
LinuxFocus article number 371
http://linuxfocus.org

by Arnout Engelen
<arnouten(Q)bzzt.net>

About the author:

Arnout Engelen is a CS
student at the University of
Nijmegen, the Netherlands,
and an employee at TUNIX,
an internet security company.
In his spare time, he likes to
run distances and play the
tenor sax.

Optimizing C/C++ programs using the
GProf profiler

Abstract:

One of the most important things to keep in mind while optimizing an
application is: optimize where it counts. It is no use to spend hours
optimizing a piece of code that usually runs for only 0.04 seconds anyway.

GProf provides a surprisingly easy way to profile your C/C++ application
and spot the interesting pieces right away. A small case study shows how
GProf was used to reduce the running time of a real−world application from
over 3 minutes to under 5 seconds, by identifying 2 data structures as
important and optimizing those.

Historically, the program goes back as far as 1982, when it was introduced
on the the SIGPLAN Symposium on Compiler Construction. It is now a
standard tool available on virtually all flavors of UNIX.

_________________ _________________ _________________

Profiling in a nutshell

The concept of profiling is a very simple one: by recording at what times a program enters and leaves
functions, it's possible to calculate in what parts of the program it spends most of its time. Now making this
measurement sounds like something that requires a lot of effort − luckily, nothing is further from the truth! It's
as simple as compiling with an extra gcc flag ('−pg'), running the program (to collect the profiling data), and
running 'gprof' on the resulting statistics file to present it in a more convenient manner.

Case study: Pathalizer

I use a real−world application as an example here, part of pathalizer: The event2dot executable which
translates a pathalizer 'events' file to a graphviz 'dot' file.

In short, it reads the events from a file, storing them as graphs (with pages as nodes, and transitions between
pages as edges). This collection of graphs is then 'summarized' into one big graph, which is printed in the
graphviz 'dot' format.

1/4

http://pathalizer.bzzt.net

Timing the application

First, we run the program we want to optimize without profiling, and measure how long it takes. The example
sources used, along with a sample input of considerable size (55000 lines), are provided.

On my machine, a run of event2dot took more than 3 minutes on this input:

real 3m36.316s
user 0m55.590s
sys 0m1.070s

The profiling

Enabling gprof profiling is done by adding the '−pg' flag at compile time. We recompile the application with
this flag:

g++ −pg dotgen.cpp readfile.cpp main.cpp graph.cpp config.cpp −o event2dot

We can now run event2dot again on our test−eventsfile. During this run, profiling information on
event2dot will be gathered, and a 'gmon.out' file will be generated. We view the result by running 'gprof
event2dot | less'.

gprof now shows us the following functions are important:

 % cumulative self self total
 time seconds seconds calls s/call s/call name
43.32 46.03 46.03 339952989 0.00 0.00 CompareNodes(Node *,Node *)
25.06 72.66 26.63 55000 0.00 0.00 getNode(char *,NodeListNode *&)
16.80 90.51 17.85 339433374 0.00 0.00 CompareEdges(Edge *,AnnotatedEdge *)
12.70 104.01 13.50 51987 0.00 0.00 addAnnotatedEdge(AnnotatedGraph *,Edge *)
 1.98 106.11 2.10 51987 0.00 0.00 addEdge(Graph *,Node *,Node *)
 0.07 106.18 0.07 1 0.07 0.07 FindTreshold(AnnotatedEdge *,int)
 0.06 106.24 0.06 1 0.06 28.79 getGraphFromFile(char *,NodeListNode *&,Config *)
 0.02 106.26 0.02 1 0.02 77.40 summarize(GraphListNode *,Config *)
 0.00 106.26 0.00 55000 0.00 0.00 FixName(char *)

The most interesting column is the first one: this is the percentage of the running time of the program that is
spent in this function.

The optimization

This shows the program spends almost half its time in CompareNodes. A quick grep shows CompareNodes
is called only by CompareEdges, which in turn is only called by addAnnotatedEdge − both of which
are also in this list. This looks like an interesting point to do some optimizing.

We notice addAnnotatedEdge is traversing a linked list. Though easy to implement, a linked list is not
the best of data types. We decide to replace g−>edges with a binary tree: this should make finding stuff in the
structure much faster, while still being able to 'walk' through it.

2/4

Results

We see this indeed reduces the execution time:

real 2m19.314s
user 0m36.370s
sys 0m0.940s

A second pass

Running gprof again reveals:

% cumulative self self total
 time seconds seconds calls s/call s/call name
87.01 25.25 25.25 55000 0.00 0.00 getNode(char *,NodeListNode *&)
10.65 28.34 3.09 51987 0.00 0.00 addEdge(Graph *,Node *,Node *)

It looks like the functions that used to take up more than half of the time have now been reduced to irrelevant
details! Let's try this again: we replace the NodeList by a NodeHashTable.

This is also clearly a big improvement:

real 0m3.269s
user 0m0.830s
sys 0m0.090s

Other C/C++ profilers

There are several
profilers available
that use the gprof
data, for example
KProf
(screenshot) and
cgprof. Though
the graphical
views are a nice
touch, personally I
think the
commandline
gprof is more
convenient.

3/4

http://kprof.sf.net
http://mvertes.free.fr/

Profiling other languages

We covered profiling C/C++ applications with gprof here, but similar things can be done for other languages:
for Perl, you use the Devel::DProf module. Start your application with perl −d:DProf mycode.pl and
view the results with dprofpp. If you can compile your Java program with gcj, you can just use gprof,
however only single threaded Java code is currently supported.

Conclusion

We have seen that, using profiling, we can quickly find the portions of an application that would benefit from
optimization. By optimizing where it counts, we have reduced the running time of the example application
from 3m36 to less than 5 seconds.

References

Pathalizer: http://pathalizer.sf.net•

KProf: http://kprof.sf.net•

cgprof: http://mvertes.free.fr•

Devel::DProf http://www.perldoc.com/perl5.8.0/lib/Devel/DProf.html•

gcj: http://gcc.gnu.org/java•

: pathalizer example files: download for article371•

Webpages maintained by the LinuxFocus Editor team
© Arnout Engelen

"some rights reserved" see linuxfocus.org/license/
http://www.LinuxFocus.org

Translation information:
en −−> −− : Arnout Engelen <arnouten(Q)bzzt.net>

2005−04−02, generated by lfparser_pdf version 2.51

4/4

http://pathalizer.sf.net
http://kprof.sf.net
http://mvertes.free.fr
http://www.perldoc.com/perl5.8.0/lib/Devel/DProf.html
http://gcc.gnu.org/java
http://linuxfocus.org/common/lfteam.html
http://linuxfocus.org/common/copy.html
http://linuxfocus.org/license/
http://www.linuxfocus.org

	lf371, SoftwareDevelopment: Optimizing C/C++ programs using the GProf profiler

