional model.

Superimposed on this performance plot, Figure 4.2.1 shows the dimensionality estimate
afforded by each eigenvalue analysis technique described in Table 3.4.1. Amended paral-
lel analysis (APA) yields the estimate closest to kopt(ASL), followed closely by traditional
parallel analysis. The eigenvalue-one EV1 criterion offers the next-best estimate, though it
overestimates by a wide margin. The 85% Var rule is slightly higher than EV1. Finally
Bartlett’s recommended almost no dimensionality reduction for MEDLINE. Thus APA ap-
pears to yield the best estimate of the optimal dimensionality for the MEDLINE data, an
impression borne out in Figure 4.2.2, where I have measured performance by average pre-
cision instead of ASL. Figure 4.2.2 shows an analogous region of optimal dimensionality
near k = 150. The plot for optimal F' is nearly identical to Figure 4.2.2, strengthening my
conviction that APA yields the best estimate of MEDLINE'’s intrinsic dimensionality.

A similar, though slightly more complex, picture emerges in Figure 4.2.3, which shows
performance (measured by ASL) as a function of k for the CRAN data. Again, we see a
stark improvement in performance as I add the first singular vectors to the model, followed
by a slow decay after k =~ 150. And as in Figure 4.2.1, for the CRAN database APA and
PA yield the best dimensionality estimates, with the simpler EV1 and 85% Var criteria
overestimating the optimal dimensionality.

However, in Figure 4.2.4 the more complex models recommended by the EV1 and 85%
Var approaches appear to have some merit. Figure 4.2.4 plots average precision as a function
of k for the CRAN data. It is clear from Tables 4.1.1 and 4.1.2 that ASL and average
precision disagree on the dimensionality of an optimal LSI model for the CRAN data. If
we consult only average precision, then, the EV1 and 85% Var criteria are more accurate
than PA or APA. But we must also keep in mind that the picture afforded by average
precision suggests that almost no overfitting effect is incurred by moving from k = kop(Pr)
to k = kmaz. Without a strong case for dimensionality reduction’s actual utility, we should

be skeptical about the optimality of the EV1 or 85% Var estimates.
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FIGURE 4.2.2. Precision versus k for MEDLINE data
CACM | CF | CF_FULL| CISI | CRAN | MED
APA 459 | -981 -167 | -671 =27 -4
PA 426 | -996 -170 | -679 -40 -16
EV1 1017 | -513 -41 | -100 492 380
85% Var 719 | -457 96 231 789 643
Bartlett’s 3729 | 170 178 709 1275 939

TABLE 4.2.1. Raw dimensionality estimates (ASL)

Tables 4.2.1 and 4.2.2 summarize the quality of each eigenvalue analysis technique’s
dimensionality estimates, with respect to ASL performance.
Table 4.2.1 contains the directed distance of each eigenvalue analysis technique’s dimen-

sionality estimate from the observed optimal dimensionality afforded by ASL. Thus the first
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FIGURE 4.2.3. ASL versus k for the CRAN data
CACM CF | CF_FULL CISI | CRAN | MED
APA 0.154 | -0.796 -0.426 | -0.461 | -0.019 | -0.004
PA 0.142 | -0.808 -0.434 | -0.466 | -0.029 | -0.016
EV1 0.34 | -0.416 -0.105 | -0.069 0.352 0.372
85% Var 0.24 | -0.371 0.245 0.159 0.565 0.63
Bartlett’s 0.915 | 0.138 0.454 0.487 0.913 0.92

TABLE 4.2.2. Normalized dimensionality estimates (ASL)

cell contains kopt(ASL) — kopt(APA) = 459, indicating that APA overestimated ASL’s opti-

mal model by 459 dimensions. Table 4.2.2 contains the same information as Table 4.2.1, only

in this case the cells have been normalized to fall between -1 and 1, thus making cross-corpus

comparison more meaningful. In both tables, values near 0 indicate good performance (i.e.
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FIGURE 4.2.4. Precision versus k for the CRAN data

little estimation error). The best dimensionality estimate (in terms of absolute distance) is
shown in boldface.

Similar information appears in Tables 4.2.3 through 4.2.6. These tables provide raw
and normalized distances between dimensionality estimates and the observed optimal di-
mensionality given by the average precision and optimal F' metrics. An initial inspection of
these tables shows that no single eigenvalue analysis technique offers the best dimensionality
estimates for all corpora across all metrics. However, we can gain a high-level appreciation
of these findings from Table 4.2.9, which counts how many times each dimensionality es-
timator performed best or worst among the five techniques. The 85% Var approach was

best five times, and was never worst. APA, EV1, and Bartlett’s were all best four times.
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CACM | CF | CF_FULL| CISI | CRAN | MED
APA -1206 | -786 -212 | -1196 -567 | -64
PA -1239 | -801 -215 | -1204 -580 -76
EVI -648 | -318 -86 | -625 -48 320
85% Var -946 | -30 -51 | -294 249 583
Bartlett’s 2064 | 365 133 | 184 735 879

TABLE 4.2.3. Raw dimensionality estimates (Pr)

CACM CF | CF_FULL| CISI | CRAN | MED
APA -0.403 | -0.638 -0.541 | -0.821 | -0.406 | -0.063
PA -0.414 | -0.65 -0.548 | -0.827 | -0.415| -0.074
EV1 -0.217 | -0.258 -0.219 | -0.429 | -0.034 | 0.313
85% Var | -0.316 | -0.24 -0.13 | -0.202 | 0.178 | 0.571
Bartlett’s 0.69 | 0.296 0.339 | 0.126 | 0.527| 0.861

TABLE 4.2.4. Normalized dimensionality estimates (Pr)

However, Bartlett’s was also worst nine times, while APA never gave the worst estimate.
Traditional parallel analysis offered the best estimate once, but gave the worst answer nine

times, consistently underestimating the intrinsic dimensionality of several corpora.

4.2.2. Analyses of Each Dimensionality Estimator’s Performance. Having pursued
a broad comparison of the five dimensionality estimators of interest, I now turn to an
analysis of the strengths and weaknesses of each estimation technique on its own merits.
For instance, the percent of variance approach appeared to perform favorably. However,
I argue that its success is due more to chance than to a systematic advantage over more
rigorously motivated techniques. Likewise, I note that Bartlett’s test of isotrapy performed
well on several occasions. However, its success may be understood as an indicator that
for the tested corpora, dimensionality reduction was not always merited. In general, each
eigenvalue analysis technique excelled in certain respects and failed in others. The following
sections articulate these strengths and weaknesses.

4.2.2.1. Performance of PA and APA. In Tables 4.2.7 and 4.2.8 it may be seen that APA
afforded the best dimensionality estimates on four of the eighteen pairings of a given corpus
and performance metric. Traditional PA performed best once. On the other hand, PA often
provided the worst dimensionality estimate (on nine observations). APA was never the worst

performer. But on the occasions where PA was worst, APA ranked second-to-worst. This
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CACM | CF | CF_FULL| CISI | CRAN | MED
APA -1930 | -786 -212 | -1331 =717 -64
PA -1963 | -801 -215 | -1339 -730 -76
EVI -1372 | -318 -86 | -760 -198 320
85% Var -1670 | -30 -5 | -429 99 583
Bartlett’s 1340 | 365 133 49 585 879

TABLE 4.2.5. Raw dimensionality estimates (opt F')

CACM CF | CF_FULL| CISI|CRAN | MED
APA -0.645 | -0.638 -0.541 | -0.914 | -0.514 | -0.063
PA -0.657 | -0.65 -0.548 -0.92 | -0.523 | -0.074
EV1 -0.459 | -0.258 -0.219 | -0.522 | -0.142 | 0.313
85% Var | -0.559 | -0.24 0.13 | -0.295 | -0.071 | 0.571
Bartlett’s | 0.448 | 0.296 0.454 | -0.034 | 0.419| 0.861

TABLE 4.2.6. Normalized dimensionality estimates (opt F')

| | CACM | CF |CF_FULL| CISI | CRAN | MEDLINE |
ASL PA Bartlett’s EV1 EV1 APA APA
PR EV1 85% Var | 85% Var | Bartlett’s EV1 APA
F | Bartlett’s | 8% Var | 85% Var | Bartlett’s | 85% Var APA
TABLE 4.2.7. Best dimensionality estimates

| | CACM | CF|[CF_FULL| CISI | CRAN | MEDLINE |
ASL | Bartlett’s | PA | Bartlett’s | Bartlett’s | Bartlett’s | Bartlett’s
PR | Bartlett’s | PA PA PA Bartlett’s | Bartlett’s
F PA PA PA PA PA Bartlett’s

seemingly paradoxical behavior—best and near-worst performance by a single estimator—
can be addressed to a large extent by considering which observations APA excelled at, and
which it was ill-suited for. PA consistently gave the lowest model dimensionalities among the
five analysis techniques tested here. As discussed in Section 4.1, however, Cranfield-style

evaluation failed to discern convincing benefits from dimensionality reduction for several

TABLE 4.2.8. Worst dimensionality estimates

corpora. In these cases, then, PA failed de facto.

APA provided a decisively superior estimate for the MEDLINE data, giving a value for
k that was closest to the optimal value according to all three performance metrics. Given

my discussion in Section 4.1 I feel especially confident that the Cranfield-style analysis
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| | APA | PA | EV1 | 85% Var | Bartlett’s |

Best 4 1 4 ) 4
Worst | 0 9 0 0 9
TABLE 4.2.9. Best and worst dimensionality estimates (counts)

undertaken here was able to discern the intrinsic dimensionality of the MEDLINE data.
Moreover, I suspect that the MEDLINE data are especially amenable to LSI (due at least
in part to their concept-driven construction, cf. [32]). APA’s accuracy with respect to
MEDLINE, then, is especially promising, suggesting that the proposed approach is adept at
intuiting a well-defined intrinsic dimensionality.

APA also gave the best estimate for the CRAN data, with respect to ASL performance.
However, the performance metrics were widely divergent on this corpus. Thus APA and
PA drastically underestimated the best dimensionality with respect to average precision
and optimal F' (PA was actually the worst performer in this case). However, as mentioned
above, in many IR experiments, researchers remove universally non-relevant documents from
the CRAN data. Had that been done during the current experiment, I suspect that the
observed optimal dimensionality would have been reduced greatly, and by extension, PA and
APA would have fared much better. Due to the discrepancy between performance metrics,
then, T argue that the CRAN data offer a less compelling base for dimensionality estimator
comparison than does MEDLINE. A similar dynamic emerged for the CACM data, where
PA performed best with respect to ASL, but worst vis a vis optimal F. Again, I note a wide
divergence among performance metrics’ observed kop; for CACM.

PA was the worst performer for the CF data. This is due to the fact that CF brooked
no substantial dimensionality reduction; its low-rank models were inferior to the keyword
approach according to all three performance metrics. Thus it appears to be a serious defect
in the application of PA that it fails to react to circumstances when no dimensionality
reduction is merited. PA’s inherent tendency to deliver parsimonious models emphasizes
the need for the confidence-interval based amendment utilized by APA. APA’s moderating

effect on PA assuaged the under-estimation problem to some extent, insofar as APA was

147



consistently better than PA for all corpora and all performance metrics, save one (CACM
measured by ASL).

Overall, PA appears prone to under-estimation of intrinsic dimensionality for IR appli-
cations. I return to the question of whether this error is systematic in Chapter 5. But PA’s
poor performance is somewhat unexpected insofar as early research into the application of
PA found that it tended to over-estimate the true dimensionality (cf. [57, 71, 48]). This
suggests that scaling the unsupervised learning task into highly complex environments such
as IR changes the problem qualitatively. That is, given the large number of variables native
to IR problems, the mean null eigenvalue Xak from B samples, is not necessarily the best
estimator of the corresponding population null eigenvalue.

As described in Section 3.3 APA takes account for this fact. Instead of testing Ay > ng,
APA is concerned with the 1 — a% confidence interval on //\\gk. This appears to improve
dimensionality estimation. To gauge the significance of this moderating effect, I performed
two statistical tests. First, a paired t-test was performed, testing equality of the actual
dimensionality estimates afforded by PA and APA, where the null hypothesis was Hy :
kopt(APA) = kopt(PA). The unit of analysis in this test was an individual corpus. Thus
my sample size was very small (n = 6), and one must be cautious when drawing conclusions
from it. However, APA’s improvement over PA did appear to be highly significant. The
p-value for this test was p = 0.04. Next I performed an identical test, this time testing the
equality of PA’s and APA’s estimates, normalized by the rank of each data set (i.e. analyzing
the percentage of total eigenvectors retained by each method). In this case, p = 0.001. The
difference between APA and PA is thus statistically significant. And insofar as APA appears
to outperform PA with respect to standard IR test metrics, I conclude that the difference
implies benefit in favor of APA. However, given the small sample size here, we must wonder
about the validity of the ¢-distribution. To address these misgivings, I examine the matter
of APA’s relation to PA further in Chapter 5.

APA appears to improve the dimensionality estimates afforded by PA by supplementing
estimation based on point estimates with a confidence interval-based approach. Theoreti-

cally, then, APA should be able to moderate to an arbitrary degree PA’s tendency toward
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| |a:0.1|a:0.05|a:0.01|
| kopt(APA) | 79 | 80 | 104
TABLE 4.2.10. Confidence intervals for the CISI data

under-estimation by setting an appropriate a. However, my results suggest that in practice
this is not feasible. In fact, for large IR data sets APA’s simulated null eigenvalues exhibit
such small variance that the derived confidence intervals change very little across standard
values of a. For example, consider Table 4.2.10, which shows APA’s dimensionality esti-
mates for the CISI data using various levels of confidence. According to the ASL metric,
optimal k for the CISI data is 751. Thus setting a = 0.01 would have improved APA’s
estimate over the reported 95% confidence interval. But APA’s estimate would still be far
too low. Changing the confidence level yielded similarly subtle changes to the other corpora,
as well.

Figure 4.2.5 plots the width of MEDLINE’s 95% null eigenvalue confidence intervals
against k. In black we see the width of confidence intervals generated from B = 50 boot-
strap simulations. The grey triangles are the corresponding intervals for B = 1000. Two
phenomena are notable in Figure 4.2.5. First is that the confidence intervals for the first
few eigenvalues are much wider than the intervals for large values of k. This suggests that
APA’s divergence from PA will be most dramatic if the null eigenvalues outsize the observed
eigenvalues at a relatively low value of k. It also suggests that considering the width of
APA’s confidence intervals might provide useful evidence in further amendments to parallel
analysis. Thus in forthcoming research, I anticipate using null eigenvalue variance as an
indicator of a corresponding eigenvalue’s validity.

The second phenomenon seen in Figure 4.2.5 is that as B is increased, the average width
of a 1 — a% confidence interval decreases. This phenomenon is further shown in Figure
4.2.6, which plots the variance of confidence interval width against k for the MEDLINE
data. Although setting B = 1000 gives us more data than the B = 50 case, the simulated
null eigenvalues are centered very closely around their mean. By Equation 3.3.1 we note
that as B grows, the standard error of /)\\Sk shrinks. In other words, we gain confidence

in our point estimate with a larger sample and require a narrower confidence interval to
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FIGURE 4.2.5. Widths of 95% null eigenvalue confidence intervals

satisfy our confidence requirements. This is not at all surprising. However, insofar as the
confidence intervals for B = 50 appear quite narrow in their own right, From Figure 4.2.6 it
is evident that we gain little information about the distribution of ng by undertaking many
more simulations. Thus setting B = 100, as reported in this study, appears to give a good
estimate of the true null eigenvalue confidence interval. Setting B = 1000, for example, did
not improve APA’s dimensionality estimates in this experiment to a significant degree, and
required a ten-fold increase in processing time.

Overall, amended parallel analysis appears to improve dimensionality estimation for

IR over Horn’s parallel analysis. Confronted with the vastly complex models native to
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FIGURE 4.2.6. Variance of confidence interval width

retrieval, PA consistently underestimated the optimal dimensionality discerned by Cranfield-
style performance evaluation techniques. By replacing PA’s point estimate of each null
eigenvalue Ao, with a 1 — a% confidence interval, APA improved dimensionality estimates
at a level that was statistically significant for the six corpora tested here. However, even this
amendment appears to be too little to offset PA’s problems when confronted with a data
set that merits no significant dimensionality truncation. The CF database, for instance,
did not appear to benefit from dimensionality reduction. Thus APA’s failure to derive a
high-rank model for CF must be interpreted as a defect. However, this judgement must
also be tempered by the fact that the ability of Cranfield-style evaluation to discern the

intrinsic dimensionality of a data set is itself suspect. APA, then, appears to improve
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| | CACM | CF | CF_FULL | CISI | CRAN | MED |

APA | 730 76 45 80 94 87
PA 697 71 42 72 81 75
EV1 | 1288 | 554 171 651 613 471

TABLE 4.2.11. EV1, PA, and APA dimensionality estimates

| | CACM | CF | CF_FULL| CISI | CRAN | MED |
APA | 0.228 |0.061 0.115 0.055 | 0.067 | 0.084
PA | 0.218 | 0.057 0.107 0.049 | 0.058 | 0.073
EVi | 0.402 |0.447 0.436 0.446 | 0.438 | 0.456
TABLE 4.2.12. EV1, PA, and APA dimensionality estimates (Normalized)

upon traditional parallel analysis. However, it is more difficult to say categorically whether
APA offers superior dimensionality estimates to the remaining three eigenvalue analysis
techniques.

4.2.2.2. Performance of the Figenvalue-One Criterion. As noted in Sections 2.3.3 and 3.3,
parallel analysis and the eigenvalue-one criterion share basic mathematical and statistical
assumptions. In fact the EV1 approach to dimensionality estimation is the parallel analysis
approach, with the exception that EV1 treats the observed correlation matrix as if it were
the population correlation matrix. Thus APA may be understood as yet another refinement
on the EV1 procedure. Like PA, APA takes account of the fact that the observed correlation
matrix is a sample. But unlike traditional PA, APA also recognizes that the derived null
eigenvalues have a sampling distribution of their own. All three approaches—EV1, PA, and
APA—share the notion that an LSI model should retain as many eigenvectors as there are
independent variables in the PDF that generated the term-document matrix A.

Table 4.2.11 shows the dimensionality estimates afforded by PA, APA, and EV1. Table
4.2.12 shows the same data, with each estimate normalized by the rank of the term-document
matrix to lie between 0 and 1.

Interestingly, the EV1 approach always retained between 40% and 45% of the eigenvec-
tors, a fairly narrow window. This is not at all surprising, insofar as it has been shown
(cf. [105]) that the eigenvalues of large, term-document matrices follow very consistent

power-law distributions. Thus it seems that the estimates afforded by the EV1 criterion are
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heavily driven by this tendency. That is, given Mihail’s demonstration that scree plots of IR
problems tend to look the same, the EV1 criterion offers a similar dimensionality estimate
(with regard to the proportion of eigenvalues retained) for any corpus. On the other hand
the parallel analysis-based techniques derived models of widely divergent complexity, calling
for between about 5% and 22% retention.

The difference between APA and EV1 was statistically significant. As described above, I
tested for equality of estimates across corpora. A paired t-test comparing APA’s and EV1’s
estimates yielded p = 0.001. Tables 4.2.11 and 4.2.12 suggest two important differences

between the EV1 and APA approaches to dimensionality estimation:

(1) APA yields models of fewer dimensions than the EV1 criterion.
(2) APA’s sensitivity to the sampling error in the observed correlation matrix makes its
dimensionality estimates more specific to the data at hand than the EV1 criterion’s

models.

Whether APA’s greater sensitivity to the observed data entails an improvement over EV1 is
difficult to say, given the noisiness of IR evaluation and the small sample of corpora studied
here. APA gave the best estimate on four occasions, while EV1 was best only three times.
Neither EV1 nor APA was ever the worst performer, although traditional PA often gave the
worst estimate. More damning for APA, perhaps, was its tendency to underestimate model
dimensionality. That is, in the cases where APA appeared to fare poorly (for example, on
the CF data), it retained far too few eigenvectors. Retaining too many dimensions is apt
to incur a relatively mild overfitting error in retrieval. On the other hand, rejecting too few
dimensions will rob the model of important discriminatory power. Thus PA’s and APA’s
tendency to under-estimate is worrisome.

However, the degree of advantage enjoyed by APA versus EV1 appears to be related
to the applicability of dimensionality reduction itself to a given corpus. In the case of the
MEDLINE data, and for the CRAN data’s ASL measurements, a strong semantic subspace
was evident. In these cases, APA gave the best estimates among all tested statistics. EV1

gave the best performance on three corpora (CACM, CF_FULL, and CISI) that saw broad
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divergence among the Cranfield-style analysis techniques. In these cases, the notion of
optimality is therefore somewhat suspect.

In sum, it appears that using the EV1 criterion offers a very conservative, but also
effective, approach to dimensionality estimation. Like parallel analysis, EV1 begins with
the assumption that dimensionality reduction is merited to the extent that the observed
variables depart from independence. If the term-document matrix A were orthogonal, all
eigenvalues would equal 1. In such a case no dimensionality reduction is merited according
to EV1, PA) or APA. Under all three criteria, we reject eigenvalues that are smaller than
the eigenvalues predicted if the indexing features were independent. The difference between
these approaches lies in their notion of what “independent features” actually means and in
what it means for data to deviate from independence. Whereas EV1 rejects eigenvalues less
than 1, PA and APA reject eigenvalues that are “significantly less” than 1, where “significantly
less” is defined by the distribution of null eigenvalues, as described in Section 3.3.

EV1 tended to over-estimate the optimal dimensionality of models for the corpora tested
here, according to the three tested performance metrics. APA and PA entail an attempt
to mitigate this over-estimation by making inferences about the deviation of the observed
terms from independence by recourse to statistical simulation. According to my results, the
differences between APA and EV1 are statistically significant. While it is difficult to say
whether this difference implies an advantage, it appears that EV1 is a safer approach to
dimensionality estimation than APA. However, APA appears to offer superior estimates in
cases when dimensionality reduction itself is obviously appropriate.
4.2.2.3. Performance of the Percent-of-Variance Approach. The percent-of-variance approach
to dimensionality estimation has seen broad criticism in the statistical literature (cf. [76])
due to its inherently ad hoc character. Critics of this approach argue that selecting m, the
percentage of total variance that the final model should account for involves poor theoretical
and empirical motivation. That is, choosing to retain, say, 95% of the total variance does
nothing to help us understand the relationship between the reduced and full-rank models.

Moreover, statisticians such as Jackson have argued that no universally suitable value for m
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| | CACM | CF | CF_FULL | CISI | CRAN | MEDLINE |

APA| 0.74 |0.14 0.18 0.12 0.15 0.16
EV1 0.87 | 0.66 0.54 0.66 0.68 0.63
TABLE 4.2.13. Amount of variance retained in APA and EV1 models

is forthcoming. That is, one cannot choose a value of m and apply it in good conscience to
all data sets.

Despite these criticisms, using an 85% of variance criterion for dimensionality estimation
yielded good results in this study. While APA was the best performer for four observations,
the percent-of-variance approach performed best on six occasions, making it the most fre-
quent best dimensionality predictor. Moreover, the 85% Var approach never fared worst
among the dimensionality estimation techniques that I tested.

However, I believe that the observed success of the 85% Var technique is rather mislead-
ing, and I argue against its application for dimensionality estimation in IR problems. Table
4.1.1 above suggests why I am skeptical about the value of a percent-of-variance approach.
The problem lies in the fact that the observed optimal dimensionalities of the six test cor-
pora varied widely with regard to their cumulative variance. The rows of Table 4.1.1 labeled
var at kopi(.) show the percent of total variance accounted for by the optimal LSI model
with regard to a given performance metric. The values for this measure vary tremendously.
For example, consider the ASL measure. The optimal model of MEDLINE for ASL retained
only 16% of the total variance, while the optimal model for CF accounted for 95% of the
total variance. The distribution for average precision and optimal F' were also wide. For
both optimal F and average precision the optimal MEDLINE model retained 25% of the
initial variance, while CACM demanded a full-rank representation for each of these metrics
to be optimized. Given such disparity, it is difficult to justify adopting an across-the-board
rule for optimizing LSI models. No value of m allows us to optimize models of all six corpora
with an m% of variance dimensionality retention criterion.

Further evidence that no value of m exists that will be generally optimal for IR problems
is presented in Table 4.2.13, which shows the percent of variance accounted for by the models
selected via the APA and EV1 criteria. As discussed above in Section 4.2.2.2, the EV1

criterion yielded models of very consistent size, insofar as it retained 40%-45% of the total
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eigenvectors for all six corpora. However, this consistency did not translate into models that
account for consistent amounts of variance. Although EV1 retained approximately 65% of
the initial variance for the CF, CISI, CRAN, and MEDLINE, it retained much more than
this for the larger CACM corpus, and significantly less than 65% for the full-text cystic
fibrosis data. The variance accounted for by APA’s models are even less predictable, with
optimal models retaining between 12% and 74% of the total variance.

In light of this discussion it seems unlikely that any systematic rule governs the amount of
variance that should comprise an optimal LSI model. Via retrospective performance analysis
we have seen that neither ASL, average precision nor optimal F' is optimized for the tested
corpora at any given level of m. Nor did I find a consistent amount of variance accounted
for via either of the top-performing eigenvalue analysis techniques. Thus I consider the
apparent success of the 85% Var approach to be an artifact of the noisy portrait of the data
sets’ semantic subspaces discussed in Section 4.1.1. That is, given that many observations
appeared to be optimized near full rank, with only minor evidence of overfitting beyond this
point, the 85% Var approach succeeded on several occasions by virtue of offering consistently
high dimensionality estimates.

It should be noted further that an 85% Var approach is widely out of step with the
mainstream of multivariate statistical theory. That is, more usual values for m are 95% or
perhaps 90%, which have been defended as outgrowths of traditional hypothesis testing with
its corresponding levels of confidence. Thus an 85% of variance rule pushes the heuristic ap-
proach to dimensionality estimation past even these contentious statistical bounds. Perhaps
the best thing to be said for this approach, then, is that it appears to work well in some
cases. However, its improvement over the EV1 approach was negligible; a paired ¢-test on
the equality of estimates provided by EV1 and 85% Var yielded p = 0.14. Thus it seems
more desirable to use the theoretically sound EV1 criterion in place of a more arbitrary
percent of variance solution.
4.2.2.4. Performance of Bartlett’s Test of Isotrapy. As mentioned in Section 2.2 I included
consideration of Bartlett’s test of isotrapy largely in the interests of completeness. It is

widely known that this method tends to over-estimate the number of dimensions. In the
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case of IR, this tendency surfaces writ large. In fact, for all six corpora, Bartlett’s test only
rejected the last two eigenvalues, leading to a nearly full-rank model. At first glance this
implies that Bartlett’s approach has no practical or theoretical merits for IR applications.
Insofar as IR’s models are more complex than those for which Bartlett’s technique was
developed, this may be accurate.

However, we should bear in mind that the evidence collected here suggests that no dimen-
sionality reduction is merited for several corpora, at least according to a given performance
metric. Performance on the CF data appeared to suffer whenever a significant number of its
eigenvectors was removed from an LSI model. Likewise, CACM performed best according to
average precision and optimal F' under a full-rank model. Before discounting Bartlett’s test
out of hand, it is important to consider the larger question of whether its high-dimensional
models were in fact erroneous, or whether they reflect a valid argument that all dimensions
should be retained.

Bartlett’s test provided the best dimensionality estimate for the CF data according to
the ASL metric. It was also the best predictor for the CACM corpus, vis a vis optimal F.
However, Bartlett’s provided the worst estimates on nine occasions. While the agreement of
all three performance metrics on a high-dimensional model for CF suggests that Bartlett’s
might be correct in its estimation for that corpus, there was strong inter-metric disagreement
for CACM, which calls into question the merit of its estimate.

But perhaps most damning was the inability of Bartlett’s to tailor its estimates at all for
different corpora. That the technique rejected two principal components for all six corpora
despite their emphatically different statistical properties (cf. Table 3.1.1) and different
observed optimal dimensionality profiles (cf. 4.1.1) smacks of a glaring defect. This implies
that the x? distribution of the Bartlett’s test statistic is simply ill suited to the over-sized
models native to IR. Given many references in the literature to Bartlett’s failures in the
face of high-dimensional data (cf. [3, 76, 116]) this is not surprising. Thus I attribute the
technique’s successes here more to failures either in the suitability of LSI to the test data or
to shortcomings in the Cranfield paradigm’s ability to address the intrinsic dimensionality

of corpora.

157



4.2.3. Overview of Results for each Corpus. This study has analyzed the ability of
five dimensionality estimation techniques to discern the intrinsic dimensionality of six IR
test collections. In the previous section I outlined the results of my experiments, organizing
my discussion around a treatment of each estimator’s accuracy. In this section, I summarize
these results, this time organizing my findings by corpus.

The most conclusive results were obtained for the MEDLINE data. This collection
evinced an obvious semantic subspace of approximately 100 dimensions; all three Cranfield-
style performance metrics agreed on this. For the MEDLINE collection, APA gave the most
accurate estimate of the intrinsic dimensionality among the five tested eigenvalue analysis
techniques. Traditional parallel analysis yielded the second-best estimate, while Bartlett’s
egregiously overestimated the intrinsic dimensionality. As in all six experiments, EV1 and
85% Var delivered models of middling complexity for MEDLINE.

Dimensionality reduction was also highly successful for the CRAN data. It must be
admitted that ASL disagreed with average precision and optimal F on the intrinsic di-
mensionality of this corpus. However, this disagreement may have been assuaged if I had
removed universally non-relevant documents from the analysis. Had I done this, average pre-
cision may well have approached ASL in its estimation of CRAN’s intrinsic dimensionality.
Despite this interference, however, APA and PA again performed well on CRAN, offering
the best estimate with respect to ASL. The moderately sized EV1 and 85% Var estimates
were best according to average precision and optimal F.

A similarly complex picture emerged from my analysis of CACM, which showed a strong
semantic subspace under the lens of ASL, but not under average precision or optimal F. Thus
parallel analysis provided CACM’s best estimate vis a vis ASL while simultaneously giving
the worst estimate according to optimal F. Though PA’s delivery of the worst estimate in
this and several other cases is worrisome, in Chapter 5 I argue that parallel analysis does
not appear to underestimate model dimensionality systematically. The conflicted case of
CACM—where PA delivered both best and worst estimates simultaneously—suggests that

PA’s defects may be distorted by artifacts of the Cranfield-style evaluation reported here.
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The CISI database appeared to merit little dimensionality reduction. In fact Bartlett’s
nearly full-rank model provided the best estimate for CISI with respect to average precision
and optimal F. The EV1 approach gave the best estimate according to ASL. Moreover, the
amount of benefit yielded by the optimal LSI models was very small for CISI, reinforcing
the contention that this database responded poorly to dimensionality reduction.

Of particular interest were the results for CF and CF_FULL. As described in Section
3.1, CF_FULL is a subset of CF. Whereas CF represents each document by its title and ab-
stract, CF_FULL provides a full-text representation of each document. Thus although these
corpora treat the same general subject matter, they do so under very different representa-
tions. The full-text representation responded well to dimensionality reduction. Yet perhaps
because of the large termspace of CF_FULL, this data set required a relatively complex
model to perform optimally under LSI. Thus EV1 and 85% Var excelled for CF FULL. On
the other hand, CF did not benefit significantly from dimensionality reduction; all models

except Bartlett’s underestimated the observed optimal dimensionality of CF.

4.3. Concluding Remarks

Returning to the initial research question of Section 1, it appears that a statistical
analysis of co-occurrence matrix eigenvalues yields useful but not infallible evidence for pa-
rameterizing k, the dimensionality of an LSI model. In the reported experiments, choosing
the dimensionality of an LSI system proved to be both important and difficult. Of the six
corpora tested, each appeared to have a unique observed optimal dimensionality. Thus the
ad hoc approach to dimensionality estimation that has been common in LSI implementa-
tions appears to be ill advised. Because each corpus appeared to have a unique optimal
dimensionality, there seems little motivation for a heuristic approach to parameterizing k;
retaining, say, 100 eigenvectors (as is the default for the Bellcore LSI software) would have
led to severely sub-optimal results for the CF data. Furthermore, because the tested per-
formance metrics often disagreed about the best dimensionality for a given corpus, I argue

that selecting k by finding a value that leads to good performance is also risky. My results
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suggest that Cranfield-style analysis gives some information about the intrinsic dimension-
ality of a corpus, but that this information is often noisy. Some corpora (e.g. CF') appear
to benefit from little or no dimensionality reduction, while others (e.g. MEDLINE) respond
well to a 90% dimensionality reduction. Measuring precision and recall at various levels of k
can help system designers select an appropriate model. However, the relevance judgements
necessary for such an analysis are often lacking in practical IR applications. And even in
the presence of pre-existing relevance information, my results suggest that without a large
number of queries, dimensionality estimation by Cranfield-style analysis is hardly foolproof.

Given the difficulties inherent in dimensionality estimation, then, I consider the perfor-
mance of eigenvalue-based predictors to be highly encouraging. In particular, the family
of predictors comprised by PA, APA, and EV1 performed especially well. Although PA
often suffered due to its tendency to underestimate model dimensionality, APA’s confidence-
intervals assuaged this defect to a statistically significant degree. APA gave the best esti-
mate on four occasions. EV1 was the best predictor on three observations. Altogether, these
approaches to dimensionality estimation yielded the best results for eight of the eighteen
observations.

Although the five dimensionality estimators tested here varied in their actual estimates,
my results imply that the best estimates come from APA, EV1 and PA, all of which share
a common theoretical motivation. The rationale that underpins APA, PA and EV1 is that
LSI’s dimensionality reduction is tantamount to an error correction procedure. Each of
these criteria rejects those principal components whose corresponding eigenvalues are less
than what we would expect given independent terms. For the EV1 approach, this rationale
is taken to the extreme. Rejecting all eigenvalues less than 1 admits no distinction between
the correlation matrix of the term-document matrix A and the correlation matrix of the
multivariate PDF that generated A. Thus the only way to achieve a full-rank model under
the EV1 criterion is if A is an orthogonal matrix. PA relaxes this stringency. Instead of
demanding numerical orthogonality among the columns of A for eigenvector retention, PA
implies that we should retain as many dimensions as there are statistically independent

variables in the PDF that generated A. Thus PA accounts for the fact that the observed
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correlation matrix is only a sample from a larger population. Finally, APA takes this ap-
proach one step farther, resting its dimensionality estimate on confidence intervals derived
from resampling “null eigenvalues” based on A.

APA, PA, and EV1 constitute a family of dimensionality estimation techniques that view
dimensionality reduction as a means of correcting the VSM similarity function’s erroneous
assumption of term orthogonality. The traditional vector space model assumes term inde-
pendence. Wong’s generalized vector space model accounts for this error by introducing the
term correlation matrix into similarity judgements. I argue that LSI improves retrieval by
building on Wong’s approach. LSI’s dimensionality reduction derives a low-rank approxima-
tion of the term correlation matrix. This low rank approximation aids retrieval by improving
the system’s estimate of the population correlation matrix. In other words, an optimally
parameterized LSI system provides the best model, in the least squares sense, of the rela-
tionships that obtain between terms and documents in the population. The success of the

three error-correction-based dimensionality estimators lends credence to this argument.
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CHAPTER 5

Dimensionality Estimates for Simulated Data

To compare the quality of each eigenvalue-based dimensionality estimator in an idealized
environment, I conducted a series of data simulations. This chapter describes these simu-
lations and their results. Data gleaned from the retrospective IR performance evaluation
described in Section 4.1 suggest that analyzing term and document co-occurrence matrix
eigenvalues yields useful information for intuiting the intrinsic dimensionality of a corpus.
In particular, my analysis of Section 4.2 showed that the family of dimensionality estimators
based on an error-correction rationale—APA, PA, and EV1—were especially well suited to
this task. However, I also noted that discerning k,,; by tracking ASL, average precision, and
optimal F' across increasingly complex models carries some risk of error. Do the supplied
queries adequately demonstrate the dimensional structure of the corpus? What are we to
think of corpora whose observed optimal dimensionality varies across performance metrics?
Are an estimator’s observed successes due to real advantage, or are they merely byproducts
of the vagaries of Cranfield-style evaluation? Without a priori knowledge of a corpus’ intrin-
sic dimensionality, stating conclusively how well an eigenvalue analysis technique discerns
the dimensionality of data’s optimal semantic subspace is problematic.

The simulations undertaken in this chapter address three broad questions:

(1) Given a corpus of rank r and intrinsic dimensionality kop < r, How well does
each dimensionality estimator perform as we increase or decrease the noise in the
system?

(2) how does each dimensionality estimation technique fare when presented with a
corpus A where dimensionality reduction is inappropriate, i.e. kopt = rank(A)?

(3) Are the dimensionality estimates afforded by each eigenvalue analysis technique

self-consistent and mutually distinct? In other words, will an estimator e yield the



same estimate when applied to similar problems? And in general, how different are

the estimates afforded by two estimators e and €'?

As opposed to the corpus-based analysis reported in Chapter 4, simulations allow us to
attack these questions in a more direct fashion. Instead of inferring the “right answer” based
on possibly noisy Cranfield-style evaluation, simulating the problem allows us to begin from
the solution and work backwards. While this is desirable insofar as it lends our evaluation a
precise instrument for gauging an estimator’s accuracy, simulation raises a host of questions
in its own right. Section 5.1 discusses my rationale in designing the simulations, detailing
the mathematics that governs my approach. In Section 5.2 I discuss the actual parameters
and data sets that were generated in the simulations, along with an account of the methods
of analysis that I bring to these data. Section 5.3 relates the outcome of the simulation

experiments. Finally I summarize the implications of my findings in Section 5.4.

5.1. Construction of the Simulations

Constructing simulations to test criteria for principal component retention is a non-trivial
task. While a fairly ad hoc approach to simulation has been presented in the literature,
I pursue a different method in this study. This section begins by describing the most
common technique for simulation in dimensionality estimation problems, outlining some of
its deficiencies. I then turn to a description of my own technique, using the deficiencies of

the prior approach as a motivation.

5.1.1. Past Approaches to Simulations for Dimensionality Estimation . A wide
body of literature describes the behavior of number-of-factors rules with simulated data. For
instance, Hakstian (cf. [63]), Zwick and Velicer ([153]), and Jackson (cf. [76]) use eigenvalue
analysis methods such as those described in Table 3.4.1 to estimate the number of significant
principal components in simulated correlation matrices. Glorfeld ([57]) and Linn ([95]) use
simulated data to test the performance of parallel analysis, in particular. Thus there is
ample precedent for using a simulation-based approach to dimensionality estimation.

In previous simulation studies, researchers have defined the “true” dimensionality of a

data set by constructing a population covariance matrix with a highly controlled structure.
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In [76], Jackson calls this a matrix with “block” structure. The block structure approach to
simulation involves choosing p (the number of variables), kops (the true dimensionality), r
(the degree of factor loading), and f (the amount of background noise). An n X p data set is
then drawn from a multivariate distribution (usually Gaussian) with a zero mean vector and
this structured covariance matrix. For example, consider the population covariance matrix

Y withp=9,k=3,r=.8,and f =0:

(

1 880000 0 0
81 80 0 0 0 0 0
8 81 0 0 0 0 0 0
00 01 .8.800 0
(5.1.1) =00 0 81 80 0 0
00 0 .8.81 000
000 0 00 1 8.8
00 0 0 0 0 .81 .8
0 000 0 0 .8 .8 1}

Despite its p = 9 variables, this matrix appears to be of significantly lower dimensionality.
In Jackson’s analysis, the three blocks of correlated variables imply that data generated
from a distribution with covariance matrix ¥ will be three-dimensional.

However, it remains unclear in Jackson’s approach (and that of the other authors cited

above) exactly what it means to call ¥ three-dimensional. Consider the eigenvalues of X:

(5.1.2) )\'2(2.6 26 26 02 02 02 0.2 0.2 0.2)

Matrix ¥ has nine linearly independent rows and columns, and is thus of full rank. Obviously
the magnitude of the first three eigenvalues dwarfs the rest, implying that eigenvalues 4
through 9 are minor. But the rationale for discarding these “minor” eigenvalues is no more
founded than our attempt to discern an elbow in a scree plot.

Creating k-dimensional data by recourse to so-called “block-structured” covariance ma-

trices deprives simulations of the clarity that researchers desire from them. To exemplify the
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shortcomings of simulations based on blocked covariance matrices, consider LSI’s rationale.
Given a n X p document-term matrix A, LSI operates on Kk = T;S;D),, where Tj and
Dj, contain the first k singular vectors of A, and Sy has the k largest singular values on
its main diagonal. LSI’s proponents argue that Kk provides a more accurate basis for a
VSM similarity model than the full-rank A can, due to overspecification error in the sample
matrix. As argued in Section 1.1.2, dimensionality reduction is motivated by the notion
that the first k principal components of A provide a superior model of the population term
correlation matrix than the observed, full-rank covariance matrix S can.

However, under the block structure rationale, this benefit by matrix approximation is
frustrated. As an example of why, let 3 be defined as in Equation 5.1.1. Let @ be a nine-
dimensional zero vector. I created the 500 x 9 matrix A (i.e. 500 observations on 9 variables)
by sampling 500 vectors from the multivariate normal distribution, N(u, X). Based on A I
calculated the 9 x 9 observed covariance matrix . Due to the distribution of A we expect
S to be similar to ¥. But sampling error will introduce noise between the population
covariance matrix 3 and the sample $. The intuition behind LSI suggests that if 3 is truly
k = 3-dimensional, then we should obtain a better estimate of 3 by retaining only the first
three eigenvectors of S, If dimensions 4 through 9 are noise, flk = Vi AV}, (where Vi is
the first k£ eigenvectors of S and Ak is the diagonal matrix of its first &k eigenvalues) should
be closer to 3 than f], in the least-squares sense.

Despite our best efforts, Figure 5.1.1 shows that under the block structure model, the
k = 3-dimensional model is not the best approximation of X. Let Equation 5.1.3 define a

loss function for an LSI model of given dimensionality k:
(5.1.3) o(k) = Hz - ﬁkH

where ||-|| denotes the Ly norm. Thus the value of k£ that minimizes £(k) provides the closest
approximation of the population covariance matrix. The z-axis of Figure 5.1.1 is k, the
number of eigenvectors included in our model of the population covariance matrix 3. On
the y-axis we plot £(k). If 3 were truly three-dimensional, we would expect min(£(k)) =

£(k = 3). This is clearly not the case. Instead, we see a tremendous improvement in model
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FIGURE 5.1.1. Loss function on X

fit by including the second dimension. But after that, each additional dimension improves
the fit by a negligible amount, ending in a full-dimensional model as the optimum.

While it is clear that the block structure approach to simulation creates data whose
scree plots suggest an obvious intrinsic dimensionality (cf. Equation 5.1.2), the previous
example shows that these data do not directly address the problem of LSI. In the example
above, a model of very low dimensionality (kK = 2) provides a good approximation of the
true covariance matrix. But the 2-dimensional model is not optimal; instead the model
is optimized for k = kpqz. Using the sum of squared error as a goodness of fit criterion,
then, k = 3 never enters the scene as a possible value for the intrinsic dimensionality,

despite its obvious appeal on inspection of the eigenvalues. Thus it is problematic to base
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our simulations on this approach, insofar as we desire to simulate data whose intrinsic

dimensionality is decisively known.

5.1.2. Simulations based on an Explicit Model of the Eigenvalues. Instead of the
block structure approach to simulation, I propose an agenda based on an explicit model of

the population eigenvalues. Consider the matrix C:

111000000
111000000
111000000
000111000

(5.1.4) C=1000111000
000111000
000000111
000000111
\000000111

with eigenvalues:

(5.1.5) A’c=(333000000)

Despite its nine rows and columns, matrix C is only of rank three, as evidenced by its three
non-zero eigenvalues. My simulations begin by considering A, to be the eigenvalues of the

true population covariance matrix for our data. Thus our population covariance matrix
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contains only three linearly independent variables, which I model by matrix 3,:

)

300000000
030000000
003000000
0000O00O0O0O0O
(5.1.6) X=[000000000
0000O00O0O0O0O
0000O00O0GO0TO0O
0000O00O0O0O0O
0000O00O0O0O0O

Before generating data based on this population covariance matrix, I subject it to a pertur-
bation. To accomplish this let f be a positive-valued number describing the amount of noise
we wish to introduce into the system. I thus define the perturbed population eigenvalues as
X' = AL + f, where f is a 9-vector with each element equal to f. Thus if f =1 we have the

final population covariance matrix X:

—

400000000
040000000
004000000
000100000

(5.1.7) X=]1000010000
000001000
0000O0O0T1T00
0000O0O0O0T10
\000000001

which gives eigenvalues:

(5.1.8) X:(444111111)
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The implication is that there are only k variables at work in the data. However, due to
our perturbation, we have introduced randomness and redundancy into the system, thus
giving the appearance of p dimensions. Hence we have k large eigenvalues and p — k small
eigenvalues. As in LSI, the goal is to discover which eigenvalues are so small that they
correspond to zero-elements in X.. The goal of model fitting, then, is not to approximate
¥ (as in the block structure approach to simulation discussed above). Rather, the point is
to derive the best estimate of X..

Before leaving our discussion of the simulation design, consider momentarily how this
design relates to my theorized rationale for LSI’s dimensionality reduction. In Sections
1.1.2 and 3.3 I argued that APA is well-suited to the dimensionality estimation problem
due to its orientation towards error correction. I suggested that APA’s merits would lend
evidence to my theory that dimensionality reduction in IR amounts to a correction applied
to the GVSM similarity function. At that point I described the correction in terms of
term-term correlation, suggesting that dimensionality reduction is merited to the extent
that the indexing features depart from orthogonality. However, in the simulation approach
just described, the population covariance matrix is diagonal; where is the error in need of
correction, then? Consider matrices 3. (Equation 5.1.6) and 3 (Equation 5.1.7). The error
lies in the perturbation that transforms X, into 3. These matrices comprise the population
eigenvalues of the PDF that generates our simulated data. Thus the appearance of p — k
non-zero eigenvalues in 3 implies the addition of spurious correlations among the variables.

Whereas the block structure simulation approach advocated by Jackson models the
correlational structure explicitly, my approach models the eigenvalues explicitly. Under my
approach, the data are truly k dimensional, and the inclusion of k' > k dimensions in the
model incurs model error by overspecification. As in real-world LSI, then, dimensionality
reduction for our simulated data acts as an error correction procedure, removing spurious
correlational data from the estimation of the population covariance matrix by recourse to
an analysis of the eigenvalue distribution.
5.1.2.1. Steps in the generation of simulated data. Performing a simulation under the explicit

model of population eigenvalues demands that we parameterize five variables, shown in
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| Symbol | Description |

The number of variables
The intrinsic dimensionality
The magnitude of the true eigenvalues
The noise coefficient
The sample size for the simulated data set
TABLE 5.1.1. Simulation parameters

S|~ > |

| Parameter | Value |

p 9
k 3
A 2
f 1
n 1000

TABLE 5.1.2. Example simulation parameters

Table 5.1.1. Next we define A, a p-vector with the first £ elements equal to A, and elements
(p—k)---p=0. To this we add the noise factor f, a p-vector with all values equal to f, to
get Ay = A+ f. Thus we have the p x p population covariance matrix 3 = A;I,. Based on
this we draw n samples from N(p = 0, X) to derive the n x p data matrix A.

Having obtained a simulated data set, each simulation involves the operations of Algo-

rithm 2. Following Algorithm 2 allows us to track the goodness of fit obtained by each value

Algorithm 2 Simulation procedure

(1) Obtain $3, the sample covariance matrix of A.

(2) Compute V and /):, the eigenvectors and eigenvalues of ﬁ, respectively.

(3) fork=1---p

(4) Compute f]k :kaklkffjc

(5)  Compute £(k) as described in Equation 5.1.3

(6) Compute dimensionality estimates by each dimensionality estimation technique
described in Table 3.4.1.

of k, as well as showing us how well each eigenvalue analysis technique correlates with this
goodness of fit data.

For example I chose the parameters described in Table 5.1.2. Using these parameters,
I iterated through the simulation process to derive Figure 5.1.2. The figure shows a clear
optimum at k = 3, exactly as we desire. Moreover, as k increases toward k,q, we see an

overfitting effect. Because the last p — k eigenvalues correspond to variables that are not

170



Loss Function
7
|
°

Number of PCs

FIGURE 5.1.2. Simulation goodness of fit

present in the unperturbed population covariance matrix, adding them to the model simply

introduces noise into the system.

5.2. Data Generation and Methodological Approach

As mentioned earlier, the simulations undertaken in the current study address three

questions:

(1) Given a corpus of rank r and intrinsic dimensionality kep < r, How well does
each dimensionality estimator perform as we increase or decrease the noise in the

system?
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| [ LRLN | LRBN | LRHN | FRLN | FRBN | FRHN |

p (variables) 100 100 100 100 100 100

k (true dims.) 15 15 15 100 100 100
A (true eigenvals) 2 2 2 2 2 2
[ (noise factor) 0.5 1 1.5 0.5 1 1.5
n (sample size) 1000 1000 1000 1000 1000 1000

TABLE 5.2.1. Parameter Settings for Simulations

(2) How does each dimensionality estimation technique fare when presented with a
corpus A where dimensionality reduction is inappropriate, i.e. kopr = rank(A)?

(3) Are the dimensionality estimates afforded by each eigenvalue analysis technique
self-consistent and mutually distinct? In other words, will an estimator e yield the
same estimate when applied to similar problems? And in general, how different are

the estimates afforded by two estimators e and €'?

To address these questions I ran a set of simulations whose parameters are shown in Table
5.2.1. The column headings of Table 5.2.1 refer to the rank of the data’s unperturbed
covariance matrix and the amount of noise in the system. Thus LRLN refers to “low-rank,
low noise,” while FRHN means “full-rank, high noise.” I also define low-rank and high-rank
baseline noise runs, LRBN and FRBN, each with moderate noise coefficients.

The parameters shown in Table 5.2.1 were chosen to provide a broad spectrum of di-
mensionality estimation problems. That is, I chose to produce data that were variously
amendable to dimensionality reduction by producing low-rank and high-rank runs. I also
desired to create estimation problems of varying difficulty; hence the three levels of system
noise. Figures 5.2.1 through 5.2.4 visualize the simulations that I undertook.

Each figure contains two sub-figures. On the left is the scree plot derived from a simu-
lation run at a given parameterization. The right panel shows the loss function £(k) across
all possible k values for the data.

The scree plots are intended to convey the difficulty of a given simulation’s dimensionality
estimation problem. Thus the LRLN situation (Figure 5.2.2) shows a clear demarcation in
eigenvalue magnitude between the true dimensions and the noise variables. This is an easy

problem, and most eigenvalue analysis techniques should discern a qualitative difference
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FIGURE 5.2.2. LRLN simulation overview

between the first 15 eigenvalues and the remaining 85. On the other hand, the LRHN
simulation (Figure 5.2.3) presents a more difficult challenge. While an elbow is visible in the
scree plot near k = 15, these eigenvalues lack the precipitous phase transition seen under

the low-noise simulation. Thus we suspect that the high-noise simulations provide more

challenge for a dimensionality estimation technique.
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FIGURE 5.2.4. FRBN simulation overview

Whereas the scree plots show the difficulty of a given problem, the right-most plots (i.e.
the loss plots) of Figures 5.2.1 through 5.2.4 give a sense of what is at stake at each param-
eterization. Each of these sub-figures shows £(k) for K = 1---p. In other words, it shows

the sum of squared error for each model. Low values of (k) imply that the k-dimensional
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model is a close approximation of the true covariance matrix. In the 15-dimensional base-
line simulation (Figure 5.2.1), for example, the 15-dimensional model provides the best fit.
Choosing to retain too few principal components—e.g. k = 1—entails a large loss, while
setting & = 100 incurs a moderate overfitting effect. On the other hand, the 15-dimensional
high noise model (Figure 5.2.3) involves a very high penalty for choosing an overfitted model.

Having defined the six parameterizations shown in Table 5.2.1, I generated 50 data sets
for each parameterization, for a total of 300 simulations. I chose to repeat each simulation
50 times in order to derive adequate power for the statistical tests reported in Section 5.3.
In this respect my methodology followed Hakstian [63| and Jackson [76]|. In each of these
studies, simulations were repeated several times in order to compare the consistency of
each estimation technique. However, these earlier studies relied on fewer repetitions of each
simulation. A sample of n = 50 was chosen in the current study due to improvements in
computational power since Hakstian and Jackson ran their experiments; i.e. a larger number
of simulations is easy to implement now, and yields a more complete statistical picture than
would arise from a smaller sample.

In the discussion that follows, I analyze the performance of each of the five dimensionality
estimators given in Table 3.4.1 when they were applied to these simulated data. I address
each of the three questions presented at the beginning of this section, while giving special

attention to the questions that were raised in my data analysis of Chapter 4.

5.3. Results of the Simulations

Overall the simulations showed that PA and APA offer dimensionality estimates that are
decisively more accurate than the other tested methods. Table 5.3.1 summarizes the results
from the simulations. As in Table 4.2.1, the data here are the directed distance between
each eigenvalue analysis technique’s dimensionality estimate and the true dimensionality of
a simulated data set. The individual values shown are the averaged errors across all 50
simulations. Thus for the first cell, we see that in the LRLN simulation, on average, APA
over-estimated the true dimensionality by one. In other words, on average, APA’s estimate

was 16, in the face of a 15-dimensional data set. Especially desirable in our analysis will
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| | LRLN | LRBN | LRHN | FRLN | FRBN | FRHN |

APA 1.00 1.00 | 23.12 0.00 0.00 0.00

PA 1.00 1.00 | 21.72 0.00 0.00 0.00

EV1 294 | 16.88 | 23.18 | -53.64 | -53.98 | -54.32

85% Var | 30.18 | 38.20 | 41.10 | -24.00 | -24.76 | -25.02

Bartletts | 83.00 | 83.00 | 83.00 | -2.00 | -2.00 | -2.00
TABLE 5.3.1. Summary of simulation error

be weighing the merits of one dimensionality estimator versus the others. This judgement
is simplified by the fact that for each simulation, the mean errors of all five dimensionality
approaches lie in the same direction. For instance, for the low-rank models, all six estimation
techniques over-estimated the true dimensionality, though by varying degrees. On the other
hand, the full-rank case obviously provides no room for over-estimation. Thus all errors for
the full-rank simulations are less than or equal to zero. This outcome allows us to compare
the dimensionality estimators’ accuracy simply by noting their errors’ absolute value.

A number of facts are immediately apparent from inspection of Table 5.3.1. First,
the LRHN problem appeared to be especially difficult, insofar as all six dimensionality
estimators fared poorly on that series of simulations. Conversely the LRLN example appears
to have provided a fairly easy problem. Thus, as we desire, adding noise to the low-rank
models appears to change the difficulty of the dimensionality estimation problem. To test
this hypothesis, I performed a Welch, two-sample ¢-test on the 5 x 50 matrices containing
the errors of each method’s dimensionality estimates from each of the 50 simulations under
the LRLN and LRHN simulations. In other words, I tested the null hypothesis that adding
noise to the low-rank model did not change the accuracy of the dimensionality estimates.
This test gave p = 0, suggesting that the amount of noise in the low-rank simulations is a
significant factor in the accuracy of the dimensionality estimators.

On the other hand, I note that during the full-rank simulations, adding noise to the
system yielded very little variation in estimation quality. In the full-rank case, APA and
PA were accurate across all noise parameterizations, while EV1 and 85% Var fared poorly
for all full-rank simulations. Bartlett’s continued to demonstrate its poor applicability to
large-scale dimensionality estimation problems, behaving for all simulated data as it did for

the real corpora, consistently rejecting only two eigenvalues. Testing Hy : FRLN = FRHN
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(where FRLN and FRHN are the 5 x 50 matrices of dimensionality estimate errors for
each type of simulation) gave p = 0.86. Thus there is no statistical difference (with regard
to estimation accuracy) between the full-rank models. This is completely understandable
insofar as adding noise to the full-rank model only changes the magnitude of all the true
eigenvalues. Because the full-rank simulations have no spurious eigenvalues, adding noise
to the system merely amplifies the true eigenvalues symmetrically, a change that does not
impact the problem of dimensionality estimation!. Thus in the following discussion, I omit
comparison between the full-rank simulations, using the FRBN simulation for all full-rank
simulation analysis.

Figures 5.3.1 and 5.3.2 depict the outcome of the simulations graphically.

Each figure plots £(k) versus k, with the output of each dimensionality estimation tech-
nique (from a single run) superimposed as various characters. As I describe in the sections
below, Figure 5.3.1 shows that APA and PA? provided the best dimensionality estimates in
both the low-rank and full-rank simulations. The EV1 criterion is second-best for the low-
rank data, with Bartlett’s offering the second-best estimate for the full-rank data, by virtue
of its preference for high-dimensional models. In contrast to the real corpora analyzed in
Chapter 4, the simulated data confounded the 85% Var criterion, suggesting that its success
in my previous analysis was, as I suggested, a methodological artifact rather than a function

of its own merits.

5.3.1. Performance of Parallel Analysis and APA on Simulated Data. Parallel
analysis and amended parallel analysis yielded superior results for all of the simulations.
It is evident from Table 5.3.1 that the parallel analysis-based methods yielded much more
accurate dimensionality estimations than the other eigenvalue analysis techniques for all low-

rank simulations except the high-noise iteration, where parallel analysis was only moderately

11t is worth noting that I considered several other approaches to noise introduction during the design of
these simulations. For instance I considered adding uniformly distributed noise vectors to the vector of
true eigenvalues. I also experimented with adding normally distributed matrices of noise to the population
covariance matrix. In the case of low-rank data, these alterations yielded no substantive difference in the
estimation problem, and thus I chose the simpler model of a constant noise factor. However, I did not test
these alternative noise models on full-rank data, an avenue I will explore in upcoming research.

2The actual estimates of APA and PA were identical for this figure. I have thus shown PA’s estimate skewed
slightly to the left to include all five estimation techniques on the plot.
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FIGURE 5.3.1. Accuracy of dimensionality estimators (LRBN)

superior to other techniques. Likewise, PA’s performance on the full-rank data was decisively
better than the other methods, except for Bartlett’s whose tendency to give nearly full-
rank models ceased to be a liability here, but whose performance otherwise suggests stark
inadequacy to IR dimensionality estimation problems. Thus PA and APA appear to be by
far the best methods of dimensionality estimation for the type of simulated data treated
here.

In the case of simulated data, PA and APA offered nearly identical estimates. In fact,
both methods yielded identical estimates for all simulations except for the LRHN runs.

Testing the null hypothesis of equality of means for each method’s accuracy on the LRHN
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runs by means of a standard t-test yielded p = 0.22. This test suggests that the difference
between APA and PA accuracy on the simulated data was not significant.

To understand why APA and PA gave identical solutions for simulated data, consider
the scree plot shown in Figure 5.2.1. Here we see the eigenvalues obtained from an iteration
of the LRBN simulation. There is a clear gap in eigenvalue magnitude between k = 15
and k = 16, indicating where the true dimensions yield to noise dimensions. In contrast to
Figure 5.2.1’s scree plot, consider Figure 5.3.3, which visualizes the operation of APA on
the same data. The black line traces the observed eigenvalues, while the light line shows the
null eigenvalues obtained after B = 100 bootstrap replications. The vertical hash marks are

the 95% confidence intervals on the null eigenvalues. By comparing Figures 5.2.1 and 5.3.3
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one may note that the gap between the 15" and 16" observed eigenvalues is wider than the
corresponding null eigenvalue confidence interval. Because of this gap, then, the relatively
subtle amendment entailed by APA does not alter the dimensionality estimate, a fact which
is for the best, as APA’s tendency to give a larger model than PA would lead to incorrect
results here. Thus the fact that APA and PA are qualitatively similar for our simulated data
suggests that APA’s amendment does not lead to degraded performance in the presence of
a problem ideally suited for traditional PA. In other words, when PA was presented with an
easy problem (and got the answer right), the APA solution correctly converged on the PA

solution.
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Because PA and APA are statistically indistinguishable vis a vis the simulated data, I
shall only consider the performance of PA during the remainder of this discussion. Figure
5.3.1 suggests that PA and APA provided dimensionality estimates that were superior to the
four other eigenvalue analysis techniques pursued in this study. This theory was borne out
by a series of hypothesis tests®. For each eigenvalue analysis technique—EV1, 85% Var, and
Bartlett’s—I performed four hypothesis tests, one for each simulation round (LRLN, LRBN,
LRHN, FRBN). During each test, the null hypothesis was that the mean error of PA (i.e.
the absolute value of PA’s estimate minus the true dimensionality) was greater than or equal
to the error of the other estimation technique in question. Rejecting the null hypothesis thus
means that PA’s mean error was lower than the error rate of the other estimation technique
for the given simulation.

Comparing the accuracy of PA to the other eigenvalue analysis techniques demonstrated
the superiority of the parallel analysis approach. Among the tested methods PA’s accuracy
and the accuracy of EV1 on the low-rank, high noise data were the closest. For the null
hypothesis Hy : ppaLrun) > BEVi(LREN) | Obtained p = 0.04. All other comparisons
across simulation rounds and dimensionality estimation techniques yielded p ~ 0. Thus
PA’s benefit over the other dimensionality estimators was statistically significant at the 95%
level for all simulation parameterizations. And for all simulations other than the LRHN
round, PA’s benefit was significant above the 99% level.

Clearly PA provides dimensionality estimates for simulated data that are superior to the
other studied estimation techniques. However, the question remains, are PA’s estimates sta-
tistically distinct from the data’s intrinsic dimensionality? Upon inspecting the simulation
results I noted that my implementation of the PA method defines k,p; to be the eigenvalue
immediately after the point where the null line crosses the observed eigenvalues (I defined
it in this way in service to my implementation of APA, which judges eigenvalues starting
from kpq, and working left). It would have been more strictly correct to re-state the rule

to define ko as the exact point of this crossing. In the case of the real corpora described

3These were standard ¢-tests. This test was chosen after inspecting the density of the errors obtained from
the various dimensionality estimation techniques. While PA showed very low standard deviations for several
of the simulations, its error rate on on the LRHN simulations, and the error rates of other estimation
techniques suggested that the t-distribution was appropriate.
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in Chapter 4 the effect of this phenomenon is negligible. However, in the case of our sim-
ulations, PA over-estimated the intrinsic dimensionality by 1 in several cases. Under the
alternative definition of PA these over-estimations would have been correct. I let these data
stand as calculated during my analysis of the simulation results. However, for the sake of
argument I subsequently corrected this error. Under the corrected implementation, APA’s
error was 0 for all 50 iterations of all simulations except LRHN. Thus with the exception
of the very difficult high noise parameterization, it appears that APA was able to find the
correct answer.

PA’s performance on the full-rank simulations assuages some of the worry over systematic
underestimation described in Chapter 4. In Section 4.2.1, it was noted that PA consistently
gave the lowest estimates among the eigenvalue analysis techniques tested in this study. This
led to PA giving the worst performance for several corpora. PA’s errors raised two worrisome
considerations. First, does PA systematically underestimate model dimensionality for IR
problems? Second, could PA perform well in the case where no dimensionality reduction is
merited?

The results of my simulations suggest that these worries, while still worth pursuing, are
less vexing than the analysis in Chapter 4 suggested. As regards the concern over PA’s
consistently low-dimensional models, these simulations suggest that the technique has no
inherent inability to deliver models of full-rank. When the data were 15-dimensional, PA did
indeed provide the lowest-rank models, which were also the most accurate models. And when
the data were 100-dimensional (i.e. of full-rank), PA gave a 100-dimensional model. It thus
appears that PA is well-suited to applications where data are of high- or low-dimensionality.
That PA often under-estimated the observed optimal dimensionality of test collections wis
a vis a given performance metric may still prove an indictment to its applicability to IR
problems. However, the results of these simulations also suggest that the Cranfield-style
analysis used to judge PA’s accuracy in Chapter 4 may have obscured the merits of severe

dimensionality truncation for several corpora.
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5.3.2. Performance of the Other Dimensionality Estimators on Simulated Data .
PA and APA were decisively superior to the other three dimensionality estimation techniques—
EV1, 85% Var, and Bartlett’s—for almost all simulations. However, the behavior of these
other estimators proved interesting in several ways. In this section I discuss these points
of interest. First, I describe the performance of the EV1 criterion. Not only did EV1 pro-
vide the best estimates (after PA and APA) on the simulated data, it is also theoretically
similar to parallel analysis. Thus its behavior will help us understand the behavior of PA,
especially in the face of high-noise problems (cf. question number 3 at the outset of this
chapter). Second, I turn to a discussion of how the 85% Var rule fared. In Section 4.2 I
noted that the percent-of-variance approach gave seemingly good estimates on the six test
collections. However, I also questioned these results, suggesting that their accuracy had
more to do with shortcomings inherent in using retrospective performance analysis to mea-
sure a corpus’ intrinsic dimensionality than it had to do with any native superiority of the
85% Var rule.

During the simulations the EV1 criterion—the theoretical cousin of PA and APA—was
the third-best performer. In the case of the LRHN simulation, its accuracy was close to that
of PA. Asreported above, the null hypothesis Hy : ppa(Lran) > BEVi(LREN) 82Ve p = 0.04.
However, replacing this with a two-sided test (i.e. Ho : pparEN) = HEVI(LRHEN)) 8ave
p = 0.09. Thus EV1 and PA were statistically indistinguishable at the 95% level under the
LRHN parameterization. Yet the EV1 criterion appeared to be better overall than the 85%
Var rule. Applying the Welch two-sample #-test to the estimation errors afforded by each
criterion (i.e. Hy : ppvi1 > pssuvaer) yielded, p = 0. Although 85% Var was more accurate
than EV1 for the FRBN simulation, EV1 was much more accurate than 85% Var on all
low-rank data. Thus it seems that APA, PA, and EV1 do share a basic affinity, which is not
shared by the other estimation procedures tested here.

The affinity between PA, APA, and EV1 came to the fore as I added noise to low-rank
data. Consider Table 5.3.1. During the high-noise simulation, EV1 and PA converge on
the same answer. However, at lower noise parameterizations (LRLN, and LRBN) they

behave quite differently. The accuracy of EV1 degrades linearly with the introduction of
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noise. On the other hand, PA performs with near perfect accuracy until the high-noise
simulation. As is evident from Figures 5.2.1 through 5.2.4, PA’s resistance to degradation
in the face of increased noise has to do with the gap in eigenvalue magnitude under various
data parameterizations. That is, so long as there is a significant gap between the true
eigenvalues and the noise eigenvalues, PA is quite robust against noise effects. But when
the system becomes so noisy that the scree plot basically shows linear descent of eigenvalues
(suggesting no obvious elbow in the scree plots), PA shows its relation to the EV1 criterion.
Because each simulation has n = 1000 with only p = 100 variables, the estimate afforded by
PA and EV1 under the high-noise condition converge, as is expected in the context of our
discussion in Section 3.3. There I stated that as the number of observations grows, the PA
solution and EV1 solution will become increasingly similar. These results suggest that this
is true, but that PA also maintains a sensitivity to the latent structure of a data set that
EV1 lacks. Only in the case of a very difficult estimation problem, where the distribution
of eigenvalues is highly unstructured—does PA actually offer the same estimate as EV1.
Another important outcome of the simulations involves the demonstrated inaccuracy of
the 85% Var criterion. Whereas retaining 85% of the total variance yielded a surprisingly
accurate model selection rule for the test collections discussed in Section 4.2, such was not
the case for simulated data. Asseen in Table 5.3.1, only Bartlett’s performed worse than the
percent-of-variance approach, and Bartlett’s virtues were strictly a matter of its retention of
near-full-rank models across the board. Thus 85% Var appears to have benefited from good
luck in the empirical results of Section 4.2.2.3. It’s apparent accuracy in the face of real-
world corpora, I contended in Section 4.3, was an artifact of the necessarily blunt instrument
(i.e. retrospective performance analysis) used to gauge corpus dimensionality. These results
bear out my contention. A percent-of-variance approach to dimensionality estimation is
necessarily ad hoc and inflexible. Thus, in the low-rank simulations, retaining 85% of the
total variance simply overfitted the model, while in the 100-dimensional simulations, 85%
Var underestimated the intrinsic dimensionality. The failure of 85% Var to predict optimal
model dimensionality for simulated data points to its deficiencies in the real-world, too. As

seen in Table 4.1.1, real corpora appear to demand a wide variety of dimensionalities (and
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a wide range of percentage ratios) to attain their optimal model. Lacking an effective appa-
ratus to read these demands, a percent-of-variance approach to dimensionality estimation is

necessarily ad hoc.

5.4. Implications of the Results for Simulated Data

Applying eigenvalue analysis techniques to simulated data shows the appeal of parallel
analysis and amended parallel analysis. Over the course of 300 simulations, these techniques
demonstrated a decisive superiority to the other proposed dimensionality estimators—EV1,
85% Var, and Bartlett’s. I found that PA and APA were significantly more accurate (above
the 99% confidence level) than the other approaches to dimensionality estimation. Not
only did PA and APA outperform the other tested estimators, they appeared to discern the
data’s true dimensionality; for all simulations except the LRHN iterations, PA estimated
the intrinsic dimensionality perfectly.

I also found that APA’s alterations to PA do not lead to significant degradation in
prediction accuracy when PA finds the correct answer. In Section 4.2.2.1 I noted that
APA constituted a significant improvement over traditional PA. Here I complement that
assertion. Parallel analysis is a robust, flexible approach to dimensionality estimation. In
the presence of highly complex data sets (such as the corpora discussed in Section 4.1) the
confidence-interval-based APA provides a more accurate estimate of optimal dimensionality.
But in the presence of a simpler problem (such as the simulations discussed in this chapter),
PA’s point-estimate-based approach estimated the intrinsic dimensionality accurately. In
this case APA’s amendment became negligible; for simulated data, the estimates afforded
by PA and APA were statistically identical.

At the outset of this chapter I posed three questions that data simulations would ad-
dress. The first question addressed the question of dimensionality estimation in the face of
varying noise coefficients. I found that APA and PA performed very well for the low-rank
data with a variety of noise parameterizations. These techniques offered near-perfect accu-
racy for the LRLN and LRBN simulations. In contrast the other dimensionality estimation

techniques—EV1 and 85% Var—yielded linearly decreasing quality in the face of increased
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noise. I also noted that the family of statistically related estimation procedures comprised
of APA, PA, and EV1, provided mutually-indistinguishable results for the LRHN simula-
tion. These results were statistically superior to those obtained via 85% Var and Bartlett’s.
Thus APA and PA appear to converge on the answer provided by EV1 in the presence of
decreasing correlational structure in the data. Taken as a whole, these data suggest that the
family of estimators comprised by APA, PA, and EV1 use the distribution of eigenvalues to
estimate the number of linearly independent variables in the population covariance matrix
that generated a given data set. Moreover, the data suggest that this approach—inferring
the number of independent variables based on eigenvalue distribution—is robust against the
introduction of noise, and that it gives dimensionality estimates with consistently low error
rates.

After the empirical analysis of Section 4.2.2 T was concerned about the behavior of
eigenvalue analysis techniques when applied to data that merit no dimensionality reduction.
However, these simulations suggest that APA and PA can in fact excel at identifying such
situations. The full-rank simulated data sets yielded zero error rates from APA and PA.
On the other hand EV1, PCTVAR, and Bartlett’s evidenced much less flexibility. EV1 and
PCTVAR provided dimensionality estimates near the middle of the range of possible dimen-
sionalities. While this proved useful in some of the real-world corpora discussed earlier, it
became a liability for the simulated data. Both of these techniques consistently overesti-
mated model dimensionality for the low-rank simulations, and underestimated the number
of factors in the full-rank cases. On the other hand Bartlett’s test of isotrapy was essentially
a non-performer, never advocating anything but a 2-dimensional reduction in k over kpqz,
as in the empirical data analysis of Chapter 4.

On simulated data APA and PA were statistically identical with regard to estimation
accuracy. They were also tremendously self-consistent. Only in the case of the LRHN
simulation did their estimates have a standard deviation above zero across the 50 runs.
APA and PA showed categorical improvement over all other estimators. Only for the LRHN
data was the superiority of PA over another method (EV1) significant below the 99% level.

In this case all three methods all gave a statistically indistinguishable best estimate on all
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50 simulations. Moreover, EV1 was significantly superior to 85% Var in all instances except
the full-rank case, where 85% Var gave a superior showing.

Overall, then, only the parallel analysis-based methods showed both accuracy and flex-
ibility across a range of simulation parameters. APA and PA gave accurate estimates of
intrinsic dimensionality for both low-rank and full-rank data, showing that it is applicable
to problems where dimensionality reduction is merited, or where dimensionality reduction
should be avoided. I have also shown that APA and PA provide the best estimate of model
dimensionality (among the techniques pursued in this study) across a range of structural
configurations. Adding noise to a simulation made the problem more difficult for all of the
dimensionality estimators (except for Bartlett’s, which was almost always a poor performer).
But APA and PA addressed this challenge by giving consistently good estimates (at LRLN
and LRBN) before finally converging on the EV1 estimate at LRHN. Admittedly, the an-
swer that EV1, APA, and PA converge on in the high-noise case is far afield of the true
dimensionality, leaving ample room for future improvements to the technique. However,
the collective behavior of these methods supports my original contention that detecting the
number of independent variables in the population covariance matrix by eigenvalue analysis

provides a strong approach to dimensionality estimation for IR applications.
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CHAPTER 6

Concluding Remarks

This chapter revisits my research question, articulated in Chapter 1. In light of the
research described in the previous three chapters, I argue that eigenvalue-based analysis
offers a useful, but not categorically accurate means of gauging the optimal dimensionality
of an LSI system. In addition to assessing the general utility of eigenvalues in service to
dimensionality estimation, my initial research question sought to identify which methods
of analysis provide the best estimates of data’s intrinsic dimensionality. The experiments
reported in this dissertation suggest that the family of dimensionality estimators that operate
on an error-correction premise—APA, PA, and EV1—were especially effective in problems
involving real-world corpora and simulated data. In particular, amended parallel analysis
has proven that it merits future research, as its performance was both compelling and
revealing during my experimentation. The performance of APA and related estimation
methods supports my theoretical argument from Chapter 1: dimensionality reduction for
IR is merited to the extent that the indexing features depart from statistical independence.

LSI entails an important and effective elaboration of Salton’s vector space model of
information retrieval. As discussed in Chapters 1 and 2, dimensionality reduction extends
the standard VSM to account for the correlational structure among terms. Despite its
intuitive and practical appeal, however, LSI’s dimensionality reduction has remained poorly
theorized. In particular, k,p;, the optimal dimensionality of an LSI system has traditionally
been the domain of ad hoc approaches and un-analyzed assumptions. The research presented
here has attempted to speak to these assumptions. In this chapter I review the outcome
of my research, contextualizing my findings and detailing their theoretical and practical

significance.



The chapter begins with a re-statement of my research question, and a review of its
grounding in the theory of IR models. In Section 6.2 I revisit the empirical findings of my
experimentation, summarizing the strengths and weaknesses of each dimensionality estima-
tion technique tested, and offering suggestions about research methodology. Section 6.3
contextualizes these findings, pursuing their implications for IR theory and practice. After
this, Section 6.4 describes important shortcomings in this study, suggesting room for future
work on dimensionality estimation for IR. Finally, I conclude with several reflections on the

significance of the research reported here.

6.1. Dimensionality Estimation and the Vector Space Model

As described in Sections 1.3 and 2.1, Salton’s vector space model theorizes information
retrieval as a geometrical problem. Under the VSM, inter-object similarity is a function of
vector orientation, measured with respect to a given set of dimensions. Each document in
a traditional VSM-based IR system is represented as a vector in the vector space spanned
by the corpus’ indexing terms. Documents with similar distributions of terms thus lie near
each other in the information space, and query-document matching simply involves ranking
each document by its proximity to a given query vector.

Despite its intuitive appeal, however, the traditional VSM suffers from serious theoretical
shortcomings. Most notably, Salton’s approach assumes orthogonality of the indexing terms,
despite ample evidence to the contrary. Insofar as it defines similarity as a linear function on
the dimensions of its vector space, the VSM treats each term as a statistically independent
variable. This introduces error into the VSM similarity function that manifests most notably
as the synonymy problem; queries about cars fail to retrieve documents about automobiles
despite an intuitive correlation between these terms.

Wong’s generalized vector space model addresses the VSM’s assumption of term in-
dependence. Under Wong’s approach, the term-term correlation matrix supplements the
traditional VSM similarity function. Thus a high observed correlation between cars and au-
tomobiles provides evidence for the GVSM that documents with either of these terms may

be describing a single concept. However, Wong’s model is concerned only with the sample
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correlation matrix. The GVSM similarity function is given by Equation 6.1.1:
(6.1.1) s = qRA'

where A is the n X p document-term matrix of rank r, R is the p X p term-term correlation
matrix computed from A, s is the 1 x n vector of similarity scores, and q is the 1 x p
query vector. For the GVSM, then, the observed correlation matrix describes the model of
relationships among the corpus terms.

If the GVSM extends Salton’s model, LSI entails still further extension. Under LSI, we

have a similarity defined by Equation 6.1.2:
(6.1.2) s =qR,A’

where Ry, is the best rank-£ approximation of the observed correlation matrix. Under LSI
we approximate the correlation matrix by using the first k£ eigenvalues and eigenvectors of
R. If D contains the eigenvectors of the correlation matrix R on the columns, and ¥ has
the eigenvalues on the main diagonal, then Ry, = DX, D), where Dy, is the first k¥ columns
of D. Proponents of LSI argue that removing the last » — k eigenvectors from R improves
the system’s similarity function by removing overspecification error from the model. The
matrix Ry, I have argued, constitutes a better statistical model of the population correlation
matrix P than does the full-rank matrix R.

While LST’s dimensionality reduction has shown good performance in empirical studies,
its motivation has remained largely un-formalized in the research literature. Why should
a reduced-rank approximation provide a superior estimate of the population correlation
matrix? How aggressively should we reduce the dimensionality to derive the optimal model?
The notion of ke, the best number of dimensions for a given corpus, is thus key to the
theoretical tenability of LSI. Without an overt notion of model goodness of fit, optimality
has been difficult to define. Traditional approaches to balancing the bias-variance trade-
off in statistical models do not translate easily to the unsupervised learning environment

presented by information retrieval. Thus LSI has often been guided by ad hoc approaches
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to dimensionality estimation, approaches that are of questionable practical utility and that
carry almost no theoretical weight.

This study has pursued the notion that a statistical analysis of the eigenvalues that arise
during LSI can provide a definition for optimal dimensionality. Each of the five estimation
techniques studied here—APA, PA, EV1, 85% Var, and Bartlett’s—defines its own notion
of optimality. Concomitantly, each estimator implies a different theory for dimensionality
reduction. Three of the estimation methods—APA, PA, and EV1—constitute a family inso-
far as they rest on similar assumptions. Each of these three criteria argues that dimensions
should be rejected if their eigenvalues are smaller than we would expect to see if the data
were independent. On the other hand, the percent-of-variance approach assumes that a
fairly constant noise factor has interfered with the data. Retaining enough eigenvalues to
account for, say, 85% of the total variance is the intellectual kin to the common notion that
LSI entails a noise reduction procedure. Finally, Bartlett’s test of isotrapy suggests that
we should retain a given dimension if its corresponding eigenvalue )y is significantly greater
than Agy1. This is a very conservative approach to dimensionality estimation, and its failure
in the face of IR data suggests that it does not address the dynamics of LSI.

Dimensionality estimation is crucial to the viability of LSI in two senses. First, empirical
studies (cf. Section 2.3) have shown that finding k¢ has strong ramifications for retrieval
performance under LSI. Models of insufficient dimensionality are impoverished, lacking the
expressive power to discriminate between relevant and non-relevant documents. On the
other hand, including too many dimensions has been shown to incur an overfitting effect,
leading to familiar problems in handling synonymy and polysemy. In addition to these
practical considerations, dimensionality estimation is crucial to the theory that underpins
LSI. As I have argued here, each dimensionality estimation technique implies a notion of
model goodness-of-fit. Thus each model selection criterion implies a notion of optimality.
For the theory of LSI, choosing a model selection criterion, then, is as important as choosing

a model.
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6.2. Eigenvalue Analysis for Dimensionality Estimation in IR

This section attempts to synthesize the major results from my experiments, taking pains
to detail the dynamics of k., and the strengths and weaknesses of each tested dimensionality
estimation technique. The data analysis of Chapters 4 and 5 paints a complex picture of the
competing imperatives that inform model selection under LSI. It was no surprise that during
my research, LSI dimensionality proved itself to be an important parameter. Any benefits
afforded by dimensionality reduction evidenced themselves only in a narrow range of values
for k. Outside of this range, performance was consistently lower than performance seen
under the full-rank model. However, optimal dimensionality also appeared to be corpus-
dependent. Thus my experimentation strongly evidenced the need for robust dimensionality

estimation techniques.

6.2.1. Findings from Empirical Data. As described in Section 4.1 the six tested corpora
showed widely different behavior with respect to dimensionality reduction. For instance,
MEDLINE demonstrated strong evidence of a semantic subspace of approximately 100 di-
mensions according to all three IR performance metrics. On the other hand, CF appeared
to tolerate almost no dimensionality reduction. None of the Cranfield-style performance
metrics saw a significant advantage via dimensionality reduction on CF. For other corpora
the three performance metrics were less unanimous. For instance, ASL demonstrated a pro-
nounced semantic subspace of about 200 dimensions for the CRAN data, CF_FULL, and
the CACM data. But dimensionality reduction was less helpful in improving average preci-
sion or optimal F' scores for these corpora. Thus I questioned the ability of Cranfield-style
analysis to indicate these corpora’s intrinsic dimensionality. Inadequacies of the supplied
queries, I argued, may have frustrated attempts to gauge the intrinsic dimensionality of
these corpora.

By the account of all performance metrics, however, optimal dimensionality appears to
be highly corpus-specific. As shown in Table 4.1.1, the amount of variance accounted for
by ASL-optimized models ran the gamut from 16% (MEDLINE) to 95% (CF). For other
metrics, the spread was even wider. Thus the number of eigenvectors and the proportion of

variance described by an optimal model resisted any one-size-fits-all summarization. This
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suggests that rigorously motivated and highly sensitive dimensionality estimation techniques
are crucial for the successful application of LSI.

Given the corpus-specificity of ko, it is somewhat surprising that the 85% Var criterion
performed well in our experiments. On five of eighteen observations (three metrics applied to
six corpora), retaining enough eigenvalues to account for 85% of the total variance yielded
the best results. However, I argue that this success is misleading. As mentioned above,
several corpora appeared to be optimized at fairly high values of k. On these occasions, 85%
Var’s tendency to produce large models paid off. However, in Section 4.2.2.3 T showed that
the situations in which 85% Var excelled were among those for which the IR performance
metrics were least in agreement. Moreover, in cases where low-dimensional models were
called for, 85% Var showed its native inflexibility, overestimating the dimensionality. These
detriments were writ large when I applied the 85% Var criterion to simulated data, where
it consistently over-estimated the intrinsic dimensionality. Thus I argue that a percent-of-
variance approach to dimensionality estimation is ill-advised for LSI insofar as evidence in
its favor is weak in our data and insofar as it lacks sensitivity to a given corpus’ distribution
of terms across documents.

Bartlett’s test of isotrapy demonstrated a categorically poor fit to the LSI problem. I
included it in these experiments out of a desire to consider an approach to dimensionality
estimation based on traditional, parametric hypothesis testing. However, Bartlett’s is known
to over-estimate model dimensionality, and this tendency is magnified in the case of IR, which
takes Bartlett’s far afield from the conditions for which it was developed. Under Bartlett’s
we retain an eigenvalue A if it is significantly greater than the next eigenvalue Ag41. In my
experiments, however, Bartlett’s always rejected two eigenvalues and accepted the remaining
r—2. In those cases where dimensionality reduction did not appear to be merited (e.g. CF),
Bartlett’s approach appeared accurate de facto. However, this modest success came at the
price of intolerable rigidity. Bartlett’s demonstrated itself to be even less flexible than the
85% Var criterion. Its performance on both the real data and our simulations demonstrated
that the x? distribution assumed by Bartlett’s does not hold when its test statistic is applied

to the complex data sets native to IR.
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Whereas evidence for the utility of Bartlett’s and 85% Var was weak, the family of
dimensionality estimators based on error correction evinced good performance in these ex-
periments. These estimation techniques—PA, APA, and EV1—rest on the assumption that
the distribution of eigenvalues derives from the degree of inter-term correlation. Under these
methods, the deviation of observed eigenvalues from the eigenvalues expected under term
independence is used as evidence for the corresponding dimension’s significance. Members of
this family provided the best dimensionality estimates on nine of the eighteen observations
of IR performance on real corpora. APA performed best on four occasions, including CRAN
and MEDLINE, where evidence of a semantic subspace was especially strong. PA gave the
best estimate for the CACM data with respect to average precision. With its identification
of moderately complex models, EV1 gave the best estimate on four occasions.

A serious failure, PA also gave the worst estimate on nine observations. However, I
argue that it must be understood in the context of the data analysis undertaken in Section
4.1. Retrospective performance metrics disagreed on the optimal dimensionality of several
corpora, especially CACM, CISI, and CF_FULL. In these cases, ASL called for fairly low-
dimensional models, while average precision and optimal F' needed more factors for optimal
performance. Because PA consistently returned low-dimensional models, it appeared as a
worst-performer vis a vis precision and F. On the CACM data, for instance, PA was the
worst performer for the F' measure, but the best performer for ASL. In Section 4.2.2.1 I
suggest that PA’s frequently poor performance is likely to be an artifact of the Cranfield
analysis used to gauge intrinsic dimensionality.

Despite some equivocation, it must be admitted that parallel analysis was a compelling
worst-performer on the CF data. In this case, PA under-estimated the intrinsic dimension-
ality according to all three performance metrics. The CF database was best represented
with no dimensionality reduction, a fact that PA seemed ill-equipped to recognize. How-
ever, it is important to note that APA’s moderating effect on PA improved dimensionality
estimations for all corpora on all performance metrics except for CACM measured by ASL.
In Section 4.2.2.1 I note that APA’s improvement over traditional parallel analysis was sig-

nificant above the 95% level. Thus APA’s confidence interval-based approach to estimation
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entails a statistically significant improvement over Horn’s method, which relies only on point

estimates.

6.2.2. Findings from Simulated Data. The empirical analysis of Chapter 4 left several
questions unanswered. Among these were, do the tested estimators display systematic error?
How do our dimensionality estimation techniques fare when applied to full-rank data where
dimensionality reduction is not merited? If the EV1 criterion is the theoretical cousin of
parallel analysis, why did each method give such different results in our experiments? To
address these questions I conducted the simulations described in Chapter 5. This section
reviews the major outcomes of the data simulations.

Most significantly, the simulations suggested that parallel analysis does not systemati-
cally under-estimate the intrinsic dimensionality of data. Across the simulation parameters
described in Table 5.1.1 PA and APA were consistently the most accurate performers of all
eigenvalue analysis techniques tested here. With confidence above 99% their estimates were
superior to all other estimator predictions (except for EV1 under the high-noise parameter-
ization, where confidence was above 95%). Given low-rank data with various noise factors,
PA always performed best. Likewise, PA and APA were the only techniques that recognized
the full-rank data as such.

APA’s moderating effect on PA does not introduce systematic error into the estimation
process. In my simulations, traditional parallel analysis consistently found the right answer.
Given this accuracy, amended parallel analysis gave the same solution. I find it especially
encouraging, then, that APA yielded a significant improvement over PA in the face of com-
plex, real-world data while converging on the PA solution when confronted with simpler,
more structured simulations.

Systematic error was, however, evident in the other surveyed eigenvalue analysis tech-
niques. EV1, 85% Var, and Bartlett’s all overestimated the dimensionality of the low-rank
simulations, while under-estimating the dimensions for the full-rank data. EV1 and 85%
Var consistently delivered models of middling complexity. Regardless of the amount of noise

in the system, or the number of non-zero eigenvalues, these estimators predicted that the
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optimal dimensionality was near the middle of the possible range. This behavior was espe-
cially egregious for 85% Var and Bartlett’s, each of which evidenced the inflexibility that
led us earlier to caution against their use for IR.

The relationship between PA, APA, and EV1 came to the fore when I admitted large
amounts of noise into the simulated data sets. As the noise coefficient was increased, parallel
analysis converged on the EV1 solution. These techniques—PA, APA, and EV1—reject
eigenvalues that are smaller than those expected under the condition of term independence.
They differ with respect to how they model the so-called null eigenvalues. EV1 treats the
sample data as if it were a population. PA is more realistic, admitting into the analysis that
fact that there are only n < oo observations. APA admits a still more realistic model of
the null eigenvalues insofar as it accounts for their sampling distribution. The convergence
of these methods on a single solution given noisy data provides more evidence in favor of
the parallel analysis approach to dimensionality estimation. That is, given a well-structured
data set whose intrinsic dimensionality is easy to ascertain, PA and APA effectively exploit
that structure to derive an accurate prediction. However, if the data are relatively un-
structured, the methods appear to concede as much, turning to the more conservative EV1

solution.

6.3. Implications of The Findings

Overall, eigenvalue analysis gave useful information about the intrinsic dimensionality
of the datasets tested here. However, no viable alternative to dimensionality estimation via
eigenvalue analysis exists, and so demonstrating the categorical superiority of eigenvalue-
based evidence is impossible. It is possible—and correct—however, to note that the retro-
spective approach to judging intrinsic dimensionality appears flawed. In my experiments,
ASL, average precision and optimal F' frequently disagreed about the optimal dimensionality
of an LSI model, often by a wide margin. This suggests that approaches to dimensionality
estimation based on retrospective, ad hoc judgment of “what works best” carry high risks.
What appears to work best under one lens of performance analysis may be grievously sub-

optimal in another context. More damning still, exhaustive relevance judgements are rarely
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present in IR applications outside the laboratory. Without relevance judgements, even the
dubious prospect of selecting k& by consulting Cranfield-style performance metrics is not
feasible.

It is no accident that eigenvalues yield good evidence for dimensionality estimation. The
term and document co-occurrence matrix eigenvalues provide a basis for Ding’s probabilistic
model of LSI. Under Ding’s theory, the magnitude of an eigenvalue )y is directly propor-
tional to the increase in model likelihood gained by adding the k" LSI dimension. We may
also understand the role that eigenvalues play in LSI in terms of principal component anal-
ysis. Assuming that the columns of the term-document matrix A have been centered and
scaled to unit length, then LSI gives the principal components of the terms and documents.
Likewise, in this case, the singular values are the positive square roots of each principal com-
ponent’s variance. Thus the k** dimension describes \; units of variance, where )y is the
k" eigenvalue. Given the intimate relationship between LSI and the eigenvalue-eigenvector
decomposition, it is natural to use eigenvalue magnitude as evidence of dimensional validity.

In particular, I argue that the optimal dimensionality of an LSI system is given by the
value of k£ at which point the observed eigenvalues become smaller than the eigenvalues
expected under term independence. Different analysis techniques—PA, APA, and EV1—
disagree on how to estimate the null case, but whatever their statistical differences their
motivation is the same. The value of k whose corresponding point on a scree plot is where
the observed eigenvalues cross the so-called “null eigenvalues” is a measure of the strength
of inter-term correlation in a corpus. This suggests that LSI’s dimensionality reduction is in
essence an error correction mechanism. The vector space model assumes term orthogonality,
an oversimplification addressed by Wong’s GVSM. LSI carries the GVSM error correction
one step further. Whereas Wong’s approach uses R, the sample term correlation matrix,
to supplement the VSM similarity model, LSI uses the best rank-k approximation of R.
The rationale behind LSI is that our interest lies in the population correlation matrix,
not the sample correlation matrix. Due to inter-term correlation, the number of non-zero
eigenvalues in the population is ko < p, as showed by Lederman [93]. In other words,

by retaining k& dimensions, we assume that the population correlation matrix contains k
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non-zero eigenvalues, and that the remaining p — k sample eigenvalues derive from sampling
error. Rejecting the smallest p — k eigenvalues thus removes sampling error from the GVSM
similarity function. The degree of this error correction—i.e. the amount of dimensionality
reduction—is proportional to the degree to which the data depart from independence.

I promote this error correction-based theory in light of my experimental results. The
data analyses reported here suggest that the 85% Var and Bartlett’s approach to dimen-
sionality estimation are ill-suited to IR applications. Though 85% Var did perform well
during the empirical study, I found evidence that its virtues were inflated by artifacts of the
experimental methodology. Instead, 85% Var appears to be an inflexible and poorly mo-
tivated approach to dimensionality estimation. Likewise, Bartlett’s—a statistically based
technique—fared poorly, implying that the x? distribution of its test statistic does not hold
on large data sets.

On the other hand, the error correction-based methods—APA, PA, and EV1—performed
well in general. Between the empirical analysis of Chapter 4 and the simulations of Chapter 5
I found that parallel analysis and amended parallel analysis comprise a compelling model for
dimensionality estimation under LSI. The parallel analysis approach has, in previous studies,
proved its utility for traditional multivariate statistical applications. In the context of IR,
however, it was unclear at the outset how PA would fare. While PA did under-estimate the
intrinsic dimensionality for some real-world data, the extension entailed by APA mitigated
this tendency to a significant extent. Thus I have found compelling evidence to suggest that
APA is well suited to the task of parameterizing k during LSI.

In sum, of the three error correction-based techniques, PA offers the most aggressive
approach to dimensionality reduction. Though my simulations evinced no systematic ten-
dency toward under-estimation, PA did under-estimate the best dimensionality for several
test corpora. APA’s amendment to PA mitigated this aggressiveness to a limited, but statis-
tically significant degree. Finally, EV1 constitutes the most conservative approach to error
correction-based estimation. In my simulations, EV1 evinced a disappointing lack of flexibil-

ity, always returning models of middling dimensionality. However, its inherent bias toward
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moderately sized models did keep its error rate relatively low for the real-world data. Given
these results, researchers and practitioners in IR may consider the following suggestions.

Using the eigenvalue-one criterion appears to be a safe and effective approach to dimen-
sionality estimation. In my analysis retaining eigenvalues larger than the average eigenvalue
often provided a good estimate of the optimal dimensionality, although the technique only
occasionally provided the best estimate. We may thus consider EV1 to provide a rough
estimate of the solution given by APA and PA. It’s merits lie in its ease of calculation and in
its inherent conservatism. In situations where under-estimating model dimensionality would
lead to egregious error, EV1’s estimate may in fact be a safe choice. However, in such cases,
LSI itself is probably ill-advised.

That said, APA and PA appear to be much more sensitive than EV1 to the correlational
structure of a given corpus. For the simulated data, APA and PA were more accurate
than EV1. And in my empirical studies they were more accurate than EV1 for the corpora
that provided the strongest evidence of a semantic subspace. Thus I argue that APA and
PA provide the best estimate of a corpus’ intrinsic dimensionality among the estimators
tested here. Moreover, my analyses suggest that APA’s improvement over traditional PA
is statistically significant. Since APA requires very little computation in addition to PA, I
argue that it is important in IR applications to take advantage of APA’s confidence interval-
based approach to dimensionality estimation.

The upshot of this dissertation’s findings, however, is that the matter of dimensionality
estimation is still unsolved. I have produced compelling evidence that the APA approach
is well suited for optimizing LSI models. However, the difficulty in ascertaining intrinsic
dimensionality via retrospective IR performance evaluation prohibits categorical statements
of estimator superiority or inferiority. From a practical standpoint, researchers would be
well advised to apply all of the estimation techniques tested here, comparing their individual

solutions and weighing the relationships among them.
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6.4. Study Limitations and Future Work

No research study is without its limitations, and this dissertation is no exception. In
this section I discuss these limitations in detail, offering suggestions for eliminating their
influence in future work. Although I have answered my research question, I have not done
so unequivocally. Three major issues have left open questions that future research will need

to address:

(1) The size and number of test corpora
(2) The number of tested dimensionality estimators and the number of dimensionality
reduction techniques

(3) The method of intuiting the intrinsic dimensionality of each corpus

In fact these three shortcomings are not independent of each other. My results suggest
strongly that APA and related estimation techniques provided the best dimensionality esti-
mates among the tested eigenvalue analysis methods. However, my assertions in this regard
must be qualified in a number of ways, each of which pertain to one (or more) of the issues
enumerated above.

Perhaps most importantly, when comparing dimensionality estimators we desire a means
of assessing the “true” dimensionality of a given test corpus. In this study I approximated
such an assessment by recourse to three IR performance metrics: ASL, average precision,
and optimal F. While this approach yielded useful evidence about each corpus’ intrinsic di-
mensionality, in several cases these performance metrics were in disagreement. As described
in Section 4.1, I suspect that the Cranfield-style analysis introduced unwanted artifacts into
the evaluation process. For instance, I speculated that the supplied queries for several cor-
pora (e.g. CACM and CISI) may have been inadequate for the task at hand. Due to the
evident noisiness of retrospective performance evaluation, this research would benefit from
an alternative means of assessing intrinsic dimensionality. An unbiased, highly accurate
knowledge of the intrinsic dimensionality would provide a much firmer basis for comparing
eigenvalue analysis techniques.

The simulations undertaken in Chapter 5 addressed this problem by constructing data

of known dimensionality, an approach that yielded highly informative results. However,
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simulations lack the richness of empirical data, and thus I would still welcome an alternate
methodology for analyzing real-world corpora. Of course our interest in eigenvalue-based
dimensionality estimators stems from the hypothesis that they provide the best estimate of
a corpus’ intrinsic dimensionality. I know of no other technique for assessing kop¢, and thus
have had to tolerate the somewhat messy data analysis that attends all Cranfield-style IR
evaluation.

To address this issue, in future work I plan to translate the dimensionality estimation
problem into the domain of supervised learning. In [136] Schiitze, Hull, and Pedersen use
the first k principal components as inputs to automatic classification systems. Following this
approach, one could estimate the intrinsic dimensionality as that value of k that leads to the
best classifier. The literature of supervised learning has much more thoroughly developed
notions of model optimality than are common in unsupervised learning. In a supervised
learning environment, one could employ, for instance, information-theoretic measures such
as the Akaike Information Criterion (AIC) to select the optimal model. APA and associated
analysis techniques could then be compared against the model dimensionality selected in this
fashion. The supervised learning approach will give us a stronger grounding in statistical
model building. But it is important to stress that supervised learning is significantly different
from IR, and thus results obtained under a supervised model will not be unambiguously
interpretable in the context of retrieval.

A related problem in this dissertation’s research was the sample of test corpora that was
analyzed. I selected the six corpora treated here due to their distinct statistical qualities,
as detailed in Tables 3.1.1 and 3.1.2, and due to their use in previous studies. Although
these corpora did evince a wide variety of observed optimal dimensionalities, the relationship
between their statistical characteristics and their optimal dimensionalities was not obvious.
Although I found evidence that corpora with large term spaces tend to benefit from LSI more
than other data sets, other rules of thumb are elusive. In future work it will be desirable to
undertake experiments like those described in this dissertation on more IR test collections.
Having n = 6 in this study made statistical inference about the performance of eigenvalue

analysis techniques a tenuous proposition. But inferential statistics formed only a part of
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my analysis. As described in Chapter 4, much of my analysis involved nuanced interrogation
of the results on a case-by-case basis. Thus I selected n = 6 because it provided an ample
base of comparison, without generating unmanageable quantities of data. However, in future
work it will be desirable to undertake less detailed but more statistically inclined analyses
on larger samples of corpora in order to improve the generalizability of my statements.

Likewise, it will be essential to repeat the experiments undertaken here on much larger
corpora. In contemporary IR, the TREC data comprise a gold standard of experimenta-
tion. At the time that this study was undertaken, resampling techniques such as APA are
computationally unmanageable on data sets requiring multiple gigabytes of storage. How-
ever, the inexorable development of processing power and computer memory guarantees that
this infeasibility will fall to the wayside. I thus anticipate analyzing the matter of optimal
dimensionality for LSI for much larger corpora in future research.

Finally, this study has treated only five dimensionality estimation techniques. Moreover,
I have applied them only to models based on LSI. I chose these estimators because they are
representative of several families of eigenvalue analysis techniques. APA, PA, and EV1 are
all based on the notion that dimensionality reduction is merited to the extent that the data
violate the assumption of term independence. On the other hand, 85% Var is a relatively
ad hoc approach. But its underlying rationale is that a Gaussian noise factor imposes itself
on observed data. Finally, I included Bartlett’s as the most widely studied example of a
statistically-based, parametric dimensionality estimator. However, other means of analyzing
eigenvalues to assess intrinsic dimensionality do exist, and in future research I anticipate
testing APA against their solutions.

I chose to study LSI due to its wide deployment in the IR literature. Though many
other methods of dimensionality reduction have been proposed (cf. Section 2.2), LSI retains
an important visibility in the IR community. In particular, I have worked with LSI due
to its status as an extension of Salton’s VSM and Wong’s GVSM. Nonetheless, it will be
of great interest to note how matters of dimensionality estimation may be resolved under
other methods of dimensionality reduction such as Independent Component Analysis and

Probabilistic LSI.
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In addition to the directions outlined so far in this discussion, my future work will be
concerned with improving the APA technique. Experimental results reported here suggest
that APA’s moderating effect over PA is significant and useful. However I suspect that APA
can be made more accurate in the future. To improve the APA model, I anticipate two lines
of research. First, APA’s representation of null eigenvalues was derived in this study by
taking the mean of B eigenvalue simulations. However, since these null eigenvalues do not
show a distribution marked by strong central tendency, the motivation for using the 50"
quantile was weak. Thus I plan to analyze the probability density of the null eigenvalues
more thoroughly in efforts to select a more overtly motivated (and probably lower) quantile
with which to estimate the “true” null eigenvalues. Secondly, the analysis of Section 4.2.2.1
suggested that we may derive useful information about the validity of a dimension based on
the variability of the simulated null eigenvalues. Future articulations of the APA procedure
may account for null eigenvalue variance. Both of these proposed lines of research stand to

improve the accuracy of APA by improving its sensitivity to the null eigenvalue distribution.

6.5. Conclusion

This study has engaged the problem of dimensionality estimation experimentally. At
the outset I asked whether co-occurrence matrix eigenvalues are useful for parameterizing
k, the number of dimensions in an LSI system. I approached this question by observing the
quality of estimates derived by five eigenvalue analysis techniques for six IR test collections
and 200 simulated data sets. My results argue that analyzing co-occurrence matrix eigen-
values can lead to very good or very poor estimates of the intrinsic dimensionality. Thus
a method such as Bartlett’s test of isotrapy appears ill-suited to deployment in large-scale
IR problems. Likewise, the percent-of-variance approach occasionally works well, but its
successes in my experiments appeared to be an artifact of noise in the methodology rather
than a valid perception of the optimal semantic subspace. On the other hand, APA, PA,
and EV1 fared very well, overall. Though it is difficult to quantify their accuracy on the

real-world corpora, the performance of these methods gave the best estimate on nine of the
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eighteen corpus/performance metric pairings. Moreover, they excelled dramatically on sim-
ulated data, delivering a statistically correct answer on all but the most difficult estimation
problems. The performance of APA was especially encouraging. Its improvement over PA
was statistically significant for the empirical data, offering the best estimate on four obser-
vations. APA converged on the PA solution for all simulated data, where PA was often able
to discover the right answer. Thus APA demonstrated impressive flexibility and accuracy
during both the empirical and simulated data analyses.

The success of APA, PA, and EV1 supports my argument that LSI’s dimensionality
reduction functions as a form of error correction. LSI comprises an extension of Wong’s
GVSM. The difference between LSI and the GVSM lies in the fact that LSI uses a low-rank
approximation of the term correlation matrix to inform its similarity function, while the
GVSM uses the full-rank correlation matrix. An LSI system with k = kj,q, thus converges
on the GVSM solution. This yields a system that treats the sample correlation matrix as
if it were the population correlation matrix. In light of this we may understand an LSI
system where k = ko, as optimized insofar as it operates on the best approximation of
the population term correlation matrix, in the least-squares sense. Thus reducing k to kept
removes error from the LSI model by excluding eigenvalues that are likely to have arisen in
the observed data due to sampling error. By applying APA, PA and EV1 we assume that
the difference between k¢ and ki, is proportional to the degree of correlation among the
terms.

I cannot—and do not—hope that this study offers the last word on dimensionality es-
timation for IR. The multivariate statistical literature is replete with research on choosing
the number of principal components to retain, a problem that is identical to estimating
kopt for LSI. Likewise, work in the design of dimensionality reduction-based IR systems
continues to proceed apace. If this dissertation has succeeded in its goals it will encourage
future collaboration between researchers in the IR and statistical communities. By adapting
standard statistical models (i.e. Horn’s parallel analysis) I have lent a practical basis and

theoretical credibility to LSI’s dimensionality reduction. Likewise, the failure of methods
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such as percent-of-variance and Bartlett’s test suggest important new challenges for statis-
ticians. Like all research, then, this dissertation has answered some modest questions while

introducing a host of new ones.
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