
LinuxFocus article number 252
http://linuxfocus.org

by Philip de Groot
<philipg/at/authors.linuxfocus.org>

About the author:

I expect to receive my PhD
from the Universiteit van
Nijmegen during this year.
My thesis is on what we call
chemometrics. I’m presently
working on computer
technology applied to
biology, at the Academic
Medical Center in
Amsterdam, the Netherlands.
In addition I maintain my
own page for Linux newbies
(in Dutch): it is one of the
many initiatives by and for
the linux community. I love
working with Linux and I
frequently report on my
experiences.

Translated to English by:
Nino R. Pereira
<pereira/at/speakeasy.org>

Compile your own Linux kernel

Abstract:

You will presently find out that you too can get, configure, compile,
and install your very own kernel.

_________________ _________________ _________________

Introduction

Why would you even want to compile and install a new kernel all your own? Possible reasons are:

The new kernel has better hardware support.
The new kernel offers certain advantages, such as better support for multiple-processor machines

(SMP), or support for the USB. This applies to the 2.4.x kernels.
The new kernel lacks old bugs.
Your own kernel lacks superfluous elements and is therefore faster and more stable.

It is a problem that compiling ("rolling") your own kernel demands a fair amount of computer savvy.
Therefore a new Linux user will not attempt to get into compiling kernels lightly. This article shows
screen dumps of the way to do compile the kernel using the command ’make xconfig’. With this
command the user handles the kernel through a GUI, a Graphical User Interface, and the mouse. There
are about 40 screen dumps, which clarify why you do or do not choose certain options in particular
situations. Discussing these 40 screen dumps may seem excessive, but it is the best way to clarify the
kernel’s internal workings and the how and why of certain kernel options. The screen dumps are based
on kernel-2.4.6. The newest kernel is now 2.4.19, but apart from a few extra entries in the menus (e.g.,
support for new hardware) the screen shots are the same and the process of compiling the kernel is too.
One word of advice: print this page out before you start, so that you always have access to all the
necessary information!

The article is structured as follows. First it discusses where you can find the source code on the Internet,
and how to install the source code, followed by the kernel’s graphical configuration using the screen
dumps. Once the kernel is configured it must be compiled, but even a newly compiled kernel is not yet
ready for use. First, the new kernel must be installed with the boot manager ’lilo’, and before using ’lilo’
you must make the file ’/etc/lilo.conf’. You can also copy the compiled kernel to a partition from where
you can start Linux with a DOS/Windows program called ’loadlin’. In addition there are a slew of
specific points that need to be addressed, such as PCMCIA-support as needed by laptops. PCMCIAs,
small inserts that often handle networking tasks and look like fat credit cards, are supported by the
kernel itself only since the 2.4.x series kernels. Older kernels can support PCMCIA through a separate
compilation and installation. SuSE linux has another problem, namely support for sound through the
ALSA drivers. These drivers are not part of the kernel and must be separately compiled and installed,
because the original drivers usually no longer work. To make matters worse, going from one series
kernel to another, say from the 2.2 series to the 2.4 series, may be accompanied by problems with certain
kernel utilities, the so-called ’modutils’. These contain the code needed to load a kernel module: Figure
3 explains what a module is. Sometimes the new kernel does not know what to do with the old
’modutils’, so that you must compile and install a more recent modutils version. Problems like these are
rare but they do occur, and it is only fair to point them out in advance.

But, if you faithfully follow the procedures in this article there is almost nothing that can go wrong. The
new kernel is added to ’lilo’, or copied to the ’loadlin’ partition. Therefore, in emergencies you can still
restart the original kernel. Then, working under your original kernel you can try to solve the problem
with the new kernel. Even when you might have difficulties with a new kernel’s ’modutils’ it is still
possible to restart the old kernel and then fix the problem by e.g., compiling and installing them
separately: all new versions of ’modutils’ are downwards compatible with the older kernels, so that the
new ’modutils’ work fine with the old kernels.

Installing the kernel source code

Everything you do here demands root privileges, so you must begin by logging in as root. First and
foremost you must install the kernel source code, e.g., from the installation CD. In SuSE the source is

located in part ’d’ (for ’development’) as the packet ’lx_kernel’. It is advisable to install the kernel
source code that comes with your distribution, because the various GUIs are then automatically installed
too. Once this is done the tarball with the newest Linux kernel, e.g.,the file ’linux-2.4.6.tar.bz2’ can be
downloaded from (http://www.kernel.org/pub/linux/kernel/v2.4/) and installed. The corresponding
modutils are on http://www.kernel.org/pub/linux/utils/kernel/modutils/v2.4/. Notice that the version
numbers of ’modutils’ do not have to agree with those of the kernel: just download the most recent
versions. Compiling and installing modutils is discussed later on, under the heading ’Installing
modutils’. First we’ll do the kernel itself.

The source code for the kernel that is on your machine right now is in the directory ’/usr/src/linux/’.It is
wise to keep this particular source code safe, for example by renaming the linux directory as follows:

cd /usr/src
mv linux linux-2.2.19 (if the original source code is for 2.2.19).

Only after you have safely stored the original kernel should you unpack the newest kernel: you will see
that the file linux-2.4.6.tar.bz2 unpacks everything in the ’linux’ directory by default. It is overwritten if
this directory already exists, and then you have problems: you can no longer recompile the original
kernel, you lost the original configuration, etc. In this example I rename the ’linux’ directory right after
unpacking the kernel source code ’linux-2.4.6’, and I create a symbolic link with the name ’linux’ to the
directory ’linux-2.4.6’. The advantage of this procedure is that you can see the system’s present kernel
version immediately. In addition it is easier to install a kernel upgrade. The commands are (as root,
remember):

cd /usr/src
cp ~/linux-2.4.6.tar.bz2 (assuming that the tarball was downloaded)
 (to your home-directory (’~’))
bzip2 -d linux-2.4.6.tar.bz2 (this may take a while)
tar -xvf linux-2.4.6.tar
mv linux linux-2.4.6
ln -s /usr/src/linux-2.4.6 /usr/src/linux

Once this is done you go the kernel’s directory, and you do:

cd /usr/src/linux
make xconfig (see Figure 1)

Figure 1: The graphical interface for defining your Linux kernel after the command ’make
xconfig’.

This is the main menu used to define the kernel. To do so you must click on the different options.
Clicking ’Save and Exit’ stores your choices on disk, and once this is done you can finally compile and
install the kernel (as in Figure 40). But we are not there yet.

Configuring the kernel

Below I reproduce the various screen-dumps with my selections filled in. Each picture is accompanied
by an explanation as to why I have chosen my specific options. Carefully reading these examples you
will understand the reasons for my choices, and you will also understand better what option you should
pick in your specific situation. The ’help’ feature gives similar information. You can see ’help’ by doing
your own ’make xconfig’ for your own Linux distribution. Then, click on ’Help’. The text that appears
usually recommends what option you should choose.

The examples can of course not discuss all the hardware that you might have. However, they should
clarify how you handle your specific hardware, and how you can look in the kernel itself to find out if
your hardware is supported.

Figure 2: Selection of the ’code maturity level options’.
In this section you can allow the use of the kernel’s experimental options. Sometimes these are
necessary, for example to get support for new types of cards. However, in most cases you deselect this
option since experimental code results in a less stable kernel. In Figure 1 you see the grayed-out options
’IEEE 1394 (FireWire) support’ and ’Bluetooth support’. With the present setup you can not yet select
these two because the corresponding code is still experimental.

Figure 3: Support for loadable modules.
(from now on the screen-dumps will be linked, you can open them in a new window yourself to take a
look)
Modules are snippets of kernel code, e.g., drivers, that are compiled separately but ideally at the same
time as the kernel itself is compiled. Therefore, this code is not part of the kernel, but it can be loaded
and hence become available when you need it. The general recommendation is to compile the kernel
code as a module whenever possible, because this results in a small and stable kernel. One warning:
never compile the file system as a module, see Figure 32. If you make this mistake and compiled the file
system as a module, the resulting kernel can not read its own file system. Then, the kernel can not even
load its own configuration files, something that is obviously a prerequisite for correctly starting linux.
You will see that I use modules sparingly: I like my kernel to be able to talk directly the all the hardware
without having to load modules, but this is only my own preference.

Figure 4: Selecting processor type and features.
Here you pick the type of processor that you have, and you indicate whether the various options apply.
In general the ’/dev/cpu’ options are rather advanced and should not be selected by most users. ’High
Memory Support’ becomes necessary only if your computer has more than 1 gigabyte of RAM (not disk
space). Most computers have 64 to 512 megabytes of ram (and from 8 to 60 Gb on the hard disk), so
’High Memory Support’ is usually deselected. You must turn on the option ’Math Emulation’ if you use
linux on a 386 of 486SX system. These older systems lack the math coprocessor that linux counts on, so
in this case you must select ’Math Emulation’. Virtually all modern processors have a coprocessor built
in, so you can usually keep this option turned off. The option ’MTRR’ allows faster communication
through a PCI or AGP bus. Since all modern systems have their videocard on a PCI or AGP bus you
should usually select ’MTRR’: in any case, it is always safe to turn on this option even if your system
does not use the PCI or AGP bus for the video card. Symmetric multi-processing support (SMP) applies
only to motherboards with more than one main processor, e.g., a motherboard with two Pentium II
processors. SMP ensures that the kernel loads both processors optimally. The last option (APIC) usually
applies to multiprocessor systems too, and is normally turned off.

Figure 5: General Kernel Options.
Here you specify certain general options to the kernel. Everyone always selects ’Networking support’
because you always need it, e.g., for the Internet. Linux is heavily Internet-oriented and it can not run
properly without networking. In addition, network support is also needed for all kinds of other actions
that do not seem to have much to do with networking. It is even possible that the kernel does not
compile without network support. In short: include network support. All modern systems use the PCI
bus, so you select these options too. The grayed-out text ’PCMCIA/CardBus support’ shows that this
option is not available, because you have earlier indicated that you do not want to use experimental code
(see Figure 2.). If you use a laptop you need PCMCIA/CardBus support in the kernel to allow the use of
a network or a modem (see also under the heading ’pcmcia support (laptops)’ later on). ’System V IPC’
allows programs to communicate and to synchronize, ’BSD process accounting’ keeps e. g., the error
code when processes end, and ’Sysctl support’ allows programs to modify certain kernel options without

recompiling the kernel or restarting the system. These options are usually left on. Modern linux
distributions have their ’kernel core (/proc/kcore/) format’ selected as ’ELF’: this is the standard format
of various system libraries, i.e., code snippets that are available to the system and used by programs.
’ELF’ is the successor to the obsolete ’a.out’ format, and similar to windows .dll files. All modern linux
programs use the ELF libraries, but unfortunately some older programs also demand support of the
’a.out’ format. One example is ’Word Perfect 8 for X Windows: this native X Window System/Linux
application is only available in the the ’a.out’ format, so that ’xwp’ simply does not run without support
of the ’a.out’ format. Include ’a.out’ as a module if you might want to use ’xwp’. I also carry ’MISC’ as
a module. In principle I do not use it, but it comes in handy to have the code available if you are a
frequent user of java, python, or the DOS emulator DOSEMU. I have selected ’Power Management
support’ and ’Advanced Power Management BIOS support’ (not shown in Figure 5). These two options
are the minimum needed with modern ATX motherboards to allow the kernel to turn off the computer
automatically when closing linux. The other power management functions are turned off because they
do not normally work under XFree 86 (which is my standard when using linux). KDE and Gnome have
their own standard power management functions that you can select.

Figure 6: Configuring Memory Technology Devices.
You need this option to make linux read for example flash cards. Flash cards are frequently used in
digital cameras. With this option linux can read flash cards (from the necessary hardware) and copy the
photos as .jpg files to disk. Unless you know you need it I would deselect this option: if you find you
need it you can always add it later on

Figure 7: Configuring the parallel port.
Before USB technology existed the parallel port was commonly used to connect the computer to printers
and scanners. My printer hangs off a parallel port, so I want the port to be available under linux. Note
that configuring the parallel port is not the same as configuring printing: this is done later on, at Figure
28.

Figure 8: Configuring Plug & Play.
Almost everyone has a ’Plug & Play’ system and therefore wants this option supported. Turning this on
allows the kernel to configure the ’Plug & Play’ devices and to make them available to the system.
Sometimes it is necessary to turn on the option ’Plug & Play OS’ in the BIOS, because otherwise linux
(and also Windows) can not configure the ’Plug & Play’ devices. The option ’ISA Plug & Play support’
refers to ISA cards that are ’Plug & Play’ but use the ISA bus. One example is the AWE64 sound
blaster. The ISA bus never had a ’Plug & Play’ standard, which makes it difficult to configure these
cards. Earlier, before kernel 2.4.x, linux users had to call the program ’isapnp’ (package isapnptools,
rpm -qil isapnptools to see all files) during the boot process. ’isapnp’ read the file ’/etc/isapnp.conf’.
This file contained all the ports, addresses and interrupts used by the various cards. If the information in
’/etc/isapnp.conf was not correct, or if ’isapnp’ was not called, the card was not accessible to linux and
the modem, network card or sound card did not work. Selecting the option ’ISA Plug & Play support’
supersedes the old procedure: the file ’/etc/isapnp.conf’ is no longer used. Instead, the configurations are
detected automatically. Under SuSE 7.1 I had to rename the file ’/etc/isapnp.conf’ to e.g.,
’/etc/isapnp.conf.old’ after compiling 2.4.x, because both the kernel as ’isapnp’ claimed the same
resources, with disastrous consequences. The problem is that SuSE 7.1 (and older versions)
automatically activates ’isapnp’ during boot, even though the kernel already contains the necessary
support. This is however only relevant for older Linux systems, newer ones don’t use isapnp by default.

Figure 9: Configuring block devices.

Virtually everyone will want to use a floppy disk, so the top option is turned on (or, in my case, selected
as a module). On a request to access the floppy the kernel automatically loads the necessary module,
provided that the file ’/etc/modules.conf’ or ’/etc/conf.modules’ is properly configured in your
distribution as is normally the case. As user you should have no problems with this if you have selected
the correct options in Figure 3. To access the floppy the kernel must of course be able to read the
floppy’s file system. Therefore you must also copy Figure 32 correctly. The other options can be
important if you use IDE storage media through your parallel port, but they are normally turned off. One
possible exception is ’loopback device support’. Before burning CDs under linux you usually make an
image of the CD, and the ’loopback device’ is needed to look at the image’s content. I’ve selected this
option (5’th line from below) as a module (not shown in Figure 9).

Figure 10: Configuring multiple devices.
Small users of linux normally do not need raid or LVM support. ’Raid’ implies that the system uses two
or more hard disks to store the information in parallel. If one disk crashes the other keeps on going, and
the system continues to work. LVM makes it possible to add a hard disk in such a way that an existing
partition seems to get larger. In practice this means that you do not have to repartition or to copy a
smaller partition to a larger one. Path names remain the same too. This possibility is really handy, but it
is not usually needed for most small users.

Figure 11: Configuring networking options.
You need the ’Packet Socket’ option to communicate with network elements without implementing a
network protocol in the kernel. Here I can be brief: always select this one. Most of the other options are
off, unless you need their specific support. For example, I have selected ’Network packet filtering
(replaces ipchains)’ because I use SuSE’s standard firewall. A firewall protects your computer against
attacks from the outside, e.g., through the Internet, at least when you have configured the firewall
properly. Firewall protection at kernel level is obviously very advantageous. Further choices in
configuring ’network packet filtering’ are explained in Figure 12. You need ’Unix domain sockets’ to
make network connections, but also elsewhere: The X Window System automatically uses Unix sockets,
so that you can not use X without this option. Always turn this one on. ’TCP/IP networking’ contains the
protocols needed for the Internet, and also for internal networks. Normally you want to activate TCP/IP
support. In case of doubt about selecting a particular option, try the help texts. If you still don’t know it
is always possible to include the support, and then remove it later on during testing. Compiling certain
options as modules is also a good possibility.

Figure 12: Configuring the IP netfilter (firewall).
For proper operation of its firewall SuSE Linux demands backwards support for ipchains. Hence, for
SuSE I select this option. If you use a firewall in other distributions or installations, consult their
manual.

Figure 13: Configuring telephony support.
This is only needed if you have a telephone card in your computer, e.g., to make phone calls over the
Internet. Most small users do not have this card, and do not need the option.

Figure 14: Configuring ATA, IDE, MFM en RLL support (communication protocols for hard
disks).
Almost everyone needs these protocols, with as sole exception those few with systems that have only
SCSI disks but no other disk types. Therefore, most users select this option. Clicking on the line right
under it gives a sub-menu with another set of options. These are discussed below. Because of their

importance there are not one but three screen shots. Fill these out very carefully: they are extremely
important.

Figure 15: Configuring ATA, IDE, MFM en RLL support: screenshot 1.
The top option is needed by everyone who addresses a piece of hardware through an IDE/ATAPI
interface. These include hard disks, but also tape drives, ZIP disks, and CD readers and burners.
Basically, all modern computers use an IDE/ATAPI interface, hence this option is on. The option
’include IDE/ATA-2 DISK support’ is needed to support the system’s hard disks. Hence, this option
must be turned on too, except if you have only a SCSI system.

Figure 16: Configuring ATA, IDE, MFM en RLL support: screenshot 2.
The option ’include IDE/ATAPI CDROM support’ is usually selected if you have an ATAPI CDROM
drive. However, ATAPI CD burners must be accessed through SCSI emulation. The SCSI-emulation
can be used to access both the CD player and CD burner. However, you can run into problems if you
mount your CDs througt the SCSI-emulation, such as error messages when mounting the CD, or when
starting the CD player to listen to audio CDs. The best solution is to turn on both ’include IDE/ATAPI
CDROM support’ and ’SCSI emulation support’ as shown in Figure 16. The device that needs SCSI
emulation, usually the CD burner, can be defined in ’/etc/lilo.conf’ by adding the line
’append="hdd=ide-scsi":’ this is discussed further below under the heading ’Lilo configuration.’ Since I
have an internal ZIP drive that communicates with the motherboard through an ATAPI interface, I have
selected the option ’include IDE/ATAPI FLOPPY support.’ You need the same option to access other
floppy-like drives, such as an LS120 drive. Most motherboards use ’PCI IDE’ to access hard disks,
CDROMs and floppies, hence this option is usually turned on. Likewise the two possibilities to enable
DMA. DMA gives your hardware direct access to the computer’s internal memory, without the
intervention of the processor. As a result the IDE disks can be accessed faster. This you want. The
option ’sharing PCI IDE interrupts support’ is off because usually you should not need it. True, some
IDE controllers allow sharing of interrupts with another computer device, for example an exotic network
card. Unfortunately, sharing IDE interrupts decreases the performance of the shared disks, so normally
you want to share interrupts only when this is the only way to solve certain serious hardware problems.

Figure 17: Configuring ATA, IDE, MFM en RLL support: screenshot 3.
My motherboard has a Pentium II and an Intel chipset, so of course I want to use the specific support for
this particular chipset. When you fill in your own kernel options you will see other chipsets that are not
shown in Figure 17.

Figure 18: Configuring SCSI support.
If you have a SCSI card you must of course select the options that you need. The screenshot only shows
the options needed for your ATAPI CD burner if you have selected ’SCSI emulation support’ (Figure
16).

Figure 19: Configuring I2O device support.
You must select this option if you have an I2O interface in your computer. Most people have not, and in
this case you simply switch it off.

Figure 20: Configuring network device support.
I have never been able to compile a kernel without network device support. You should therefore always
select this option. You should also select the dummy driver, either as part of the kernel or as a module.
Linux demands such a dummy driver even when the actual, physical network is absent, as is the case

with many home users. Even when there is a network linux uses the dummy driver frequently. In this
menu you can select your type network and network card, as shown by the example in Figure 21. Note
that you need to do more if you want to access the Internet through a modem: you must turn on ppp
support by choosing either ’PPP support for async serial ports’ (for COM ports) or ’PPP support for
sync tty ports’ (for fast connections through e.g., a SyncLink adapter). If you forget to do this the kernel
will tell you that the ppp module does not exist, even though you have made it, an error message that
does not help in finding the real problem. You can choose both compression methods without problems:
if the kernel needs them they are used, otherwise not.

Figure 21: Configuring the ethernet device.
My ethernet card is a 3COM /100 MBit card that uses the 3c509/3c529 chipset. Since I do not have a
physical connection with a network (I have a network card, but I’m connected to the network through a
modem) I compile this driver as a module, just is case I might need the card in the future. You will of
course select the type network and network card in your machine. In addition, you must configure the
network connection with a linux configuration program, such as ’yast2’ under SuSE.

Figure 22: Configuring amateur radio support.
You select this option if you want to use amateur radio support, and you turn on the necessary driver.
Most people do not use this option.

Figure 23: Configuring support for infrared (wireless) communication.
You turn on the infrared communication option if you have a wireless device, e.g., a wireless mouse or a
wireless keyboard. Most desktop systems do not have this and do not need the option.

Figure 24: Configuring ISDN support.
Here you select support for an ISDN-card that you might have in your system. It is important to know
which card you have, including the chipset: you need this information to pick the right driver.

Figure 25: Configuring old CDROM drivers.
In older 486 and even 386 systems the CDROM is not connected through the hard disk IDE (ATAPI)
controller, but through a sound card or a special card. Using these old CDs demands selecting the
corresponding driver. This option is superseded in modern systems, and hence superfluous.

Figure 26: Configuring input core support.
This refers to one of the most important additions to the 2.4.x kernels: USB support. Input core support
is a layer in between the kernel and some USB devices. Figure 38 shows the various USB devices you
can select, and the help text for some of these indicates which ones need ’input core support’: see Figure
38. You must turn on ’input core support’ here if one of your USB devices needs it. All modern
motherboards have a USB connection, so as a rule you should turn it on. But, to be honest, I know I will
not need USB support in my system so I have turned it off.

Figure 27: Configuring character devices: screenshot 1.
The upper option (’virtual terminal’) enables the possibility of opening an xterm (using X11) or to use
the text mode for login. Normally this option is always turned on. The second option (’support for
console on virtual terminal’) tells the kernel where it should send messages, such as warnings about
lacking or incorrectly working modules, problems with the kernel itself, and startup messages. Under X
Window System you often set apart a special window for the kernel messages, but in text mode they
typically go to the first virtual terminal (’CTRL+ALT+F1’). Leave this option on. You can also choose

to send these messages to the serial port, e.g., to a printer or to another terminal (the fourth option). To
send the messages to the printer you must also activate the port through the third option. Likewise, you
must activate this port if you want to use it for a ’serial mouse’. Again, usually the third option
(’standard/generic (8250/16550 and compatible UARTs) serial support’) is on. In my own system I have
chosen to compile this as a module. The reason is that during startup SuSE complains about the lack of
the ’serial support’ module, and including the support as a module is an elegant way to avoid the
message by ensuring that the module does exist. Configuring the ’character devices’ is extremely
important. If you fail to do this properly you can end up with a non-working system. Hence that Figures
28 to 30 discuss a few more options.

Figure 28: Configuring the ’character devices’: screenshot 2.
If you want to use an xterm on your own machine from a remote site, for example through ’telnet’ of
’ssh’, you must turn on the option ’unix98 PTY support’. It might seem that a standalone desktop system
would not need this option, but a number of processes in the background also use this option. Therefore,
it is a good idea to activate this option in any case, if only to avoid error messages (at least from SuSE)
during startup. Everyone who connects a printer through a parallel port needs of course ’Parallel printer
support’. Still, not everyone needs the parallel port: modern USB printers do not. Kernel messages can
go through the parallel printer by turning on ’Support for console on line printer’: usually, you do not
want this. You need the option ’support for user-space parallel port device drivers’ if you have certain
pieces of equipment hanging off the parallel port, but normally you do not. Likewise, usually you do not
need ’I2C support’: it is needed for certain cards that handle video, but if you find out you need it you
can always add it to the kernel later on, once you know the kernel works fine. You select support for
mouse and joy stick when you use them, but not all mice use this driver (see further below, at Figure
29). Present-day CD burners have made the tape drives that need ’QIC-02 Tape support’ largely
obsolete, hence this option is usually off.

Figure 29: Configuring the ’character devices’: Mice.
You do not need anything from this option if you have a serial mouse, but for all other mouse types you
must configure certain parameters here. If you use an ORIGINAL bus mouse you must select the upper
option, with below it the corresponding type or make of the bus mouse. Many computers nowadays have
another type of mouse, usually (and erroneously) called ’busmouse’ or ’PS/2 mouse’. These mice are
often connected to ’/dev/aux’ and plugged in through a small connector similar to those used for
keyboards. Often this type of mouse uses the keyboard to connect to the computer. To make these mice
work properly you must select the options shown in Figure 29, ’mouse support (not serial and bus mice)’
and ’PS/2 mouse (aka "auxiliary device" support)’.

Figure 30: Configuring the ’character devices’: screenshot 3.
The options for configuring the kernel in between those of Figure 28 and Figure 30 are not discussed
here. They are normally off. The option ’Ftape, the floppy tape device driver’ refers to support for tape
drives c9nnected through the floppy controller. Even if you have such a tape drive it is not essential to
compile support for it, at least not in the first go-around. The other options refer to modern 3D video
cards. If you have a video card that is connected through an AGP-bus, you could turn on AGP support,
and also the specific driver for your video card (under ’/dev/agpgart (AGP support)’). Note that it is
possible to have a correctly functioning kernel without these options, but no necessarily! People who
have an integrated videocard on their motherport, such as in the intel i815 chipset, MUST use the kernel
driver! If not, XFree86 version 4 or higher (used with most recent distributions) won’t work. My system
does have an AGP card, an NVidia TNT2, but this card is not supported by a specific kernel module
(NVidia refuses to share hardware specifications, necessary to develop these drivers). Unfortunately, in

my case it makes therefore little sense to turn on AGP support. Despite this particular problem, I can use
XFree86 version 4 without the kernel-driver. ’Direct rendering support’ is for an option in XFree86
starting with version 4 to accelerate graphics performance through the kernel. To make use of this option
your specific video card must be supported, and you must use XFree86 4.0 or higher. In addition you
must also activate ’AGP support’. Still, you can safely deselect these options and come out with a
correctly functioning linux kernel.

Figure 31: Configuring the ’multimedia devices.
This option is turned on if you have a card that handles video or radio. As before, this option is not
essential for the kernel’s proper functioning.

Figure 32: Configuring the ’file systems’: screenshot 1.
Here you specify the file systems to be read by the linux kernel. You may want to make a kernel that can
read Windows disks or Windows floppies, but you must make sure that the kernel can read linux’ own
ext2 file system, or the newer ReiserFS file system. Linux can not even start if you fail to do this,
because then the kernel can not read from its own boot disk (as discussed earlier around Figure 3). To
read DOS/Windows floppies and disks you need to turn on the option ’DOS FAT support’: however, to
read Windows NT/Windows 2000 disks you need a separate read-only driver that can be selected in this
menu later on. To read and also to write DOS/Windows disks and diskettes you need the option
’MSDOS fs support’. Virtually everyone wants this, so most people turn these options on. ’VFAT’
refers to support for the use of long file names under Windows 95 of 98. My own system is a so-called
dual boot system, in which I can start both Windows 98 and linux (using the linux boot manager lilo, see
under ’Configuring lilo’). Therefore I have activated ’VFAT’. You need to include support for ISO 9660
to read CDs in the standard format. Below this is the ’Joliet extensions’ option, which allows longer file
names than the MS-DOS 8.3 that is the limit in the ISO 9660 standard. Almost everyone wants to read
present-day CDs, so these options are normally on. Figure 33 clarifies some additional options, among
which is Linux’ ext2 file system.

Figure 33: Configuring the file systems: screenshot 2.
The files in the ’/proc’ directory contain information about the status of the system, e.g., which
interrupts are in use. Normally you always turn this option on. The ’Second extended fs support’ refers
to linux’ (still) standard file system. You absolutely MUST compile this in (NOT as module)! Figures
32 and 33 do not show the ’ReiserFS’ option that can be selected here too: ext2’s anoited successor,
ReiserFS is better able to deal with damage to the file system due to power failures and similar
problems. At this moment ReiserFS is still under development and therefore marked as experimental
code. Even so most recent distributions support the use of ReiserFS already, but even though ReiserFS is
supposed to replace ’ext2’ in the future I would not recommend it as file system for all partitions at this
time. You need ’UDF file system support’ if you use (under Windows) the program ’packetCD’, which
allows you to copy CD files on the fly as from a slow hard disk. It is very handy to exchange data with
other PCs. Reading these packet CDs also under linux is possible by mounting them with the ’udf’ file
system, e.g., with a command like ’mount -t udf /dev/scd0 /cdrom’. This part also contains items like
’Network file systems’, ’partition types’ and ’Native language support’. You do not have to deal with
’Network File Systems’ unless your computer is part of a large network, in which case you need to
activate ’NFS File System Support’ and perhaps also ’SMB file support’, but for a standalone computer
you do not need these options. The option ’Partition Types’ is quite advanced but not necessary for
effective use of the linux kernel. It is best to turn this one off. Figures 34 and 35 further explain ’Native
Language Support’.

Figure 34: Configuring ’native language support’: screenshot 1.
In this menu you pick which code table is to be used by linux to deal with file names under DOS and
Windows. Figure 34’s code tables are for the usual DOS file names. The NLS tables in Figure 35 are
needed to use the longer file names. The top option in Figure 34, ’Default NLS option’, determines
which symbols will be standard in linux. Figure 35 depicts and explains the option ’iso8859-15’.

Figure 35: Configuring ’native language support’: screenshot 2.
You need the option ’NLS ISO 8859-15’ to reproduce Windows’ FAT and the Joliet extensions to the
CD file systems correctly, something that is always a good idea. The selection ’NLS ISO 8859-15’ is
appropriate for the Western languages, and it includes the Euro symbol. Therefore this code table is
almost always compiled in. The table ’NLS ISO 8859-1’ is the previous table for the Western languages
but without the Euro symbol.

Figure 36: Configuring the console drivers.
The ’VGA text console’ is to enable text mode with VGA resolution. Almost everyone wants this, so
this option is almost always on. Only a few of the older 386 computers lack a VGA-compatible card,
while most modern computers have not the slightest problem with this choice. The second option, ’video
mode selection support’, makes it possible to select the resolution in text mode during the boot process.
This is sometimes handy if you want to have more letters on a line, but usually you leave this one off.
The final two options are experimental, and I advise you to deselect them.

Figure 37: Sound configuration.
In this section you configure sound. If your distribution uses the ALSA sound drivers (like SuSE 6.3 and
higher), it suffices to select ’sound card support’ as MODULE. The ALSA drivers are compiled and
linked later on (see further under the heading ’SuSE and the ALSA sound drivers’). If your distribution
uses the kernel’s standard sound drivers you must now select the right one for your sound card. Virtually
all sound card brands are named here, so in principle the selection of the right driver is not a problem. If
your sound card works well with your distribution’s standard kernel you can also use configuration
programs (such as SuSE’s ’yast2’) to find out which drivers your specific sound card needs. It is
reassuring to know that sound is not critical: you lack sound if something goes wrong here, but the
kernel itself works fine.

Figure 38: Configuring ’USB support’.
My motherboard has a USB port, but I do not use it. However, if I were to turn off all USB support
SuSE gives me an an error message during boot. Of course SuSE supports the USB and therefore tries to
load the necessary module(s), hence my selection of ’Support for USB’ as a module. Even though this
error message is not important for me, I solve it in an elegant way by compiling the driver needed for the
USB ports on my motherboard. To do this the minimum is setting the ’Preliminary USB device
filesystem’ to ’y’ and to load a specific USB driver. Since my Pentium II motherboard is rather old I
have picked the ’UHCI (Intel PIIX4, VIA, ...)’ driver as a module. But, you must select the ’UHCI
Alternate Driver (JE) support’ module if you have a recent motherboard with the Intel chip set, while for
e.g., Compaq computers you should choose ’OHCI support’ as a module. In principle you need only one
of these three modules, but in case of doubt you can select all three. Your linux distribution has already
found out which of those it needs, and it automatically loads the correct one.

Simply enabling your motherboard’s USB ports in not enough, you need to specify also the drivers
(modules) of the USB equipment that is connected to your computer. The list that comes up under ’USB
Device Class drivers’ has the various choices. All this is rather straightforward and little can go wrong:

still, in case of doubt read the help texts.

Figure 39: Configuring ’kernel hacking’.
This one is easy: do NOT select!. It is an option useful to programmers who want to find the reason for a
kernel crash or to read the hard drive’s cache: the option is completely useless for the typical user.

Figure 40: Save and Exit.
Pffft, we made it. All that remains is to compile and install the kernel as discussed below.

Compiling the kernel

By clicking on ’Save and Exit’ you store your configuration choices in the file ’./.config’ (or
’/usr/src/linux/.config’ if you compile in /usr/src/linux). As an aside, it is handy to save this file and to
copy it to the new kernel source directory if you do only a minor upgrade, from kernel 2.4.5 to 2.4.6 for
example. This way you can (usually) keep all your old configuration choices, which can save a lot of
work. In a similar way you can start off by using the config file of the ’standard’ kernel of your
distribution, which in some distro’s is called at /boot/config (copy it to ./.config to start using it). But, if
you upgraded your kernel source and you get weird problems when compiling the kernel this is of
course the first file you remove! As a matter of course you have, for security’s sake, written down and
carefully stored the configuration of the kernel that works correctly. The procedure to compile the kernel
is as follows:

make dep
make clean (for older kernels)
make bzImage
make modules
make modules_install

Figure 40 already indicated the need for the ’make dep’ command. Of course you execute these
commands in linux’ source directory, usually ’/usr/src/linux’. Kernels in the 2.0.x series or older also
need the command ’make clean’, which removes earlier files before the compilation of a new kernel.
The ’make clean’ command prevented strange error messages that were difficult to track down, but were
presumably caused by older object (.o) files that were not overwritten. The command ’make bzImage’
compiles the new kernel, but does not yet install it. You can also compile the kernel with other ’make’

commands, e.g., ’make bzlilo’ or ’make zImage,’ but these commands can give unexpected problems.
Most kernels are too large to allow a properly executed ’make zImage’: you get an error message during
the compile, and you end up without a kernel. With the command ’make bzlilo’ everything must be
configured properly in files such as ’/etc/lilo.conf,’ but this is not always the case. Hence it is safer to
avoid these latter commands. The command ’make modules’ compiles the modules: they are installed
with the command ’make modules_install’. This command puts the modules in the directory
’/lib/modules/2.4.6/’ if the present kernel version is 2.4.6: it changes when you compile another kernel
version. This way the modules corresponding to a particular kernel end up automatically in a separate
directory, thereby avoiding conflicts with obsolete modules and similar problems. During boot the linux
kernel now knows in which directory it can find the right modules. But, the files in ’/lib/modules/2.4.6/’
are overwritten and older modules remain if you already compiled kernel 2.4.6 earlier and now
recompile it. Then, older modules may hang around even though they are no longer needed in the newer
kernel. Normally this is not a problem, but it is always a good idea to take the time to remove the older
modules first before installing the new ones.

To avoid problems in installing the kernel you must also ensure that lilo’s configuration ’/etc/lilo.conf’
is correct, and you must copy the kernel and the file ’System.map’ into the correct location. After all this
you must also execute the command ’lilo’ too. An alternative is the use of ’loadlin’, which allows
booting a linux kernel under Dos/Windows. Both options are discussed below.

Configuring lilo

You can find lilo’s configuration file usually in the ’/etc’ directory as ’/etc/lilo.conf’. Open it in a text
window with a simple ASCII editor: you may have installed a full-fledged editor like XEmacs (then, use
’xemacs /etc/lilo.conf &’), a simple full screen editor like kedit or gedit (then, use ’k(g)edit
/etc/lilo.conf’) or a primitive line editor such as pico or nano (then, use ’pico /etc/lilo.conf’). The file
lilo.conf will look something like this:

boot = /dev/hda
vga = normal
read-only
menu-scheme = Wg:kw:Wg:Wg
lba32
prompt
timeout = 300
message = /boot/message

 other = /dev/hda1
 label = win98

 image = /boot/bzImage
 label = linux-2.4.6
 root = /dev/hda3
 append = "parport=0x378,7 hdd=ide-scsi"

 image = /boot/vmlinuz.suse
 label = suse
 root = /dev/hda3
 append = "hdd=ide-scsi"
 initrd = /boot/initrd.suse

The detailed content of the file lilo.conf may well differ from the above on each system and between
distributions. Therefore I will now walk you through this file. The top 8 lines are already in good shape
and you need not change them, usually. The command ’boot’ in the first line indicates the physical hard
disk from which booting starts, that is, ’boot’ points to the location of the ’master boot record’. In my
case booting starts from /dev/hda, the first physical hard disk. The option ’vga’ indicates that the boot
uses a standard VGA text mode, with 80x25 characters. The option ’read-only’ means that the booting
process first mounts the linux partition read-only. During linux’ boot the partitions are checked for
errors: only afterwards are they re-mounted with both read and write permissions. The line
’menu-scheme’ sets the colors of the ’lilo’ boot menu in text mode. With ’lda32’ it is possible to boot
the operating system after the 1024’th cylinder, provided that this is supported in the BIOS. All moderns
systems support ’lba32’. Problems with this you can solve through a BIOS upgrade, something that is
almost a necessity with the large hard disks that are now available. The command ’prompt’ forces ’lilo’
to give a prompt that allows the user to choose the desired operation system. The option ’timeout’ gives
the number of milliseconds that ’lilo’ waits for input after the prompt before starting the standard
operating system. If ’lilo.conf’ does not give a standard operating system, as in the example here, the
boot process starts the first operating system encountered. In my case this is Windows98, so that people
who do not know linux yet will end up in a Windows environment. The ’message’ option shows a
message while ’lilo’ is executing. Under SuSE this is Tux, linux’ cute penguin mascot, with (of course)
the text ’SuSE Linux 7.1’. You can see this message by typing ’xv /boot/message’ or ’gv /boot/message’
(sometimes even ’gimp /boot/message’) : ’xv’ and ’gv’ (ghostview) are shareware programs with which
you can look at various kinds of picture formats. Please note that the file /boot/message does not exist on
systems without a graphical login screen (e.g. older distributions), in this case the ’boot message’ is just
a text message. It is in principle possible to show your own preferred image during boot, but I have not
yet tried out this possibility. All options to ’lilo’ are of course documented in the ’man’ pages, which
you access by the commands ’man lilo’ and ’man lilo.conf’.

The other options direct the boot of the various operating systems. At most you can boot up sixteen
different operating systems or kernels. Normally this is ample. You pick the operating system with the
line ’label=’. The default for Windows98 (and also older Windows versions and DOS, but not Windows
NT or Windows 2000) is to have them on the first, primary partition. Therefore these operating systems
only need a line ’other’ and a line ’label’. The second section, starting with ’image=/boot/bzImage’,
starts the new kernel with the label ’linux-2.4.6’. My linux root directory is ’/dev/hda3’. The line
’append = "parport=0x378,7 hdd=ide-scsi"’ tells the kernel the address and interrupt for the parallel port
(port 0x378, interrupt 7) , and specifies that my CD burner ’hdd’ must be addressed through
SCSI-emulation. The names for the CDs depend on the system: in mine it is ’hdd’, but in yours it can be
another name. The use of an interrupt is mostly a question of personal preference. An interrupt speeds
up printing, but you can leave out this command if you do not have an interrupt available for the parallel
(printer) port. Linux’ default is the slower so-called ’polling’, which allows the kernel to use the parallel
port without an interrupt. The last section, starting with ’image = /boot/vmlinuz.suse’, contains lilo’s
configuration made during SuSE’s configuration process: I have added the line append="hdd=ide-scsi"
by hand. The file ’boot/vmlinuz.suse’ is the standard kernel that comes with the distribution. Preferably,
you should ALWAYS save this kernel for emergencies. The line ’initrd = /boot/initrd.suse’ applies only
to the standard installation kernel: it specifies the loading of a so-called ’ramdisk’ image, a virtual disk
that is loaded in memory (or random access memory, RAM). The ’ramdisk’ contains the modules
needed for the correct booting of linux: a distribution kernel must of course be able to access an
enormous variety of hardware, something that is only feasible by using many modules.

Hopefully it is now clear where you must store the new linux kernel before executing lilo. In this
example, the right commands are:

cp /usr/src/linux/arch/i386/boot/bzImage /boot
cp /usr/src/linux/System.map /boot/System.map-2.4.6
lilo

Under SuSE 7.3 you can also do the second copy like this:

cp /usr/src/linux/System.map /boot

(the original System.map has already been renamed)
If you already have a kernel with the name ’bzImage’ and you want to keep this kernel, you can copy
the new kernel to ’/boot/bzImage-2.4.6’ and make the corresponding change in /etc/lilo.conf: change
/boot/bzImage to /boot/bzImage-2.4.6. The compilation always recreates the file System.map, which
contains the names and the configuration of important kernel variables. The command ’depmod -a’
creates a file that contains all the dependencies of the kernel modules, that is, the various relations
between the kernel and the modules, between the modules themselves, and also the information in the
file ’/etc/modules.conf’. Most linux distributions, including SuSE, make sure that ’depmod -a’ is
executed during boot, but it is wise to ensure explicitly that the file /boot/System.map exists, and that it
corresponds to the proper kernel version. The command ’lilo’ installs the new configurations of an old
kernel, or the new kernel. If you already have a file ’/boot/bzImage’ that you overwrite with a freshly
compiled kernel but without executing lilo, you will end up with a new kernel that can not boot. The old,
original distribution kernel that you stored safely away still works, because this one has not been
overwritten. Keeping the old kernel makes it possible to compile and test new kernels in a responsible
way.

Using loadlin

If you use ’loadlin’ to boot linux you undoubtedly know how to find this handy program, viz., in
C:\loadlin. Virtually all linux distributions have ’loadlin’ on the first CD in the ’dosutils’ directory. You
must also copy the new linux kernel to the hard disk in ’C:\loadlin’, perhaps with a unique name. By
first starting Windows98 in DOS mode you can then boot linux with the command:
loadlin bzImage
Under normal circumstances most configurations that are stored in the kernel itself, such as the location
of the root partition, are correct if you have compiled your own kernel, and in this case the above
command is sufficient to boot linux without problems. By typing (in DOS) the command ’loadlin |
more’ you will get a help screen that includes a link to a ’loadlin-HowTo’ on the Internet. With ’loadlin’
you can try out a newly compiled kernel even if you are reluctant to diddle with ’lilo’: namely, ’loadlin’
and ’bzImage together fit on a 1.44 MB diskette. There is absolutely nothing that can go wrong if you
first boot DOS with a boot diskette (with support for EMM386), and then boot linux from the diskette
with ’loadlin’ and ’bzImage’. But, you must of course have a DOS boot diskette.

SuSE and the ALSA sound drivers

SuSE uses the standard ALSA (Advanced Linux Sound Architecture) sound drivers. These drivers are
better quality than the drivers of the OSS project that are standard in the kernel. If you are serious about
sound under linux you should absolutely use the ALSA drivers. These drivers are not part of the (older)
kernel source code, which implies that the drivers must be compiled and installed separately. Source
code for the ALSA drivers are located in the part ’zq’ of the SuSE distribution: read on if you do not
know what this means. Install ALSA through YaST or YaST2 so that you have the source code available
in the directory ’/usr/src/packages/.’ To compile and install the ALSA drivers you do the following:

rpm -bb /usr/src/packages/SPECS/alsa.spec
cd /usr/src/packages/BUILD/alsa/alsa-driver-<version number>/
./configure
make install

The first line installs the source code, including the drivers, in the directory ’/usr/src/packages/BUILD/’
directory. In addition the ALSA libraries and utilities are directly compiled as rpm-files. Unfortunately,
the ALSA drivers are not compiled in by default. You must compile and install them separately by hand
using the bottom two commands. De command ’./configure’ finds the necessary configurations and files
in your system and puts them in a configuration file. The command ’make install’ compiles all ALSA
drivers and installs them at the same time for use by the kernel in the directory
’/lib/modules/2.4.6/misc/’. Now, when booting SuSE the desired sound driver is installed automatically.
I admit that the procedure suggested here is somewhat cumbersome, but you must know exactly what
you are doing to find the necessary drivers and to include sound support in a new kernel in a more direct
way.

If you do not use SuSE, or if you want to use a more recent version of the ALSA drivers, you can
download these drivers and the corresponding libraries and utilities from http://www.alsa-project.org.
This site’s start page gives the latest news on the ALSA project (e.g., February 2002’s integration of the
ALSA drivers in the official 2.5 series kernel source tree) and links to the various files to download.
Below I will show how to compile the ALSA drivers: you can follow the analogous steps for the
libraries and the utilities. Unpack the drivers in a convenient directory, e.g., ’/usr/local/.’ Move to this
directory, in this case ’/usr/local/alsa-driver-<version-number>/’ and execute the above commands
starting with ’./configure’. It is possible that you must perform some additional steps to get the drivers to
work if your distribution does not use the ALSA drivers as a standard. Unfortunately, these problems are
outside the scope of this already quite extensive paper, but you can get further help from the ALSA FAQ
(Frequently Asked Questions) that you can download too.

Support for pcmcia (laptops)

Support for pcmcia is standard in kernels from 2.4.x onward. However, the official PCMCIA HOWTO
argues that the kernel version of PCMCIA should preferably not be used. For now, the pcmcia source,
including the scripts and the drivers can work with all the kernel trees: 2.0, 2.2, and 2.4. It is my
experience that the pcmcia drivers stop to work after recompiling the kernel, and that they must be
recompiled too. There are two solutions depending on your distribution. The first is to use the source
code that comes with the distribution. Installing and compiling the source code to an rpm file gives you
a file that you can install. The other solution is to download, unpack, compile, and install the most recent
pcmcia version from http://sourceforge.net/projects/pcmcia-cs/), like this:

cp /etc/rc.d/pcmcia /etc/rc.d/pcmcia.SuSE
cp ~/pcmcia-cs-3.1.?.tar.gz /usr/src
cd /usr/src
tar -zxf ./pcmcia-cs-3.1.?.tar.gz
make config
make all
make install
cp /etc/rc.d/pcmcia.SuSE /etc/rc.d/pcmcia

The first and last lines solve a SuSE-specific problem. SuSE’s pcmcia-initialization script
’/etc/rc.d/pcmcia’ is overwritten by the command ’make install’, which cause the script to fail under
SuSE. The problem is solved by copying the original script back after ’make install’. If you have
mistakenly overwritten the original SuSE script you must re-install the pcmcia packet anew beginning
with the part ’a1’, copy the original script to another file, execute ’make install’ again, and finally copy
the original script back.

The new rpm file for pcmcia support you get under SuSE as follows:

rpm -i /cdrom/suse/zq1/pcmcia-3.1.?.spm
cd /usr/src/packages
rpm -bb ./SPECS/pcmcia-3.1.?.spec
cd /RPMS/i386/
rpm -i --force ./pcmcia-3.1.?.rpm
SuSEconfig

In the first line I assume that you will install the pcmcia drivers by themselves from the sixth or seventh
CD and that the CD-ROM reader is already mounted on /cdrom. The command ’rpm -i’ installs the
source code and the command ’rpm -bb’ compiles the pcmcia rpm file. Then you install this particular
rpm file as you do all rpm files. Note that you must use the option ’--force’ because otherwise the rpm
program will tell you (correctly) that ’pcmcia’ is already installed, and will therefore ignore the new file.
As always you must execute the program SuSEconfig (note the CAPITALS and lower case letters) when
you have installed rpm files by hand under SuSE, to activate the configuration changes. The latter is
done automatically by SuSE’s setup programs YaST or YaST2 after they have installed or modified new
packets. Then, it is no longer necessary to do the activation by hand.

To be able to use pcmcia support properly you must leave on ’network support’ during compilation, but
you must turn off all other drivers for network cards. And, as has already been discussed with Figure 11,
you must of course turn on ’TCP/IP support’ too if you want to use the Internet.

Installing ’modutils’

As already mentioned the kernel uses the small programs in ’modutils’ to manage kernel modules. These
programs include:

insmod (which installs a module),
rmmod (to remove a module, and)
lsmod (showing all modules in use),

among many others. With commands like ’man lsmod’ you can find out how to work the various
commands, something I will not get into here.

Compiling and installing ’modutils’ is straightforward. Simply do:

cd /usr/src
cp ~/modutils-2.4.6.tar.bz2 . (assuming that the file sits in your)
 (home directory, ’~’)
bzip2 -d modutils-2.4.6.tar.bz2 (unzip: this may take a while)
tar -xvf modutils-2.4.6.tar
cd modutils-2.4.6 (go to the directory in which ’modutils’ have)
 (just been unpacked)
./configure (find system-specific configurations)
make (compile ’modutils’: since it is small the compilation can be)
 (surprisingly fast)
make install (install ’modutils’ in the directory ’/sbin/’)

This is all you have to do to make ’modutils’ ready for use. Note again that in this example ’modutils’
happen to have the same version number as the kernel, but this is not always the case.

Does the kernel work correctly?

The new kernel is configured, compiled, and probably also installed through lilo. You restart the system
and ask yourself: how can I figure out whether the new kernel will work correctly? You will easily find
hardware that does not work when you try things, but in addition the kernel puts lots of useful
information to the screen during the boot, even before you start the graphical login. This information
contains things such as configurations that are detected automatically (ports, IRQs, etc.), but also error
messages in case a certain driver can not be initialized directly, either as module or as part of the kernel.
Watching these messages gives an early warning about certain problems. For SuSE linux this is very
easy: each part of the kernel that boots puts on the right side of the screen the (green) message ’done’ if
all worked well, or ’failed’ if something is wrong. Since the messages can scroll across the screen at a
furious pace, any error messages are summarized above the login prompt. You find the login prompt
under ’<Ctrl>+<Alt>+F1’ if you get the graphical login screen automatically. This way you have at least
a hint as to where the problem occurs if indeed the error message is relevant to you. Error messages that
look like ’Cannot find module’ or ’Cannot load module’ usually indicate that you have not included
certain parts that you can not miss. Fixing the kernel configuration and recompiling usually solves the
problem. Note that it is not necessary to recompile the whole kernel. If you just forgot some modules it
is sufficient to re-execute ’make modules’ and ’make modules_install’. It is not even a problem if you
must recompile the entire kernel. Most kernel code is already compiled, and the only parts that need to
be recompiled are the parts that were missing. In summary, simply modifying the kernel a little and
recompiling goes very quickly, in contrast to the initial kernel compilation. Then you can safely get
some coffee.

Another way to inspect the kernel’s boot messages is with the command ’dmesg’. Simply executing this
command calls up the messages that scrolled off the screen earlier. Piping them to a file, with ’dmesg >
temp’, allows you to read the error messages at your own pace (with ’more temp’, or your favorite
editor).

Conclusion

With this guide in hand you can now begin your experimentation with the kernel in a reasonably
sensible way. Hopefully the threshold to start playing with the kernel is lowered enough that you are
eager to get started. Most of your time will be spent deciding on the correct kernel configuration, while
during compilation you can safely play ’freecell’ or do other computer work.

If you still get into trouble and know no way out, you could make use of the various linux-related
mailing lists and web sites where you can ask questions. These exist in all different languages, not only
English. A reasonably short time later you usually get a helpful answer that enables you to solve your
problem. The best way to find these lists and web sites is with a search engine.

Webpages maintained by the LinuxFocus Editor
team

© Philip de Groot
"some rights reserved" see linuxfocus.org/license/

http://www.LinuxFocus.org

Translation information:
nl --> -- : Philip de Groot <philipg/at/authors.linuxfocus.org>

nl --> en: Nino R. Pereira <pereira/at/speakeasy.org>

2005-01-14, generated by lfparser_pdf version 2.51

