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Editors’ Preface.

The volume called Higher Mathematics, the first edition of which was published in
1896, contained eleven chapters by eleven authors, each chapter being independent
of the others, but all supposing the reader to have at least a mathematical training
equivalent to that given in classical and engineering colleges. The publication
of that volume is now discontinued and the chapters are issued in separate
form. In these reissues it will generally be found that the monographs are
enlarged by additional articles or appendices which either amplify the former
presentation or record recent advances. This plan of publication has been
arranged in order to meet the demand of teachers and the convenience of classes,
but it is also thought that it may prove advantageous to readers in special lines
of mathematical literature.

It is the intention of the publishers and editors to add other monographs to
the series from time to time, if the call for the same seems to warrant it. Among
the topics which are under consideration are those of elliptic functions, the theory
of numbers, the group theory, the calculus of variations, and non-Euclidean
geometry; possibly also monographs on branches of astronomy, mechanics, and
mathematical physics may be included. It is the hope of the editors that this
form of publication may tend to promote mathematical study and research over
a wider field than that which the former volume has occupied.

December, 1905.
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Author’s Preface.

This compendium of hyperbolic trigonometry was first published as a chapter
in Merriman and Woodward’s Higher Mathematics. There is reason to believe
that it supplies a need, being adapted to two or three different types of readers.
College students who have had elementary courses in trigonometry, analytic
geometry, and differential and integral calculus, and who wish to know something
of the hyperbolic trigonometry on account of its important and historic relations
to each of those branches, will, it is hoped, find these relations presented in a
simple and comprehensive way in the first half of the work. Readers who have
some interest in imaginaries are then introduced to the more general trigonometry
of the complex plane, where the circular and hyperbolic functions merge into
one class of transcendents, the singly periodic functions, having either a real
or a pure imaginary period. For those who also wish to view the subject in
some of its practical relations, numerous applications have been selected so as to
illustrate the various parts of the theory, and to show its use to the physicist
and engineer, appropriate numerical tables being supplied for these purposes.

With all these things in mind, much thought has been given to the mode
of approaching the subject, and to the presentation of fundamental notions,
and it is hoped that some improvements are discernible. For instance, it has
been customary to define the hyperbolic functions in relation to a sector of the
rectangular hyperbola, and to take the initial radius of the sector coincident with
the principal radius of the curve; in the present work, these and similar restrictions
are discarded in the interest of analogy and generality, with a gain in symmetry
and simplicity, and the functions are defined as certain characteristic ratios
belonging to any sector of any hyperbola. Such definitions, in connection with the
fruitful notion of correspondence of points on conics, lead to simple and general
proofs of the addition-theorems, from which easily follow the conversion-formulas,
the derivatives, the Maclaurin expansions, and the exponential expressions. The
proofs are so arranged as to apply equally to the circular functions, regarded
as the characteristic ratios belonging to any elliptic sector. For those, however,
who may wish to start with the exponential expressions as the definitions of the
hyperbolic functions, the appropriate order of procedure is indicated on page 28,
and a direct mode of bringing such exponential definitions into geometrical
relation with the hyperbolic sector is shown in the Appendix.

December, 1905.

iv



Contents

Editors’ Preface. iii

Author’s Preface. iv

1 Correspondence of Points on Conics. 1

2 Areas of Corresponding Triangles. 3

3 Areas of Corresponding Sectors. 4

4 Charactersitic Ratios of Sectorial Measures. 5

5 Ratios Expressed as Triangle-measures. 6

6 Functional Relations for Ellipse. 7

7 Functional Relations for Hyperbola. 8

8 Relations Among Hyperbolic Functions. 9

9 Variations of the Hyperbolic Functions. 12

10 Anti-hyperbolic Functions. 14

11 Functions of Sums and Differences. 15

12 Conversion Formulas. 18

13 Limiting Ratios. 19

14 Derivatives of Hyperbolic Functions. 20

15 Derivatives of Anti-hyperbolic Functions. 23

16 Expansion of Hyperbolic Functions. 25

17 Exponential Expressions. 27

v



CONTENTS vi

18 Expansion of Anti-functions. 29

19 Logarithmic Expression of Anti-Functions. 31

20 The Gudermanian Function. 33

21 Circular Functions of Gudermanian. 34

22 Gudermanian Angle 36

23 Derivatives of Gudermanian and Inverse. 38

24 Series for Gudermanian and its Inverse. 40

25 Graphs of Hyperbolic Functions. 42

26 Elementary Integrals. 45

27 Functions of Complex Numbers. 49

28 Addition-Theorems for Complexes. 51

29 Functions of Pure Imaginaries. 53

30 Functions of 𝑥 + 𝑖𝑦 in the Form 𝑋 + 𝑖𝑌 . 55

31 The Catenary 59

32 Catenary of Uniform Strength. 61

33 The Elastic Catenary. 63

34 The Tractory. 65

35 The Loxodrome. 67

36 Combined Flexure and Tension. 69

37 Alternating Currents. 71

38 Miscellaneous Applications. 77

39 Explanation of Tables. 79

40 Appendix. 88
40.1 Historical and Bibliographical. . . . . . . . . . . . . . . . . . . . 88
40.2 Exponential Expressions as Definitions. . . . . . . . . . . . . . . 89

Index 90



CONTENTS vii

PROJECT GUTENBERG ”SMALL PRINT”



List of Tables

Table I.—Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 81
Table II.—Values of cosh(𝑥 + 𝑖𝑦) and sinh(𝑥 + 𝑖𝑦) . . . . . . . . . . . 83
Table III.—Values of gd𝑢 and 𝜃∘ . . . . . . . . . . . . . . . . . . . . . 87
Table IV.—Values of gd𝑢, log sinh𝑢, log cosh𝑢 . . . . . . . . . . . . . . 87

viii



Article 1

Correspondence of Points
on Conics.

To prepare the way for a general treatment of the hyperbolic functions a pre-
liminary discussion is given on the relations, between hyperbolic sectors. The
method adopted is such as to apply at the same time to sectors of the ellipse,
including the circle; and the analogy of the hyperbolic and circular functions
will be obvious at every step, since the same set of equations can be read in
connection with either the hyperbola or the ellipse.1 It is convenient to begin
with the theory of correspondence of points on two central conics of like species,
i.e. either both ellipses or both hyperbolas.

1 The hyperbolic functions are not so named on account of any analogy with what are
termed Elliptic Functions. “The elliptic integrals, and thence the elliptic functions, derive
their name from the early attempts of mathematicians at the rectification of the ellipse. . . . To
a certain extent this is a disadvantage; . . . because we employ the name hyperbolic function
to denote cosh𝑢, sinh𝑢, etc., by analogy with which the elliptic functions would be merely the
circular functions cos𝜑, sin𝜑, etc. . . . ” (Greenhill, Elliptic Functions, p. 175.)
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ARTICLE 1. CORRESPONDENCE OF POINTS ON CONICS. 2

To obtain a definition of corresponding points, let 𝑂1𝐴1, 𝑂1𝐵1 be conjugate
radii of a central conic, and 𝑂2𝐴2, 𝑂2𝐵2 conjugate radii of any other central
conic of the same species; let 𝑃1, 𝑃2 be two points on the curves; and let
their coordinates referred to the respective pairs of conjugate directions be
(𝑥1, 𝑦1), (𝑥2, 𝑦2); then, by analytic geometry,

𝑥2
1

𝑎21
± 𝑦21

𝑏21
= 1,

𝑥2
2

𝑎22
± 𝑦22

𝑏22
= 1. (1)

Now if the points 𝑃1, 𝑃2 be so situated that

𝑥1

𝑎1
=

𝑥2

𝑎2
,

𝑦1
𝑏1

=
𝑦2
𝑏2

, (2)

the equalities referring to sign as well as magnitude, then 𝑃1, 𝑃2 are called corre-
sponding points in the two systems. If 𝑄1, 𝑄2 be another pair of correspondents,
then the sector and triangle 𝑃1𝑂1𝑄1 are said to correspond respectively with the
sector and triangle 𝑃2𝑂2𝑄2. These definitions will apply also when the conies
coincide, the points 𝑃1, 𝑃2 being then referred to any two pairs of conjugate
diameters of the same conic.

In discussing the relations between corresponding areas it is convenient
to adopt the following use of the word “measure”: The measure of any area
connected with a given central conic is the ratio which it bears to the constant
area of the triangle formed by two conjugate diameters of the same conic.

For example, the measure of the sector 𝐴1𝑂1𝑃1 is the ratio

sector 𝐴1𝑂1𝑃1

triangle 𝐴1𝑂1𝐵1

and is to be regarded as positive or negative according as 𝐴1𝑂1𝑃1 and 𝐴1𝑂1𝐵1

are at the same or opposite sides of their common initial line.



Article 2

Areas of Corresponding
Triangles.

The areas of corresponding triangles have equal measures. For, let the coordi-
nates of 𝑃1, 𝑄1 be (𝑥1, 𝑦1), (𝑥′

1, 𝑦
′
1), and let those of their correspondents 𝑃2, 𝑄2

be (𝑥2, 𝑦2), (𝑥′
2, 𝑦

′
2); let the triangles 𝑃1𝑂1𝑄1, 𝑃2𝑂2𝑄2 be 𝑇1, 𝑇2, and let the

measuring triangles 𝐴1𝑂1𝐵1, 𝐴2𝑂2𝐵2 be 𝐾1,𝐾2, and their angles 𝜔1, 𝜔1; then,
by analytic geometry, taking account of both magnitude and direction of angles,
areas, and lines,

𝑇1

𝐾1
=

1
2 (𝑥1𝑦

′
1 − 𝑥′

1𝑦1) sin𝜔1

1
2𝑎1𝑏1 sin𝜔1

=
𝑥1

𝑎1
· 𝑦

′
1

𝑏1
− 𝑥′

1

𝑎1
· 𝑦1
𝑏1

;

𝑇2

𝐾2
=

1
2 (𝑥2𝑦

′
2 − 𝑥′

2𝑦2) sin𝜔2

1
2𝑎2𝑏2 sin𝜔2

=
𝑥2

𝑎2
· 𝑦

′
2

𝑏2
− 𝑥′

2

𝑎2
· 𝑦2
𝑏2

.

Therefore, by (2),

𝑇1

𝐾1
=

𝑇2

𝐾2
. (3)
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Article 3

Areas of Corresponding
Sectors.

The areas of corresponding sectors have equal measures. For conceive the sectors
𝑆1, 𝑆2 divided up into infinitesimal corresponding sectors; then the respective
infinitesimal corresponding triangles have equal measures (Art. 2); but the given
sectors are the limits of the sums of these infinitesimal triangles, hence

𝑆1

𝐾1
=

𝑆2

𝐾2
. (4)

In particular, the sectors 𝐴1𝑂1𝑃1, 𝐴2𝑂2𝑃2 have equal measures; for the
initial points 𝐴1, 𝐴2 are corresponding points.

It may be proved conversely by an obvious reductio ad absurdum that if
the initial points of two equal-measured sectors correspond, then their terminal
points correspond.

Thus if any radii 𝑂1𝐴1, 𝑂2𝐴2 be the initial lines of two equal-measured
sectors whose terminal radii are 𝑂1𝑃1, 𝑂2𝑃2, then 𝑃1, 𝑃2 are corresponding
points referred respectively to the pairs of conjugate directions 𝑂1𝐴1, 𝑂1𝐵1, and
𝑂2𝐴2, 𝑂2𝐴𝐵 ; that is,

𝑥1

𝑎1
=

𝑥2

𝑎2
,

𝑦1
𝑏1

=
𝑦2
𝑏2

.

Prob. 1. Prove that the sector 𝑃1𝑂1𝑄1, is bisected by the line joining 𝑂1, to the mid-point
of 𝑃1𝑄1. (Refer the points 𝑃1, 𝑄1, respectively, to the median as common axis
of 𝑥, and to the two opposite conjugate directions as axis of 𝑦, and show that
𝑃1, 𝑄1 are then corresponding points.)

Prob. 2. Prove that the measure of a circular sector is equal to the radian measure of its
angle.

Prob. 3. Find the measure of an elliptic quadrant, and of the sector included by conjugate
radii.

4



Article 4

Charactersitic Ratios of
Sectorial Measures.

Let 𝐴1𝑂1𝑃1 = 𝑆1, be any sector of a central conic; draw 𝑃1𝑀1 ordinate to 𝑂1𝐴1,
i.e. parallel to the tangent at 𝐴1; let 𝑂1𝑀1 = 𝑥1,𝑀1𝑃1 = 𝑦1, 𝑂1𝐴1 = 𝑎1, and the

conjugate radius 𝑂1𝐵1 = 𝑏1; then the ratios
𝑥1

𝑎1
,
𝑦1
𝑏1

are called the characteristic

ratios of the given sectorial measure
𝑆1

𝐾1
. These ratios are constant both in

magnitude and sign for all sectors of the same measure and species wherever
these may be situated (Art. 3). Hence there exists a functional relation between
the sectorial measure and each of its characteristic ratios.

5



Article 5

Ratios Expressed as
Triangle-measures.

The triangle of a sector and its complementary triangle are measured by the
two characteristic ratios. For, let the triangle 𝐴1𝑂1𝑃1 and its complementary
triangle 𝑃1𝑂1𝐵1 be denoted by 𝑇1, 𝑇

′
1; then

𝑇1

𝐾1
=

1
2𝑎1𝑦1 sin𝜔1

1
2𝑎1𝑏1 sin𝜔1

=
𝑦1
𝑏1

,

𝑇 ′
1

𝐾1
=

1
2𝑏1𝑥1 sin𝜔1

1
2𝑎1𝑏1 sin𝜔1

=
𝑥1

𝑎1
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5)
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Article 6

Functional Relations for
Ellipse.

The functional relations that exist between the sectorial measure and each of
its characteristic ratios are the same for all elliptic, including circular, sectors
(Art. 4). Let 𝑃1, 𝑃2 be corresponding points on an ellipse and a circle, referred
to the conjugate directions 𝑂1𝐴1, 𝑂1𝐵1 and 𝑂2𝐴2, 𝑂2𝐵2, the latter pair being
at right angles; let the angle 𝐴2𝑂2𝑃2 = 𝜃 in radian measure; then

𝑆2

𝐾2
=

1
2𝑎

2
2𝜃

1
2𝑎

2
2

= 𝜃. (6)

∴
𝑥2

𝑎2
= cos

𝑆2

𝐾2
,

𝑦2
𝑏2

= sin
𝑆2

𝐾2
; [𝑎2 = 𝑏2

hence, in the ellipse, by Art. 3,

𝑥1

𝑎1
= cos

𝑆1

𝐾1
,

𝑦1
𝑏1

= sin
𝑆1

𝐾1
. (7)

Prob. 4. Given 𝑥1 = 1
2
𝑎1; find the measure of the elliptic sector 𝐴1𝑂1𝑃1. Also find its

area when 𝑎1 = 4, 𝑏1 = 3, 𝜔 = 60∘.

Prob. 5. Find the characteristic ratios of an elliptic sector whose measure is 1
4
𝜋.

Prob. 6. Write down the relation between an elliptic sector and its triangle. (See Art. 5.)

7



Article 7

Functional Relations for
Hyperbola.

The functional relations between a sectorial measure and its characteristic ratios
in the case of the hyperbola may be written in the form

𝑥1

𝑎1
= cosh

𝑆1

𝐾1
,

𝑦1
𝑏1

= sinh
𝑆1

𝐾1
,

and these express that the ratio of the two lines on the left is a certain definite
function of the ratio of the two areas on the right. These functions are called by

analogy the hyperbolic cosine and the hyperbolic sine. Thus, writing 𝑢 for
𝑆1

𝐾1
the two equations

𝑥1

𝑎1
= cosh𝑢,

𝑦1
𝑏1

= sinh𝑢 (8)

serve to define the hyperbolic cosine and sine of a given sectorial measure 𝑢;
and the hyperbolic tangent, cotangent, secant, and cosecant are then defined as
follows:

tanh𝑢 =
sinh𝑢

cosh𝑢
, coth𝑢 =

cosh𝑢

sinh𝑢
,

sech𝑢 =
1

cosh𝑢
, csch𝑢 =

1

sinh𝑢
.

⎫⎪⎬⎪⎭ (9)

The names of these functions may be read “h-cosine,” ”h-sine,” “h-tangent,”
etc., or “hyper-cosine,” etc.

8



Article 8

Relations Among
Hyperbolic Functions.

Among the six functions there are five independent relations, so that when the
numerical value of one of the functions is given, the values of the other five can
be found. Four of these relations consist of the four defining equations (9). The
fifth is derived from the equation of the hyperbola

𝑥2
1

𝑎21
− 𝑦21

𝑏21
= 1,

giving

cosh2 𝑢− sinh2 𝑢 = 1. (10)

By a combination of some of these equations other subsidiary relations may
be obtained; thus, dividing (10) successively by cosh2 𝑢, sinh2 𝑢, and applying
(9), give

1 − tanh2 𝑢 = sech2 𝑢,

coth2 𝑢− 1 = csch2 𝑢.

}︃
(11)

Equations (9), (10), (11) will readily serve to express the value of any function
in terms of any other. For example, when tanh𝑢 is given,

coth𝑢 =
1

tanh𝑢
, sech𝑢 =

√︀
1 − tanh2 𝑢,

cosh𝑢 =
1√︀

1 − tanh2 𝑢
, sinh𝑢 =

tanh𝑢√︀
1 − tanh2 𝑢

,

csch𝑢 =

√︀
1 − tanh2 𝑢

tanh𝑢
.

The ambiguity in the sign of the square root may usually be removed by
the following considerations: The functions cosh𝑢, sech𝑢 are always positive,

9



ARTICLE 8. RELATIONS AMONG HYPERBOLIC FUNCTIONS. 10

because the primary characteristic ratio
𝑥1

𝑎1
is positive, since the initial line 𝑂1𝐴1

and the abscissa 𝑂1𝑀1 are similarly directed from 𝑂1 on whichever branch of
the hyperbola 𝑃1 maybe situated; but the functions sinh𝑢, tanh𝑢, coth𝑢, csch𝑢,

involve the other characteristic ratio
𝑦1
𝑏1

, which is positive or negative according

as 𝑦1 and 𝑏1 have the same or opposite signs, i.e., as the measure 𝑢 is positive or
negative; hence these four functions are either all positive or all negative. Thus
when any one of the functions sinh𝑢, tanh𝑢, csch𝑢, coth𝑢, is given in magnitude
and sign, there is no ambiguity in the value of any of the six hyperbolic functions;
but when either cosh𝑢 or sech𝑢 is given, there is ambiguity as to whether the
other four functions shall be all positive or all negative.

The hyperbolic tangent may be expressed as the ratio of two lines. For draw
the tangent line 𝐴𝐶 = 𝑡; then

tanh𝑢 =
𝑦

𝑏
:
𝑥

𝑎
=

𝑎

𝑏
· 𝑦
𝑥

=
𝑎

𝑏
· 𝑡
𝑎

=
𝑡

𝑏
. (12)

The hyperbolic tangent is the measure of the triangle 𝑂𝐴𝐶. For

𝑂𝐴𝐶

𝑂𝐴𝐵
=

𝑎𝑡

𝑎𝑏
=

𝑡

𝑏
= tanh𝑢. (13)

Thus the sector 𝐴𝑂𝑃 , and the triangles 𝐴𝑂𝑃,𝑃𝑂𝐵,𝐴𝑂𝐶, are proportional
to 𝑢, sinh𝑢, cosh𝑢, tanh𝑢 (eqs. 5, 13); hence

sinh𝑢 > 𝑢 > tanh𝑢. (14)

Prob. 7. Express all the hyperbolic functions in terms of sinh𝑢. Given cosh𝑢 = 2, find
the values of the other functions.

Prob. 8. Prove from eqs. 10, 11, that cosh𝑢 > sinh𝑢, cosh𝑢 > 1, tanh𝑢 < 1, sech𝑢 < 1.

Prob. 9. In the figure of Art. 1, let 𝑂𝐴 = 2, 𝑂𝐵 = 1, 𝐴𝑂𝐵 = 60∘, and area of sector
𝐴𝑂𝑃 = 3; find the sectorial measure, and the two characteristic ratios, in the
elliptic sector, and also in the hyperbolic sector; and find the area of the triangle
𝐴𝑂𝑃 . (Use tables of cos, sin, cosh, sinh.)

Prob. 10. Show that coth𝑢, sech𝑢, csch𝑢 may each be expressed as the ratio of two lines,
as follows: Let the tangent at 𝑃 make on the conjugate axes 𝑂𝐴,𝑂𝐵, intercepts
𝑂𝑆 = 𝑚,𝑂𝑇 = 𝑛; let the tangent at 𝐵, to the conjugate hyperbola, meet 𝑂𝑃 in
𝑅, making 𝐵𝑅 = 𝑙; then

coth𝑢 =
𝑙

𝑎
, sech𝑢 =

𝑚

𝑎
, csch𝑢 =

𝑛

𝑏
.



ARTICLE 8. RELATIONS AMONG HYPERBOLIC FUNCTIONS. 11

Prob. 11. The measure of segment 𝐴𝑀𝑃 is sinh𝑢 cosh𝑢− 𝑢. Modify this for the ellipse.
Modify also eqs. 10–14, and probs. 8, 10.



Article 9

Variations of the
Hyperbolic Functions.

Since the values of the hyperbolic functions depend only on the sectorial
measure, it is convenient, in tracing their variations, to consider only sectors of
one half of a rectangular hyperbola, whose conjugate radii are equal, and to take
the principal axis 𝑂𝐴 as the common initial line of all the sectors. The sectorial
measure 𝑢 assumes every value from −∞, through 0, to +∞, as the terminal
point 𝑃 comes in from infinity on the lower branch, and passes to infinity on the
upper branch; that is, as the terminal line 𝑂𝑃 swings from the lower asymptotic
position 𝑦 = −𝑥, to the upper one, 𝑦 = 𝑥. It is here assumed, but is proved in
Art. 17, that the sector 𝐴𝑂𝑃 becomes infinite as 𝑃 passes to infinity.

Since the functions cosh𝑢, sinh𝑢, tanh𝑢, for any position of 𝑂𝑃 , are equal
to the ratios of 𝑥, 𝑦, 𝑡, to the principal radius 𝑎, it is evident from the figure that

cosh 0 = 1, sinh 0 = 0, tanh 0 = 0, (15)

12



ARTICLE 9. VARIATIONS OF THE HYPERBOLIC FUNCTIONS. 13

and that as 𝑢 increases towards positive infinity, cosh𝑢, sinh𝑢 are positive and
become infinite, but tanh𝑢 approaches unity as a limit; thus

cosh∞ = ∞, sinh∞ = ∞, tanh∞ = 1. (16)

Again, as 𝑢 changes from zero towards the negative side, cosh𝑢 is positive
and increases from unity to infinity, but sinh𝑢 is negative and increases numeri-
cally from zero to a negative infinite, and tanh𝑢 is also negative and increases
numerically from zero to negative unity; hence

cosh(−∞) = ∞, sinh(−∞) = −∞, tanh(−∞) = −1. (17)

For intermediate values of 𝑢 the numerical values of these functions can
be found from the formulas of Arts. 16, 17, and are tabulated at the end of
this chapter. A general idea of their manner of variation can be obtained from
the curves in Art. 25, in which the sectorial measure 𝑢 is represented by the
abscissa, and the values of the functions cosh𝑢, sinh𝑢, etc., are represented by
the ordinate.

The relations between the functions of −𝑢 and of 𝑢 are evident from the
definitions, as indicated above, and in Art. 8. Thus

cosh(−𝑢) = + cosh𝑢, sinh(−𝑢) = − sinh𝑢,

sech(−𝑢) = + sech𝑢, csch(−𝑢) = − csch𝑢,

tanh(−𝑢) = − tanh𝑢, coth(−𝑢) = − coth𝑢.

⎫⎪⎬⎪⎭ (18)

Prob. 12. Trace the changes in sech𝑢, coth𝑢, csch𝑢, as 𝑢 passes from −∞ to +∞. Show
that sinh𝑢, cosh𝑢 are infinites of the same order when 𝑢 is infinite. (It will
appear in Art. 17 that sinh𝑢, cosh𝑢 are infinites of an order infinitely higher
than the order of 𝑢.)

Prob. 13. Applying eq. (12) to figure, page 12, prove tanh𝑢1 = tan𝐴𝑂𝑃 .



Article 10

Anti-hyperbolic Functions.

The equations
𝑥

𝑎
= cosh𝑢,

𝑦

𝑏
= sinh𝑢,

𝑡

𝑏
= tanh𝑢, etc., may also be expressed

by the inverse notation 𝑢 = cosh−1 𝑥

𝑎
, 𝑢 = sinh−1 𝑦

𝑏
, 𝑢 = tanh−1 𝑡

𝑏
, etc., which

may be read: “𝑢 is the sectorial measure whose hyperbolic cosine is the ratio 𝑥

to 𝑎,” etc.; or “𝑢 is the anti-h-cosine of
𝑥

𝑎
,” etc.

Since there are two values of 𝑢, with opposite signs, that correspond to
a given value of cosh𝑢, it follows that if 𝑢 be determined from the equation
cosh𝑢 = 𝑚, where 𝑚 is a given number greater than unity, 𝑢 is a two-valued
function of 𝑚. The symbol cosh−1 𝑚 will be used to denote the positive value of
𝑢 that satisfies the equation cosh𝑢 = 𝑚. Similarly the symbol sech−1 𝑚 in will
stand for the positive value of 𝑢 that satisfies the equation sech𝑢 = 𝑚. The signs
of the other functions sinh−1 𝑚, tanh−1 𝑚, coth−1 𝑚, csch−1 𝑚, are the same as
the sign of 𝑚. Hence all of the anti-hyperbolic functions of real numbers are
one-valued.

Prob. 14. Prove the following relations:

cosh−1 𝑚 = sinh−1
√︀

𝑚2 − 1, sinh−1 𝑚 = ± cosh−1
√︀

𝑚2 + 1,

the upper or lower sign being used according as 𝑚 is positive or negative. Modify
these relations for sin−1, cos−1.

Prob. 15. In figure, Art. 1, let 𝑂𝐴 = 2, 𝑂𝐵 = 1, 𝐴𝑂𝐵 = 60∘; find the area of the hyperbolic
sector 𝐴𝑂𝑃 , and of the segment 𝐴𝑀𝑃 , if the abscissa of 𝑃 is 3. (Find cosh−1

from the tables for cosh.)

14



Article 11

Functions of Sums and
Differences.

(a) To prove the difference-formulas

sinh(𝑢− 𝑣) = sinh𝑢 cosh 𝑣 − cosh𝑢 sinh 𝑣,

cosh(𝑢− 𝑣) = cosh𝑢 cosh 𝑣 − sinh𝑢 sinh 𝑣.

}︃
(19)

Let 𝑂𝐴 be any radius of a hyperbola, and let the sectors 𝐴𝑂𝑃,𝐴𝑂𝑄 have
the measures 𝑢, 𝑣; then 𝑢− 𝑣 is the measure of the sector 𝑄𝑂𝑃 . Let 𝑂𝐵,𝑂𝑄′

be the radii conjugate to 𝑂𝐴,𝑂𝑄; and let the coördinates of 𝑃,𝑄,𝑄′ be (𝑥1, 𝑦1),
(𝑥, 𝑦), (𝑥′, 𝑦′) with reference to the axes 𝑂𝐴,𝑂𝐵; then

sinh(𝑢− 𝑣) = sinh
sector 𝑄𝑂𝑃

𝐾
=

triangle 𝑄𝑂𝑃

𝐾
[Art. 5.

=
1
2 (𝑥𝑦1 − 𝑥1𝑦) sin𝜔

1
2𝑎1𝑏1 sin𝜔

=
𝑦1
𝑏1

· 𝑥

𝑎1
− 𝑦

𝑏1
· 𝑥1

𝑎1

= sinh𝑢 cosh 𝑣 − cosh𝑢 sinh 𝑣;

15



ARTICLE 11. FUNCTIONS OF SUMS AND DIFFERENCES. 16

cosh(𝑢− 𝑣) = cosh
sector 𝑄𝑂𝑃

𝐾
=

triangle 𝑃𝑂𝑄′

𝐾
[Art. 5.

=
1
2 (𝑥1𝑦

′ − 𝑦1𝑥
′) sin𝜔

1
2𝑎1𝑏1 sin𝜔

=
𝑦′

𝑏1
· 𝑥1

𝑎1
− 𝑦

𝑏1
· 𝑥

′

𝑎1
;

but

𝑦′

𝑏1
=

𝑥

𝑎1
,

𝑥′

𝑎1
=

𝑦

𝑏1
, (20)

since 𝑄,𝑄′ are extremities of conjugate radii; hence

cosh(𝑢− 𝑣) = cosh𝑢 cosh 𝑣 − sinh𝑢 sinh 𝑣.

In the figures 𝑢 is positive and 𝑣 is positive or negative. Other figures may
be drawn with 𝑢 negative, and the language in the text will apply to all. In the
case of elliptic sectors, similar figures may be drawn, and the same language will

apply, except that the second equation of (20) will be
𝑥′

𝑎1
=

−𝑦

𝑏1
; therefore

sin(𝑢− 𝑣) = sin𝑢 cos 𝑣 − cos𝑢 sin 𝑣,

cos(𝑢− 𝑣) = cos𝑢 cos 𝑣 + sin𝑢 sin 𝑣.

(b) To prove the sum-formulas

sinh(𝑢 + 𝑣) = sinh𝑢 cosh 𝑣 + cosh𝑢 sinh 𝑣,

cosh(𝑢 + 𝑣) = cosh𝑢 cosh 𝑣 + sinh𝑢 sinh 𝑣.

}︃
(21)

These equations follow from (19) by changing 𝑣 into −𝑣, and then for sinh(−𝑣),
cosh(−𝑣), writing − sinh 𝑣, cosh 𝑣 (Art. 9, eqs. (18)).

(c) To prove that

tanh(𝑢± 𝑣) =
tanh𝑢± tanh 𝑣

1 ± tanh𝑢 tanh 𝑣
. (22)

Writing tanh(𝑢± 𝑣) =
sinh(𝑢± 𝑣)

cosh(𝑢± 𝑣)
, expanding and dividing numerator and

denominator by cosh𝑢 cosh 𝑣, eq. (22) is obtained.

Prob. 16. Given cosh𝑢 = 2, cosh 𝑣 = 3, find cosh(𝑢+ 𝑣).

Prob. 17. Prove the following identities:

(a) sinh 2𝑢 = 2 sinh𝑢 cosh𝑢.

(b) cosh 2𝑢 = cosh2 𝑢+ sinh2 𝑢 = 1 + 2 sinh2 𝑢 = 2 cosh2 𝑢− 1.

(c) 1 + cosh𝑢 = 2 cosh2 1
2
𝑢, cosh𝑢− 1 = 2 sinh2 1

2
𝑢.

(d) tanh 1
2
𝑢 =

sinh𝑢

1 + cosh𝑢
=

cosh𝑢− 1

sinh𝑢
=

(︂
cosh𝑢− 1

cosh𝑢+ 1

)︂ 1
2

.
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(e) sinh 2𝑢 =
2 tanh𝑢

1− tanh2 𝑢
, cosh 2𝑢 =

1 + tanh2 𝑢

1− tanh2 𝑢
.

(f) sinh 3𝑢 = 3 sinh𝑢+ 4 sinh3 𝑢, cosh 3𝑢 = 4 cosh3 𝑢− 3 cosh𝑢.

(g) cosh𝑢+ sinh𝑢 =
1 + tanh 1

2
𝑢

1− tanh 1
2
𝑢
.

(h) (cosh𝑢+ sinh𝑢)(cosh 𝑣 + sinh 𝑣) = cosh(𝑢+ 𝑣) + sinh(𝑢+ 𝑣).

(i) Generalize (h); and show also what it becomes when 𝑢 = 𝑣 = . . .

(j) sinh2 𝑥 cos2 𝑦 + cosh2 𝑥 sin2 𝑦 = sinh2 𝑥+ sin2 𝑦.

(k) cosh−1 𝑚± cosh−1 𝑛 = cosh−1
[︁
𝑚𝑛±

√︀
(𝑚2 − 1)(𝑛2 − 1)

]︁
.

(l) sinh−1 𝑚± sinh−1 𝑛 = sinh−1
[︀
𝑚
√
1 + 𝑛2 ± 𝑛

√
1 +𝑚2

]︀
.

Prob. 18. What modifications of signs are required in (21), (22), in order to pass to circular
functions?

Prob. 19. Modify the identities of Prob. 17 for the same purpose.



Article 12

Conversion Formulas.

To prove that

cosh𝑢1 + cosh𝑢2 = 2 cosh 1
2 (𝑢1 + 𝑢2) cosh 1

2 (𝑢1 − 𝑢2),

cosh𝑢1 − cosh𝑢2 = 2 sinh 1
2 (𝑢1 + 𝑢2) sinh 1

2 (𝑢1 − 𝑢2),

sinh𝑢1 + sinh𝑢2 = 2 sinh 1
2 (𝑢1 + 𝑢2) cosh 1

2 (𝑢1 − 𝑢2),

sinh𝑢1 − sinh𝑢2 = 2 cosh 1
2 (𝑢1 + 𝑢2) sinh 1

2 (𝑢1 − 𝑢2).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (23)

From the addition formulas it follows that

cosh(𝑢 + 𝑣) + cosh(𝑢− 𝑣) = 2 cosh𝑢 cosh 𝑣,

cosh(𝑢 + 𝑣) − cosh(𝑢− 𝑣) = 2 sinh𝑢 sinh 𝑣,

sinh(𝑢 + 𝑣) + sinh(𝑢− 𝑣) = 2 sinh𝑢 cosh 𝑣,

sinh(𝑢 + 𝑣) − sinh(𝑢− 𝑣) = 2 cosh𝑢 sinh 𝑣,

and then by writing 𝑢 + 𝑣 = 𝑢1, 𝑢 − 𝑣 = 𝑢2, 𝑢 = 1
2 (𝑢1 + 𝑢2), 𝑣 = 1

2 (𝑢1 − 𝑢2),
these equations take the form required.

Prob. 20. In passing to circular functions, show that the only modification to be made in
the conversion formulas is in the algebraic sign of the right-hand member of the
second formula.

Prob. 21. Simplify
cosh 2𝑢+ cosh 4𝑣

sinh 2𝑢+ sinh 4𝑣
,
cosh 2𝑢+ cosh 4𝑣

cosh 2𝑢− cosh 4𝑣
.

Prob. 22. Prove sinh2 𝑥− sinh2 𝑦 = sinh(𝑥+ 𝑦) sinh(𝑥− 𝑦).

Prob. 23. Simplify cosh2 𝑥 cosh2 𝑦 ± sinh2 𝑥 sinh2 𝑦.

Prob. 24. Simplify cosh2 𝑥 cos2 𝑦 + sinh2 𝑥 sin2 𝑦.

18



Article 13

Limiting Ratios.

To find the limit, as 𝑢 approaches zero, of

sinh𝑢

𝑢
,

tanh𝑢

𝑢
,

which are then indeterminate in form.
By eq. (14), sinh𝑢 > 𝑢 > tanh𝑢; and if sinh𝑢 and tanh𝑢 be successively

divided by each term of these inequalities, it follows that

1 <
sinh𝑢

𝑢
< cosh𝑢,

sech𝑢 <
tanh𝑢

𝑢
< 1,

but when 𝑢
.
= 0, cosh𝑢

.
= 1, sech𝑢

.
= 1, hence

lim
𝑢
.
=0

sinh𝑢

𝑢
= 1, lim

𝑢
.
=0

tanh𝑢

𝑢
= 1. (24)

19



Article 14

Derivatives of Hyperbolic
Functions.

To prove that

(a)
𝑑(sinh𝑢)

𝑑𝑢
= cosh𝑢,

(b)
𝑑(cosh𝑢)

𝑑𝑢
= sinh𝑢,

(c)
𝑑(tanh𝑢)

𝑑𝑢
= sech2 𝑢,

(d)
𝑑(sech𝑢)

𝑑𝑢
= − sech𝑢 tanh𝑢,

(e)
𝑑(coth𝑢)

𝑑𝑢
= − csch2 𝑢,

(f)
𝑑(csch𝑢)

𝑑𝑢
= − csch𝑢 coth𝑢,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

(a) Let

𝑦 = sinh𝑢,

∆𝑦 = sinh (𝑢 + ∆𝑢) − sinh𝑢

= 2 cosh
1

2
(2𝑢 + ∆𝑢) sinh

1

2
∆𝑢,

∆𝑦

∆𝑢
= cosh

(︂
𝑢 +

1

2
∆𝑢

)︂
sinh 1

2∆𝑢
1
2∆𝑢

.

20
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Take the limit of both sides, as ∆𝑢
.
= 0, and put

lim.
∆𝑦

∆𝑢
=

𝑑𝑦

𝑑𝑢
=

𝑑 (sinh𝑢)

𝑑𝑢
,

lim. cosh

(︂
𝑢 +

1

2
∆𝑢

)︂
= cosh𝑢,

lim.
sinh 1

2∆𝑢
1
2∆𝑢

= 1; (see Art. 13)

then

𝑑 (sinh𝑢)

𝑑𝑢
= cosh𝑢.

(b) Similar to (a).

(c)

𝑑 (tanh𝑢)

𝑑𝑢
=

𝑑

𝑑𝑢
· sinh𝑢

cosh𝑢

=
cosh2 𝑢− sinh2 𝑢

cosh2 𝑢
=

1

cosh2 𝑢
= sech2 𝑢.

(d) Similar to (c).

(e)
𝑑(sech𝑢)

𝑑𝑢
=

𝑑

𝑑𝑢
· 1

cosh𝑢
= − sinh𝑢

cosh2 𝑢
= − sech𝑢 tanh𝑢.

(f) Similar to (e).

It thus appears that the functions sinh𝑢, cosh𝑢 reproduce themselves in two
differentiations; and, similarly, that the circular functions sin𝑢, cos𝑢 produce
their opposites in two differentiations. In this connection it may be noted
that the frequent appearance of the hyperbolic (and circular) functions in the
solution of physical problems is chiefly due to the fact that they answer the
question: What function has its second derivative equal to a positive (or negative)
constant multiple of the function itself? (See Probs. 28–30.) An answer such
as 𝑦 = cosh𝑚𝑥 is not, however, to be understood as asserting that 𝑚𝑥 is an
actual sectorial measure and 𝑦 its characteristic ratio; but only that the relation
between the numbers 𝑚𝑥 and 𝑦 is the same as the known relation between the
measure of a hyperbolic sector and its characteristic ratio; and that the numerical
value of 𝑦 could be found from a table of hyperbolic cosines.

Prob. 25. Show that for circular functions the only modifications required are in the
algebraic signs of (b), (d).
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Prob. 26. Show from their derivatives which of the hyperbolic and circular functions
diminish as 𝑢 increases.

Prob. 27. Find the derivative of tanh𝑢 independently of the derivatives of sinh𝑢, cosh𝑢.

Prob. 28. Eliminate the constants by differentiation from the equation

𝑦 = 𝐴 cosh𝑚𝑥+𝐵 sinh𝑚𝑥,

and prove that
𝑑2𝑦

𝑑𝑥2
= 𝑚2𝑦.

Prob. 29. Eliminate the constants from the equation

𝑦 = 𝐴 cos𝑚𝑥+𝐵 sin𝑚𝑥,

and prove that
𝑑2𝑦

𝑑𝑥2
= −𝑚2𝑦.

Prob. 30. Write down the most general solutions of the differential equations

𝑑2𝑦

𝑑𝑥2
= 𝑚2𝑦,

𝑑2𝑦

𝑑𝑥2
= −𝑚2𝑦,

𝑑4𝑦

𝑑𝑥4
= 𝑚4𝑦.



Article 15

Derivatives of
Anti-hyperbolic Functions.

(a)
𝑑(sinh−1 𝑥)

𝑑𝑥
=

1√
𝑥2 + 1

,

(b)
𝑑(cosh−1 𝑥)

𝑑𝑥
=

1√
𝑥2 − 1

,

(c)
𝑑(tanh−1 𝑥)

𝑑𝑥
=

1

1 − 𝑥2

]︂
𝑥<1

,

(d)
𝑑(coth−1 𝑥)

𝑑𝑥
=

1

1 − 𝑥2

]︂
𝑥>1

,

(e)
𝑑(sech−1 𝑥)

𝑑𝑥
= − 1

𝑥
√

1 − 𝑥2
,

(f)
𝑑(csch−1 𝑥)

𝑑𝑥
= − 1

𝑥
√
𝑥2 + 1

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

(a) Let 𝑢 = sinh−1 𝑥, then 𝑥 = sinh𝑢, 𝑑𝑥 = cosh𝑢 𝑑𝑢 =
√︀

1 + sinh2 𝑢 =
√

1 + 𝑥2𝑑𝑢, 𝑑𝑢 =
𝑑𝑥√

1 + 𝑥2
.

(b) Similar to (a).

(c) Let 𝑢 = tanh−1 𝑥, then 𝑥 = tanh𝑢, 𝑑𝑥 = sech2 𝑢 𝑑𝑢 = (1 − tanh2 𝑢)𝑑𝑢 =

(1 − 𝑥2)𝑑𝑢, 𝑑𝑢 =
𝑑𝑥

1 − 𝑥2
.

(d) Similar to (c).

(e)

𝑑(sech−1 𝑥)

𝑑𝑥
=

𝑑

𝑑𝑥

(︂
cosh−1 1

𝑥

)︂
=

−1
𝑥2(︀

1
𝑥2 − 1

)︀ 1
2

=
−1

𝑥
√

1 − 𝑥2
.
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(f) Similar to (e).

Prob. 31. Prove

𝑑(sin−1 𝑥)

𝑑𝑥
=

1√
1− 𝑥2

,
𝑑(cos−1 𝑥)

𝑑𝑥
= − 1√

1− 𝑥2
,

𝑑(tan−1 𝑥)

𝑑𝑥
=

1

1 + 𝑥2
,

𝑑(cot−1 𝑥)

𝑑𝑥
= − 1

1 + 𝑥2
.

Prob. 32. Prove

𝑑 sinh−1 𝑥

𝑎
=

𝑑𝑥√
𝑥2 + 𝑎2

, 𝑑 cosh−1 𝑥

𝑎
=

𝑑𝑥√
𝑥2 − 𝑎2

,

𝑑 tanh−1 𝑥

𝑎
=

𝑎𝑑𝑥

𝑎2 − 𝑥2

]︂
𝑥<𝑎

, 𝑑 coth−1 𝑥

𝑎
= − 𝑎𝑑𝑥

𝑥2 − 𝑎2

]︂
𝑥>𝑎

.

Prob. 33. Find 𝑑(sech−1 𝑥) independently of cosh−1 𝑥.

Prob. 34. When tanh−1 𝑥 is real, prove that coth−1 𝑥 is imaginary, and conversely; except
when 𝑥 = 1.

Prob. 35. Evaluate
sinh−1 𝑥

log 𝑥
,
cosh−1 𝑥

log 𝑥
when 𝑥 = ∞.



Article 16

Expansion of Hyperbolic
Functions.

For this purpose take Maclaurin’s Theorem,

𝑓(𝑢) = 𝑓(0) + 𝑢𝑓 ′(0) +
1

2!
𝑢2𝑓 ′′(0) +

1

3!
𝑢3𝑓 ′′′(0) + . . . ,

and put

𝑓(𝑢) = sinh𝑢, 𝑓 ′(𝑢) = cosh𝑢, 𝑓 ′′(𝑢) = sinh𝑢, . . . ,

then

𝑓(0) = sinh 0 = 0, 𝑓 ′(0) = cosh 0 = 1, . . . ;

hence

sinh𝑢 = 𝑢 +
1

3!
𝑢3 +

1

5!
𝑢5 + . . . ; (27)

and similarly, or by differentiation,

cosh𝑢 = 1 +
1

2!
𝑢2 +

1

4!
𝑢4 + . . . . (28)

By means of these series the numerical values of sinh𝑢, cosh𝑢, can be com-
puted and tabulated for successive values of the independent variable 𝑢. They are
convergent for all values of 𝑢, because the ratio of the 𝑛th term to the preceding

is in the first case
𝑢2

(2𝑛− 1)(2𝑛− 2)
, and in the second case

𝑢2

(2𝑛− 2)(2𝑛− 3)
,

both of which ratios can be made less than unity by taking 𝑛 large enough, no
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matter what value 𝑢 has. Lagrange’s remainder shows equivalence of function
and series.

From these series the following can be obtained by division:

tanh𝑢 = 𝑢− 1

3
𝑢3 +

2

15
𝑢5 +

17

315
𝑢7 + . . . ,

sech𝑢 = 1 − 1

2
𝑢2 +

5

24
𝑢4 − 61

720
𝑢6 + . . . ,

𝑢 coth𝑢 = 1 +
1

3
𝑢2 − 1

45
𝑢4 +

2

945
𝑢6 − . . . ,

𝑢 csch𝑢 = 1 − 1

6
𝑢2 +

7

360
𝑢4 − 31

15120
𝑢6 + . . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(29)

These four developments are seldom used, as there is no observable law in
the coefficients, and as the functions tanh𝑢, sech𝑢, coth𝑢, csch𝑢, can be found
directly from the previously computed values of cosh𝑢, sinh𝑢.

Prob. 36. Show that these six developments can be adapted to the circular functions by
changing the alternate signs.



Article 17

Exponential Expressions.

Adding and subtracting (27), (28) give the identities

cosh𝑢 + sinh𝑢 = 1 + 𝑢 +
1

2!
𝑢2 +

1

3!
𝑢3 +

1

4!
𝑢4 + . . . = 𝑒𝑢,

cosh𝑢− sinh𝑢 = 1 − 𝑢 +
1

2!
𝑢2 − 1

3!
𝑢3 +

1

4!
𝑢4 − . . . = 𝑒−𝑢,

hence

cosh𝑢 = 1
2 (𝑒𝑢 + 𝑒−𝑢), sinh𝑢 = 1

2 (𝑒𝑢 − 𝑒−𝑢),

tanh𝑢 =
𝑒𝑢 − 𝑒−𝑢

𝑒𝑢 + 𝑒−𝑢
, sech𝑢 =

2

𝑒𝑢 + 𝑒−𝑢
, etc.

⎫⎬⎭ (30)

The analogous exponential expressions for sin𝑢, cos𝑢 are

cos𝑢 =
1

2
(𝑒𝑢𝑖 + 𝑒−𝑢𝑖), sin𝑢 =

1

2𝑖
(𝑒𝑢 − 𝑒−𝑢𝑖), (𝑖 =

√
−1)

where the symbol 𝑒𝑢𝑖 stands for the result of substituting 𝑢𝑖 for 𝑥 in the
exponential development

𝑒𝑥 = 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 + . . .

This will be more fully explained in treating of complex numbers, Arts. 28,
29.

Prob. 37. Show that the properties of the hyperbolic functions could be placed on a purely
algebraic basis by starting with equations (30) as their definitions; for example,
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verify the identities:

sinh(−𝑢) = − sinh𝑢, cosh(−𝑢) = cosh𝑢,

cosh2 𝑢− sinh2 𝑢 = 1, sinh(𝑢+ 𝑣) = sinh𝑢 cosh 𝑣 + cosh𝑢 sinh 𝑣,

𝑑2(cosh𝑚𝑢)

𝑑𝑢2
= 𝑚2 cosh𝑚𝑢,

𝑑2(sinh𝑚𝑢)

𝑑𝑢2
= 𝑚2 sinh𝑚𝑢.

Prob. 38. Prove (cosh𝑢+ sinh𝑢)𝑛 = cosh𝑛𝑢+ sinh𝑛𝑢.

Prob. 39. Assuming from Art. 14 that cosh𝑢, sinh𝑢 satisfy the differential equation
𝑑2𝑦

𝑑𝑢2
=

𝑦, whose general solution may be written 𝑦 = 𝐴𝑒𝑛 + 𝐵𝑒−𝑛, where 𝐴, 𝐵 are
arbitrary constants; show how to determine 𝐴, 𝐵 in order to derive the expressions
for cosh𝑢, sinh𝑢, respectively. [Use eq. (15).]

Prob. 40. Show how to construct a table of exponential functions from a table of hyperbolic
sines and cosines, and vice versa.

Prob. 41. Prove 𝑢 = log𝑒(cosh𝑢+ sinh𝑢).

Prob. 42. Show that the area of any hyperbolic sector is infinite when its terminal line is
one of the asymptotes.

Prob. 43. From the relation 2 cosh𝑢 = 𝑒𝑛 + 𝑒−𝑛 prove

2𝑛−1(cosh𝑢)𝑛 = cosh𝑛𝑢+ 𝑛 cosh(𝑛− 2)𝑢+ 1
2
𝑛(𝑛− 1) cosh(𝑛− 4)𝑢+ . . . ,

and examine the last term when 𝑛 is odd or even. Find also the corresponding
expression for 2𝑛−1(sinh𝑢)𝑛.



Article 18

Expansion of
Anti-functions.

Since

𝑑(sinh−1 𝑥)

𝑑𝑥
=

1√
1 + 𝑥2

= (1 + 𝑥2)−
1
2

= 1 − 1

2
· 𝑥2 +

1

2
· 3

4
· 𝑥4 − 1

2
· 3

4
· 5

6
· 𝑥6 + . . . ,

hence, by integration,

sinh−1 𝑥 = 𝑥− 1

2
· 𝑥

3

3
+

1

2
· 3

4
· 𝑥

5

5
− 1

2
· 3

4
· 5

6
· 𝑥

7

7
+ . . . , (31)

the integration-constant being zero, since sinh−1 𝑥 vanishes with 𝑥. This series
is convergent, and can be used in computation, only when 𝑥 < 1. Another series,
convergent when 𝑥 > 1, is obtained by writing the above derivative in the form

𝑑(sinh−1 𝑥)

𝑑𝑥
= (𝑥2 + 1)−

1
2 =

1

𝑥

(︂
1 +

1

𝑥2

)︂− 1
2

=
1

𝑥

[︂
1 − 1

2
· 1

𝑥2
+

1

2
· 3

4
· 1

𝑥4
− 1

2
· 3

4
· 5

6
· 1

𝑥6
+ · · ·

]︂
,

∴ sinh−1 = 𝐶 + log 𝑥 +
1

2
· 1

2𝑥2
− 1

2
· 3

4
· 1

4𝑥4
+

1

2
· 3

4
· 5

6
· 1

6𝑥6
− · · · , (32)

where 𝐶 is the integration-constant, which will be shown in Art. 19 to be equal
to log𝑒 2.

A development of similar form is obtained for cosh−1 𝑥; for

𝑑(cosh−1 𝑥)

𝑑𝑥
= (𝑥2 − 1)−

1
2 =

1

𝑥

(︂
1 − 1

𝑥2

)︂− 1
2

=
1

𝑥

[︂
1 +

1

2
· 1

𝑥2
+

1

2
· 3

4
· 1

𝑥4
+

1

2
· 3

4
· 5

6
· 1

𝑥6
+ · · ·

]︂
,
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hence

cosh−1 𝑥 = 𝐶 + log 𝑥− 1

2
· 1

2𝑥2
− 1

2
· 3

4
· 1

4𝑥4
− 1

2
· 3

4
· 5

6
· 1

6𝑥6
− · · · , (33)

in which 𝐶 is again equal to log𝑒 2 [Art. 19, Prob. 46]. In order that the function
cosh−1 𝑥 may be real, 𝑥 must not be less than unity; but when 𝑥 exceeds unity,
this series is convergent, hence it is always available for computation.

Again

𝑑(tanh−1 𝑥)

𝑑𝑥
=

1

1 − 𝑥2
= 1 + 𝑥2 + 𝑥4 + 𝑥6 + · · · ,

and hence

tanh−1 𝑥 = 𝑥 +
1

3
𝑥3 +

1

5
𝑥5 +

1

7
𝑥7 + · · · , (34)

From (32), (33), (34) are derived:

sech−1 𝑥 = cosh−1 1

𝑥

= 𝐶 − log 𝑥− 𝑥2

2 · 2
− 1 · 3 · 𝑥4

2 · 4 · 4
− 1 · 3 · 5 · 𝑥6

2 · 4 · 6 · 6
− · · · ; (35)

csch−1 𝑥 = sinh−1 1

𝑥
=

1

𝑥
− 1

2
· 1

3𝑥3
+

1

2
· 3

4
· 1

5𝑥5
− 1

2
· 3

4
· 5

6
· 1

7𝑥7
+ · · · ,

= 𝐶 − log 𝑥 +
𝑥2

2 · 2
− 1 · 3 · 𝑥4

2 · 4 · 4
+

1 · 3 · 5 · 𝑥6

2 · 4 · 6 · 6
− · · · ; (36)

coth−1 𝑥 = tanh−1 1

𝑥
=

1

𝑥
+

1

3𝑥3
+

1

5𝑥5
+

1

7𝑥7
+ · · · . (37)

Prob. 44. Show that the series for tanh−1 𝑥, coth−1 𝑥, sech−1 𝑥, are always available for
computation.

Prob. 45. Show that one or other of the two developments of the inverse hyperbolic cosecant
is available.



Article 19

Logarithmic Expression of
Anti-Functions.

Let

𝑥 = cosh𝑢,

then √︀
𝑥2 − 1 = sinh𝑢;

therefore

𝑥 +
√︀
𝑥2 − 1 = cosh𝑢 + sinh𝑢 = 𝑒𝑢,

and

𝑢 = cosh−1 𝑥 = log
(︁
𝑥 +

√︀
𝑥2 − 1

)︁
. (38)

Similarly,

sinh−1 𝑥 = log
(︁
𝑥 +

√︀
𝑥2 + 1

)︁
. (39)

Also

sech−1 𝑥 = cosh−1 1

𝑥
= log

1 +
√

1 − 𝑥2

𝑥
, (40)

csch−1 𝑥 = sinh−1 1

𝑥
= log

1 +
√

1 + 𝑥2

𝑥
. (41)
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Again, let

𝑥 = tanh𝑢 =
𝑒𝑢 − 𝑒−𝑢

𝑒𝑢 + 𝑒−𝑢
,

therefore

1 + 𝑥

1 − 𝑥
=

𝑒𝑢

𝑒−𝑢
= 𝑒2𝑢,

2𝑢 = log
1 + 𝑥

1 − 𝑥
, tanh−1 = 1

2 log
1 + 𝑥

1 − 𝑥
; (42)

and

coth−1 𝑥 = tanh−1 1

𝑥
= 1

2 log
𝑥 + 1

𝑥− 1
. (43)

Prob. 46. Show from (38), (39), that, when 𝑥
.
= ∞,

sinh−1 𝑥− log 𝑥
.
= log 2, cosh−1 𝑥− log 𝑥

.
= log 2,

and hence show that the integration-constants in (32), (33) are each equal to
log 2.

Prob. 47. Derive from (42) the series for tanh−1 𝑥 given in (34).

Prob. 48. Prove the identities:

log 𝑥 = 2 tanh−1 𝑥− 1

𝑥+ 1
= tanh−1 𝑥2 − 1

𝑥2 + 1
= sinh−1 1

2
(𝑥− 𝑥−1) = cosh−1 1

2
(𝑥+ 𝑥−1);

log sec𝑥 = 2 tanh−1 1
2
𝑥; log csc𝑥 = 2 tanh−1 tan2

(︂
1

4
𝜋 +

1

2
𝑥

)︂
;

log tan𝑥 = − tanh−1 cos 2𝑥 = − sinh−1 cot 2𝑥 = cosh−1 csc 2𝑥.



Article 20

The Gudermanian Function.

The correspondence of sectors of the same species was discussed in Arts. 1–4. It
is now convenient to treat of the correspondence that may exist between sectors
of different species.

Two points 𝑃1, 𝑃2, on any hyperbola and ellipse, are said to correspond with
reference to two pairs of conjugates 𝑂1𝐴1, 𝑂1𝐵1, and 𝑂2𝐴2, 𝑂2𝐵2, respectively,
when

𝑥1

𝑎1
=

𝑎2
𝑥2

, (44)

and when 𝑦1, 𝑦2 have the same sign. The sectors 𝐴1𝑂1𝑃1, 𝐴2𝑂2𝑃2 are then also
said to correspond. Thus corresponding sectors of central conics of different
species are of the same sign and have their primary characteristic ratios reciprocal.
Hence there is a fixed functional relation between their respective measures.
The elliptic sectorial measure is called the gudermanian of the corresponding
hyperbolic sectorial measure, and the latter the anti-gudermanian of the former.
This relation is expressed by

𝑆2

𝐾2
= gd

𝑆1

𝐾1

or 𝑣 = gd𝑢, and 𝑢 = gd−1 𝑣. (45)
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Article 21

Circular Functions of
Gudermanian.

The six hyperbolic functions of 𝑢 are expressible in terms of the six circular
functions of its gudermanian; for since

𝑥1

𝑎1
= cosh𝑢,

𝑥2

𝑎2
= cosh 𝑣, (see Arts. 6, 7)

in which 𝑢, 𝑣 are the measures of corresponding hyperbolic and elliptic sectors,
hence

cosh𝑢 = sec 𝑣, [eq. (44)]

sinh𝑢 =
√︀

sec2 𝑣 − 1 = tan 𝑣,

tanh𝑢 =
tan 𝑣

sec 𝑣
= sin 𝑣,

coth𝑢 = csc 𝑣,

sech𝑢 = cos 𝑣,

csch𝑢 = cot 𝑣.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(46)

The gudermanian is sometimes useful in computation; for instance, if sinh𝑢
be given, 𝑣 can be found from a table of natural tangents, and the other circular
functions of 𝑣 will give the remaining hyperbolic functions of 𝑢. Other uses of
this function are given in Arts. 22–26, 32–36.

Prob. 49. Prove that

gd𝑢 = sec−1(cosh𝑢) = tan−1(sinh𝑢)

= cos−1(sech𝑢) = sin−1(tanh𝑢).

Prob. 50. Prove

gd−1 𝑣 = cosh−1(sec 𝑣) = sinh−1(tan 𝑣)

= sech−1(cos 𝑣) = tanh−1(sin 𝑣).
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ARTICLE 21. CIRCULAR FUNCTIONS OF GUDERMANIAN. 35

Prob. 51. Prove

gd 0 = 0, gd∞ = 1
2
𝜋, gd(−∞) = − 1

2
𝜋,

gd−1 0 = 0, gd−1 (︀ 1
2
𝜋
)︀
= ∞, gd−1 (︀− 1

2
𝜋
)︀
= −∞.

Prob. 52. Show that gd𝑢 and gd−1 𝑣 are odd functions of 𝑢, 𝑣.

Prob. 53. From the first identity in 4, Prob. 17, derive the relation tanh 1
2
𝑢 = tan 1

2
𝑣.

Prob. 54. Prove tanh−1(tan𝑢) = 1
2
gd 2𝑢, and tan−1(tanh𝑥) = 1

2
gd−1 2𝑥.



Article 22

Gudermanian Angle

If a circle be used instead of the ellipse of Art. 20, the gudermanian of the
hyperbolic sectorial measure will be equal to the radian measure of the angle of
the corresponding circular sector (see eq. (6), and Art. 3, Prob. 2). This angle
will be called the gudermanian angle; but the gudermanian function 𝑣, as above
defined, is merely a number, or ratio; and this number is equal to the radian
measure of the gudermanian angle 𝜃, which is itself usually tabulated in degree
measure; thus

𝜃 =
180∘𝑣

𝜋
(47)

Prob. 55. Show that the gudermanian angle of 𝑢 may be constructed as follows:

Take the principal radius 𝑂𝐴 of an equilateral hyperbola, as the initial line,
and 𝑂𝑃 as the terminal line, of the sector whose measure is 𝑢; from 𝑀 , the
foot of the ordinate of 𝑃 , draw 𝑀𝑇 tangent to the circle whose diameter is the
transverse axis; then 𝐴𝑂𝑇 is the angle required.1

Prob. 56. Show that the angle 𝜃 never exceeds 90∘.

1This angle was called by Gudermann the longitude of 𝑢, and denoted by 𝑙𝑢. His inverse
symbol was L; thus 𝑢 = L(𝑙𝑢). (Crelle’s Journal, vol. 6, 1830.) Lambert, who introduced
the angle 𝜃, named it the transcendent angle. (Hist. de l’acad. roy. de Berlin, 1761). Hoüel
(Nouvelles Annales, vol. 3, 1864) called it the hyperbolic amplitude of 𝑢, and wrote it amh𝑢,
in analogy with the amplitude of an elliptic function, as shown in Prob. 62. Cayley (Elliptic
Functions, 1876) made the usage uniform by attaching to the angle the name of the mathe-
matician who had used it extensively in tabulation and in the theory of elliptic functions of
modulus unity.

36



ARTICLE 22. GUDERMANIAN ANGLE 37

Prob. 57. The bisector of angle 𝐴𝑂𝑇 bisects the sector 𝐴𝑂𝑃 (see Prob. 13, Art. 9, and
Prob. 53, Art. 21), and the line 𝐴𝑃 . (See Prob. 1, Art. 3.)

Prob. 58. This bisector is parallel to 𝑇𝑃 , and the points 𝑇 , 𝑃 are in line with the point
diametrically opposite to 𝐴.

Prob. 59. The tangent at 𝑃 passes through the foot of the ordinate of 𝑇 , and intersects
𝑇𝑀 on the tangent at 𝐴.

Prob. 60. The angle 𝐴𝑃𝑀 is half the gudermanian angle.



Article 23

Derivatives of Gudermanian
and Inverse.

Let

𝑣 = gd𝑢, 𝑢 = gd−1 𝑣,

then

sec 𝑣 = cosh𝑢,

sec 𝑣 tan 𝑣 𝑑𝑣 = sinh𝑢 𝑑𝑢,

sec 𝑣 𝑑𝑣 = 𝑑𝑢,

therefore

𝑑(gd−1 𝑣) = sec 𝑣 𝑑𝑣. (48)

Again,

𝑑𝑣 = cos 𝑣 𝑑𝑢 = sech𝑢 𝑑𝑢,

therefore

𝑑(gd𝑢) = sech𝑢 𝑑𝑢. (49)

Prob. 61. Differentiate:

𝑦 = sinh𝑢− gd𝑢, 𝑦 = sin 𝑣 + gd−1 𝑣,

𝑦 = tanh𝑢 sech𝑢+ gd𝑢, 𝑦 = tan 𝑣 sec 𝑣 + gd−1 𝑣.
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Prob. 62. Writing the “elliptic integral of the first kind” in the form

𝑢 =

∫︁ 𝜑

0

𝑑𝜑√︀
1− 𝜅2 sin2 𝜑

,

𝜅 being called the modulus, and 𝜑 the amplitude; that is,

𝜑 = am𝑢, (mod. 𝜅),

show that, in the special case when 𝜅 = 1,

𝑢 = gd−1 𝜑, am𝑢 = gd𝑢, sin am𝑢 = tanh𝑢,

cos am𝑢 = sech𝑢, tan am𝑢 = sinh𝑢;

and that thus the elliptic functions sin am𝑢, etc., degenerate into the hyperbolic
functions, when the modulus is unity.1

1The relation gd𝑢 = am𝑢, (mod. 1), led Hoüel to name the function gd𝑢, the hyperbolic
amplitude of 𝑢, and to write it amh𝑢 (see note, Art. 22). In this connection Cayley expressed
the functions tanh𝑢, sech𝑢, sinh𝑢 in the form sin gd𝑢, cos gd𝑢, tan gd𝑢, and wrote them
sg 𝑢, cg 𝑢, tg 𝑢, to correspond with the abbreviations sn𝑢, cn𝑢, dn𝑢 for sin am𝑢, cos am𝑢,
tan am𝑢. Thus tanh𝑢 = sg 𝑢 = sn𝑢, (mod. 1); etc.

It is well to note that neither the elliptic nor the hyperbolic functions received their names
on account of the relation existing between them in a special case. (See foot-note, p. 1)
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Series for Gudermanian and
its Inverse.

Substitute for sech𝑢, sec 𝑣 in (49), (48) their expansions, Art. 16, and integrate,
then

gd𝑢 = 𝑢− 1

6
𝑢3 +

1

24
𝑢5 − 61

5040
𝑢7 + · · · (50)

gd−1 𝑣 = 𝑣 +
1

6
𝑣3 +

1

24
𝑣5 − 61

5040
𝑣7 + · · · (51)

No constants of integration appear, since gd𝑢 vanishes with 𝑢, and gd−1 𝑣 with 𝑣.
These series are seldom used in computation, as gd𝑢 is best found and tabulated
by means of tables of natural tangents and hyperbolic sines, from the equation

gd𝑢 = tan−1(sinh𝑢),

and a table of the direct function can be used to furnish the numerical values of
the inverse function; or the latter can be obtained from the equation,

gd−1 𝑣 = sinh−1(tan 𝑣) = cosh−1(sec 𝑣).

To obtain a logarithmic expression for gd−1 𝑣, let

gd−1 𝑣 = 𝑢, 𝑣 = gd𝑢,

therefore

sec 𝑣 = cosh𝑢, tan 𝑣 = sinh𝑢,

sec 𝑣 + tan 𝑣 = cosh𝑢 + sinh𝑢 = 𝑒𝑢,

𝑒𝑢 =
1 + sin 𝑣

cos 𝑣
=

1 − cos( 1
2𝜋 + 𝑣)

sin( 1
2𝜋 + 𝑣)

= tan

(︂
1

4
𝜋 +

1

2
𝑣

)︂
,

𝑢 = gd−1 𝑣 = log𝑒 tan

(︂
1

4
𝜋 +

1

2
𝑣

)︂
. (52)
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Prob. 63. Evaluate
gd𝑢− 𝑢

𝑢3

]︂
𝑢
.
=0

,
gd−1 𝑣 − 𝑣

𝑣3

]︂
𝑣
.
=0

.

Prob. 64. Prove that gd𝑢− sin𝑢 is an infinitesimal of the fifth order, when 𝑢
.
= 0.

Prob. 65. Prove the relations 1
4
𝜋 + 1

2
𝑣 tan−1 𝑒𝑢, 1

4
𝜋 − 1

2
𝑣 = tan−1 𝑒−𝑢.
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Graphs of Hyperbolic
Functions.

Drawing two rectangular axes, and laying down a series of points whose abscissas
represent, on any convenient scale, successive values of the sectorial measure,
and whose ordinates represent, preferably on the same scale, the corresponding
values of the function to be plotted, the locus traced out by this series of points
will be a graphical representation of the variation of the function as the sectorial
measure varies. The equations of the curves in the ordinary cartesian notation
are:

Fig. Full Lines. Dotted Lines.
A 𝑦 = cosh𝑥, 𝑦 = sech𝑥;
B 𝑦 = sinh𝑥, 𝑦 = csch𝑥;
C 𝑦 = tanh𝑥, 𝑦 = coth𝑥;
D 𝑦 = gd𝑥.

Here 𝑥 is written for the sectorial measure 𝑢, and 𝑦 for the numerical value of
cosh𝑢, etc. It is thus to be noted that the variables 𝑥, 𝑦 are numbers, or ratios,
and that the equation 𝑦 = cosh𝑥 merely expresses that the relation between
the numbers 𝑥 and 𝑦 is taken to be the same as the relation between a sectorial
measure and its characteristic ratio. The numerical values of cosh𝑢, sinh𝑢, tanh𝑢
are given in the tables at the end of this chapter for values of 𝑢 between 0 and 4.
For greater values they may be computed from the developments of Art. 16.
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The curves exhibit graphically the relations:

sech𝑢 =
1

cosh𝑢
, csch𝑢 =

1

sinh𝑢
, coth𝑢 =

1

tanh𝑢
;

cosh𝑢 ≮ 1, sech𝑢 ≯ 1, tanh𝑢 ≯ 1, gd𝑢 < 1
2𝜋, etc.;

sinh(−𝑢) = − sinh𝑢, cosh(−𝑢) = cosh𝑢,

tanh(−𝑢) = − tanh𝑢, gd(−𝑢) = − gd𝑢, etc.;

cosh 0 = 1, sinh 0 = 0, tanh 0 = 0, csch(0) = ∞, etc.;

cosh(±∞) = ∞, sinh(±∞) = ±∞, tanh(±∞) = ±1, etc.

The slope of the curve 𝑦 = sinh𝑥 is given by the equation
𝑑𝑦

𝑑𝑥
= cosh𝑥,

showing that it is always positive, and that the curve becomes more nearly
vertical as 𝑥 becomes infinite. Its direction of curvature is obtained from
𝑑2𝑦

𝑑𝑥2
= sinh𝑥, proving that the curve is concave downward when 𝑥 is negative,

and upward when 𝑥 is positive. The point of inflexion is at the origin, and the
inflexional tangent bisects the angle between the axes.

The direction of curvature of the locus 𝑦 = sech𝑥 is given by
𝑑2𝑦

𝑑𝑥2
=

sech𝑥(2 tanh2 𝑥 − 1), and thus the curve is concave downwards or upwards
according as 2 tanh2 𝑥 − 1 is negative or positive. The inflexions occur at the
points 𝑥 = ± tanh−1 .707,= ±.881, 𝑦 = .707; and the slopes of the inflexional
tangents are ∓ 1

2 .
The curve 𝑦 = csch𝑥 is asymptotic to both axes, but approaches the axis of

𝑥 more rapidly than it approaches the axis of 𝑦, for when 𝑥 = 3, 𝑦 is only .1, but
it is not till 𝑦 = 10 that 𝑥 is so small as .1. The curves 𝑦 = csch𝑥, 𝑦 = sinh𝑥
cross at the points 𝑥 = ±.881, 𝑦 = ±1.

Prob. 66. Find the direction of curvature, the inflexional tangent, and the asymptotes of
the curves 𝑦 = gd𝑥, 𝑦 = tanh𝑥.

Prob. 67. Show that there is no inflexion-point on the curves 𝑦 = cosh𝑥, 𝑦 = coth𝑥.

Prob. 68. Show that any line 𝑦 = 𝑚𝑥+ 𝑛 meets the curve 𝑦 = tanh𝑥 in either three real
points or one. Hence prove that the equation tanh𝑥 = 𝑚𝑥+ 𝑛 has either three
real roots or one. From the figure give an approximate solution of the equation
tanh𝑥 = 𝑥− 1.

Prob. 69. Solve the equations: cosh𝑥 = 𝑥+ 2; sinh𝑥 = 3
2
𝑥; gd𝑥 = 𝑥− 1

2
𝜋.

Prob. 70. Show which of the graphs represent even functions, and which of them represent
odd ones.



Article 26

Elementary Integrals.

The following useful indefinite integrals follow from Arts. 14, 15, 23:

Hyperbolic. Circular.

1.

∫︁
sinh𝑢 𝑑𝑢 = cosh𝑢,

∫︁
sin𝑢 𝑑𝑢 = − cos𝑢,

2.

∫︁
cosh𝑢 𝑑𝑢 = sinh𝑢,

∫︁
cos𝑢 𝑑𝑢 = sin𝑢,

3.

∫︁
tanh𝑢 𝑑𝑢 = log cosh𝑢,

∫︁
tan𝑢 𝑑𝑢 = − log cos𝑢,

4.

∫︁
coth𝑢 𝑑𝑢 = log sinh𝑢,

∫︁
cot𝑢 𝑑𝑢 = log sin𝑢,

5.

∫︁
csch𝑢 𝑑𝑢 = log tanh

𝑢

2
,

∫︁
csc𝑢 𝑑𝑢 = log tan

𝑢

2
,

= − sinh−1(csch𝑢), = − cosh−1(csch𝑢),

6.

∫︁
sech𝑢 𝑑𝑢 = gd𝑢,

∫︁
sec𝑢 𝑑𝑢 = gd−1 𝑢,

7.

∫︁
𝑑𝑥√

𝑥2 + 𝑎2
= sinh−1 𝑥

𝑎
,1

∫︁
𝑑𝑥√

𝑎2 − 𝑥2
= sin−1 𝑥

𝑎
,

8.

∫︁
𝑑𝑥√

𝑥2 − 𝑎2
= cosh−1 𝑥

𝑎
,

∫︁
−𝑑𝑥√
𝑎2 − 𝑥2

= cos−1 𝑥

𝑎
,

9.

∫︁
𝑑𝑥

𝑎2 − 𝑥2

]︂
𝑥<𝑎

=
1

𝑎
tanh−1 𝑥

𝑎
,

∫︁
𝑑𝑥

𝑎2 + 𝑥2
=

1

𝑎
tan−1 𝑥

𝑎
,

10.

∫︁
−𝑑𝑥

𝑥2 − 𝑎2

]︂
𝑥>𝑎

=
1

𝑎
coth−1 𝑥

𝑎
,

∫︁
−𝑑𝑥

𝑎2 + 𝑥2
=

1

𝑎
cot−1 𝑥

𝑎
,

11.

∫︁
−𝑑𝑥

𝑥
√
𝑎2 − 𝑥2

=
1

𝑎
sech−1 𝑥

𝑎
,

∫︁
𝑑𝑥

𝑥
√
𝑥2 − 𝑎2

=
1

𝑎
sec−1 𝑥

𝑎
,

12.

∫︁
−𝑑𝑥

𝑥
√
𝑎2 + 𝑥2

=
1

𝑎
csch−1 𝑥

𝑎
,

∫︁
−𝑑𝑥

𝑥
√
𝑥2 − 𝑎2

=
1

𝑎
csc−1 𝑥

𝑎
.

1Forms 7–12 are preferable to the respective logarithmic expressions (Art. 19), on account
of the close analogy with the circular forms, and also because they involve functions that are
directly tabulated. This advantage appears more clearly in 13–20.

45



ARTICLE 26. ELEMENTARY INTEGRALS. 46

From these fundamental integrals the following may be derived:

13.

∫︁
𝑑𝑥√

𝑎𝑥2 + 2𝑏𝑥 + 𝑐
=

1√
𝑎

sinh−1 𝑎𝑥 + 𝑏√
𝑎𝑐− 𝑏2

, 𝑎 positive, 𝑎𝑐 > 𝑏2;

=
1√
𝑎

cosh−1 𝑎𝑥 + 𝑏√
𝑏2 − 𝑎𝑐

, 𝑎 positive, 𝑎𝑐 < 𝑏2;

=
1√
−𝑎

cos−1 𝑎𝑥 + 𝑏√
𝑏2 − 𝑎𝑐

, 𝑎 negative.

14.

∫︁
𝑑𝑥

𝑎𝑥2 + 2𝑏𝑥 + 𝑐
=

1√
𝑎𝑐− 𝑏2

tan−1 𝑎𝑥 + 𝑏√
𝑎𝑐− 𝑏2

, 𝑎𝑐 > 𝑏2;

=
−1√
𝑏2 − 𝑎𝑐

tanh−1 𝑎𝑥 + 𝑏√
𝑏2 − 𝑎𝑐

, 𝑎𝑐 < 𝑏2, 𝑎𝑥 + 𝑏 <
√︀
𝑏2 − 𝑎𝑐;

=
−1√
𝑏2 − 𝑎𝑐

coth−1 𝑎𝑥 + 𝑏√
𝑏2 − 𝑎𝑐

, 𝑎𝑐 < 𝑏2, 𝑎𝑥 + 𝑏 >
√︀
𝑏2 − 𝑎𝑐;

Thus,∫︁ 5

4

𝑑𝑥

𝑥2 − 4𝑥 + 3
= − coth−1(𝑥− 2)

]︀5
4

= coth−1 2 − coth−1 3

= tanh−1(.5) − tanh−1(.3333) = .5494 − .3466 = .2028.2∫︁ 2.5

2

𝑑𝑥

𝑥2 − 4𝑥 + 3
= − tanh−1(𝑥− 2)

]︀2.5
2

= tanh−1 0 − tanh−1(0.5) = −.5494.

(By interpreting these two integrals as areas, show graphically that the first
is positive, and the second negative.)

15.

∫︁
𝑑𝑥

(𝑎− 𝑥)
√
𝑥− 𝑏

=
2√
𝑎− 𝑏

tanh−1

√︂
𝑥− 𝑏

𝑎− 𝑏
,

or
−2√
𝑏− 𝑎

tan−1

√︂
𝑥− 𝑏

𝑏− 𝑎
,

or
2√
𝑎− 𝑏

coth−1

√︂
𝑥− 𝑏

𝑎− 𝑏
;

the real form to be taken. (Put 𝑥− 𝑏 = 𝑧2, and apply 9, 10.)

2For tanh−1(.5) interpolate between tanh(.54) = .4930, tanh(.56) = .5080 (see tables,
pp. 81, 82); and similarly for tanh−1(.3333).
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16.

∫︁
𝑑𝑥

(𝑎− 𝑥)
√
𝑏− 𝑥

=
2√
𝑏− 𝑎

tanh−1

√︂
𝑏− 𝑥

𝑏− 𝑎
,

or
2√
𝑏− 𝑎

coth−1

√︂
𝑏− 𝑥

𝑏− 𝑎
,

or
−2√
𝑎− 𝑏

tan−1

√︂
𝑏− 𝑥

𝑎− 𝑏
;

the real form to be taken.

17.

∫︁
(𝑥2 − 𝑎2)

1
2 𝑑𝑥 =

1

2
𝑥(𝑥2 − 𝑎2)

1
2 − 1

2
𝑎2 cosh−1 𝑥

𝑎
.

By means of a reduction-formula this integral is easily made to depend on 8.
It may also be obtained by transforming the expression into hyperbolic functions
by the assumption 𝑥 = 𝑎 cosh𝑢, when the integral takes the form

𝑎2
∫︁

sinh2 𝑢 𝑑𝑢 =
𝑎2

2

∫︁
(cosh 2𝑢− 1)𝑑𝑢 =

1

4
𝑎2(sinh 2𝑢− 2𝑢)

=
1

2
𝑎2(sinh𝑢 cosh𝑢− 𝑢),

which gives 17 on replacing 𝑎 cosh𝑢 by 𝑥, and 𝑎 sinh𝑢 by (𝑥2 − 𝑎2)
1
2 . The

geometrical interpretation of the result is evident, as it expresses that the area
of a rectangular-hyperbolic segment 𝐴𝑀𝑃 is the difference between a triangle
𝑂𝑀𝑃 and a sector 𝑂𝐴𝑃 .

18.

∫︁
(𝑎2 − 𝑥2)

1
2 𝑑𝑥 =

1

2
𝑥(𝑎2 − 𝑥2)

1
2 +

1

2
𝑎2 sin−1 𝑥

𝑎
.

19.

∫︁
(𝑥2 + 𝑎2)

1
2 𝑑𝑥 =

1

2
𝑥(𝑥2 − 𝑎2)

1
2 +

1

2
𝑎2 sinh−1 𝑥

𝑎
.

20.

∫︁
sec3 𝜑𝑑𝜑 =

∫︁
(1 + tan2 𝜑)

1
2 𝑑 tan𝜑

=
1

2
tan𝜑(1 + tan2 𝜑)

1
2 +

1

2
sinh−1(tan𝜑)

=
1

2
sec𝜑 tan𝜑 +

1

2
gd−1 𝜑.

21.

∫︁
sech3 𝑢 𝑑𝑢 =

1

2
sech𝑢 tanh𝑢 +

1

2
gd𝑢.

Prob. 71. What is the geometrical interpretation of 18, 19?

Prob. 72. Show that
∫︀
(𝑎𝑥2 + 2𝑏𝑥+ 𝑐)

1
2 𝑑𝑥 reduces to 17, 18, 19, respectively: when 𝑎 is

positive, with 𝑎𝑐 < 𝑏2; when 𝑎 is negative; and when 𝑎 is positive, with 𝑎𝑐 > 𝑏2.
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Prob. 73. Prove ∫︁
sinh𝑢 tanh𝑢 𝑑𝑢 = sinh𝑢− gd𝑢,∫︁
cosh𝑢 coth𝑢 𝑑𝑢 = cosh𝑢+ log tanh

𝑢

2
.

Prob. 74. Integrate (𝑥2 + 2𝑥+ 5)−
1
2 𝑑𝑥, (𝑥2 + 2𝑥+ 5)−1𝑑𝑥, (𝑥2 + 2𝑥+ 5)

1
2 𝑑𝑥.

Prob. 75. In the parabola 𝑦2 = 4𝑝𝑥, if 𝑠 be the length of arc measured from the vertex, and
𝜑 the angle which the tangent line makes with the vertical tangent, prove that

the intrinsic equation of the curve is
𝑑𝑠

𝑑𝜑
= 2𝑝 sec3 𝜑, 𝑠 = 𝑝 sec𝜑 tan𝜑+ 𝑝 gd−1 𝜑.

Prob. 76. The polar equation of a parabola being 𝑟 = 𝑎 sec2 𝜃, referred to its focus as pole,
express 𝑠 in terms of 𝜃.

Prob. 77. Find the intrinsic equation of the curve
𝑦

𝑎
= cosh

𝑥

𝑎
, and of the curve

𝑦

𝑎
=

log sec
𝑥

𝑎
.

Prob. 78. Investigate a formula of reduction for

∫︁
cosh𝑛 𝑥 𝑑𝑥; also integrate by parts

cosh−1 𝑥 𝑑𝑥, tanh−1 𝑥 𝑑𝑥, (sinh−1 𝑥)2𝑑𝑥; and show that the ordinary methods of

reduction for

∫︁
cos𝑚 𝑥 sin𝑛 𝑥 𝑑𝑥 can be applied to

∫︁
cosh𝑚 𝑥 sinh𝑛 𝑥 𝑑𝑥.



Article 27

Functions of Complex
Numbers.

As vector quantities are of frequent occurrence in Mathematical Physics; and as
the numerical measure of a vector in terms of a standard vector is a complex
number of the form 𝑥 + 𝑖𝑦, in which 𝑥, 𝑦 are real, and 𝑖 stands for

√
−1; it

becomes necessary in treating of any class of functional operations to consider
the meaning of these operations when performed on such generalized numbers.1

The geometrical definitions of cosh𝑢, sinh𝑢, given in Art. 7, being then no
longer applicable, it is necessary to assign to each of the symbols cosh(𝑥 + 𝑖𝑦),
sinh(𝑥 + 𝑖𝑦), a suitable algebraic meaning, which should be consistent with the
known algebraic values of cosh𝑥, sinh𝑥, and include these values as a particular
case when 𝑦 = 0. The meanings assigned should also, if possible, be such as
to permit the addition-formulas of Art. 11 to be made general, with all the
consequences that flow from them.

Such definitions are furnished by the algebraic developments in Art. 16,
which are convergent for all values of 𝑢, real or complex. Thus the definitions of
cosh(𝑥 + 𝑖𝑦), sinh(𝑥 + 𝑖𝑦) are to be

cosh(𝑥 + 𝑖𝑦) = 1 +
1

2!
(𝑥 + 𝑖𝑦)2 +

1

4!
(𝑥 + 𝑖𝑦)4 + . . . ,

sinh(𝑥 + 𝑖𝑦) = (𝑥 + 𝑖𝑦) +
1

3!
(𝑥 + 𝑖𝑦)3 + . . .

⎫⎪⎬⎪⎭ (52)

From these series the numerical values of cosh(𝑥 + 𝑖𝑦), sinh(𝑥 + 𝑖𝑦) could be
computed to any degree of approximation, when 𝑥 and 𝑦 are given. In general

1The use of vectors in electrical theory is shown in Bedell and Crehore’s Alternating
Currents, Chaps, XIV–XX (first published in 1892). The advantage of introducing the complex
measures of such vectors into the differential equations is shown by Steinmetz, Proc. Elec.
Congress, 1893; while the additional convenience of expressing the solution in hyperbolic
functions of these complex numbers is exemplified by Kennelly, Proc. American Institute
Electrical Engineers, April 1895. (See below, Art. 37.)
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the results will come out in the complex form2

cosh(𝑥 + 𝑖𝑦) = 𝑎 + 𝑖𝑏,

sinh(𝑥 + 𝑖𝑦) = 𝑐 + 𝑖𝑑.

The other functions are defined as in Art. 7, eq. (9).

Prob. 79. Prove from these definitions that, whatever 𝑢 may be,

cosh(−𝑢) = cosh𝑢, sinh(−𝑢) = − sinh𝑢,

𝑑

𝑑𝑢
cosh𝑢 = sinh𝑢,

𝑑

𝑑𝑢
sinh𝑢 = cosh𝑢,

𝑑2

𝑑𝑢2
cosh𝑚𝑢 = 𝑚2 cosh𝑚𝑢,

𝑑2

𝑑𝑢2
sinh𝑚𝑢 = 𝑚2 sinh𝑚𝑢.3

2It is to be borne in mind that the symbols cosh, sinh, here stand for algebraic operators
which convert one number into another; or which, in the language of vector-analysis, change
one vector into another, by stretching and turning.

3The generalized hyperbolic functions usually present themselves in Mathematical Physics

as the solution of the differential equation
𝑑2𝜑

𝑑𝑢2
= 𝑚2𝜑, where 𝜑, 𝑚, 𝑢 are complex numbers,

the measures of vector quantities. (See Art. 37.)



Article 28

Addition-Theorems for
Complexes.

The addition-theorems for cosh(𝑢 + 𝑣), etc., where 𝑢, 𝑣 are complex numbers,
may be derived as follows. First take 𝑢, 𝑣 as real numbers, then, by Art. 11,

cosh(𝑢 + 𝑣) = cosh𝑢 cosh 𝑣 + sinh𝑢 sinh 𝑣;

hence

1 +
1

2!
(𝑢 + 𝑣)2 + . . . =

(︂
1 +

1

2!
𝑢2 + . . .

)︂(︂
1 +

1

2!
𝑣2 + . . .

)︂
+

(︂
𝑢 +

1

3!
𝑢3 + . . .

)︂(︂
𝑣 +

1

3!
𝑣3 + . . .

)︂
This equation is true when 𝑢, 𝑣 are any real numbers. It must, then, be an

algebraic identity. For, compare the terms of the 𝑟th degree in the letters 𝑢, 𝑣

on each side. Those on the left are
1

𝑟!
(𝑢 + 𝑣)𝑟; and those on the right, when

collected, form an 𝑟th-degree function which is numerically equal to the former
for more than 𝑟 values of 𝑢 when 𝑣 is constant, and for more than 𝑟 values
of 𝑣 when 𝑢 is constant. Hence the terms of the 𝑟th degree on each side are
algebraically identical functions of 𝑢 and 𝑣.1 Similarly for the terms of any other
degree. Thus the equation above written is an algebraic identity, and is true
for all values of 𝑢, 𝑣, whether real or complex. Then writing for each side its
symbol, it follows that

cosh(𝑢 + 𝑣) = cosh𝑢 cosh 𝑣 + sinh𝑢 sinh 𝑣; (53)

and by changing 𝑣 into −𝑣,

cosh(𝑢− 𝑣) = cosh𝑢 cosh 𝑣 − sinh𝑢 sinh 𝑣. (54)

1“If two 𝑟th-degree functions of a single variable be equal for more than 𝑟 values of the
variable, then they are equal for all values of the variable, and are algebraically identical.”
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In a similar manner is found

sinh(𝑢± 𝑣) = sinh𝑢 cosh 𝑣 ± cosh𝑢 sinh 𝑣. (55)

In particular, for a complex argument,

cosh(𝑥± 𝑖𝑦) = cosh𝑥 cosh 𝑖𝑦 ± sinh𝑥 sinh 𝑖𝑦,

sinh(𝑥± 𝑖𝑦) = sinh𝑥 cosh 𝑖𝑦 ± cosh𝑥 sinh 𝑖𝑦.

}︃
(56)

Prob. 79. Show, by a similar process of generalization,2 that if sin𝑢, cos𝑢, exp𝑢3 be defined
by their developments in powers of 𝑢, then, whatever 𝑢 may be,

sin(𝑢+ 𝑣) = sin𝑢 cos 𝑣 + cos𝑢 sin 𝑣,

cos(𝑢+ 𝑣) = cos𝑢 cos 𝑣 − sin𝑢 sin 𝑣,

exp(𝑢+ 𝑣) = exp𝑢 exp 𝑣.

Prob. 80. Prove that the following are identities:

cosh2 𝑢− sinh2 𝑢 = 1,

cosh𝑢+ sinh𝑢 = exp𝑢,

cosh𝑢− sinh𝑢 = exp(−𝑢),

cosh𝑢 = 1
2
[exp𝑢+ exp(−𝑢)],

sinh𝑢 = 1
2
[exp𝑢− exp(−𝑢)].

2This method of generalization is sometimes called the principle of the “permanence of
equivalence of forms.” It is not, however, strictly speaking, a “principle,” but a method; for,
the validity of the generalization has to be demonstrated, for any particular form, by means of
the principle of the algebraic identity of polynomials enunciated in the preceding foot-note.
(See Annals of Mathematics, Vol. 6, p. 81.)

3The symbol exp𝑢 stands for “exponential function of u,” which is identical with 𝑒𝑢 when
𝑢 is real.



Article 29

Functions of Pure
Imaginaries.

In the defining identities

cosh𝑢 = 1 +
1

2!
𝑢2 +

1

4!
𝑢4 + · · · ,

sinh𝑢 = 1 +
1

3!
𝑢3 +

1

5!
𝑢5 + · · · ,

put for 𝑢 the pure imaginary 𝑖𝑦, then

cosh 𝑖𝑦 = 1 − 1

2!
𝑦2 +

1

4!
𝑦4 − · · · = cos 𝑦, (57)

sinh 𝑖𝑦 = 𝑖𝑦 +
1

3!
(𝑖𝑦)3 +

1

5!
(𝑖𝑦)5 + · · ·

= 𝑖

[︂
𝑦 − 1

3!
𝑦3 +

1

5!
𝑦5 − · · ·

]︂
= 𝑖 sin 𝑦, (58)

and, by division,

tanh 𝑖𝑦 = 𝑖 tan 𝑦. (59)

These formulas serve to interchange hyperbolic and circular functions. The
hyperbolic cosine of a pure imaginary is real, and the hyperbolic sine and tangent
are pure imaginaries.

The following table exhibits the variation of sinh𝑢, cosh𝑢. tanh𝑢, exp𝑢, as
𝑢 takes a succession of pure imaginary values.
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𝑢 sinh𝑢 cosh𝑢 tanh𝑢 exp𝑢

0 0 1 0 1
1
4 𝑖𝜋 .7𝑖 .71 𝑖 .7(1 + 𝑖)
1
2 𝑖𝜋 𝑖 0 ∞𝑖 𝑖
3
4 𝑖𝜋 .7𝑖 −.7 −𝑖 .7(1 − 𝑖)

𝑖𝜋 0 −1 0 −1
5
4 𝑖𝜋 −.7𝑖 −.7 𝑖 −.7(1 + 𝑖)
3
2 𝑖𝜋 −𝑖 0 ∞𝑖 −𝑖
7
4 𝑖𝜋 −.7𝑖 .7 −𝑖 −.7(1 − 𝑖)

2𝑖𝜋 0 1 0 1

In this table .7 is written for 1
2

√
2,= .707 . . . .

Prob. 81. Prove the following identities:

cos 𝑦 = cosh 𝑖𝑦 =
1

2
[exp 𝑖𝑦 + exp(−𝑖𝑦)] ,

sin 𝑦 =
1

𝑖
sinh 𝑖𝑦 =

1

2𝑖
[exp 𝑖𝑦 − exp(−𝑖𝑦)] ,

cos 𝑦 + 𝑖 sin 𝑦 = cosh 𝑖𝑦 + sinh 𝑖𝑦 = exp 𝑖𝑦,

cos 𝑦 − 𝑖 sin 𝑦 = cosh 𝑖𝑦 − sinh 𝑖𝑦 = exp (−𝑖𝑦),

cos 𝑖𝑦 = cosh 𝑦, sin 𝑖𝑦 = 𝑖 sinh 𝑦.

Prob. 82. Equating the respective real and imaginary parts on each side of the equation
cos𝑛𝑦 + 𝑖 sin𝑛𝑦 = (cos 𝑦 + 𝑖 sin 𝑦)𝑛, express cos𝑛𝑦 in powers of cos 𝑦, sin 𝑦; and
hence derive the corresponding expression for cosh𝑛𝑦.

Prob. 83. Show that, in the identities (57) and (58), 𝑦 may be replaced by a general
complex, and hence that

sinh(𝑥± 𝑖𝑦) = ±𝑖 sin(𝑦 ∓ 𝑖𝑥),

cosh(𝑥± 𝑖𝑦) = cos(𝑦 ∓ 𝑖𝑥),

sin(𝑥± 𝑖𝑦) = ±𝑖 sinh(𝑦 ∓ 𝑖𝑥),

cos(𝑥± 𝑖𝑦) = cosh(𝑦 ∓ 𝑖𝑥).

Prob. 84. From the product-series for sin𝑥 derive that for sinh𝑥:

sin𝑥 = 𝑥

(︂
1− 𝑥2

𝜋2

)︂(︂
1− 𝑥2

22𝜋2

)︂(︂
1− 𝑥2

32𝜋2

)︂
. . . ,

sinh𝑥 = 𝑥

(︂
1 +

𝑥2

𝜋2

)︂(︂
1 +

𝑥2

22𝜋2

)︂(︂
1 +

𝑥2

32𝜋2

)︂
. . . .



Article 30

Functions of 𝑥 + 𝑖𝑦 in the
Form 𝑋 + 𝑖𝑌 .

By the addition-formulas,

cosh(𝑥 + 𝑖𝑦) = cosh𝑥 cosh 𝑖𝑦 + sinh𝑥 sinh 𝑖𝑦,

sinh(𝑥 + 𝑖𝑦) = sinh𝑥 cosh 𝑖𝑦 + cosh𝑥 sinh 𝑖𝑦,

but

cosh 𝑖𝑦 = cos 𝑦, sinh 𝑖𝑦 = 𝑖 sin 𝑦,

hence

cosh(𝑥 + 𝑖𝑦) = cosh𝑥 cos 𝑦 + 𝑖 sinh𝑥 sin 𝑦,

sinh(𝑥 + 𝑖𝑦) = sinh𝑥 cos 𝑦 + 𝑖 cosh𝑥 sin 𝑦.

}︃
(60)

Thus if cosh(𝑥 + 𝑖𝑦) = 𝑎 + 𝑖𝑏, sinh(𝑥 + 𝑖𝑦) = 𝑐 + 𝑖𝑑, then

𝑎 = cosh𝑥 cos 𝑦, 𝑏 = sinh𝑥 sin 𝑦,

𝑐 = sinh𝑥 cos 𝑦, 𝑑 = cosh𝑥 sin 𝑦.

}︃
(61)

From these expressions the complex tables at the end of this chapter have
been computed.

Writing cosh 𝑧 = 𝑍, where 𝑧 = 𝑥 + 𝑖𝑦, 𝑍 = 𝑋 + 𝑖𝑌 ; let the complex
numbers 𝑧, 𝑍 be represented on Argand diagrams, in the usual way, by the
points whose coordinates are (𝑥, 𝑦), (𝑋,𝑌 ); and let the point 𝑧 move parallel to
the 𝑦-axis, on a given line 𝑥 = 𝑚, then the point 𝑍 will describe an ellipse whose
equation, obtained by eliminating 𝑦 between the equations 𝑋 = cosh𝑚 cos 𝑦,
𝑌 = sinh𝑚 sin 𝑦, is

𝑋2

(cosh𝑚)2
+

𝑌 2

(sinh𝑚)2
= 1,
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and which, as the parameter 𝑚 varies, represents a series of confocal ellipses,
the distance between whose foci is unity. Similarly, if the point 𝑧 move parallel
to the 𝑥-axis, on a given line 𝑦 = 𝑛, the point 𝑍 will describe an hyperbola
whose equation, obtained by eliminating the variable 𝑥 from the equations.
𝑋 = cosh𝑥 cos𝑛, 𝑌 = sinh𝑥 sin𝑛, is

𝑋2

(cos𝑛)2
− 𝑌 2

(sin𝑛)2
= 1,

and which, as the parameter 𝑛 varies, represents a series of hyperbolas confocal
with the former series of ellipses.

These two systems of curves, when accurately drawn at close intervals on the
𝑍 plane, constitute a chart of the hyperbolic cosine; and the numerical value of
cosh(𝑚 + 𝑖𝑛) can be read off at the intersection of the ellipse whose parameter
is 𝑚 with the hyperbola whose parameter is 𝑛.1 A similar chart can be drawn
for sinh(𝑥 + 𝑖𝑦), as indicated in Prob. 85.

Periodicity of Hyperbolic Functions. —The functions sinh𝑢 and cosh𝑢 have the
pure imaginary period 2𝑖𝜋. For

sinh(𝑢 + 2𝑖𝜋) = sinh𝑢 cos 2𝜋 + 𝑖 cosh𝑢 sin 2𝜋 = sinh𝑢,

cosh(𝑢 + 2𝑖𝜋) = cosh𝑢 cos 2𝜋 + 𝑖 sinh𝑢 sin 2𝜋 = cosh𝑢.

The functions sinh𝑢 and cosh𝑢 each change sign when the argument 𝑢 is
increased by the half period 𝑖𝜋. For

sinh(𝑢 + 𝑖𝜋) = sinh𝑢 cos𝜋 + 𝑖 cosh𝑢 sin𝜋 = − sinh𝑢,

cosh(𝑢 + 𝑖𝜋) = cosh𝑢 cos𝜋 + 𝑖 sinh𝑢 sin𝜋 = − cosh𝑢.

The function tanh𝑢 has the period 𝑖𝜋. For, it follows from the last two
identities, by dividing member by member, that

tanh(𝑢 + 𝑖𝜋) = tanh𝑢.

By a similar use of the addition formulas it is shown that

sinh(𝑢 +
1

2
𝑖𝜋) = 𝑖 cosh𝑢, cosh(𝑢 +

1

2
𝑖𝜋) = 𝑖 sinh𝑢.

By means of these periodic, half-periodic, and quarter-periodic relations, the
hyperbolic functions of 𝑥 + 𝑖𝑦 are easily expressible in terms of functions of
𝑥 + 𝑖𝑦′, in which 𝑦′ is less than 1

2𝜋.

1Such a chart is given by Kennelly, Proc. A. I. E. E., April 1895, and is used by him to
obtain the numerical values of cosh(𝑥 + 𝑖𝑦), sinh(𝑥 + 𝑖𝑦), which present themselves as the
measures of certain vector quantities in the theory of alternating currents. (See Art. 37.) The
chart is constructed for values of 𝑥 and of 𝑦 between 0 and 1.2; but it is available for all values
of 𝑦, on account of the periodicity of the functions.
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The hyperbolic functions are classed in the modern function-theory of a
complex variable as functions that are singly periodic with a pure imaginary
period, just as the circular functions are singly periodic with a real period, and
the elliptic functions are doubly periodic with both a real and a pure imaginary
period.

Multiple Values of Inverse Hyperbolic Functions.—It follows from the period-
icity of the direct functions that the inverse functions sinh−1 𝑚 and cosh−1 𝑚
have each an indefinite number of values arranged in a series at intervals of
2𝑖𝜋. That particular value of sinh−1 𝑚 which has the coefficient of 𝑖 not greater
than 1

2𝜋 nor less than − 1
2𝜋 is called the principal value of sinh−1 𝑚; and that

particular value of cosh−1 𝑚 which has the coefficient of 𝑖 not greater than 𝜋
nor less than zero is called the principal value of cosh−1 𝑚. When it is necessary
to distinguish between the general value and the principal value the symbol of
the former will be capitalized; thus

Sinh−1𝑚 = sinh−1 𝑚 + 2𝑖𝑟𝜋, Cosh−1𝑚 = cosh−1 𝑚 + 2𝑖𝑟𝜋,

Tanh−1𝑚 = tanh−1 𝑚 + 𝑖𝑟𝜋,

in which 𝑟 is any integer, positive or negative.

Complex Roots of Cubic Equations.—It is well known that when the roots of
a cubic equation are all real they are expressible in terms of circular functions.
Analogous hyperbolic expressions are easily found when two of the roots are
complex. Let the cubic, with second term removed, be written

𝑥3 ± 3𝑏𝑥 = 2𝑐.

Consider first the case in which 𝑏 has the positive sign. Let 𝑥 = 𝑟 sinh𝑢,
substitute, and divide by 𝑟3, then

sinh3 𝑢 +
3𝑏

𝑟2
sinh𝑢 =

2𝑐

𝑟3
.

Comparison with the formula sinh3 𝑢 + 3
4 sinh𝑢 = 1

4 sinh 3𝑢 gives

3𝑏

𝑟2
=

3

4
,

2𝑐

𝑟3
=

sinh 3𝑢

4
,

whence

𝑟 = 2𝑏
1
2 , sinh 3𝑢 =

𝑐

𝑏
3
2

, 𝑢 =
1

3
sinh−1 𝑐

𝑏
3
2

;

therefore

𝑥 = 2𝑏
1
2 sinh

(︂
1

3
sinh−1 𝑐

𝑏
3
2

)︂
,
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in which the sign of 𝑏
1
2 is to be taken the same as the sign of 𝑐. Now let

the principal value of sinh−1 𝑐

𝑏
3
2

, found from the tables, be 𝑛; then two of the

imaginary values are 𝑛 ± 2𝑖𝜋, hence the three values of 𝑥 are 2𝑏
1
2 sinh

𝑛

3
and

2𝑏
1
2 sinh

(︂
𝑛

3
± 2𝑖𝜋

3

)︂
. The last two reduce to −𝑏

1
2 sinh

(︁𝑛
3
± 𝑖

√
3 cosh

𝑛

3

)︁
.

Next, let the coefficient of 𝑥 be negative and equal to −3𝑏. It may then be
shown similarly that the substitution 𝑥 = 𝑟 sin 𝜃 leads to the three solutions

−2𝑏
1
2 sin

𝑛

3
, 𝑏

1
2

(︁
sin

𝑛

3
±
√

3 cos
𝑛

3

)︁
, where 𝑛 = sin−1 𝑐

𝑏
3
2

.

These roots are all real when 𝑐 ≯ 𝑏
3
2 . If 𝑐 > 𝑏

3
2 , the substitution 𝑥 = 𝑟 cosh𝑢

leads to the solution

𝑥 = 2𝑏
1
2 cosh

(︂
1

3
cosh−1 𝑐

𝑏
3
2

)︂
,

which gives the three roots

2𝑏
1
2 cosh

𝑛

3
, −𝑏

1
2

(︁
cosh

𝑛

3
± 𝑖

√
3 sinh

𝑛

3

)︁
, wherein 𝑛 = cosh−1 𝑐

𝑏
3
2

,

in which the sign of 𝑏
1
2 is to be taken the same as the sign of 𝑐.

Prob. 85. Show that the chart of cosh(𝑥+ 𝑖𝑦) can be adapted to sinh(𝑥+ 𝑖𝑦), by turning
through a right angle; also to sin(𝑥+ 𝑖𝑦).

Prob. 86. Prove the identity

tanh(𝑥+ 𝑖𝑦) =
sinh 2𝑥+ 𝑖 sin 2𝑦

cosh 2𝑥+ cos 2𝑦
.

Prob. 87. If cosh(𝑥 + 𝑖𝑦) = 𝑎 + 𝑖𝑏, be written in the “modulus and amplitude” form as
𝑟(cos 𝜃 + 𝑖 sin 𝜃),= 𝑟 exp 𝑖𝜃, then

𝑟2 = 𝑎2 + 𝑏2 = cosh2 𝑥 = sin2 𝑦 = cos2 𝑦 − sinh2 𝑥,

tan 𝜃 =
𝑏

𝑎
= tanh𝑥 tan 𝑦.

Prob. 88. Find the modulus and amplitude of sinh(𝑥+ 𝑖𝑦).

Prob. 89. Show that the period of exp
2𝜋𝑢

𝑎
is 𝑖𝑎.

Prob. 90. When 𝑚 is real and > 1, cos−1 𝑚 = 𝑖 cosh−1 𝑚, sin−1 𝑚 = 𝜋
2
− 𝑖 cosh−1 𝑚.

When 𝑚 is real and < 1, cosh−1 𝑚 = 𝑖 cos−1 𝑚.



Article 31

The Catenary

A flexible inextensible string is suspended from two fixed points, and takes up
a position of equilibrium under the action of gravity. It is required to find the
equation of the curve in which it hangs.

Let 𝑤 be the weight of unit length, and 𝑠 the length of arc 𝐴𝑃 measured from
the lowest point 𝐴; then 𝑤𝑠 is the weight of the portion 𝐴𝑃 . This is balanced by
the terminal tensions, 𝑇 acting in the tangent line at 𝑃 , and 𝐻 in the horizontal
tangent. Resolving horizontally and vertically gives

𝑇 cos𝜑 = 𝐻, 𝑇 sin𝜑 = 𝑤𝑠,

in which 𝜑 is the inclination of the tangent at 𝑃 ; hence

tan𝜑 =
𝑤𝑠

𝐻
=

𝑠

𝑐
,

where 𝑐 is written for
𝐻

𝑤
, the length whose weight is the constant horizontal

tension; therefore

𝑑𝑦

𝑑𝑥
=

𝑠

𝑐
,

𝑑𝑠

𝑑𝑥
=

√︂
1 +

𝑠2

𝑐2
,

𝑑𝑥

𝑐
=

𝑑𝑠√
𝑠2 + 𝑐2

,

𝑥

𝑐
= sinh−1 𝑠

𝑐
, sinh

𝑥

𝑐
=

𝑠

𝑐
=

𝑑𝑦

𝑑𝑥
,

𝑦

𝑐
= cosh

𝑥

𝑐
,

which is the required equation of the catenary, referred to an axis of 𝑥 drawn at
a distance 𝑐 below 𝐴.

The following trigonometric method illustrates the use of the guderma-
nian: The “intrinsic equation,” 𝑠 = 𝑐 tan𝜑, gives 𝑑𝑠 = 𝑐 sec2 𝜑𝑑𝜑; hence 𝑑𝑥 =
𝑑𝑠 cos𝜑 = 𝑐 sec𝜑𝑑𝜑; 𝑑𝑦 = 𝑑𝑠 sin𝜑 = 𝑐 sec𝜑 tan𝜑𝑑𝜑; thus 𝑥 = 𝑐 gd−1 𝜑, 𝑦 =
𝑐 sec𝜑; whence 𝑦

𝑐 = sec𝜑 = sec gd 𝑥
𝑐 = cosh 𝑥

𝑐 ; and 𝑠
𝑐 = tan gd 𝑥

𝑐 = sinh 𝑥
𝑐 .

Numerical Exercise.—A chain whose length is 30 feet is suspended from two
points 20 feet apart in the same horizontal; find the parameter 𝑐, and the depth
of the lowest point.
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The equation 𝑠
𝑐 = sinh 𝑥

𝑐 gives 15
𝑐 = sinh 10

𝑐 , which, by putting 10
𝑐 = 𝑧,

may be written 1.5𝑧 = sinh 𝑧. By examining the intersection of the graphs
of 𝑦 = sinh 𝑧, 𝑦 = 1.5𝑧, it appears that the root of this equation is 𝑧 = 1.6,
nearly. To find a closer approximation to the root, write the equation in the
form 𝑓(𝑧) = sinh 𝑧 − 1.5𝑧 = 0, then, by the tables,

𝑓(1.60) = 2.3756 − 2.4000 = −.0244,

𝑓(1.62) = 2.4276 − 2.4300 = −.0024,

𝑓(1.64) = 2.4806 − 2.4600 = +.0206;

whence, by interpolation, it is found that 𝑓(1.6221) = 0, and 𝑧 = 1.6221,
𝑐 = 10

𝑧 = 6.1649. The ordinate of either of the fixed points is given by the
equation

𝑦

𝑐
= cosh

𝑥

𝑐
= cosh

10

𝑐
= cosh 1.6221 = 2.6306,

from tables; hence 𝑦 = 16.2174, and required depth of the vertex = 𝑦−𝑐 = 10.0525
feet.1

Prob. 91. In the above numerical problem, find the inclination of the terminal tangent to
the horizon.

Prob. 92. If a perpendicular 𝑀𝑁 be drawn from the foot of the ordinate to the tangent at
𝑃 , prove that 𝑀𝑁 is equal to the constant 𝑐, and that 𝑁𝑃 is equal to the arc
𝐴𝑃 . Hence show that the locus of 𝑁 is the involute of the catenary, and has the
property that the length of the tangent, from the point of contact to the axis of
𝑥, is constant. (This is the characteristic property of the tractory).

Prob. 93. The tension 𝑇 at any point is equal to the weight of a portion of the string whose
length is equal to the ordinate 𝑦 of that point.

Prob. 94. An arch in the form of an inverted catenary2 is 30 feet wide and 10 feet high; show
that the length of the arch can be obtained from the equations cosh 𝑧 − 2

3
𝑧 = 𝑖,

2𝑠 =
30

𝑧
sinh 𝑧.

1See a similar problem in Chap. 1, Art. 7.
2 For the theory of this form of arch, see “Arch” in the Encyclopædia Britannica.



Article 32

Catenary of Uniform
Strength.

If the area of the normal section at any point be made proportional to the tension
at that point, there will then be a constant tension per unit of area, and the
tendency to break will be the same at all points. To find the equation of the
curve of equilibrium under gravity, consider the equilibrium of an element 𝑃𝑃 ′

whose length is 𝑑𝑠, and whose weight is 𝑔𝜌𝜔 𝑑𝑠, where 𝜔 is the section at 𝑃 , and
𝜌 the uniform density. This weight is balanced by the difference of the vertical
components of the tensions at 𝑃 and 𝑃 ′, hence

𝑑(𝑇 sin𝜑) = 𝑔𝜌𝜔 𝑑𝑠,

𝑑(𝑇 cos𝜑) = 0;

therefore 𝑇 cos𝜑 = 𝐻, the tension at the lowest point, and 𝑇 = 𝐻 sec𝜑. Again,
if 𝜔0 be the section at the lowest point, then by hypothesis 𝜔

𝜔0
= 𝑇

𝐻 = sec𝜑, and
the first equation becomes

𝐻𝑑(sec𝜑 sin𝜑) = 𝑔𝜌𝜔0 sec𝜑𝑑𝑠,

or

𝑐𝑑 tan𝜑 = sec𝜑𝑑𝑠,

where 𝑐 stands for the constant
𝐻

𝑔𝜌𝜔0
, the length of string (of section 𝜔0) whose

weight is equal to the tension at the lowest point; hence,

𝑑𝑠 = 𝑐 sec𝜑𝑑𝜑,
𝑠

𝑐
= gd−1 𝜑,

the intrinsic equation of the catenary of uniform strength.
Also

𝑑𝑥 = 𝑑𝑠 cos𝜑 = 𝑐𝑑𝜑, 𝑑𝑦 = 𝑑𝑠 sin𝜑 = 𝑐 tan𝜑𝑑𝜑;
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hence

𝑥 = 𝑐𝜑, 𝑦 = 𝑐 log sec𝜑,

and thus the Cartesian equation is

𝑦

𝑐
= log sec

𝑥

𝑐
,

in which the axis of 𝑥 is the tangent at the lowest point.

Prob. 95. Using the same data as in Art. 31, find the parameter 𝑐 and the depth of the

lowest point. (The equation
𝑥

𝑐
= gd

𝑠

𝑐
gives

10

𝑐
= gd

15

𝑐
, which, by putting

15

𝑐
= 𝑧, becomes gd 𝑧 =

2

3
𝑧. From the graph it is seen that 𝑧 is nearly 1.8. If

𝑓(𝑧) = gd 𝑧 − 2

3
𝑧, then, from the tables of the gudermanian at the end of this

chapter,

𝑓(1.80) = 1.2432− 1.2000 = +.0432,

𝑓(1.90) = 1.2739− 1.2667 = +.0072,

𝑓(1.95) = 1.2881− 1.3000 = −.0119,

whence, by interpolation, 𝑧 = 1.9189 and 𝑐 = 7.8170. Again,
𝑦

𝑐
= log𝑒 sec

𝑥

𝑐
;

but
𝑥

𝑐
− 10

𝑐
= 1.2793; and 1.2793 radians = 73∘ 17′ 55′′; hence 𝑦 = 7.8170 ×

.41914× 2.3026 = 7.5443, the required depth.)

Prob. 96. Find the inclination of the terminal tangent.

Prob. 97. Show that the curve has two vertical asymptotes.

Prob. 98. Prove that the law of the tension 𝑇 , and of the section 𝜔, at a distance 𝑠,
measured from the lowest point along the curve, is

𝑇

𝐻
=

𝜔

𝜔0
= cosh

𝑐

ℎ
;

and show that in the above numerical example the terminal section is 3.48 times
the minimum section.

Prob. 99. Prove that the radius of curvature is given by 𝜌 = 𝑐 cosh
𝑠

𝑓
. Also that the weight

of the arc 𝑠 is given by 𝑊 = 𝐻 sinh
𝑠

𝑓
, in which 𝑠 is measured from the vertex.



Article 33

The Elastic Catenary.

An elastic string of uniform section and density in its natural state is suspended
from two points. Find its equation of equilibrium.

Let the element 𝑑𝜎 stretch into 𝑑𝑠; then, by Hooke’s law, 𝑑𝑠 = 𝑑𝜎(1 + 𝜆𝑇 ),
where 𝜆 is the elastic constant of the string; hence the weight of the stretched

element 𝑑𝑠 = 𝑔𝜌𝜔 𝑑𝜎 =
𝑔𝜌𝜔 𝑑𝑠

(1 + 𝜆𝑇 )
. Accordingly, as before,

𝑑(𝑇 sin𝜑) =
𝑔𝜌𝜔 𝑑𝑠

(1 + 𝜆𝑇 )
,

and

𝑇 cos𝜑 = 𝐻 = 𝑔𝜌𝜔𝑐,

hence

𝑐𝑑(tan𝜑) =
𝑑𝑠

(1 + 𝜇 sec𝜑)
,

in which 𝜇 stands for 𝜆𝐻, the extension at the lowest point; therefore

𝑑𝑠 = 𝑐(sec2 𝜑 + 𝜇 sec3 𝜑)𝑑𝜑,

𝑠

𝑐
= tan𝜑 +

1

2
𝜇(sec𝜑 tan𝜑 + gd−1 𝜑), [prob. 20, p. 37

which is the intrinsic equation of the curve, and reduces to that of the common
catenary when 𝜇 = 0. The coordinates 𝑥, 𝑦 may be expressed in terms of the
single parameter 𝜑 by putting

𝑑𝑥 = 𝑑𝑠 cos𝜑 = 𝑐(sec𝜑 + 𝜇 sec2 𝜑)𝑑𝜑,

𝑑𝑦 = 𝑑𝑠 sin𝜑 = 𝑐(sec2 𝜑 + 𝜇 sec3 𝜑) sin𝜑𝑑𝜑.
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Whence

𝑥

𝑐
= gd−1 𝜑 + 𝜇 tan𝜑,

𝑦

𝑐
= sec𝜑 +

1

2
𝜇 tan2 𝜑.

These equations are more convenient than the result of eliminating 𝜑, which
is somewhat complicated.



Article 34

The Tractory.

[Note.1]
To find the equation of the curve which possesses the property that the length

of the tangent from the point of contact to the axis of 𝑥 is constant.

Let 𝑃𝑇 , 𝑃 ′𝑇 ′ be two consecutive tangents such that 𝑃𝑇 = 𝑃 ′𝑇 ′ = 𝑐, and
let 𝑂𝑇 = 𝑡; draw 𝑇𝑆 perpendicular to 𝑃 ′𝑇 ′; then if 𝑃𝑃 ′ = 𝑑𝑠, it is evident
that 𝑆𝑇 ′ differs from 𝑑𝑠 by an infinitesimal of a higher order. Let 𝑃𝑇 make
an angle 𝜑 with 𝑂𝐴, the axis of 𝑦; then (to the first order of infinitesimals)
𝑃𝑇𝑑𝜑 = 𝑇𝑆 = 𝑇𝑇 ′ cos𝜑; that is,

𝑐 𝑑𝜑 = cos𝜑𝑑𝑡, 𝑡 = 𝑐 gd−1 𝜑,

𝑥 = 𝑡− 𝑐 sin𝜑 = 𝑐(gd−1 𝜑− sin𝜑), 𝑦 = 𝑐 cos𝜑.

This is a convenient single-parameter form, which gives all values of 𝑥, 𝑦 as
𝜑 increases from 0 to 1

2𝜋. The value of 𝑠, expressed in the same form, is found
from the relation

𝑑𝑠 = 𝑆𝑇 ′ = 𝑑𝑡 sin𝜑 = 𝑐 tan 𝜑𝑑𝜑, 𝑠 = 𝑐 log𝑒 sec𝜑.

1This curve is used in Schiele’s anti-friction pivot (Minchin’s Statics, Vol. I, p. 242); and in
the theory of the skew circular arch, the horizontal projection of the joints being a tractory.
(See “Arch,” Encyclopædia Britannica.) The equation 𝜑 = gd 𝑡

𝑐
furnishes a convenient method

of plotting the curve.
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At the point 𝐴, 𝜑 = 0, 𝑥 = 0, 𝑠 = 0, 𝑡 = 0, 𝑦 = 𝑐. The Cartesian equation,
obtained by eliminating 𝜑, is

𝑥

𝑐
= gd−1

(︁
cos−1 𝑦

𝑐

)︁
− sin

(︁
cos−1 𝑦

𝑐

)︁
= cosh−1 𝑐

𝑦
−
√︂

1 − 𝑦2

𝑐2
.

If 𝑢 be put for
𝑡

𝑐
, and be taken as independent variable, 𝜑 = gd𝑢,

𝑥

𝑐
=

𝑢− tanh𝑢,
𝑦

𝑐
= sech𝑢,

𝑠

𝑐
= log cosh𝑢.

Prob. 100. Given 𝑡 = 2𝑐, show that 𝜑 = 74∘ 35′, 𝑠 = 1.3249𝑐, 𝑦 = .2658𝑐, 𝑥 = 1.0360𝑐. At
what point is 𝑡 = 𝑐?

Prob. 101. Show that the evolute of the tractory is the catenary. (See Prob. 92.)

Prob. 102. Find the radius of curvature of the tractory in terms of 𝜑; and derive the intrinsic
equation of the involute.



Article 35

The Loxodrome.

On the surface of a sphere a curve starts from the equator in a given direction
and cuts all the meridians at the same angle. To find its equation in latitude-
and-longitude coordinates:

Let the loxodrome cross two consecutive meridians 𝐴𝑀 , 𝐴𝑁 in the points 𝑃 ,
𝑄; let 𝑃𝑅 be a parallel of latitude; let 𝑂𝑀 = 𝑥, 𝑀𝑃 = 𝑦, 𝑀𝑁 ′ = 𝑑𝑥, 𝑅𝑄 = 𝑑𝑦,
all in radian measure; and let the angle 𝑀𝑂𝑃 = 𝑅𝑃𝑄 = 𝛼; then

tan𝛼 =
𝑅𝑄

𝑃𝑅
, but 𝑃𝑅 = 𝑀𝑁 cos𝑀𝑃, 1

hence 𝑑𝑥 tan𝛼 = 𝑑𝑦 sec 𝑦, and 𝑥 tan𝛼 = gd−1 𝑦, there being no integration-
constant since 𝑦 vanishes with 𝑥; thus the required equation is

𝑦 = gd(𝑥 tan𝛼).

To find the length of the arc 𝑂𝑃 : Integrate the equation

𝑑𝑠 = 𝑑𝑦 csc𝛼, whence 𝑠 = 𝑦 csc𝛼.

To illustrate numerically, suppose a ship sails northeast, from a point on the
equator, until her difference of longitude is 45∘, find her latitude and distance:

1Jones, Trigonometry (Ithaca, 1890), p. 185.
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Here tan𝛼 = 1, and 𝑦 = gd𝑥 = gd 1
4𝜋 = gd(.7854) = .7152 radians; 𝑠 =

𝑦
√

2 = 1.0114 radii. The latitude in degrees is 40.980.
If the ship set out from latitude 𝑦1, the formula must be modified as follows:

Integrating the above differential equation between the limits (𝑥1, 𝑦1) and (𝑥2, 𝑦2)
gives

(𝑥2 − 𝑥1) tan𝛼 = gd−1 𝑦2 − gd−1 𝑦1;

hence gd−1 𝑦2 = gd−1 𝑦1 + (𝑥2 − 𝑥1) tan𝛼, from which the final latitude can be
found when the initial latitude and the difference of longitude are given. The
distance sailed is equal to (𝑦2 − 𝑦1) csc𝛼 radii, a radius being 60 × 180

𝜋 nautical
miles.

Mercator’s Chart.—In this projection the meridians are parallel straight lines,
and the loxodrome becomes the straight line 𝑦′ = 𝑥 tan𝛼, hence the relations
between the coordinates of corresponding points on the plane and sphere are
𝑥′ = 𝑥, 𝑦′ = gd−1 𝑦. Thus the latitude 𝑦 is magnified into gd−1 𝑦, which is
tabulated under the name of “meridional part for latitude 𝑦”; the values of 𝑦 and
of 𝑦′ being given in minutes. A chart constructed accurately from the tables can
be used to furnish graphical solutions of problems like the one proposed above.

Prob. 103. Find the distance on a rhumb line between the points (30∘ N, 20∘ E) and (30∘ S,
40∘ E).



Article 36

Combined Flexure and
Tension.

A beam that is built-in at one end carries a load 𝑃 at the other, and is also
subjected to a horizontal tensile force 𝑄 applied at the same point; to find the
equation of the curve assumed by its neutral surface: Let 𝑥, 𝑦 be any point of
the elastic curve, referred to the free end as origin, then the bending moment for
this point is 𝑄𝑦 − 𝑃𝑥. Hence, with the usual notation of the theory of flexure,1

𝐸𝐼
𝑑2𝑦

𝑑𝑥2
= 𝑄𝑦 − 𝑃𝑥,

𝑑2𝑦

𝑑𝑥2
= 𝑛2(𝑦 −𝑚𝑥),

[︂
𝑚 =

𝑃

𝑄
, 𝑛2 =

𝑄

𝐸𝐼
.

which, on putting 𝑦 −𝑚𝑥 = 𝑢, and
𝑑2𝑦

𝑑𝑥2
=

𝑑2𝑢

𝑑𝑥2
, becomes

𝑑2𝑢

𝑑𝑥2
= 𝑛2𝑢,

whence

𝑢 = 𝐴 cosh𝑛𝑥 + 𝐵 sinh𝑛𝑥, [probs. 28, 30

that is,

𝑦 = 𝑚𝑥 + 𝐴 cosh𝑛𝑥 + 𝐵 sinh𝑛𝑥.

The arbitrary constants 𝐴, 𝐵 are to be determined by the terminal conditions.
At the free end 𝑥 = 0, 𝑦 = 0; hence 𝐴 must be zero, and

𝑦 = 𝑚𝑥 + 𝐵 sinh𝑛𝑥,

𝑑𝑦

𝑑𝑥
= 𝑚 + 𝑛𝐵 cosh𝑛𝑥;

1Merriman, Mechanics of Materials (New York, 1895), pp. 70–77, 267–269.
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but at the fixed end, 𝑥 = 𝑙, and
𝑑𝑦

𝑑𝑥
= 0, hence

𝐵 = −𝑚

𝑛
cosh𝑛𝑙,

and accordingly

𝑦 = 𝑚𝑥− 𝑚 sinh𝑛𝑥

𝑛 cosh𝑛𝑙
.

To obtain the deflection of the loaded end, find the ordinate of the fixed end
by putting 𝑥 = 𝑙, giving

deflection = 𝑚(𝑙 − 1

𝑛
tanh𝑛𝑙),

Prob. 104. Compute the deflection of a cast-iron beam, 2 × 2 inches section, and 6 feet
span, built-in at one end and carrying a load of 100 pounds at the other end,
the beam being subjected to a horizontal tension of 8000 pounds. [In this case
𝐼 = 4

3
, 𝐸 = 15 × 106, 𝑄 = 8000, 𝑃 = 100; hence 𝑛 = 1

50
,𝑚 = 1

80
, deflection

= 1
80
(72− 50 tanh 1.44) = 1

80
(72− 44.69) = .341 inches.]

Prob. 105. If the load be uniformly distributed over the beam, say 𝑤 per linear unit, prove
that the differential equation is

𝐸𝐼
𝑑2𝑦

𝑑𝑥2
= 𝑄𝑦 − 1

2
𝑤𝑥2, or

𝑑2𝑦

𝑑𝑥2
= 𝑛2(𝑦 −𝑚𝑥2),

and that the solution is 𝑦 = 𝐴 cosh𝑛𝑥+𝐵 sinh𝑛𝑥+𝑚𝑥2 +
2𝑚

𝑛2
. Show also how

to determine the arbitrary constants.



Article 37

Alternating Currents.

[Note.1]
In the general problem treated the cable or wire is regarded as having

resistance, distributed capacity, self-induction, and leakage; although some of
these may be zero in special cases. The line will also be considered to feed into
a receiver circuit of any description; and the general solution will include the
particular cases in which the receiving end is either grounded or insulated. The
electromotive force may, without loss of generality, be taken as a simple harmonic
function of the time, because any periodic function can be expressed in a Fourier
series of simple harmonics.2 The E.M.F. and the current, which may differ in
phase by any angle, will be supposed to have given values at the terminals of the
receiver circuit; and the problem then is to determine the E.M.F. and current
that must be kept up at the generator terminals; and also to express the values
of these quantities at any intermediate point, distant 𝑥 from the receiving end;
the four line-constants being supposed known, viz.:

𝑅 = resistance, in ohms per mile,
𝐿 = coefficient of self-induction, in henrys per mile,
𝐶 = capacity, in farads per mile,
𝐺 = coefficient of leakage, in mhos per mile.3

It is shown in standard works4 that if any simple harmonic function 𝑎 sin(𝜔𝑡+
𝜃) be represented by a vector of length 𝑎 and angle 𝜃, then two simple harmonics

of the same period
2𝜋

𝜔
, but having different values of the phase-angle 𝜃, can

be combined by adding their representative vectors. Now the E.M.F. and the
current at any point of the circuit, distant 𝑥 from the receiving end, are of the

1See references in foot-note Art. 27.
2Chapter V, Art. 8.
3Kennelly denotes these constants by 𝑟, 𝑙, 𝑐, 𝑔. Steinmetz writes 𝑠 for 𝜔𝐿, 𝜅 for 𝜔𝐶, 𝜃 for

𝐺, and he uses 𝐶 for current.
4Thomson and Tait, Natural Philosophy, Vol. I. p. 40; Rayleigh, Theory of Sound, Vol. I.

p. 20; Bedell and Crehore, Alternating Currents, p. 214.
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form
𝑒 = 𝑒1 sin (𝜔𝑡 + 𝜃), 𝑖 = 𝑖1 sin (𝜔𝑡 + 𝜃′), (64)

in which the maximum values 𝑒1, 𝑖1, and the phase-angles 𝜃, 𝜃′, are all functions
of 𝑥. These simple harmonics will be represented by the vectors 𝑒1/𝜃, 𝑖1/𝜃

′; whose

numerical measures are the complexes 𝑒1(cos 𝜃 + 𝑗 sin 𝜃)5, 𝑖1(cos 𝜃′ + 𝑗 sin 𝜃′),
which will be denoted by 𝑒, �̄�. The relations between 𝑒 and �̄� may be obtained
from the ordinary equations6

𝑑𝑖

𝑑𝑥
= 𝐺𝑒 + 𝐶

𝑑𝑒

𝑑𝑡
,

𝑑𝑒

𝑑𝑥
= 𝑅𝑖 + 𝐿

𝑑𝑖

𝑑𝑡
; (65)

for, since
𝑑𝑒

𝑑𝑡
= 𝜔𝑒1 cos (𝜔𝑡 + 𝜃) = 𝜔𝑒1 sin (𝜔𝑡 + 𝜃 + 1

2𝜋), then
𝑑𝑒

𝑑𝑡
will be rep-

resented by the vector 𝜔𝑒1/𝜃 + 1
2𝜋; and

𝑑𝑖

𝑑𝑥
by the sum of the two vectors

𝐺𝑒1/𝜃, 𝐶𝜔𝑒1/𝜃 + 1
2𝜋; whose numerical measures are the complexes 𝐺𝑒, 𝑗𝜔𝐶𝑒;

and similarly for
𝑑𝑒

𝑑𝑥
in the second equation; thus the relations between the

complexes 𝑒, �̄� are

𝑑�̄�

𝑑𝑥
= (𝐺 + 𝑗𝜔𝐶)𝑒,

𝑑𝑒

𝑑𝑥
= (𝑅 + 𝑗𝜔𝐿)̄𝚤. (66)7

Differentiating and substituting give

𝑑2𝑒

𝑑𝑥2
= (𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶)𝑒,

𝑑2 �̄�

𝑑𝑥2
= (𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶 )̄𝚤,

⎫⎪⎪⎬⎪⎪⎭ (67)

and thus 𝑒, �̄� are similar functions of 𝑥, to be distinguished only by their terminal
values.

It is now convenient to define two constants 𝑚, 𝑚1 by the equations8

𝑚2 = (𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶), 𝑚1 =
𝑚

(𝐺 + 𝑗𝜔𝐶)
; (68)

and the differential equations may then be written

𝑑2𝑒

𝑑𝑥2
= 𝑚2𝑒,

𝑑2 �̄�

𝑑𝑥2
= 𝑚2 �̄�, (69)

5 In electrical theory the symbol 𝑗 is used, instead of 𝑖, for
√
−1.

6Bedell and Crehore, Alternating Currents, p. 181. The sign of 𝑑𝑥 is changed, because 𝑥 is
measured from the receiving end. The coefficient of leakage, 𝐺, is usually taken zero, but is
here retained for generality and symmetry.

7These relations have the advantage of not involving the time. Steinmetz derives them from
first principles without using the variable 𝑡. For instance, he regards 𝑅+ 𝑗𝜔𝐿 as a generalized
resistance-coefficient, which, when applied to 𝑖, gives an E.M.F., part of which is in phase
with 𝑖, and part in quadrature with 𝑖. Kennelly calls 𝑅+ 𝑗𝜔𝐿 the conductor impedance; and
𝐺+ 𝑗𝜔𝐶 the dielectric admittance; the reciprocal of which is the dielectric impedance.

8The complex constants 𝑚, 𝑚1 are written 𝑧, 𝑦 by Kennelly; and the variable length 𝑥 is
written 𝐿2. Steinmetz writes 𝑣 for 𝑚.
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the solutions of which are9

𝑒 = 𝐴 cosh𝑚𝑥 + 𝐵 sinh𝑚𝑥, �̄� = 𝐴′ cosh𝑚𝑥 + 𝐵′ sinh𝑚𝑥,

wherein only two of the four constants are arbitrary; for substituting in either of
the equations (66), and equating coefficients, give

(𝐺 + 𝑗𝜔𝐶)𝐴 = 𝑚𝐵′, (𝐺 + 𝑗𝜔𝐶)𝐵 = 𝑚𝐴′,

whence

𝐵′ =
𝐴

𝑚1
, 𝐴′ =

𝐵

𝑚1
.

Next let the assigned terminal values of 𝑒, �̄�, at the receiver, be denoted by

�̄�, 𝐼; then putting 𝑥 = 0 gives �̄� = 𝐴, 𝐼 = 𝐴′, whence 𝐵 = 𝑚1𝐼,𝐵
′ =

�̄�

𝑚1
; and

thus the general solution is

𝑒 = �̄� cosh𝑚𝑥 + 𝑚1𝐼 sinh𝑚𝑥,

�̄� = 𝐼 cosh𝑚𝑥 +
𝐼

𝑚1
�̄� sinh𝑚𝑥.

⎫⎬⎭ (70)

If desired, these expressions could be thrown into the ordinary complex form
𝑋+𝑗𝑌,𝑋 ′+𝑗𝑌 ′, by putting for the letters their complex values, and applying the
addition-theorems for the hyperbolic sine and cosine. The quantities 𝑋,𝑌,𝑋 ′, 𝑌 ′

would then be expressed as functions of 𝑥; and the representative vectors of 𝑒, 𝑖,

would be 𝑒1/𝜃, 𝑖1/𝜃
′, where 𝑒1

2 = 𝑋2 + 𝑌 2, 𝑖2 = 𝑋 ′2 + 𝑌 ′2, tan 𝜃 =
𝑌

𝑋
, tan 𝜃′ =

𝑌 ′

𝑋 ′ .

For purposes of numerical computation, however, the formulas (70) are the
most convenient, when either a chart,10 or a table,11 of cosh𝑢, sinh𝑢, is available,
for complex values of 𝑢.

Prob. 106.12 Given the four line-constants: 𝑅 = 2 ohms per mile, 𝐿 = 20 millihenrys per mile,
𝐶 = 1

2
microfarad per mile, 𝐺 = 0; and given 𝜔, the angular velocity of E.M.F.

to be 2000 radians per second; then

𝜔𝐿 = 40 ohms, conductor reactance per mile;

𝑅+ 𝑗𝜔𝐿 = 2 + 40𝑗 ohms, conductor impedance per mile;

𝜔𝐶 = .001 mho, dielectric susceptance per mile;

𝐺+ 𝑗𝜔𝐶 = .001𝑗 mho, dielectric admittance per mile;

(𝐺+ 𝑗𝜔𝐶)−1 = −1000𝑗 ohms, dielectric impedance per mile;

𝑚2 = (𝑅+ 𝑗𝜔𝐿)(𝐺+ 𝑗𝜔𝐶) = .04 + .002𝑗,

which is the measure of .04005/177∘8′;

9See Art. 14, Probs. 28–30; and Art. 27, foot-note.
10Art. 30, footnote.
11See Table II.
12The data for this example are taken from Kennelly’s article (l. c., p. 38).
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therefore

𝑚 = measure of .2001/88∘34′ = .0050 + .2000𝑗,

an abstract coefficient per mile, of dimensions [length]−1,

𝑚1 =
𝑚

(𝐺+ 𝑗𝜔𝐶)
= 200− 5𝑗 ohms.

Next let the assigned terminal conditions at the receiver be: 𝐼 = 0 (line insulated);
and 𝐸 = 1000 volts, whose phase may be taken as the standard (or zero) phase;
then at any distance 𝑥, by (70),

𝑒 = 𝐸 cosh𝑚𝑥, �̄� =
𝐸

𝑚1
sinh𝑚𝑥,

in which 𝑚𝑥 is an abstract complex.

Suppose it is required to find the E.M.F. and current that must be kept up at a
generator 100 miles away; then

𝑒 = 1000 cosh(.5 + 20𝑗), �̄� = 200(40− 𝑗)−1 sinh(.5 + 20𝑗),

but, by Prob. 89,

cosh(.5 + 20𝑗) = cosh(.5 + 20𝑗 − 6𝜋𝑗)

= cosh(.5 + 1.15𝑗) = .4600 + .4750𝑗

obtained from Table II, by interpolation between cosh(.5+1.1𝑗) and cosh(.5+1.2𝑗);
hence

𝑒 = 460 + 475𝑗 = 𝑒1(cos 𝜃 + 𝑗 sin 𝜃),

where log tan 𝜃 = log 475−log 460 = .0139, 𝜃 = 45∘55′, and 𝑒1 = 460 sec 𝜃 = 661.2
volts, the required E.M.F.

Similarly sinh(.5 + 20𝑗) = sinh(.5 + 1.15𝑗) = .2126 + 1.0280𝑗, and hence

�̄� =
200

1601
(40 + 𝑗)(.2126 + 1.028𝑗) =

1

1601
(1495 + 8266𝑗)

= 𝑖1(cos 𝜃
′ + 𝑗 sin 𝜃′),

where log tan 𝜃′ = 10.7427, 𝜃′ = 79∘ 45′, 𝑖1 = 1495 sec
𝜃′

1601
= 5.25 amperes, the

phase and magnitude of required current.

Next let it be required to find 𝑒 at 𝑥 = 8; then

𝑒 = 1000 cosh(.04 + 1.6𝑗) = 1000𝑗 sinh(.04 + .03𝑗),

by subtracting 1
2
𝜋𝑗, and applying page 56. Interpolation between sinh(0 + 0𝑗)

and sinh(0 + .1𝑗) gives

sinh(0 + .03𝑗) = .00000 + .02995𝑗.

Similarly

sinh(.1 + .03𝑗) = .10004 + .03004𝑗.
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Interpolation between the last two gives

sinh(.04 + .03𝑗) = .04002 + .02999𝑗.

Hence 𝑒 = 𝑗(40.02 + 29.99𝑗) = −29.99 + 40.02𝑗 = 𝑒1(cos 𝜃 + 𝑗 sin 𝜃), where
log tan 𝜃 = .12530, 𝜃 = 126∘ 51′, 𝑒1 = −29.99 sec 126∘ 51′ = 50.01 volts.

Again, let it be required to find 𝑒 at 𝑥 = 16; here

𝑒 = 1000 cosh(.08 + 3.2𝑗) = −1000 cosh(.08 + .06𝑗),

but

cosh(0 + .06𝑗) = .9970 + 0𝑗, cosh(.1 + .06𝑗) = 1.0020 + .006𝑗;

hence

cosh(.08 + .06𝑗) = 1.0010 + .0048𝑗,

and

𝑒 = −1001 + 4.8𝑗 = 𝑒1(cos 𝜃 + 𝑗 sin 𝜃),

where 𝜃 = 180∘ 17′, 𝑒1 = 1001 volts. Thus at a distance of about 16 miles
the E.M.F. is the same as at the receiver, but in opposite phase. Since 𝑒 is
proportional to cosh(.005 + .2𝑗)𝑥, the value of 𝑥 for which the phase is exactly
180∘ is 𝜋

.2
= 15.7. Similarly the phase of the E.M.F. at 𝑥 = 7.85 is 90∘. There is

agreement in phase at any two points whose distance apart is 31.4 miles.

In conclusion take the more general terminal conditions in which the line feeds
into a receiver circuit, and suppose the current is to be kept at 50 amperes, in a
phase 40∘ in advance of the electromotive force; then 𝐼50(cos 40∘ + sin 40∘) =
38.30 + 32.14𝑗, and substituting the constants in (70) gives

𝑐 = 1000 cosh(.005 + .2𝑗)𝑥+ (7821 + 6236𝑗) sinh(.005 + .2𝑗)𝑥

= 460 + 475𝑗 − 4748 + 9366𝑗 = −4288 + 9841𝑗 = 𝑒1(cos 𝜃 + 𝑗 sin 𝜃),

where 𝜃 = 113∘ 33′, 𝑒1 = 10730 volts, the E.M.F. at sending end. This is 17
times what was required when the other end was insulated.

Prob. 107. If 𝐿 = 0, 𝐺 = 0, 𝐼 = 0; then 𝑚 = (1 + 𝑗)𝑛, 𝑚1 = (1 + 𝑗)𝑛1 where 𝑛2 =
𝜔𝑅𝐶

2
,

𝑛2
1 =

𝑅

2𝜔𝐶
; and the solution is

𝑒1 =
1√
2
𝐸
√
cosh 2𝑛𝑥+ cos 2𝑛𝑥, tan 𝜃 = tan𝑛𝑥 tanh𝑛𝑥,

𝑖1 =
1

2𝑛1
𝐸
√
cosh 2𝑛𝑥− cos 2𝑛𝑥, tan 𝜃′ = tan𝑛𝑥 coth𝑛𝑥.

Prob. 108. If self-induction and capacity be zero, and the receiving end be insulated, show
that the graph of the electromotive force is a catenary if 𝐺 ̸= 0, a line if 𝐺 = 0.

Prob. 109. Neglecting leakage and capacity, prove that the solution of equations (66) is
�̄� = 𝐼, 𝑐 = �̄� + (𝑅+ 𝑗𝜔𝐿)𝐼𝑥.
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Prob. 110. If 𝑥 be measured from the sending end, show how equations (65), (66) are to be
modified; and prove that

𝑒 = �̄�0 cosh𝑚𝑥−𝑚1𝐼0 sinh𝑚𝑥, �̄� = 𝐼0 cosh𝑚𝑥− 1

𝑚1
�̄�0 sinh𝑚𝑥,

where �̄�0, 𝐼0 refer to the sending end.
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Miscellaneous Applications.

1. The length of the arc of the logarithmic curve 𝑦 = 𝑎𝑥 is 𝑠 = 𝑀(cosh𝑢 +

log tanh 1
2𝑢), in which 𝑀 =

1

log 𝑎
, sinh𝑢 =

𝑦

𝑀
.

2. The length of arc of the spiral of Archimedes 𝑟 = 𝑎𝜃 is 𝑠 = 1
4𝑎(sinh 2𝑢+2𝑢),

where sinh𝑢 = 𝜃.

3. In the hyperbola 𝑥2

𝑎2 − 𝑦2

𝑏2 = 1 the radius of curvature is

𝜌 =
(𝑎2 sinh2 𝑢 + 𝑏2 cosh2 𝑢)

3
2

𝑎𝑏
; in which 𝑢 is the measure of the sector

𝐴𝑂𝑃 , i.e. cosh𝑢 =
𝑥

𝑎
, sinh𝑢 =

𝑦

𝑏
.

4. In an oblate spheroid, the superficial area of the zone between the equator

and a parallel plane at a distance 𝑦 is 𝑆 =
𝜋𝑏2(sinh 2𝑢 + 2𝑢)

2𝑒
, wherein 𝑏 is

the axial radius, 𝑒 eccentricity, sinh𝑢 =
𝑒𝑦

𝑝
, and 𝑝 parameter of generating

ellipse.

5. The length of the arc of the parabola 𝑦2 = 2𝑝𝑥, measured from the vertex

of the curve, is 𝑙 = 1
4𝑝(sinh 2𝑢 + 2𝑢), in which sinh𝑢 =

𝑦

𝑝
= tan𝜑, where

𝜑 is the inclination of the terminal tangent to the initial one.

6. The centre of gravity of this arc is given by

3𝑙�̄� = 𝑝2(cosh3 𝑢− 1), 64𝑙𝑦 = 𝑝2(sinh 4𝑢− 4𝑢);

and the surface of a paraboloid of revolution is 𝑆 = 2𝜋𝑦𝑙.

7. The moment of inertia of the same arc about its terminal ordinate is
𝐼 = 𝜇

[︀
𝑥𝑙(𝑥− 2�̄�) + 1

64𝑝
3𝑁

]︀
, where 𝜇 is the mass of unit length, and

𝑁 = 𝑢− 1

4
sinh 2𝑢− 1

4
sinh 4𝑢 +

1

12
sinh 6𝑢.
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8. The centre of gravity of the arc of a catenary measured from the lowest
point is given by

4𝑙𝑦 = 𝑐2(sinh 2𝑢 + 2𝑢), 𝑙�̄� = 𝑐2(𝑢 sinh𝑢− cosh𝑢 + 1),

in which 𝑢 = 𝑥
𝑐 ; and the moment of inertia of this arc about its terminal

abscissa is

𝐼 = 𝜇𝑐3
(︂

1

12
sinh 3𝑢 +

3

4
sinh𝑢− 𝑢 cosh𝑢

)︂
.

9. Applications to the vibrations of bars are given in Rayleigh, Theory of
Sound, Vol. I, art. 170; to the torsion of prisms in Love, Elasticity, pp. 166–
74; to the flow of heat and electricity in Byerly, Fourier Series, pp. 75–81;
to wave motion in fluids in Rayleigh, Vol. I, Appendix, p. 477, and in
Bassett, Hydrodynamics, arts. 120, 384; to the theory of potential in Byerly
p. 135, and in Maxwell, Electricity, arts. 172–4; to Non-Euclidian geometry
and many other subjects in Günther, Hyperbelfunktionen, Chaps. V and
VI. Several numerical examples are worked out in Laisant, Essai sur les
fonctions hyperboliques.
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Explanation of Tables.

In Table I the numerical values of the hyperbolic functions sinh𝑢, cosh𝑢, tanh𝑢
are tabulated for values of 𝑢 increasing from 0 to 4 at intervals of .02. When 𝑢
exceeds 4, Table IV may be used.

Table II gives hyperbolic functions of complex arguments, in which

cosh(𝑥± 𝑖𝑦) = 𝑎± 𝑖𝑏, sinh(𝑥± 𝑖𝑦) = 𝑐± 𝑖𝑑,

and the values of 𝑎, 𝑏, 𝑐, 𝑑 are tabulated for values of 𝑥 and of 𝑦 ranging separately
from 0 to 1.5 at intervals of .1. When interpolation is necessary it may be
performed in three stages. For example, to find cosh(.82 + 1.34𝑖): First find
cosh(.82 + 1.3𝑖), by keeping 𝑦 at 1.3 and interpolating between the entries under
𝑥 = .8 and 𝑥 = .9; next find cosh(.82+1.4𝑖), by keeping 𝑦 at 1.4 and interpolating
between the entries under 𝑥 = .8 and 𝑥 = .9, as before; then by interpolation
between cosh(.82 + 1.3𝑖) and cosh(.82 + 1.4𝑖) find cosh(.82 + 1.34𝑖), in which 𝑥
is kept at .82. The table is available for all values of 𝑦, however great, by means
of the formulas on page 56:

sinh(𝑥 + 2𝑖𝜋) = sinh𝑥, cosh(𝑥 + 2𝑖𝜋) = cosh𝑥, etc.

It does not apply when 𝑥 is greater than 1.5, but this case seldom occurs in
practice. This table can also be used as a complex table of circular functions, for

cos(𝑦 ± 𝑖𝑥) = 𝑎∓ 𝑖𝑏, sin(𝑦 ± 𝑖𝑥) = 𝑑± 𝑖𝑐;

and, moreover, the exponential function is given by

exp(±𝑥± 𝑖𝑦) = 𝑎± 𝑐± 𝑖(𝑏± 𝑑),

in which the signs of 𝑐 and 𝑑 are to be taken the same as the sign of 𝑥, and the
sign of 𝑖 on the right is to be the product of the signs of 𝑥 and of 𝑖 on the left.

Table III gives the values of 𝑣 = gd𝑢, and of the gudermanian angle 𝜃 =
180∘𝑣

𝜋
, as 𝑢 changes from 0 to 1 at intervals of .02, from 1 to 2 at intervals of

.05, and from 2 to 4 at intervals of .1.
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In Table IV are given, the values of gd𝑢, log sinh𝑢, log cosh𝑢, as 𝑢 increases
from 4 to 6 at intervals of .1, from 6 to 7 at intervals of .2, and from 7 to 9 at
intervals of .5.

In the rare cases in which more extensive tables are necessary, reference may
be made to the tables1 of Gudermann, Glaisher, and Geipel and Kilgour. In the
first the Gudermanian angle (written 𝑘) is taken as the independent variable,
and increases from 0 to 100 grades at intervals of .01, the corresponding value of
𝑢 (written 𝐿𝑘) being tabulated. In the usual case, in which the table is entered
with the value of 𝑢, it gives by interpolation the value of the gudermanian angle,
whose circular functions would then give the hyperbolic functions of 𝑢. When 𝑢
is large, this angle is so nearly right that interpolation is not reliable. To remedy
this inconvenience Gudermann’s second table gives directly log sinh𝑢, log cosh𝑢,
log tanh𝑢, to nine figures, for values of 𝑢 varying by .001 from 2 to 5, and by .01
from 5 to 12.

Glaisher has tabulated the values of 𝑒𝑥 and 𝑒−𝑥, to nine significant figures,
as 𝑥 varies by .001 from 0 to .1, by .01 from 0 to 2, by .1 from 0 to 10, and by 1
from 0 to 500. From these the values of cosh𝑥, sinh𝑥 are easily obtained.

Geipel and Kilgour’s handbook gives the values of cosh𝑥, sinh𝑥, to seven
figures, as 𝑥 varies by .01 from 0 to 4.

There are also extensive tables by Forti, Gronau, Vassal, Callet, and Hoüel;
and there are four-place tables in Byerly’s Fourier Series, and in Wheeler’s
Trigonometry.

In the following tables a dash over a final digit indicates that the number
has been increased.

1Gudermann in Crelle’s Journal, vols. 6–9, 1831–2 (published separately under the title
Theorie der hyperbolischen Functionen, Berlin, 1833). Glaisher in Cambridge Phil. Trans., vol.
13, 1881. Geipel and Kilgour’s Electrical Handbook.



TABLES 81

Table I.—Hyperbolic Functions.

𝑢 sinh𝑢. cosh𝑢. tanh𝑢. 𝑢 sinh𝑢. cosh𝑢. tanh𝑢.

.00 .0000 1.0000 .0000 1.00 1.1752 1.5431̄ .7616
02 0200 1.0002 0200 1.02 1.2063̄ 1.5669̄ 7699̄
04 0400 1.0008 0400̄ 1.04 1.2379̄ 1.5913 7779̄
06 0600 1.0018 0599 1.06 1.2700̄ 1.6164 7857̄
08 0801̄ 1.0032 0798 1.08 1.3025 1.6421 7932̄

.10 .1002̄ 1.0050 .0997̄ 1.10 1.3356 1.6685 .8005
12 1203̄ 1.0072 1194 1.12 1.3693̄ 1.6956̄ 8076̄
14 1405̄ 1.0098 1391̄ 1.14 1.4035̄ 1.7233 8144
16 1607̄ 1.0128 1586 1.16 1.4382 1.7517 8210
18 1810̄ 1.0162 1781̄ 1.18 1.4735 1.7808 8275̄

.20 .2013 1.0201̄ .1974̄ 1.20 1.5095̄ 1.8107̄ .8337̄
22 2218̄ 1.0243̄ 2165 1.22 1.5460̄ 1.8412 8397̄
24 2423 1.0289 2355̄ 1.24 1.5831 1.8725̄ 8455̄
26 2629 1.0340̄ 2543̄ 1.26 1.6209̄ 1.9045 8511̄
28 2837̄ 1.0395 2729 1.28 1.6593 1.9373 8565̄

.30 .3045 1.0453 .2913 1.30 1.6984 1.9709 .8617
32 3255̄ 1.0516 3095 1.32 1.7381 2.0053̄ 8668
34 3466 1.0584̄ 3275̄ 1.34 1.7786̄ 2.0404 8717̄
36 3678 1.0655 3452 1.36 1.8198̄ 2.0764 8764̄
38 3892 1.0731 3627 1.38 1.8617̄ 2.1132 8810̄

.40 .4108̄ 1.0811̄ .3799 1.40 1.9043 2.1509̄ .8854
42 4325̄ 1.0895 3969 1.42 1.9477 2.1894 8896̄
44 4543 1.0984̄ 4136 1.44 1.9919̄ 2.2288 8937̄
46 4764̄ 1.1077̄ 4301̄ 1.46 2.0369̄ 2.2691̄ 8977̄
48 4986 1.1174 4462 1.48 2.0827̄ 2.3103̄ 9015̄

.50 .5211̄ 1.1276 .4621 1.50 2.1293̄ 2.3524 .9051
52 5438̄ 1.1383̄ 4777 1.52 2.1768̄ 2.3955̄ 9087̄
54 5666 1.1494̄ 4930̄ 1.54 2.2251 2.4395̄ 9121
56 5897 1.1609 5080̄ 1.56 2.2743 2.4845̄ 9154
58 6131̄ 1.1730̄ 5227̄ 1.58 2.3245̄ 2.5305̄ 9186

.60 .6367̄ 1.1855̄ .5370 1.60 2.3756̄ 2.5775̄ .9217̄
62 6605̄ 1.1984 5511 1.62 2.4276̄ 2.6255̄ 9246
64 6846̄ 1.2119̄ 5649̄ 1.64 2.4806̄ 2.6746̄ 9275̄
66 7090̄ 1.2258 5784̄ 1.66 2.5346̄ 2.7247 9302
68 7336 1.2402 5915 1.68 2.5896 2.7760̄ 9329̄

.70 .7586̄ 1.2552̄ .6044̄ 1.70 2.6456 2.8283 .9354
72 7838 1.2706̄ 6169 1.72 2.7027 2.8818̄ 9379̄
74 8094 1.2865 6291 1.74 2.7609 2.9364 9402
76 8353 1.3030̄ 6411̄ 1.76 2.8202̄ 2.9922 9425
78 8615 1.3199 6527 1.78 2.8806 3.0492 9447̄

.80 .8881 1.3374 .6640 1.80 2.9422̄ 3.1075̄ .9468
82 9150 1.3555̄ 6751̄ 1.82 3.0049 3.1669 9488
84 9423 1.3740 6858 1.84 3.0689̄ 3.2277̄ 9508̄
86 9700̄ 1.3932̄ 6963̄ 1.86 3.1340 3.2897 9527̄
88 9981̄ 1.4128 7064 1.88 3.2005̄ 3.3530 9545̄

.90 1.0265 1.4331̄ .7163̄ 1.90 3.2682̄ 3.4177 .9562
92 1.0554 1.4539 7259̄ 1.92 3.3372̄ 3.4838̄ 9579
94 1.0847̄ 1.4753 7352 1.94 3.4075 3.5512 9595
96 1.1144 1.4973̄ 7443̄ 1.96 3.4792 3.6201̄ 9611̄
98 1.1446̄ 1.5199̄ 7531̄ 1.98 3.5523 3.6904 9626̄
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Table I.—Hyperbolic Functions (continued)

𝑢 sinh𝑢. cosh𝑢. tanh𝑢. 𝑢 sinh𝑢. cosh𝑢. tanh𝑢.

2.00 3.6269̄ 3.7622̄ .9640 3.00 10.0179̄ 10.0677̄ .99505
2.02 3.7028 3.8355̄ 9654 3.02 10.2212 10.2700 99524
2.04 3.7803̄ 3.9103 9667 3.04 10.4287 10.4765 99543
2.06 3.8593̄ 3.9867 9680 3.06 10.6403 10.6872 99561
2.08 3.9398 4.0647 9693̄ 3.08 10.8562 10.9022̄ 99578

2.10 4.0219̄ 4.1443 .9705̄ 3.10 11.0765̄ 11.1215 .99594
2.12 4.1055 4.2256̄ 9716̄ 3.12 11.3011 11.3453̄ 99610
2.14 4.1909̄ 4.3085 9727̄ 3.14 11.5303̄ 11.5736̄ 99626
2.16 4.2779 4.3932 9737 3.16 11.7641̄ 11.8065 99640
2.18 4.3666 4.4797̄ 9748̄ 3.18 12.0026̄ 12.0442̄ 99654

2.20 4.4571 4.5679 .9757 3.20 12.2459̄ 12.2866 .99668
2.22 4.5494̄ 4.6580̄ 9767̄ 3.22 12.4941̄ 12.5340 99681
2.24 4.6434 4.7499̄ 9776̄ 3.24 12.7473̄ 12.7864 99693
2.26 4.7394̄ 4.8437 9785̄ 3.26 13.0056̄ 13.0440̄ 99705
2.28 4.8372̄ 4.9395̄ 9793̄ 3.28 13.2691̄ 13.3067 99717

2.30 4.9370̄ 5.0372 .9801̄ 3.30 13.5379̄ 13.5748̄ .99728
2.32 5.0387 5.1370̄ 9809̄ 3.32 13.8121̄ 13.8483̄ 99738
2.34 5.1425 5.2388̄ 9816 3.34 14.0918 14.1273̄ 99749
2.36 5.2483̄ 5.3427̄ 9823 3.36 14.3772 14.4120̄ 99758
2.38 5.3562̄ 5.4487 9830 3.38 14.6684̄ 14.7024 99768

2.40 5.4662 5.5569 .9837̄ 3.40 14.9654̄ 14.9987 .99777
2.42 5.5785 5.6674̄ 9843 3.42 15.2684̄ 15.3011̄ 99786
2.44 5.6929 5.7801 9849 3.44 15.5774 15.6095 99794
2.46 5.8097̄ 5.8951 9855 3.46 15.8928̄ 15.9242 99802
2.48 5.9288̄ 6.0125 9861̄ 3.48 16.2144 16.2453̄ 99810

2.50 6.0502 6.1323̄ .9866 3.50 16.5426 16.5728 .99817
2.52 6.1741̄ 6.2545 9871 3.52 16.8774 16.9070 99824
2.54 6.3004 6.3793̄ 9876 3.54 17.2190̄ 17.2480̄ 99831
2.56 6.4293̄ 6.5066̄ 9881 3.56 17.5674̄ 17.5958 99831
2.58 6.5607̄ 6.6364 9886̄ 3.58 17.9228 17.9507 99844

2.60 6.6947 6.7690 .9890 3.60 18.2854 18.3128̄ .99850
2.62 6.8315̄ 6.9043̄ 9895̄ 3.62 18.6554̄ 18.6822̄ 99856
2.64 6.9709 7.0423̄ 9899̄ 3.64 19.0328̄ 19.0590 99862
2.66 7.1132̄ 7.1832̄ 9903̄ 3.66 19.4178 19.4435 99867
2.68 7.2583̄ 7.3268 9906 3.68 19.8106̄ 19.8358 99872

2.70 7.4063̄ 7.4735̄ .9910 3.70 20.2113̄ 20.2360 .99877
2.72 7.5572 7.6231̄ 9914̄ 3.72 20.6201̄ 20.6443 99882
2.74 7.7112 7.7758̄ 9917̄ 3.74 21.0371 21.0609̄ 99887
2.76 7.8683̄ 7.9316̄ 9920 3.76 21.4626̄ 21.4859̄ 99891
2.78 8.0285̄ 8.0905 9923 3.78 21.8966 21.9194 99896̄

2.80 8.1919 8.2527 .9926 3.80 22.3394 22.3618̄ .99900̄
2.82 8.3586 8.4182 9929 3.82 22.7911 22.8131̄ 99904̄
2.84 8.5287̄ 8.5871̄ 9932̄ 3.84 23.2520̄ 23.2735̄ 99907
2.86 8.7021 8.7594̄ 9935̄ 3.86 23.7221 23.7432 99911
2.88 8.8791̄ 8.9352 9937 3.88 24.2018 24.2224 99915̄

2.90 9.0596̄ 9.1146̄ .9940̄ 3.90 24.6911 24.7113 .99918
2.92 9.2437̄ 9.2976 9942̄ 3.92 25.1903 25.2101 99921
2.94 9.4315̄ 9.4844̄ 9944 3.94 25.6996̄ 25.7190 99924
2.96 9.6231̄ 9.6749̄ 9947̄ 3.96 26.2191 26.2382̄ 99927
2.98 9.8185 9.8693 9949̄ 3.98 26.7492̄ 26.7679̄ 99930
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Table II.—Values of cosh(𝑥 + 𝑖𝑦) and sinh(𝑥 + 𝑖𝑦).

𝑥 = 0 𝑥 = .1
𝑦 𝑎 𝑏 𝑐 𝑑 𝑎 𝑏 𝑐 𝑑

0 1.0000 0000 0000 .0000 1.0050 .00000 .10017̄ .0000
.1 0.9950 ” ” 0998 1.0000̄ 01000 09967 1003
.2 0.9801̄ ” ” 1987̄ 0.9850 01990̄ 09817 1997̄
.3 0.9553 ” ” 2955 0.9601 02960 09570̄ 2970̄

.4 .9211̄ ” ” .3894 .9257̄ .03901 .09226 .3914

.5 8776 ” ” 4794 8820̄ 04802 08791̄ 4818

.6 8253 ” ” 5646 8295̄ 05656 08267 5675̄

.7 7648 ” ” 6442 7687̄ 06453 07661 6474

.8 .6967 ” ” .7174̄ .7002̄ .07186̄ .06979̄ .7800

.9 6216 ” ” 7833 6247̄ 07847̄ 06227̄ 7872
1.0 5403 ” ” 8415̄ 5430 08429 05412 8457̄
1.1 4536 ” ” 8912 4559̄ 08927 04544 8957̄

1.2 .3624̄ ” ” .9320 .3642̄ .09336 .03630̄ 0.9367̄
1.3 2675 ” ” 9636̄ 2688̄ 09652̄ 02680̄ 0.9684̄
1.4 1700̄ ” ” 9854 1708 09871 01703̄ 0.9904̄
1.5 0707 ” ” 9975̄ 0711 09992̄ 00709̄ 1.0025̄

1
2
𝜋 0000 ” ” 1.0000 0000 10017̄ 00000 1.0050

𝑥 = .2 𝑥 = .3
𝑦 𝑎 𝑏 𝑐 𝑑 𝑎 𝑏 𝑐 𝑑

0 1.0201̄ .0000 .2013 .0000 1.0453 .0000 .3045 .0000
.1 1.0150̄ 0201 2003 1018 1.0401̄ 0304 3030̄ 1044
.2 0.9997 0400 1973 2027̄ 1.0245̄ 0605 2985̄ 2077̄
.3 0.9745 0595 1923 3014 9987 0900̄ 2909 3089

.4 .9395 .0784 .1854 .3972 .9628 .1186 .2805̄ .4071̄

.5 8952̄ 0965 1767̄ 4890 9174̄ 1460̄ 2672̄ 5012̄

.6 8419 1137̄ 1662̄ 5760̄ 8687 1719 2513 5903̄

.7 7802̄ 1297 1540̄ 6571 7995 1962̄ 2329 6734

.8 .7107̄ .1444 .1403̄ .7318̄ .7283̄ .2184 .2122̄ .7498

.9 6341̄ 1577 1252̄ 7990 6498̄ 2385 1893̄ 8188
1.0 5511 1694 1088̄ 8584̄ 5648 2562 1645 8796
1.1 4627 1795̄ 0913 9091̄ 4742̄ 2714 1381 9316

1.2 .3696 .1877̄ .0730̄ 0.9507 .3788̄ .2838 .1103 0.9743̄
1.3 2729̄ 1940 0539̄ 0.9829̄ 2796 2934 0815̄ 1.0072
1.4 1734̄ 1984 0342 1.0052 1777̄ 3001 0518̄ 1.0301
1.5 0722̄ 2008 0142 1.0175 0739 3038̄ 0215 1.0427̄

1
2
𝜋 0000 2013 0000 1.0201̄ 0000 3045 0000 1.0453
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Table II.—Values of cosh(𝑥 + 𝑖𝑦) and sinh(𝑥 + 𝑖𝑦). (continued)

𝑥 = .4 𝑥 = .5
𝑦 𝑎 𝑏 𝑐 𝑑 𝑎 𝑏 𝑐 𝑑

0 1.0811̄ .0000 .4108̄ .0000 1.1276 .0000 .5211̄ .0000
.1 1.0756 0410 4087̄ 1079 1.1220̄ 0520 5185̄ 1126
.2 1.0595 0816 4026̄ 2148̄ 1.1051 1025 5107 2240
.3 1.0328̄ 1214̄ 3924 3195̄ 1.0773̄ 1540̄ 4978 3332

.4 .9957 .1600̄ .3783 .4210̄ 1.0386 .2029 .4800̄ .4391

.5 9487 1969 3605̄ 5183̄ 0.9896̄ 2498 4573 5406

.6 8922 2319 3390 6104 0.9306 2942 4301̄ 6367

.7 8268 2646 3142̄ 6964 0.8624 3357̄ 3986̄ 7264

.8 .7532̄ .2947 .2862̄ .7755 .7856 .3738 .3631̄ 0.8089

.9 6720̄ 3218 2553 8468 7009 4082̄ 3239 0.8833
1.0 5841 3456 2219 9097̄ 6093̄ 4385̄ 2815 0.9489̄
1.1 4904 3661̄ 1863 9635̄ 5115̄ 4644 2364̄ 1.0050̄

1.2 .3917 .3289̄ .1488 1.0076 .4056 .4857̄ .1888 1.0510̄
1.3 2892̄ 3958̄ 1099̄ 1.0417̄ 3016 5021 1394̄ 1.0865
1.4 1838̄ 4048̄ 0698 1.0653 1917̄ 5135 0886̄ 1.1163
1.5 0765̄ 4097 0291̄ 1.0784̄ 0798̄ 5198̄ 0369̄ 1.1248̄

1
2
𝜋 0000 4108̄ 0000 1.0811̄ 0000 5211̄ 0000 1.1276

𝑥 = .6 𝑥 = .7
𝑦 𝑎 𝑏 𝑐 𝑑 𝑎 𝑏 𝑐 𝑑

0 1.1855̄ .0000 .6367̄ .0000 1.2552 .0000 .7586̄ .0000
.1 1.1795 0636̄ 6335̄ 1183 1.2489̄ 0757 7548̄ 1253
.2 1.1618̄ 1265̄ 6240̄ 2355 1.2301 1542 7435̄ 2494̄
.3 1.1325̄ 1881 6082 3503 1.1991 2242̄ 7247 3709

.4 1.0918 .2479 .5864 .4617̄ 1.1561̄ .2954 .6987 .4888̄

.5 1.0403 3052 5587 5684 1.1015 3637̄ 6657 6018̄

.6 0.9784 3955̄ 5255̄ 6694̄ 1.0359 4253 6261̄ 7087

.7 0.9067̄ 4101 4869 7637̄ 0.9600̄ 4887̄ 5802̄ 8086

.8 .8259 .4567 .4436̄ 0.8504 .8745̄ .5442̄ .5285 0.9004

.9 7369̄ 4987 3957 0.9286 7802 5942 4715 0.9832
1.0 6405 5357 3440̄ 0.9975 6782̄ 6383 4099̄ 1.0562̄
1.1 5377 5674̄ 2888̄ 1.0565̄ 5693 6760 3441̄ 1.1186

1.2 .4296̄ .5934̄ .2307̄ 1.1049̄ .4548 .7070 .2749̄ 1.1699̄
1.3 3171 6135̄ 1703 1.1422 3358̄ 7309 2029 1.2094
1.4 2015̄ 6274̄ 1082 1.1682 2133 7475 1289 1.2369
1.5 0839̄ 6351̄ 0450 1.1825̄ 0888̄ 7567̄ 0537̄ 1.2520

1
2
𝜋 0000 6367̄ 0000 1.1855̄ 0000 7586 0000 1.2552
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Table II.—Values of cosh(𝑥 + 𝑖𝑦) and sinh(𝑥 + 𝑖𝑦). (continued)

𝑥 = .8 𝑥 = .9
𝑦 𝑎 𝑏 𝑐 𝑑 𝑎 𝑏 𝑐 𝑑

0 1.3374 .0000 .8881 .0000 1.4331̄ .0000 1.0265 .0000
.1 1.3308̄ 0887̄ 8837̄ 1335 1.4259 1025̄ 1.0214̄ 1431̄
.2 1.3108 1764 8704 2657 1.4045 2039 1.0061̄ 2847
.3 1.2776 2625̄ 8484 3952 1.3691 3034̄ 0.9807̄ 4235

.4 1.2319̄ .3458 .8180 .5208 1.3200̄ .3997 .9455̄ .5581̄

.5 1.1737̄ 4258̄ 7794̄ 6412̄ 1.2577̄ 4921 9008 6871̄

.6 1.1038 5015̄ 7330̄ 7552̄ 1.1828̄ 5796 8472 8092̄

.7 1.0229 5721 6793̄ 8616̄ 1.0961̄ 6613̄ 7851 9232

.8 .9318̄ .6371̄ .6188̄ 0.9595 .9984 .7364̄ .7152̄ 1.0280

.9 8314̄ 6957̄ 5521̄ 1.0476 8908 8041̄ 6381̄ 1.1226
1.0 7226 7472 4798 1.1254 7743 8638 5546 1.2059̄
1.1 6067̄ 7915̄ 4028 1.1919 6500 9148 4656 1.2772̄

1.2 .4846 .8278̄ .3218 1.2465 .5193̄ 0.9568̄ .3720̄ 1.3357̄
1.3 3578̄ 8557 2376̄ 1.2887̄ 3834̄ 0.9891 2746̄ 1.3809̄
1.4 2273 8752̄ 1510̄ 1.3180 2436 1.0124 1745 1.4122
1.5 0946 8859̄ 0628 1.3341̄ 1014̄ 1.0239 0726 1.4295̄

1
2
𝜋 0000 .8881 0000 1.3374 0000 1.0265 0000 1.4331̄

𝑥 = 1.0 𝑥 = 1.1
𝑦 𝑎 𝑏 𝑐 𝑑 𝑎 𝑏 𝑐 𝑑

0 1.5431̄ .0000 1.1752 .0000 1.6685 .0000 1.3356 .0000
.1 1.5354̄ 1173 1.1693 1541̄ 1.6602̄ 1333 1.3290̄ 1666
.2 1.5123 2335 1.1518 3066̄ 1.6353̄ 2654 1.3090 3315̄
.3 1.4742̄ 3473̄ 1.1227 4560 1.5940̄ 3946 1.2760̄ 4931̄

.4 1.4213̄ 4576̄ 1.0824 .6009 1.5368 5201 1.2302 0.6498̄

.5 1.3542̄ 5634 1.0314̄ 7398̄ 1.4643̄ 6403 1.1721 0.7999

.6 1.2736̄ 6636̄ 0.9699 8718̄ 1.3771̄ 7542̄ 1.1024̄ 0.9421

.7 1.1802 7571̄ 0.8988 9941̄ 1.2762̄ 8604 1.0216̄ 1.0749̄

.8 1.0751̄ 0.8430 .8188̄ 1.1069 1.1625̄ 0.9581 .9306̄ 1.1969

.9 0.9592 0.9206̄ 7305 1.2087 1.0372̄ 1.0462 8302 1.3070
1.0 0.8337 0.9889 6350̄ 1.2985̄ 0.9015 1.1239 7217̄ 1.4040
1.1 0.6999 1.0473 5331̄ 1.3752̄ 0.7568 1.1903 6058 1.4870̄

1.2 .5592̄ 1.0953 .4258 1.4382 .6046 1.2449̄ .4840̄ 1.5551
1.3 5128 1.1324̄ 3144̄ 1.4868̄ 4463 1.2870̄ 3575̄ 1.6077
1.4 2623̄ 1.1581̄ 1998̄ 1.5213 2836 1.3162 2270 1.6442
1.5 1092̄ 1.1723̄ 0831 1.5392 1180 1.3323̄ 0945̄ 1.6643

1
2
𝜋 0000 1.1752 0000 1.5431̄ .0000 1.3356 .0000 1.6685
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Table II.—Values of cosh(𝑥 + 𝑖𝑦) and sinh(𝑥 + 𝑖𝑦). (continued)

𝑥 = 1.2 𝑥 = 1.3
𝑦 𝑎 𝑏 𝑐 𝑑 𝑎 𝑏 𝑐 𝑑

0 1.8107̄ .0000 1.5095̄ .0000 1.9709 0000 1.6984̄ .0000
.1 1.8016 1507̄ 1.5019 1808̄ 1.9611̄ 1696̄ 1.6899̄ 1968̄
.2 1.7746̄ 2999̄ 1.4794̄ 3598̄ 1.9316 3374 1.6645 3916
.3 1.7298̄ 4461̄ 1.4420 5351̄ 1.8829̄ 5019 1.6225 5824

.4 1.6677 .5878 1.3903 0.7051 1.8153 .6614̄ 1.5643 0.7675

.5 1.5890 7237̄ 1.3247̄ 0.8681̄ 1.7296 8142 1.4905̄ 0.9449

.6 1.4944 8523 1.2458 1.0224̄ 1.6267̄ 9590̄ 1.4017 1.1131

.7 1.3849̄ 9724 1.1545̄ 1.1665̄ 1.5074 1.0941 1.2990̄ 1.2697

.8 1.2615̄ 1.0828 1.0517̄ 1.2989̄ 1.3731 1.2183 1.1833̄ 1.4139̄

.9 1.1255 1.1824̄ 0.9383̄ 1.4183 1.2251 1.3304̄ 1.0557 1.5439̄
1.0 0.9783 1.2702̄ 0.8156̄ 1.5236 1.0649̄ 1.4291 0.9176 1.6585̄
1.1 0.8213 1.3452 0.6847̄ 1.6137̄ 0.8940 1.5136 0.7704̄ 1.7565̄

1.2 .6561 1.4069̄ 0.5470̄ 1.6876 .7142̄ 1.5830̄ 0.6154 1.8370̄
1.3 4844̄ 1.4544 0.4038̄ 1.7447̄ 5272 1.6365̄ 0.4543 1.8991̄
1.4 3078̄ 1.4875̄ 0.2566̄ 1.7843 3350 1.6737̄ 0.2887̄ 1.9422
1.5 1281̄ 1.5057̄ 0.1068̄ 1.8061 1394 1.6941 0.1201 1.9660̄

1
2
𝜋 0000 1.5095̄ 0000 1.8107̄ 0000 1.6984̄ 0000 1.9709

𝑥 = 1.4 𝑥 = 1.5
𝑦 𝑎 𝑏 𝑐 𝑑 𝑎 𝑏 𝑐 𝑑

0 2.1509̄ .0000 1.9043 .0000 2.3524 .0000 2.1293̄ .0000
.1 2.1401 1901 1.8948 2147 2.3413 2126 2.1187̄ 2348
.2 2.1080 3783 1.8663 4273 2.3055 4230 2.0868 4674
.3 2.0548 5628̄ 1.8192 6356 2.2473 6292 2.0342̄ 6951

.4 1.9811 0.7416̄ 1.7540 0.8376 2.1667 0.8292̄ 1.9612̄ 0.9161̄

.5 1.8876̄ 0.9130̄ 1.6712̄ 1.0312̄ 2.0644 1.0208 1.8686 1.1278

.6 1.7752 1.0753̄ 1.5713 1.2145 1.9415 1.2023 1.7574̄ 1.3283̄

.7 1.6451 1.2288̄ 1.4565 1.3856 1.7992 1.3717 1.6286̄ 1.5155̄

.8 1.4985 1.3661 1.3268̄ 1.5430̄ 1.6389 1.5275̄ 1.4835̄ 1.6875

.9 1.3370 1.4917 1.1838̄ 1.6849 1.4623̄ 1.6679 1.3236̄ 1.8427̄
1.0 1.1622̄ 1.6024 1.0289 1.8099 1.2710 1.7917 1.1505̄ 1.9795̄
1.1 0.9756 1.6971 0.8638 1.9168 1.0671̄ 1.8976 0.9659̄ 2.0965̄

1.2 .7794 1.7749̄ .6900 2.0047 .8524 1.9846̄ .7716̄ 2.1925
1.3 5754 1.8349 5094 2.0725 6293̄ 2.0517̄ 5696̄ 2.2667̄
1.4 3656̄ 1.8766̄ 3237̄ 2.1196 3998 2.0983 3619 2.3182̄
1.5 1522̄ 1.8996 1347 2.1455 1664 2.1239 1506 2.3465

1
2
𝜋 .0000 1.9043 0000 2.1509̄ .0000 2.1293̄ .0000 2.3524
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Table III.

𝑢 gd𝑢 𝜃∘ 𝑢 gd𝑢 𝜃∘ 𝑢 gd𝑢 𝜃∘

∘ ∘ ∘
00 .0000 0.000 .60 .5669 32.483 1.50 1.1317 64.843
.02 0200̄ 1.146 .62 5837̄ 33.444 1.55 1.1525̄ 66.034
.04 0400̄ 2.291 .64 6003̄ 34.395 1.60 1.1724̄ 67.171
.06 0600̄ 3.436 .66 6167 35.336 1.65 1.1913 68.257
.08 0799 4.579 .68 6329 36.265 1.70 1.2094 69.294

.10 .0998 5.720 .70 .6489 37.183 1.75 1.2267̄ 70.284

.12 1197 6.859 .72 6648 38.091 1.80 1.2432̄ 71.228

.14 1395 7.995 .74 6804 38.987 1.85 1.2589̄ 72.128

.16 1593 9.128 .76 6958 39.872 1.90 1.2739̄ 72.987

.18 1790 10.258 .78 7111 40.746 1.95 1.2881 73.805

.20 .1987̄ 11.384 .80 .7261 41.608 2.00 1.3017 74.584

.22 2183̄ 12.505 .82 7410 42.460 2.10 1.3271 76.037

.24 2377 13.621 .84 7557̄ 43.299 2.20 1.3501̄ 77.354

.26 2571 14.732 .86 7702̄ 44.128 2.30 1.3710̄ 78.549

.28 2764 15.837 .88 7844 44.944 2.40 1.3899̄ 79.633

.30 .2956 16.937 .90 .7985̄ 45.750 2.50 1.4070̄ 80.615

.32 3147̄ 18.030 .92 8123 46.544 2.60 1.4227̄ 81.513

.34 3336 19.116 .94 8260̄ 47.326 2.70 1.4366̄ 82.310

.36 3525̄ 20.195 .96 8394 48.097 2.80 1.4493 83.040

.38 3712̄ 21.267 .98 8528 48.857 2.90 1.4609̄ 83.707

.40 .3897 22.331 1.00 .8658̄ 49.605 3.00 1.4713 84.301

.42 4082̄ 23.386 1.05 8976̄ 51.428 3.10 1.4808 84.841

.44 4264 24.434 1.10 9281 53.178 3.20 1.4894 85.336

.46 4446̄ 25.473 1.15 9575̄ 54.860 3.30 1.4971̄ 80.715

.48 4626̄ 26.503 1.20 9857̄ 56.476 3.40 1.5041̄ 86.177

.50 .4804 27.524 1.25 1.0127 58.026 3.50 1.5104 86.541

.52 4980 28.535 1.30 1.0387̄ 59.511 3.60 1.5162̄ 86.870

.54 5155 29.537 1.35 1.0635̄ 60.933 3.70 1.5214 87.168

.56 5328 30.529 1.40 1.0873̄ 62.295 3.80 1.5261̄ 87.437

.58 5500̄ 31.511 1.45 1.1100̄ 63.598 3.90 1.5303 87.681

Table IV.

𝑢 gd𝑢 log sinh𝑢 log cosh𝑢 𝑢 gd𝑢 log sinh𝑢 log cosh𝑢

4.0 1.5342̄ 1.4360 1.4363 5.5 1.5626 2.08758 2.08760̄
4.1 1.5377̄ 1.4795 1.4797 5.6 1.5634 2.13101 2.13103̄
4.2 1.5408 1.5229 1.5231 5.7 1.5641 2.17444 2.17445
4.3 1.5437̄ 1.5664 1.5665 5.8 1.5648 2.21787 2.21788
4.4 1.5462 1.6098 1.6099 5.9 1.5653 2.36130 2.26131

4.5 1.5486̄ 1.6532 1.6533 6.0 1.5658 2.30473 2.30474̄
4.6 1.5507̄ 1.6967 1.6968 6.2 1.5667 2.39159 2.39160̄
4.7 1.5526 1.7401 1.7402 6.4 1.5675̄ 2.47845 2.47846
4.8 1.5543 1.7836 1.7836 6.6 1.5681̄ 2.56531 2.56531
4.9 1.5559 1.8270 1.8270 6.8 1.5686̄ 2.65217 2.65217

5.0 1.5573 1.8704 1.8705̄ 7.0 1.5690̄ 2.73903 2.73903
5.1 1.5586 1.9139̄ 1.9139̄ 7.5 1.5697̄ 2.95618̄ 3.95618̄
5.2 1.5598̄ 1.9573̄ 1.9573 8.0 1.5701̄ 3.17333̄ 3.17333̄
5.3 1.5608 2.0007 2.0007 8.5 1.5704̄ 3.39047 3.39047
5.4 1.5618̄ 2.0442̄ 2.0442̄ 9.0 1.5705 3.60762 3.60762

∞ 1.5708̄ ∞ ∞
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Appendix.

40.1 Historical and Bibliographical.

What is probably the earliest suggestion of the analogy between the sector of
the circle and that of the hyperbola is found in Newton’s Principia (Bk. 2,
prop. 8 et seq.) in connection with the solution of a dynamical problem. On
the analytical side, the first hint of the modified sine and cosine is seen in
Roger Cotes’ Harmonica Mensurarum (1722), where he suggests the possibility
of modifying the expression for the area of the prolate spheroid so as to give that
of the oblate one, by a certain use of the operator

√
−1. The actual inventor of

the hyperbolic trigonometry was Vincenzo Riccati, S.J. (Opuscula ad res Phys.
et Math. pertinens, Bononiæ, 1757). He adopted the notation Sh.𝜑, Ch.𝜑 for
the hyperbolic functions, and Sc.𝜑, Cc.𝜑 for the circular ones. He proved the
addition theorem geometrically and derived a construction for the solution of
a cubic equation. Soon after, Daviet de Foncenex showed how to interchange
circular and hyperbolic functions by the use of

√
−1, and gave the analogue of

De Moivre’s theorem, the work resting more on analogy, however, than on clear
definition (Reflex. sur les quant. imag., Miscel. Turin Soc., Tom. 1). Johann
Heinrich Lambert systematized the subject, and gave the serial developments and
the exponential expressions. He adopted the notation sinh𝑢, etc., and introduced
the transcendent angle, now called the gudermanian, using it in computation
and in the construction of tables (l. c. page 30). The important place occupied
by Gudermann in the history of the subject is indicated on page 33.

The analogy of the circular and hyperbolic trigonometry naturally played a
considerable part in the controversy regarding the doctrine of imaginaries, which
occupied so much attention in the eighteenth century, and which gave birth to the
modern theory of functions of the complex variable. In the growth of the general
complex theory, the importance of the “singly periodic functions” became still
clearer, and was gradually developed by such writers as Ferroni (Magnit. expon.
log. et trig., Florence, 1782); Dirksen (Organon der tran. Anal., Berlin, 1845);
Schellbach (Die einfach. period. funkt., Crelle, 1854); Ohm (Versuch eines volk.

88
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conseq. Syst. der Math., Nürnberg, 1855); Hoüel (Theor. des quant. complex,
Paris, 1870). Many other writers have helped in systematizing and tabulating
these functions, and in adapting them to a variety of applications. The following
works may be especially mentioned: Gronau (Tafeln, 1862, Theor. und Anwend.,
1865); Forti (Tavoli e teoria, 1870); Laisant (Essai, 1874); Gunther (Die Lehre
..., 1881). The last-named work contains a very full history and bibliography
with numerous applications. Professor A. G. Greenhill, in various places in his
writings, has shown the importance of both the direct and inverse hyperbolic
functions, and has done much to popularize their use (see Diff. and Int. Calc.,
1891). The following articles on fundamental conceptions should be noticed:
Macfarlane, On the definitions of the trigonometric functions (Papers on Space
Analysis, N. Y., 1894); Haskell, On the introduction of the notion of hyperbolic
functions (Bull. N. Y. M. Soc., 1895). Attention has been called in Arts. 30
and 37 to the work of Arthur E. Kennelly in applying the hyperbolic complex
theory to the plane vectors which present themselves in the theory of alternating
currents; and his chart has been described on page 56 as a useful substitute for a
numerical complex table (Proc. A. I. E. E., 1895). It may be worth mentioning
in this connection that the present writer’s complex table in Art. 39 is believed
to be the only one of its kind for any function of the general argument 𝑥 + 𝑖𝑦.

40.2 Exponential Expressions as Definitions.

For those who wish to start with the exponential expressions as the definitions
of sinh𝑢 and cosh𝑢, as indicated on page 28, it is here proposed to show how
these definitions can be easily brought into direct geometrical relation with the
hyperbolic sector in the form 𝑥

𝑎 = cosh 𝑆
𝐾 , 𝑦

𝑏 = sinh 𝑆
𝐾 , by making use of the

identity cosh2 𝑢− sinh2 𝑢 = 1, and the differential relations 𝑑 cosh𝑢 = sinh𝑢 𝑑𝑢,
𝑑 sinh𝑢 = cosh𝑢 𝑑𝑢, which are themselves immediate consequences of those
exponential definitions. Let 𝑂𝐴, the initial radius of the hyperbolic sector, be
taken as axis of 𝑥, and its conjugate radius 𝑂𝐵 as axis of 𝑦; let 𝑂𝐴 = 𝑎, 𝑂𝐵 = 𝑏,
angle 𝐴𝑂𝐵 = 𝜔, and area of triangle 𝐴𝑂𝐵 = 𝐾, then 𝐾 = 1

2𝑎𝑏 sin𝜔. Let

the coordinates of a point 𝑃 on the hyperbola be 𝑥 and 𝑦, then 𝑥2

𝑎2 − 𝑦2

𝑏2 = 1.

Comparison of this equation with the identity cosh2 𝑢 − sinh2 𝑢 = 1 permits
the two assumptions 𝑥

𝑎 = cosh𝑢 and 𝑦
𝑏 = sinh𝑢, wherein 𝑢 is a single auxiliary

variable; and it now remains to give a geometrical interpretation to 𝑢, and to
prove that 𝑢 = 𝑆

𝐾 , wherein 𝑆 is the area of the sector 𝑂𝐴𝑃 . Let the coordinates
of a second point 𝑄 be 𝑥+∆𝑥 and 𝑦+∆𝑦, then the area of the triangle 𝑃𝑂𝑄 is, by
analytic geometry, 1

2 (𝑥∆𝑦−𝑦∆𝑥) sin𝜔. Now the sector 𝑃𝑂𝑄 bears to the triangle
𝑃𝑂𝑄 a ratio whose limit is unity, hence the differential of the sector 𝑆 may be
written 𝑑𝑆 = 1

2 (𝑥𝑑𝑦 − 𝑦𝑑𝑥) sin𝜔 = 1
2𝑎𝑏 sin𝜔(cosh2 𝑢 − sinh2 𝑢)𝑑𝑢 = 𝐾𝑑𝑢. By

integration 𝑆 = 𝐾𝑢, hence 𝑢 = 𝑆
𝐾 , the sectorial measure (p. 5); this establishes

the fundamental geometrical relations 𝑥
𝑎 = cosh 𝑆

𝐾 , 𝑦
𝑏 = sinh 𝑆

𝐾 .
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