
LinuxFocus article number 331
http://linuxfocus.org

by Diego Alberto Arias
Prad
<dariapra(at)yahoo.es>

About the author:

I am a Telecommunication
engeneer based in Lugo,
Spain. I cannot exactly
remember when I started to
use Linux, it was in 1995 or
1996. Before that, I was a
Microsoft Windows user
and I even didn’t know that
Linux existed. The first
time I saw a computer
running Linux was at the
university. It looked very
interesting to me and soon I
installed it on my computer
at home; I remember that
my first Linux distro was
Slackware.

In all these years I have had
a lot of fun using other
Linux distros and some
BSD "flavours", using
programming languages
like Java or Tcl, using
database, web and
application servers... Linux

An introduction to the TclMySQL library

Abstract:

In this article you will learn how to install and use MySQLTcl, a Tcl
library which makes possible to do SQL queries (select, insert, delete...)
to a MySQL database server from Tcl scripts. The versions of Tcl,
MySQL server and the MySQLTcl library covered in this article are
respectively 8.4.2, 4.0.15 and 2.40.

Tcl stands for Tool Command Language and was invented by John
Ousterhout [1]. Tcl is actually two things: a scripting language and an
interpreter. Tcl is a structured programming language which uses three
basic data structures: strings, lists and arrays. Features of Tcl include
regular expressions [2], third party Tcl extention libraries and Tk, a
toolkit for writing graphical applicactions in Tcl.

MySQL is a very popular database server in the open software comunity
which I think it needs no presentation.

MySQLTcl is a Tcl library which allows querying a MySQL database
server from a Tcl script. Currently, the authors and mantainers of this Tcl
library are Paolo Brutti (Paolo.Bruti at tlsoft.it), Tobias Ritzau (tobri at
ida.liu.se) and Artur Trzewick (mail at xdobry.de).

_________________ _________________ _________________

has not just meant joy for
me, I have had also the
chance of using Linux when
I worked at Telefónica I+D.

MySQLTcl library installation

If your Linux distro or your *BSD operating system has support for packages (like RPM or DEB, for
example) or ports (Crux Linux or FreeBSD, for example), you can use the package or ports system to
install the MySQLTcl library and skip this section.

If it is not the case or you simply prefer to install "by hand", in the following lines I show the steps I
followed. These lines should be viewed as a guideline and not a step-by-step installation manual. In a
Linux Mandrake distro (version 9.2), from bash:
$./configure --with-mysql-lib=/usr/lib
$ make
$ make install

If something goes wrong during the "configure" step, the error information will provided clues to fix the
problem. Usually, the problem is that the configure script is unable to find certain directories or files. In
cases like this one, you can "play" with this script by passing it parameters telling where the missing
files or directories are. Let’s see another example. When I used FreeBSD 5.0, I installed the MySQLTcl
with these options:
$ export CPP=/usr/bin/cpp
$./configure --with-tcl=/usr/lib/local/tcl8.3
 --with-tclinclude=/usr/local/include/tcl8.3
 --with-mysql-include=/usr/local/include/mysql
 --with-mysql-lib=/usr/local/lib/mysql
$ make
$ make install

As you must have noted, in this second example the version of Tcl was 8.3; besides, the version of the
MySQLTcl library was 2.15 and MySQL database server version was 3.23.54.

Tcl Basics

In this section I briefly introduce some Tcl basics for readers interested in this article who cannot
program in Tcl. If you are already a Tcl programer, you can skip this section.

You can reproduce the examples shown in this (and also the following) sections from the Tcl shell
(tclsh).

Variables. Command and variable substitution.

Tcl variables are created with the command set. Let’s see some examples:
% set address {Edison Avenue, 83}
Edison Avenue, 83
% set zip_code 48631
48631

In these two examples, we have created two variables, named address and zip_code. The values
contained by these variables are, respectevely, Edison Avenue, 83 and 48361; both values are strings.
Note that for creating the variable address, curly braces have been used because the string has white
spaces. Variable values can be retrieved using the set command:

% set address
Edison Avenue, 83
% set zip_code
48631

Supose we want to print on the screen the value of the variable address. This can be done with the
command puts:

% puts stdout [set address]
Edison Avenue, 83

The parameter stdout is passed to the puts command. This parameter tells the command puts to print on
the standard output, in our case the screen. The second parameter passed to the puts command is [set
address]. The square brackets in the second parameter inform the Tcl interpreter that the date inside the
brackets is another Tcl command which must be executed by the Tcl interpreter before the puts
command; this is called command substitution. The same can be done in another way:

% puts stdout $address
Edison Avenue, 83

In this example what we have done is called variable substitution: the characer $ preceding a variable
name makes variable substitution happen.

In a previous example we have seen that by using curly braces words separated by white spaces could be
grouped in a string. Another form of grouping is using double quotes (character "). However, these two
forms of grouping don’t work exactly the same way. Let’s see an example:

% puts stdout "the zip code is [set address]"
the zip code is 48631
% puts stdout "the zip code is $address"
the zip code is 48631
% puts stdout {the zip code is [set address]}
the zip code is [set address]
% puts stdout {the zip code is $address}
the zip code is $address

In this example you can see that using curly braces for grouping command and variable substitution will
not happen; however, they will happen if double quotes are used for grouping.

Varibles are deleted with the unset command:

% unset address

% set address
can’t read "address": no such variable
% unset zip_code
% set zip_code
can’t read "zip_code": no such variable

Tcl Strings

The string data structure is one of the three basic Tcl data structures. A string is a set of characters. A
string can be created with the set command.

% set surname Westmoreland
Westmoreland
% set number 46.625
46.625

Both surname and number variables are strings. Strings can be manipulated by using the string
command. The general syntax of the string command is string operation stringvalue otherargs. Let’s see
some examples that show how this command can be used:

% string length $surname
12
% set surname [string range $surname 0 3]
West
% puts stdout $surname
West
% string tolower $surname
west

Unlike Java or Pascal, Tcl is not a strong-typed programming language. The following example shows
this:

% set number [expr $number + 24.5]
70.125
% string range $number 2 5
.125

With the command expr, the value of the variable number was increased 24.5. After that, with the
command string the variable number was treated as a string and then the last four characters were
shown.

More string operations than shown in the previous example are possible.

Tcl Lists

Tcl lists are a special case of strings in which list elements are separated by white spaces and have an
special interpretation.

% set friends_list {Fany John Lisa Jack Michael}
Fany John Lisa Jack Michael

% set friends_list [string tolower $friends_list]
fany john lisa jack michael
% set friends_list
fany john lisa jack michael

There are a number of Tcl commands that allow list manipulation. Let’s see some examples:

% lindex 2 $friends_list
lisa
% lrange $friends_list 2 4
lisa jack michael
% set friends_list [lsort -ascii $friends_list]
fany jack john lisa michael
% set friends_list
fany jack john lisa michael
% set friends_list [linsert $friends_list 2 Peter]
fany jack Peter john lisa michael
% string toupper $friends_list
FANY JACK PETER JOHN LISA MICHAEL

The last example shows that strings and lists are actually the same data structure.

Tcl Arrays

An array can be seen as a list with a string-valued index. An array can be created like shown in the
following example:

% set phone_numbers(fany) 629
629
% set phone_numbers(michael) 513
513
% set phone_numbers(john) 286
286

Array values can be retrieved using the set command and variable substitution; as shown in the previous
example, the string-valued index is delimited by parenthesis.

% set $phone_numers(michael)
513

The command array returns information about an array variable. Let’s see some examples that show
what this command can do:

% array size phone_numbers
3
% array names phone_numbers
fany john michael

Database connection

Before making any query to a database from a Tcl script, it is necessary to establish a connection to the
database server. In this section we will see how to do it and how to handle errors that can happen while
trying to establish the database connection.

Establising a database connection

Let’s see an example of a Tcl script that establishes a connection to a MySQL database server:

0: #!/usr/bin/tclsh8.4
1:
2: package require mysqltcl
3: global mysqlstatus
4:
5: set port {3306}
6: set host {127.0.0.1}
7: set user {john_smith}
8: set password {jsmith_password}
9:
10: set mysql_handler [mysqlconnect -host $host
 -port $port -user $user -password $password]
11:
12: mysqlclose $mysql_handler

Please, note that the left-column numbers and its following colon aren’t part of the Tcl script; its only
purpose is labeling the Tcl script lines. Also note that depending on the Linux distro you use, you may
have to modify the line #0 to set a correct path to the Tcl shell.

The line #0 tells the shell that this file is a Tcl script and where to find the Tcl interpreter.

The line #2 tells the Tcl interpreter to search in the library MySQLTcl when executing the commands of
the script. For example, in the line #10 we can see the command mysqlconnect; if the line #2 were not
included in the script, then the Tcl interpreter executing line #10, the command mysqlconnect, would
give a command not found error.

In the lines #5 and #6 the port and host the Tcl script will try to connect to are set. In this script the port
number is 3306 (the default port on which a MySQL server is listening) and the host is the same
machine on which the Tcl script is executed.

In the lines #7 and #8 the database user and database user’s password are set.

At line #10 the database connection is actually established. The output of the command mysqlconnect is
stored in the variable that we have named mysql_handler. This variable will be the handler of the
database connection. This handler is used for querying the database and also for closing the database
connection, as shown on line #12.

Handling errors

In the previous subsection, the line #3 of the script was not explained. We will do it now.

MySQLTcl library commands might raise errors. If an error is not caught, the script will abort and this
effect might interest us or not. Let’s modify the script presented in the previous subsection in this way:

10: if [catch {mysqlconnect -host $host -port $port
 -user $user -password $password} mysql_handler] {
11: puts stderr {error, the database connection could not be established}
12: exit
13: } else {
14: mysqlclose mysql_handler
15: }

If the command set mysql_handler [mysqlconnect -host $host... raises an error, the error will be caught
by the command catch. The command catch returns 1 if the executed command inside the curly braces
raises an error or 0 if no error is raised. The variable mysql_handler stores the output of the executed
command inside the curly braces.

If there is an error, a message is printed on the standard error output (stderr), which in our case is the
screen. There are a number of causes that raise an error when attemping to establish a database
connection: wrong password, incorrect host or port number... In this case, getting more information than
given by a simple message like "there was an error" can be useful.

On line #3, the variable mysqlstatus was declared global. A global variable is one that is accessible from
any part of a Tcl script; this is related to Tcl variable scope, a topic not covered in this article. The
library MySQLTcl creates and mantains a global array named mysqlstatus. This array has the following
elements:

element meaning
code If there were no error then mysqlstatus(code) equals to zero; else, mysqlstatus(code) is set to

the MySQL server error code. If there were an error not raised by the MySQL server, then
mysqlstatus(code) is set to -1.

The value of mysqlstatus(code) is updated after the execution of any MySQLTcl library
command.

command The last MySQLTcl library command that raised an error is stored in mysqlstatus(command).

The value of mysqlstatus(command) is updated after every unsuccessful execution of any
MySQLTcl command; thus, mysqlstatus(command) is not updated after the successful
execution of any MySQLTcl command.

message The value of mysqltcl(message) is updated after every unsuccessful execution of any
MySQLTcl command with a string containing a message error. Like mysqlstatus(command),
mysqlstatus(message) is not updated after the successful execution of any MySQLTcl
command.

There is another element in the global array mysqlstatus not related with error handling:

element meaning

nullvalue String used to represent the null value when showing SQL query results. By default an empty
string is used; musqlstatus(nullvalue) can be set to any string value.

Thus, using the global array mysqlstatus, the previous piece of code could be rewritten in this way so
more information is given in case there is an error while attemping to establish a database connection:

10: catch {mysqlconnect -host $host -port $port
 -user $user -password $password} mysql_handler
11: if {$mysqltatus(code) != 0} {
12: puts stderr $mysqlstatus(message)
13: } else {
14: mysqlclose mysql_handler
15: }

Obviously, the global array mysqlstatus can be used for handling more errors than raised when
attemping to establish a database connection.

Basic MySQLTcl library commands

In this section the most basic MySQLTcl library commands are presented and I will show how to use
them with some examples. For a complete reference, see the MySQLTcl library man page.
The commands covered in this section are shown in the following table. Parameters are underlined. If a
parameter is between two ? characters, it means that it is optional; the character | means "or".

command short description
mysqlconnect ?option value ...? connects to a database; a connection handler that must be used

by other mysqltcl commands is returned
mysqluse handle dbname associates a MySQL handler with the specified database
mysqsel handle sql_statement ?-list |
-flatlist?

sends a select SQL statement to the database

mysqlexec handle sql_statement sends a non-select SQL statement to the database
mysqlclose handle closes a database connection

mysqlconnect

This command was already discussed in the section "Database connection". This command accepts an
extra parameter not shown before: -db. With the parameter -db, the database that will be used in future
SQL statements is fixed. Let’s see an example:

% set mysql_handler [mysqlconnect -h 127.0.0.1 -p 3306 \\
 -user john_smith -password jsmith_password -db jsmith_database]

The "target" database of MySQLTcl commands using the mysql_handler database handler will be the
one named jsmith_database.

(Please, note that the characters \\ are not part of the command; they mean that the command continues
on the following line.)

mysqluse

This command allows changing the database associated to the MySQL handler which this command gets
as first parameter.

mysqlsel

This command sends a SQL select statement to the database associated with the MySQL handler. If the
parameter sql_statement is not a SQL select statement, then there will be an error.

There is a third optional parameter, which can be list or flat_list. Let’s see in an example how this
parameter affects the output of this command. Supose that in the database associated with the MySQL
handler we have a table named people like shown below:

id first_name last_ name phone
26 Karl Bauer 8245
47 James Brooks 1093
61 Roberto Castro Portela 6507

We use the mysqlsel command to send a SQL select statement to the database:

% mysqlsel $mysql_handler {select first_name, last_name from people order by id asc} -list
{Karl Bauer} {James Brooks} {Roberto {Castro Portela}}
% mysqlsel $mysql_handler {select first_name, last_name from people order by id asc} -flatlist
Karl Bauer James Brooks Roberto {Castro Portela}

In the first example (-list parameter), the command returns a list whose elements are lists. In the second
example (-flatlist parameter), the command returns a single list in which all the elements have been
concatenated.

What happens if the mysqlsel command doesn’t get a third parameter? In this case, the output of the
mysqlsel command is the number of rows returned by the query:

% mysqlsel $mysql_handler {select first_name, last_name from people order by id asc}
3

mysqlexec

The mysqlexec command sends a SQL non-select statement to the database associated with the MySQL

handler. If the parameter sql_statement is a SQL select statement, there will not be an error but nothing
will be done.

Let’s take the example shown in the previuos subsection:

% mysqlexec $mysql_handler {delete from people where id=26}
1
% mysqlsel $mysql_handler {select first_name, last_name, phone from people order by id asc} -list
{James Brooks 1093} {Roberto {Castro Portela} 6507}
% mysqlexec $mysql_handler \\
 {insert into people (id, first_name, last_name, phone) values (58, "Carla", "di Bella", 8925)}
1
% mysqlsel $mysql_handler {select first_name, last_name, phone from people order by id asc} -list
{James Brooks 1093} {Carla {di Bella} 8925} {Roberto {Castro Portela} 6507}

Of course, other SQL queries than delete ot insert can be sent to the database with this command. For
example, a row can be updated:

% mysqlexec $mysql_handler {update people set phone=3749 where first_name="James"}
1
% mysqlsel $mysql_handler {select first_name, last_name, phone from people order by id asc} -list
{James Brooks 3749} {Carla {di Bella} 8925} {Roberto {Castro Portela} 6507}

The command mysqlexec returns the number of rows affected by the SQL non-select statement sent to
the database if executed successfully.

mysqlclose

As seen previously, the command mysqlclose closes a database connection. The parameter to this
command is the MySQL handler of the database connection we want to close.

Other MySQLTcl library commands

The MySQLTcl library has more commands than the five shown in this section. These commands allow
retrieving information about the databases, escaping strings so they are suitable for queries, making
nested queries... A good reference is the own MySQLTcl man page which is part of the installation of
the MySQLTcl library.

References

[1] a slightly skeptical view on John K. Ousterhout and Tcl:
http://www.softpanorama.org/People/Ousterhout/index.shtml

[2] a tutorial on Tcl regular expressions:

http://www.mapfree.com/sbf/tcl/book/select/Html/7.html

TclTutor is a free and interactive application for learning Tcl:
http://www.msen.com/~clif/TclTutor.html

MySQL documentation, in various formats (HTML, PDF...):
http://www.mysql.com/documentation/index.html

Webpages maintained by the LinuxFocus Editor
team

© Diego Alberto Arias Prad
"some rights reserved" see linuxfocus.org/license/

http://www.LinuxFocus.org

Translation information:
en --> -- : Diego Alberto Arias Prad <dariapra(at)yahoo.es>

2005-01-14, generated by lfparser_pdf version 2.51

