
LinuxFocus article number 329
http://linuxfocus.org

by Jonás Alvarez
<jalvarez(at)eitb.com>

About the author:

Jonás Alvarez has worked
as aplication developer in
UNIX and Windows
environments for several
years. Among other things,
he has given several O.S.,
Networks and Development
Courses.

Translated to English by:
Miguel Alfageme Sánchez,
Samuel Landete Benavente.
<mas20(at)tid.es>

Gambas: Basic for Linux

Abstract:

Gambas is one of the currently available Basics for Linux. In this article
we’ll develop an example where we can see how simple and powerful
Gambas for daily tasks is.

_________________ _________________ _________________

Introduction

One of the most extended and easiest programming languages, mainly for the newbies, is Basic. Until
now the most common environment for Basic application development was the Microsoft Visual Basic
IDE. Lately the use of the Linux is spreading towards the user desktop. From being limited to servers
and being used by gurus, it is becoming an OS for the client computers, giving an answer to needs such
as reading electronic mail, surfing the web and text editing. Following this trend several BASIC
development environments are now available. Gambas is the one we’ll see in this article, a graphical
environment for Basic development. With a programming style similar to the Visual Basic’s, as we’ll
see later, it has its differences too. The version I will use is 0.64a, included in my SuSE 9.0 distribution.
While writting these lines, we can see on the project page of gambas that the last version is 0.81, but this
should not affect this article.

Who will be interessted in Gambas?

As a developer of Visual Basic applications for a time, I didn’t need much more than just start to work
to develop this example. Besides, it’s the first time I touch Gambas, what proves that for anyone who
has ever used Visual Basic can use it. For the rest, it can be an example of how simple Basic can be
useful for many things.

The example

Because I like learning by doing, we will start with an example. It is a very simple application which has
a stopwatch with a countdown on the screen. We can change the time, stop it and start it when we wish
to do so.

Just after starting Gambas we’ll meet its assistant:

We choose New Project. In the next window we are asked for the Project Name. Our project will be
called CountDown. On the Second Dialog we must choose the project directory. We select our
working directory, and in the text box on the bottom, we write the directory name that we are going to
create.

If it is the first time we start Gambas or if we haven’t deactivated the option, we’ll see the Tip of the
day. We read what interests us and we close the window. We already are in the environment, ready to
work. We can see several windows on our desktop. If we are in an environment such as KDE, with
several desktops, we might be interested in dedicating one of them to Gambas, thus having all its
windows under control. Personally one of the first options I usually activate in KDE is that each desktop
only shows its own icons.

We are going to create the main form of the application. For this, we do a right click in any part of the
project window and create a new form.

In the dialog we indicate the form name, in this case FCountDown, with all the values left on their
default.

We already have our first form, which is empty for the time being.

Here we will include the controls our stopwatch will have. We click on the toolbar elements we’ll
include in our form. We can see its name if we pass the mouse above each control. With a double click
the control will be placed in the top left part of the form. With a single click we’ll place it, changing its
size, in the part of the form we want. For our program we are goint to need a Label, a TextBox, a Timer,
two Buttons and a ToggleButton.

Once all the controls are in place, we must have something similar to this (more or less, each one can put
what he wants):

Once we have the controls in our form, we change their names to something that has a meaning for us.
For this, we edit the Name property on the Property sheet. If we can’t see the Properties sheet on the
screen we can activate it from the project window with the property button. To search it we can move
the mouse above the buttons in order to locate the one we want.

I name the Label1 control as lblContador: I click the control and next I can change its name in the
Property Sheet. For this, I edit the Name property and assign lblContador as its value. After this I
change its font type to bigger one . For this, in the button ... in its font property I choose the Courier
Bold 72 font type and Accept (OK). In the same way, I change the ToggleButton1 name to
tglFuncionando. TextBox1 control becomes txtSegundos, Timer1 control becomes clkMiReloj, Button1
becomes cmdPonerSegundos and at last I rename Button2 to cmdSalir. Besides I change the Alignment
of txtSegundos to Right.

And we start with the Basic code. It’s very simple and not very strict with the sintax. What we’ll do first
is change the texts we see in the form to more real values. Although many of the options are being
changed from Basic, we could have done it in each of the control’s property sheet, with any of both
options we would get the same result.

As soon as the form opens we fill the titles we want each control to have. When we say as soon as the
form opens we are talking about managing an event: the opening of the form. For this we double click in
a part of our form that hasn’t any control. An edit window opens and the cursor is located inside a new
procedure: Public Sub Form_Open() (if we have programmed before in Visual Basic, we would use
the Form_Load event). We are going to make the lblContador control to present the remaining seconds
of the countdown. The first lines of code of the from class look as follows:

’ Gambas class file
CONST fSegundosPorDefecto AS Float=120.0
fSegundos AS Float

PRIVATE SUB VerValores()
 DIM nMinutos AS Integer

 nMinutos = Int(Int(fSegundos) / 60)
 lblContador.Caption = nMinutos & ":" & Format (fSegundos -

 nMinutos * 60, "00.0")
END

PRIVATE SUB VerActivarDesactivar()
 IF tglFuncionando.Value THEN
 tglFuncionando.Text = ("&Detener")
 ELSE
 tglFuncionando.Text = ("&Arrancar")
 ENDIF
END

PUBLIC SUB Form_Open()
 fSegundos = fSegundosPorDefecto
 VerValores
 tglFuncionando.Value = FALSE
 VerActivarDesactivar
 txtSegundos.Text = fSegundos
 cmdPonerSegundos.Text = ("&Reiniciar")
 cmdSalir.Text = ("&Salir")
END

We have added just after the comment Gambas had generated, ’ Gambas class file, a constant that holds
the number of seconds by default for the countdown, fSegundosPorDefecto, with a value of 120 seconds
(two minutes), and a variable, fSegundos which is going to hold the countdown. We have created two
procedures too: VerValores, which visualizes the countdown values and VerActivarDesactivar, which
changes the text of the Start/Stop button.

At this moment we already have a form that works. It doesn’t do anything useful, apart from makeing us
understand what we have done until now, so it’s worth a try. We save the changes from the main
window of the project, Project CountDown, and launch the application with F5, or with the Execute
button of the button bar of the same window. This is what we should see:

If this doesn’t appear or we receive any error, we must review what we have done until now. Even
though we push Start, Reset or Exit nothing happens. This will be our next task: assign events to this
buttons in such a way that, when the user pushes any of them, this moves. Before continuing let’s play
whith our application and discover all that it contains. To close it we can push the X on the top right
part. I’m in KDE, with the SuSe theme, as you could see in the forms, and it’s possible that you have to

close your window in another way.

Let’s go for the most simple of the buttons: What must happen when the user pushes Exit? We must
close the application. To introduce the Basic code that will be executed when the user pushes this
button, we double click in the button with the text Exit (cmbExit). We see that Gambas generates some
lines of code and that the cursor is set between them. Here is where the code must be introduced. This
procedure will be executed when the user clicks on this button. To close the application we must execute
Me.Close, so the code of this event will be:

PUBLIC SUB cmdSalir_Click()

 ME.Close

END

The next button we’ll control is the Reset. In the same way: we double click on the button and in the
code window that Gambas shows we must insert:

PUBLIC SUB cmdPonerSegundos_Click()

 fSegundos = txtSegundos.Text

 VerValores

END

To the point, it still seems that nothing happens. Our applicaction must be given some action. We are
going to activate the Timer object located in the form from the beginning. To do so we have to set the
interval to receive clock events. Either we do that from the code, in the previous event Form_Open, or
we put in the form. Now we will do it in this way. In the form we click on the object Timer and in its
property sheet we change its Delay value from 1000ms, to 100, to receive one event each tenth of
second, which is going to be the precision of our stopwatch.

We still don’t have the code that will be executed each time the clock wakes, and the way to activate it.
To generate the code of the clock, nothing more simple, as always, than double clicking on the clock
form. It will take us to the code window at the right position. After inserting our code it must look like:

PUBLIC SUB clkMiReloj_Timer()
 IF fSegundos < 0.1 THEN
 tglFuncionando.Value = FALSE
 tglFuncionando_Click
 ELSE
 fSegundos = fSegundos - 0.1
 VerValores
 END IF
END

And finally we activate at user’s will the stopwatch with the toggle button, which is the one we still
didn’t manage. With a double click on the button we can insert the code for its event:

PUBLIC SUB tglFuncionando_Click()
 clkMiReloj.Enabled = tglFuncionando.Value

 VerActivarDesactivar
END

And we can already test our work.

And the finishing touch: Gambas is multilingual, as it must be

Another Gambas’ feature is the support for multiple languages. If you have been looking at the code you
will notice that the strings are enclosed by brackets. This is to notify Gambas that they are going to be
translated. The text of the form controls doesn’t need these brackets. Our project has turned into
something very useful, and people asks for the dialogs to appear in their language. Nothing more simple.
We go to the Project / Properties menu of the project window.

Here we set a Title to our project and activate the Project is translatable option which will allow to
translate the dialogs. Now we have a new option active in the menus: Project / Translate. If we open the
dialog, we can see that the translation is now very intuitive:

First we select the target language in the upper part. When we want to translate a string, we select it and
fill the bottom part. Once all the strings are translated, we can test it launching the application from a
terminal if before we set the LANG variable with the language of the translation. If I want to see how
looks the translation to english, I close gambas and execute

$ LANG=en_US; gambas

To go back to the previous situation, I launch gambas from the KDE menu, just because here the
environment variable isn’t defined, it only lives in its console.

Conclusion

Although it is an interpreted language and we need to have all of Gambas installed, it is a good option to
start to development of applications for the Linux desktop. As we have seen it is very simple and the
development is very fast. It is enough for many day to day applications.

The onscreen help is quite complete, besides the available examples from the File/Open example menu.
We can go to the project web too, in the links section there are many Basic projects that can be
interesting. This is only the beginnig of a project that I foresee a very good future.

Webpages maintained by the LinuxFocus Editor
team

© Jonás Alvarez
"some rights reserved" see linuxfocus.org/license/

http://www.LinuxFocus.org

Translation information:
es --> -- : Jonás Alvarez <jalvarez(at)eitb.com>

es --> en: Miguel Alfageme Sánchez, Samuel Landete
Benavente. <mas20(at)tid.es>

2005-01-14, generated by lfparser_pdf version 2.51

