
LinuxFocus article number 266
http://linuxfocus.org

by Hilaire Fernandes
<hilaire(at)ofset.org>

About the author:

Hilaire Fernandes is the
Vice-President of OFSET,
an organization to promote
the development of ’Free’
educational software for the
Gnome desktop. He also
wrote Dr. Geo, a primer
program for dynamic
geometry, and is currently
working on Dr. Genius -
another education program
for Gnome.

Translated to English by:
Lorne Bailey
<sherm_pbody(at)yahoo.com>

Developing Applications for Gnome with
Python (Part 3)

Abstract:

This series of articles is specially written for newbie programmers using
Gnome and GNU/Linux. Python, the chosen language for development,
avoids the usual overhead of compiled languages like C. To understand
this article you need a basic understanding of Python programming.
More information on Python and Gnome are available at
http://www.python.org and http://www.gnome.org.

Previous articles in the series :
- first article
- second article

_________________ _________________ _________________

Required tools

For the software dependencies needed to execute the program described in this article, please refer to the
list from part I of this series of articles.

You will also need:

In the original .glade file[drill.glade] . This file has been slightly modified since last time to
incorporate sliders to choose exercises in the interface.

This time the Python source code is distributed in four files :
1. [drill1.py].
2. [templateExercice.py].
3. [colorExercice.py].
4. [labelExercice.py].

For installation and use of Python-Gnome and LibGlade please refer to Part I.

Development Model for the Exercises

In the preceeding article (part 2), we created the user interface -- Drill -- which is a frame for the coding
of the exercises described further on. Now, we shall take a closer look at object oriented development
using Python, in order to add functionalities to Drill. In this study, we will leave aside the aspects of
Python development in Gnome.

So let’s pick up where we left off, the insertion of a color game into Drill as an exercise for the reader.
We will use this to illustrate our current subject and at the same time offer a solution for that exercise.

Object Oriented Development

Briefly, without claiming to make an exhaustive analysis, object oriented development attempts to
define and categorize things by is a relationships, whether they exist in the physical world or not. This
can be seen as abstracting the objects related to the problem in which we’re interested. We can find
comparisons in different domains like the categories of Aristotle, taxonomies, or ontologies. In each
case, one must understand a complex situation through an abstraction. This type of development could
very well have been called category oriented development.

In this development model, objects manipulated by the program, or constituting the program, are called
classes and representatives of these abstract objects are instances. Classes are defined by attributes
(containing values) and methods (functions). We speak of a parent-child relationship for a given class
where a child class inherits properties from a parent. Classes are organized by an is a relationship, where
a child still is a type of the parent as well as a child type. Classes might not be completely defined, in
which case they are called abstract classes. When a method is declared but not defined (the body of the
function is void) it is also called a virtual method. An abstract class has one or more of these undefined
methods and therefore cannot be instantiated. Abstract classes permit specification of the form taken by
derived classes - child classes in which the pure virtual methods will be defined.

Different languages have more or less elegance in defining objects, but the common denominator seems
to be the following :

1. Inheritance of attributes and methods of the parent class by the child.
2. Ability of the child class to override and overload the methods inherited from the parent.
3. Polymorphism, where a class might have many parent classes.

Python and Object Oriented Development

In the case of Python, this is the lowest common denominator that has been chosen. This permits
learning object oriented development without getting lost in the details of this methodology.

In Python, an object’s methods are always virtual methods. This means they can always be overridden
by a child class -- which is generally what we want using object oriented development -- and which
slightly simplifies the syntax. But it’s not easy to distinguish between methods that are overridden or
not. Furthermore it is impossible to render an object opaque and therefore deny access to attributes and
methods from outside an object. In conclusion, attributes of a Python object are both readable and
writable from outside the object.

Parent Class exercice

In our example, (see the file templateExercice.py), we would like to define many objects of the type
exercice. We define an object of type exercice to serve as an abstract base class for deriving other
exercises that we will create later. The object exemple is the parent class of all the other types of
exercises created. These derived types of exercises will have at least the same attributes and methods as
the class exercice because they will inherit them. This will permit us to manipulate all the diverse types
of exercice objects identically, regardless of the object they are instantiated from.

For example, to create an instance of the class exercice we can write :

from templateExercice import exercice

monExercice = exercice ()
monExercice.activate (ceWidget)

In fact, there’s no need to create an instance of the class exercice because it’s only a template from
which other classes are derived.

Attributes

exerciceWidget : the widget containing the exercise’s user interface ;
exerciceName : the name of the exercise.

If we are interested in other aspects of an exercise we can add attributes, e.g. the score obtained or the
number of times it has been run.

Methods

__init__ (self): this method has a very precise role in a Python object. It is automatically
called during the creation of an instance of this object. For this reason it is also called the
constructor. The argument self is a reference to the instance of the class exercice that called the
__init__ method. It is always necessary to specify this argument in methods, which means that a
method cannot have zero arguments. Careful, this argument is added automatically by Python, so
it is not necessary to include it when calling the method. The argument self allows access to the
attributes and other methods of an instance. Without it, such access is impossible. We will see that
in greater detail later.
activate (self, area) : activates this instance of exercice by placing its widget in the exercice
zone of Drill. The argument area is actually a GTK+ container that controls the widget’s
placement in Drill. Knowing that the attribute exerciceWidget contains the exercise’s widget,
one need only call area.add (self.exerciceWidget) to wrap the exercice in Drill.
unactivate (self, area) : removes the widget from the container Drill. In terms of placement,
this is the opposite operation, so calling area.remove (self.exerciceWidget) will suffice.
reset (self) : reset the exercise to zero.

In Python code this gives you :

class exercice:
 "A template exercice"
 exerciceWidget = None
 exerciceName = "No Name"
 def __init__ (self):
 "Create the exericice widget"
 def activate (self, area):
 "Set the exercice on the area container"
 area.add (self.exerciceWidget)
 def unactivate (self, area):
 "Remove the exercice fromt the container"
 area.remove (self.exerciceWidget)
 def reset (self):
 "Reset the exercice"

This code is included in its own file templateFichier.py, which permits us to clarify the specific roles
of each object. The methods are declared inside the class exercice, and are in fact functions.

We will see that the argument area is a reference to a GTK+ widget constructed by LibGlade, it’s a
window with sliders.

In this object, the methods __init__ and reset are empty and will be overridden by the child classes if
necessary.

labelExercice, First Example of Inheritance

This is almost an empty exercise. It only does one thing, it puts the name of the exercise into the

exercise zone of Drill . It serves as a starter for the exercises that populate the left-hand tree of Drill but
that we haven’t created yet.

In the same way as the object exercice, the object labelExercice is put in it’s own file,
labelExercice.py . Next, since this object is a child of the object exercice , we need to tell it how the
parent is defined. This is done simply by an import :

from templateExercice import exercice

This literally means that the definition of the class exercice in the file templateExercice.py is
imported in the current code.

We come now to the most important aspect, the declaration of the class labelExercice as a child class
of exercice.
labelExercice is declared in the following fashion :

class labelExercice(exercice):

Voilà, that’s enough so that labelExercice inherits all the attributes and methods of exercice.

Of course we still have work to do, in particular we need to initialize the widget of the exercise. We do
this by overriding the method __init__ (i.e. in redefining it in the class labelExercice), this last is
called when an instance is created. Also, this widget must be referenced in the attribute
exerciceWidget so we will not need to override the activate and unactivate methods of the parent
class exercice.

 def __init__ (self, name):
 self.exerciceName = "Un exercice vide" (Trans. note: an empty exercise)
 self.exerciceWidget = GtkLabel (name)
 self.exerciceWidget.show ()

This is the only method that we override. To create an instance of labelExercice, one need only call :

monExercice = labelExercice ("Un exercice qui ne fait rien")
(Translator Note: "Un exercice qui ne fait rien" means "an exercise doing nothing")

To access it’s attributes or methods :

Le nom de l’exercice (Translator Note: name of the exercise)
print monExercice.exerciceName

Placer le widget de l’exercice dans le container "area"
(Translator Note: place the exercise’s
widget in the container "area")
monExerice.activate (area)

colorExercice, Second Example of Inheritance

Here we begin the transformation of the color game seen in the first article of this series into a class of
type exercice that we will name colorExercice. We place it in it’s own file, colorExercice.py ,
that is appended to this article with complete source code.

The changes required to the initial source code consist mostly of a redistribution of functions and
variables into methods and attributes in the class colorExercice.

The global variables are transformed into attributes declared at the beginning of the class :

class colorExercice(exercice):
 width, itemToSelect = 200, 8
 selectedItem = rootGroup = None
 # to keep trace of the canvas item
 colorShape = []

Like for the class labelExercice, the method __init__ is overridden to accommodate the construction
of the exercise’s widgets :

def __init__ (self):
 self.exerciceName = "Le jeu de couleur" # Translator Note: the color game
 self.exerciceWidget = GnomeCanvas ()
 self.rootGroup = self.exerciceWidget.root ()
 self.buildGameArea ()
 self.exerciceWidget.set_usize (self.width,self.width)
 self.exerciceWidget.set_scroll_region (0, 0, self.width, self.width)
 self.exerciceWidget.show ()

Nothing new compared to the initial code if it’s only the GnomeCanvas referenced in the attribute
exerciceWidget.

The other overridden method is reset. Since it resets the game to zero, it must be customized for the
color game :

 def reset (self):
 for item in self.colorShape:
 item.destroy ()
 del self.colorShape[0:]
 self.buildGameArea ()

The other methods are direct copies of the original functions, with the added use of the variable self to
allow access to the attributes and methods of the instance. There is one exception in the methods
buildStar and buildShape where the decimal parameter k is replaced by a whole number. I noted
strange behavior in the document colorExercice.py where the decimal numbers grabbed by the source
code are truncated. The problem seems to be tied to the module gnome.ui and to the French locale
(where decimal numbers use a comma for a separator instead of a period). I will work at finding the

source of the problem before the next article.

Final adjustments in Drill

We now have two types of exercise -- labelExercice and colorExercice. We create instances of
them with the functions addXXXXExercice in the code drill1.py. The instances are referenced in a
dictionary exerciceList in which the keys are also arguments to the pages of each exercise in the tree
at left:

def addExercice (category, title, id):
 item = GtkTreeItem (title)
 item.set_data ("id", id)
 category.append (item)
 item.show ()
 item.connect ("select", selectTreeItem)
 item.connect ("deselect", deselectTreeItem)
[...]
def addGameExercice ():
 global exerciceList
 subtree = addSubtree ("Jeux")
 addExercice (subtree, "Couleur", "Games/Color")
 exerciceList ["Games/Color"] = colorExercice ()

The function addGameExercice creates a leaf in the tree with the attribute id="Games/Color" by
calling the function addExercice. This attribute is used as a key for the instance of the color game
created by the command colorExercice() in the dictionary exerciceList.

Next, due to the elegance of polymorphism in object oriented development, we can run the exercises by
using same functions that act differently for each object without worrying about their internal
implementation. We only call methods defined in the abstract base class exercice and they do different
things in class colorExercice or labelExercice. The programmer "speaks" to all the exercises in the same
way, even if the "response" of each exercise is a little different. To do this we combine the use of the
attribute id of the pages of the tree and the dictionary exerciceList or the variable exoSelected that
refers to the exercise in use. Given that all the exercises are children of the class exercice, we use its
methods the same way to control the exercises in all their variety.

def on_new_activate (obj):
 global exoSelected
 if exoSelected != None:
 exoSelected.reset ()

def selectTreeItem (item):
 global exoArea, exoSelected, exerciceList
 exoSelected = exerciceList [item.get_data ("id")]
 exoSelected.activate (exoArea)

def deselectTreeItem (item):
 global exoArea, exerciceList
 exerciceList [item.get_data ("id")].unactivate (exoArea)

Fig. 1 - Main window of Drill, with the color exercise

Thus ends our article. We have discovered the attractions of object oriented development in Python
within the realm of a graphical user interface. In the next articles, we will continue discovering Gnome
widgets through coding new exercises that we will insert into Drill.

Appendix: Complete Source Code

drill1.py

#!/usr/bin/python
Drill - Teo Serie
Copyright Hilaire Fernandes 2002
Release under the terms of the GPL licence
You can get a copy of the license at http://www.gnu.org

from gnome.ui import *
from libglade import *

Import the exercice class
from colorExercice import *
from labelExercice import *

exerciceTree = currentExercice = None
The exercice holder
exoArea = None
exoSelected = None

exerciceList = {}

def on_about_activate(obj):
 "display the about dialog"
 about = GladeXML ("drill.glade", "about").get_widget ("about")
 about.show ()

def on_new_activate (obj):
 global exoSelected
 if exoSelected != None:
 exoSelected.reset ()

def selectTreeItem (item):
 global exoArea, exoSelected, exerciceList
 exoSelected = exerciceList [item.get_data ("id")]
 exoSelected.activate (exoArea)

def deselectTreeItem (item):
 global exoArea, exerciceList
 exerciceList [item.get_data ("id")].unactivate (exoArea)

def addSubtree (name):
 global exerciceTree
 subTree = GtkTree ()
 item = GtkTreeItem (name)
 exerciceTree.append (item)
 item.set_subtree (subTree)
 item.show ()
 return subTree

def addExercice (category, title, id):
 item = GtkTreeItem (title)
 item.set_data ("id", id)
 category.append (item)
 item.show ()
 item.connect ("select", selectTreeItem)
 item.connect ("deselect", deselectTreeItem)

def addMathExercice ():
 global exerciceList
 subtree = addSubtree ("Mathématiques")
 addExercice (subtree, "Exercice 1", "Math/Ex1")
 exerciceList ["Math/Ex1"] = labelExercice ("Exercice 1")
 addExercice (subtree, "Exercice 2", "Math. Ex2")
 exerciceList ["Math/Ex2"] = labelExercice ("Exercice 2")

def addFrenchExercice ():
 global exerciceList
 subtree = addSubtree ("Français")
 addExercice (subtree, "Exercice 1", "French/Ex1")
 exerciceList ["French/Ex1"] = labelExercice ("Exercice 1")
 addExercice (subtree, "Exercice 2", "French/Ex2")
 exerciceList ["French/Ex2"] = labelExercice ("Exercice 2")

def addHistoryExercice ():
 global exerciceList
 subtree = addSubtree ("Histoire")
 addExercice (subtree, "Exercice 1", "Histoiry/Ex1")
 exerciceList ["History/Ex1"] = labelExercice ("Exercice 1")
 addExercice (subtree, "Exercice 2", "Histoiry/Ex2")

 exerciceList ["History/Ex2"] = labelExercice ("Exercice 2")

def addGeographyExercice ():
 global exerciceList
 subtree = addSubtree ("Géographie")
 addExercice (subtree, "Exercice 1", "Geography/Ex1")
 exerciceList ["Geography/Ex1"] = labelExercice ("Exercice 1")
 addExercice (subtree, "Exercice 2", "Geography/Ex2")
 exerciceList ["Geography/Ex2"] = labelExercice ("Exercice 2")

def addGameExercice ():
 global exerciceList
 subtree = addSubtree ("Jeux")
 addExercice (subtree, "Couleur", "Games/Color")
 exerciceList ["Games/Color"] = colorExercice ()

def initDrill ():
 global exerciceTree, label, exoArea
 wTree = GladeXML ("drill.glade", "drillApp")
 dic = {"on_about_activate": on_about_activate,
 "on_exit_activate": mainquit,
 "on_new_activate": on_new_activate}
 wTree.signal_autoconnect (dic)
 exerciceTree = wTree.get_widget ("exerciceTree")
 # Temporary until we implement real exercice
 exoArea = wTree.get_widget ("exoArea")
 # Free the GladeXML tree
 wTree.destroy ()
 # Add the exercice
 addMathExercice ()
 addFrenchExercice ()
 addHistoryExercice ()
 addGeographyExercice ()
 addGameExercice ()

initDrill ()
mainloop ()

templateExercice.py

Exercice pure virtual class
exercice class methods should be override
when exercice class is derived
class exercice:
 "A template exercice"
 exerciceWidget = None
 exerciceName = "No Name"
 def __init__ (self):
 "Create the exericice widget"
 def activate (self, area):
 "Set the exercice on the area container"
 area.add (self.exerciceWidget)
 def unactivate (self, area):
 "Remove the exercice fromt the container"
 area.remove (self.exerciceWidget)
 def reset (self):
 "Reset the exercice"

labelExercice.py

Dummy Exercice - Teo Serie
Copyright Hilaire Fernandes 2001
Release under the terms of the GPL licence
You can get a copy of the license at http://www.gnu.org

from gtk import *
from templateExercice import exercice

class labelExercice(exercice):
 "A dummy exercie, it just prints a label in the exercice area"
 def __init__ (self, name):
 self.exerciceName = "Un exercice vide"
 self.exerciceWidget = GtkLabel (name)
 self.exerciceWidget.show ()

colorExercice.py

Color Exercice - Teo Serie
Copyright Hilaire Fernandes 2001
Release under the terms of the GPL licence
You can get a copy of the license at http://www.gnu.org

from math import cos, sin, pi
from whrandom import randint
from GDK import *
from gnome.ui import *

from templateExercice import exercice

Exercice 1 : color game

class colorExercice(exercice):
 width, itemToSelect = 200, 8
 selectedItem = rootGroup = None
 # to keep trace of the canvas item
 colorShape = []
 def __init__ (self):
 self.exerciceName = "Le jeu de couleur"
 self.exerciceWidget = GnomeCanvas ()
 self.rootGroup = self.exerciceWidget.root ()
 self.buildGameArea ()
 self.exerciceWidget.set_usize (self.width,self.width)
 self.exerciceWidget.set_scroll_region (0, 0, self.width, self.width)
 self.exerciceWidget.show ()
 def reset (self):
 for item in self.colorShape:
 item.destroy ()
 del self.colorShape[0:]
 self.buildGameArea ()
 def shapeEvent (self, item, event):

 if event.type == ENTER_NOTIFY and self.selectedItem != item:
 item.set(outline_color = ’white’) #highligh outline
 elif event.type == LEAVE_NOTIFY and self.selectedItem != item:
 item.set(outline_color = ’black’) #unlight outline
 elif event.type == BUTTON_PRESS:
 if not self.selectedItem:
 item.set (outline_color = ’white’)
 self.selectedItem = item
 elif item[’fill_color_gdk’] == self.selectedItem[’fill_color_gdk’] \
 and item != self.selectedItem:
 item.destroy ()
 self.selectedItem.destroy ()
 self.colorShape.remove (item)
 self.colorShape.remove (self.selectedItem)
 self.selectedItem, self.itemToSelect = None, \
 self.itemToSelect - 1
 if self.itemToSelect == 0:
 self.buildGameArea ()
 return 1

 def buildShape (self,group, number, type, color):
 "build a shape of ’type’ and ’color’"
 w = self.width / 4
 x, y, r = (number % 4) * w + w / 2, (number / 4) * w + w / 2, w / 2 - 2
 if type == ’circle’:
 item = self.buildCircle (group, x, y, r, color)
 elif type == ’squarre’:
 item = self.buildSquare (group, x, y, r, color)
 elif type == ’star’:
 item = self.buildStar (group, x, y, r, 2, randint (3, 15), color)
 elif type == ’star2’:
 item = self.buildStar (group, x, y, r, 3, randint (3, 15), color)
 item.connect (’event’, self.shapeEvent)
 self.colorShape.append (item)

 def buildCircle (self,group, x, y, r, color):
 item = group.add ("ellipse", x1 = x - r, y1 = y - r,
 x2 = x + r, y2 = y + r, fill_color = color,
 outline_color = "black", width_units = 2.5)
 return item

 def buildSquare (self,group, x, y, a, color):
 item = group.add ("rect", x1 = x - a, y1 = y - a,
 x2 = x + a, y2 = y + a, fill_color = color,
 outline_color = "black", width_units = 2.5)
 return item

 def buildStar (self,group, x, y, r, k, n, color):
 "k: factor to get the internal radius"
 "n: number of branch"
 angleCenter = 2 * pi / n
 pts = []
 for i in range (n):
 pts.append (x + r * cos (i * angleCenter))
 pts.append (y + r * sin (i * angleCenter))
 pts.append (x + r / k * cos (i * angleCenter + angleCenter / 2))
 pts.append (y + r / k * sin (i * angleCenter + angleCenter / 2))
 pts.append (pts[0])
 pts.append (pts[1])
 item = group.add ("polygon", points = pts, fill_color = color,
 outline_color = "black", width_units = 2.5)

 return item

 def getEmptyCell (self,l, n):
 "get the n-th non null element of l"
 length, i = len (l), 0
 while i < length:
 if l[i] == 0:
 n = n - 1
 if n < 0:
 return i
 i = i + 1
 return i

 def buildGameArea (self):
 itemColor = [’red’, ’yellow’, ’green’, ’brown’, ’blue’, ’magenta’,
 ’darkgreen’, ’bisque1’]
 itemShape = [’circle’, ’squarre’, ’star’, ’star2’]
 emptyCell = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
 self.itemToSelect, i, self.selectedItem = 8, 15, None
 for color in itemColor:
 # two items of same color
 n = 2
 while n > 0:
 cellRandom = randint (0, i)
 cellNumber = self.getEmptyCell (emptyCell, cellRandom)
 emptyCell[cellNumber] = 1
 self.buildShape (self.rootGroup, cellNumber, \
 itemShape[randint (0, 3)], color)
 i, n = i - 1, n - 1

Webpages maintained by the LinuxFocus Editor
team

© Hilaire Fernandes
"some rights reserved" see linuxfocus.org/license/

http://www.LinuxFocus.org

Translation information:
fr --> -- : Hilaire Fernandes <hilaire(at)ofset.org>

fr --> en: Lorne Bailey <sherm_pbody(at)yahoo.com>

2005-01-14, generated by lfparser_pdf version 2.51

