
Securing Debian Manual
Javier Fernández-Sanguino Peña <jfs@computer.org>

2.6 10 octubre 2002Wed, 18 Sep 2002 14:09:35 +0200

Abstract

This document describes the process of securing and hardening the default Debian installation.
It covers some of the common tasks to set up a secure network environment using Debian
GNU/Linux. It also gives additional information on the security tools available as well as the
work done by the Debian security team.

Copyright Notice

Copyright © 2002 Javier Fernández-Sanguino Peña

Copyright © 2001 Alexander Reelsen, Javier Fernández-Sanguino Peña

Copyright © 2000 Alexander Reelsen

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 (http://www.fsf.org/copyleft/fdl.
html) or any later version published by the Free Software Foundation. It is distributed in
the hope that it will be useful, but WITHOUT ANY WARRANTY.

http://www.fsf.org/copyleft/fdl.html
http://www.fsf.org/copyleft/fdl.html

i

Contents

1 Introduction 1

1.1 Download the manual . 1

1.2 Organizational Notes/Feedback . 2

1.3 Prior knowledge . 2

1.4 Things that need to be written (FIXME/TODO) . 2

1.5 Changelog/History . 5

1.5.1 Version 2.6 (september 2002) . 5

1.5.2 Version 2.5 (september 2002) . 5

1.5.3 Version 2.5 (august 2002) . 5

1.5.4 Version 2.4 . 9

1.5.5 Version 2.3 . 9

1.5.6 Version 2.3 . 9

1.5.7 Version 2.2 . 10

1.5.8 Version 2.1 . 10

1.5.9 Version 2.0 . 10

1.5.10 Version 1.99 . 12

1.5.11 Version 1.98 . 12

1.5.12 Version 1.97 . 12

1.5.13 Version 1.96 . 12

1.5.14 Version 1.95 . 13

1.5.15 Version 1.94 . 13

1.5.16 Version 1.93 . 13

1.5.17 Version 1.92 . 13

CONTENTS ii

1.5.18 Version 1.91 . 13

1.5.19 Version 1.9 . 14

1.5.20 Version 1.8 . 14

1.5.21 Version 1.7 . 14

1.5.22 Version 1.6 . 15

1.5.23 Version 1.5 . 15

1.5.24 Version 1.4 . 15

1.5.25 Version 1.3 . 16

1.5.26 Version 1.2 . 16

1.5.27 Version 1.1 . 16

1.5.28 Version 1.0 . 16

1.6 Credits and Thanks! . 16

2 Before you begin 19

2.1 What do you want this system for? . 19

2.2 Be aware of general security problems . 19

2.3 How does Debian handle security? . 21

3 Before and during the installation 23

3.1 Choose a BIOS password . 23

3.2 Partitioning the system . 23

3.2.1 Choose an intelligent partition scheme . 23

3.3 Do not plug to the Internet until ready . 25

3.4 Set a root password . 25

3.5 Activate shadow passwords and MD5 passwords 25

3.6 Run the minimum number of services required . 26

3.6.1 Disabling daemon services . 27

3.6.2 Disabling inetd services . 28

3.7 Install the minimum amount of software required 28

3.7.1 Removing Perl . 29

3.8 Read the debian security mailing lists . 31

CONTENTS iii

4 After Installation 33

4.1 Change the BIOS (again) . 33

4.2 Set a LILO or GRUB password . 33

4.3 Remove root prompt on the kernel . 34

4.4 Disallow floppy booting . 35

4.5 Restricting console login access . 36

4.6 Restricting system reboots through the console . 36

4.7 Mounting partitions the right way . 36

4.7.1 Setting /tmp noexec . 37

4.7.2 Setting /usr read-only . 38

4.8 Execute a security update . 38

4.9 Subscribe to the Debian Security Announce mailing List 39

4.10 Providing secure user access . 39

4.10.1 User authentication: PAM . 39

4.10.2 Limiting resource usage: the limits.conf file 42

4.10.3 User Login actions: edit /etc/login.defs 42

4.10.4 Restricting ftp: editing /etc/ftpusers 44

4.10.5 Using su . 44

4.10.6 Using sudo . 44

4.10.7 Disallow remote adminitrative access . 44

4.10.8 Restricting users’s access . 44

4.10.9 Hand-made user auditing . 45

4.10.10 Complete user audit . 46

4.10.11 Reviewing user profiles . 46

4.10.12 Setting users umasks . 46

4.10.13 Limiting what users can see/access . 47

4.10.14 Generating user passwords . 48

4.10.15 Checking user passwords . 48

4.10.16 Logging off idle users . 49

4.11 Using tcpwrappers . 49

4.12 The importance of logs and alerts . 50

CONTENTS iv

4.12.1 Using and customising logcheck . 51

4.12.2 Configuring where alerts are sent . 52

4.12.3 Using a loghost . 52

4.12.4 Log file permissions . 53

4.13 Using chroot . 54

4.14 Adding kernel patches . 54

4.15 Protecting against buffer overflows . 55

4.16 Secure file transfers . 56

4.17 File System limits and control . 56

4.17.1 Using quotas . 56

4.17.2 chattr/lsattr . 57

4.17.3 Checking file system integrity . 58

4.17.4 Setting up setuid check . 59

4.18 Securing network access . 59

4.18.1 Configuring kernel network features . 59

4.18.2 Securing the network on boot-time . 60

4.18.3 Configuring firewall features . 62

4.18.4 Disabling weak-end hosts issues . 62

4.18.5 Protecting against ARP attacks . 63

4.19 Taking a snapshot of the system . 64

4.20 Other recommendations . 65

4.20.1 Do not use software depending on svgalib 65

5 Securing services running on your system 67

5.1 Securing ssh . 68

5.1.1 Chrooting ssh . 69

5.1.2 Ssh clients . 70

5.1.3 Disallowing file transfers . 70

5.2 Securing Squid . 70

5.3 Securing FTP . 71

5.4 Securing access to the X Window System . 71

CONTENTS v

5.4.1 Check your display manager . 73

5.5 Securing printing access (The lpd and lprng issue) 73

5.6 Securing the mail service . 74

5.6.1 Configuring a Nullmailer . 74

5.6.2 Providing secure access to mailboxes . 76

5.6.3 Receiving mail securely . 76

5.7 Securing BIND . 77

5.7.1 Changing BIND’s user . 79

5.7.2 Chrooting the name server . 81

5.8 Securing Apache . 83

5.8.1 Disabling users from publishing web contents 83

5.8.2 Logfiles permissions . 84

5.8.3 Published web files . 84

5.9 Securing finger . 84

5.10 General chroot and suid paranoia . 85

5.10.1 Automaking chrooting programs . 85

5.11 General cleartext password paranoia . 85

5.12 Disabling NIS . 86

5.13 Disabling RPC services . 86

5.14 Adding firewall capabilities . 87

5.14.1 Firewalling the local system . 87

5.14.2 Using a firewall to protect other systems 88

5.14.3 Configuring the firewall . 88

6 Automatic hardening of Debian systems 91

6.1 Harden . 91

6.2 Bastille Linux . 92

7 Debian Security Infrastructure 95

7.1 The Debian Security Team . 95

7.2 Debian Security Advisories . 96

7.3 Debian Security Build Infrastructure . 97

CONTENTS vi

7.3.1 Developer’s guide to security updates . 98

7.4 Package signing in Debian . 100

7.4.1 The proposed scheme for package signature checks 101

7.4.2 Alternative per-package signing scheme 101

7.4.3 Checking distribution releases . 102

8 Security tools in Debian 109

8.1 Remote vulnerability assesment tools . 109

8.2 Network scanner tools . 110

8.3 Internal audits . 111

8.4 Auditing source code . 111

8.5 Virtual Private Networks . 111

8.5.1 Point to Point tunneling . 112

8.6 Public Key Infrastructure (PKI) . 113

8.7 SSL Infrastructure . 113

8.8 Anti-virus tools . 114

8.9 GPG agent . 115

9 Before the compromise 117

9.1 Continuously update the system . 117

9.1.1 Using Tiger to check for security updates 117

9.1.2 Avoid using the unstable branch . 118

9.1.3 Avoid using the testing branch . 119

9.1.4 Automatic updates in a Debian GNU/Linux system 119

9.2 Set up Intrusion Detection . 120

9.2.1 Network based intrusion detection . 121

9.2.2 Host based intrusion detection . 121

9.3 Useful kernel patches . 122

9.4 Avoiding root-kits . 123

9.4.1 Loadable Kernel Modules (LKM) . 123

9.4.2 Detecting root-kits . 123

9.5 Genius/Paranoia Ideas — what you could do . 124

9.5.1 Building a honeypot . 126

CONTENTS vii

10 After the compromise 127

10.1 General behavior . 127

10.2 Backing up the system . 128

10.3 Forensic analysis . 128

11 Frequently asked Questions (FAQ) 131

11.1 Security in the Debian operating system . 131

11.1.1 Is Debian more secure than X? . 131

11.1.2 There are many Debian bugs in Bugtraq. Does this mean that it is very
vulnerable? . 132

11.1.3 Does Debian have any certification related to security? 132

11.1.4 Are there any hardening programs for Debian? 133

11.1.5 I want to run XYZ service, which one should I choose? 133

11.1.6 How can I make service XYZ more secure in Debian? 133

11.1.7 How can I remove all the banners for services? 134

11.1.8 Are all Debian packages safe? . 134

11.1.9 Why are some log files/configuration files world-readable, isn’t this in-
secure? . 134

11.1.10 Why does /root/ (or UserX) have 755 permissions? 135

11.1.11 After installing a grsec/firewall, I started receiving many console mes-
sages! How do I remove them? . 135

11.1.12 Operating system users and groups . 136

11.1.13 Why is there a new group when I add a new user? (or Why does Debian
give each user one group?) . 139

11.1.14 Question regarding services and open ports 139

11.1.15 Common security issues . 141

11.1.16 How do I accomplish setting up a service for my users without giving
out shell accounts? . 142

11.2 My system is vulnerable! (Are you sure?) . 143

11.2.1 Vulnerability assessment scanner X says my Debian system is vulnerable! 143

11.2.2 I’ve seen an attack in my system’s logs. Is my system compromised? . . . 143

11.2.3 I have found strange ’MARK’ lines in my logs: Am I compromised? . . . 143

11.2.4 I found users using ’su’ in my logs: Am I compromised? 144

CONTENTS viii

11.2.5 I have found possible ’SYN flooding’ in my logs: Am I under attack? . . . 144

11.2.6 I have found strange root sessions in my logs: Am I compromised? 145

11.2.7 I have suffered a break-in, what do I do? 145

11.2.8 How can I trace an attack? . 146

11.2.9 Program X in Debian is vulnerable, what do I do? 146

11.2.10 The version number for a package indicates that I am still running a vul-
nerable version! . 146

11.2.11 Specific software . 146

11.3 Questions regarding the Debian security team . 147

11.3.1 What is a Debian Security Advisory (DSA)? 147

11.3.2 The signature on Debian advisories does not verify correctly! 147

11.3.3 How are security incidents handled in Debian? 147

11.3.4 How much time will it take Debian to fix vulnerability XXXX? 147

11.3.5 How is security handled for testing and unstable ? 148

11.3.6 I use an older version of Debian, is it supported by the Debian Security
Team? . 148

11.3.7 Why are there no official mirrors for security.debian.org? 148

11.3.8 I’ve seen DSA 100 and DSA 102, what happened to DSA 101? 149

11.3.9 How can I reach the security team? . 149

11.3.10 What difference is there between security@debian.org and debian-security@lists.debian.org?149

11.3.11 How can I contribute to the Debian security team? 149

11.3.12 Who is the Security Team composed of? . 150

11.3.13 Does the Debian Security team check every new package in Debian? . . . 150

A The hardening process step by step 151

B Configuration checklist 155

C Setting up a stand-alone IDS 159

D Setting up a bridge firewall 163

D.1 A bridge providing NAT and firewall capabilities 164

D.2 A bridge providing firewall capabilities . 165

D.3 Basic IPtables rules . 166

CONTENTS ix

E Sample script to change the default Bind installation. 169

F Security update protected by a firewall 175

G Chroot environment for SSH 177

G.1 Automatically making the environment (the easy way) 177

G.2 Patching SSHto enable chroot functionality . 182

G.3 Handmade environment (the hard way) . 184

CONTENTS x

1

Chapter 1

Introduction

One of the hardest things about writing security documents is that every case is unique. Two
things you have to pay attention to are the threat environment and the security needs of the
individual site, host, or network. For instance, the security needs of a home user are completely
different from a network in a bank. While the primary threat a home user needs to face is the
script kiddie type of cracker, a bank network has to worry about directed attacks. Additionally,
the bank has to protect their customer’s data with arithmetic precision. In short, every user has
to consider the tradeoff between usability and security/paranoia.

Note that this manual only covers issues relating to software. The best software in the world
can’t protect you if someone can physically access the machine. You can place it under your
desk, or you can place it in a hardened bunker with an army in front of it. Nevertheless the
desktop computer can be much more secure (from a software point of view) than a physically
protected one if the desktop is configured properly and the software on the protected machine
is full of security holes. Obviously, you must consider both issues.

This document just gives an overview of what you can do to increase the security of your
Debian GNU/Linux system. If you have read other documents regarding Linux security, you
will find that there are common issues which might overlap with this document. However,
this document does not try to be the ultimate source of information you will be using, it only
tries to adapt this same information so that it is meaningful to a Debian GNU/Linux system.
Different distributions do some things in different ways (startup of daemons is one example);
here, you will find material which is appropriate for Debian’s procedures and tools.

If you have comments, additions or suggestions, please mail them to Javier Fernández-Sanguino
(mailto:jfs@computer.org) (alternate address: jfs@debian.org) and they will be incorpor-
ated into this manual.

1.1 Download the manual

You can download or view the newest version of the Securing Debian Manual from the Debian
Documentation Project (http://www.debian.org/doc/manuals/securing-debian-howto/).

mailto:jfs@computer.org
http://www.debian.org/doc/manuals/securing-debian-howto/

Chapter 1. Introduction 2

Feel free to check out the version control system through its CVS server (http://cvs.debian.
org/ddp/manuals.sgml/securing-howto/?cvsroot=debian-doc).

You can download also a text version (http://www.debian.org/doc/manuals/securing-debian-howto/
securing-debian-howto.txt) from the Debian Documentation’s Project site. Other formats,
like PDF, are not (yet) provided. However, you can download or install the harden-doc (http:
//packages.debian.org/harden-doc) package which provides this same document in
HTML, txt and PDF formats.

1.2 Organizational Notes/Feedback

Now to the official part. At the moment I (Alexander Reelsen) wrote most paragraphs of this
manual, but in my opinion this should not stay the case. I grew up and live with free soft-
ware, it is part of my everyday use and I guess yours, too. I encourage everybody to send me
feedback, hints additions or any other suggestions, you might have.

If you think, you can maintain a certain section or paragraph better, then write to the document
maintainer and you are welcome to do it. Especially if you find a section marked as FIXME,
that means the authors did not have the time yet or the needed knowledge about the topic,
drop them a mail immediately.

The topic of this manual makes it quite clear that it is important to keep it up to date, and you
can do your part. Please contribute.

1.3 Prior knowledge

The installation of Debian GNU/Linux is not very difficult and you should have been able
to install it. If you already have some knowledge about Linux or other Unices and you are a
bit familiar with basic security, it will be easier to understand this manual, as this document
cannot explain every little detail of a feature (otherwise this would have been a book instead
of a manual). If you are not that familiar, however, you might want to take a look at ‘Be aware
of general security problems’ on page 19 for where to find more in-depth information.

1.4 Things that need to be written (FIXME/TODO)

• Write about remote monitoring tools (to check for system availability) such as monit, dae-
montools and mon. See http://linux.oreillynet.com/pub/a/linux/2002/05/
09/sysadminguide.html .

• Consider writting a section on how to build Debian-based network appliances (with in-
formation such as the base system, equivs and FAI).

• Check if http://rr.sans.org/linux/hardening.php has relevant info not yet
covered here.

http://cvs.debian.org/ddp/manuals.sgml/securing-howto/?cvsroot=debian-doc
http://cvs.debian.org/ddp/manuals.sgml/securing-howto/?cvsroot=debian-doc
http://www.debian.org/doc/manuals/securing-debian-howto/securing-debian-howto.txt
http://www.debian.org/doc/manuals/securing-debian-howto/securing-debian-howto.txt
http://packages.debian.org/harden-doc
http://packages.debian.org/harden-doc
http://linux.oreillynet.com/pub/a/linux/2002/05/09/sysadminguide.html
http://linux.oreillynet.com/pub/a/linux/2002/05/09/sysadminguide.html
http://rr.sans.org/linux/hardening.php

Chapter 1. Introduction 3

• Add Information on how to set up a laptop with Debian http://rr.sans.org/linux/
debian_laptop.php .

• Add information on how to set up a firewall using Debian GNU/Linux. The section
regarding firewalling is oriented currently towards a single system (not protecting oth-
ers. . .) also talk on how to test the setup.

• Add information on setting up a proxy firewall with Debian GNU/Linux stating specific-
ally which packages provide proxy services (like xfwp , xproxy , ftp-proxy , redir ,
smtpd , nntp-cache , dnrd , jftpgw ,oops ,pnsd , perdition ,transproxy , tsocks).
Should point to the manual for any other info. Also note that zorp is not (yet) available
as a Debian package but is a proxy firewall (they provide Debian packages upstream).

• Information on service configuration with file-rc

• Check all the reference URLs and remove/fix those no longer available.

• Add information on available replacements (in Debian) for common servers which are
useful for limited functionality. Examples:

– local lpr with cups (package)?

– remote lrp with lpr

– bind with dnrd/maradns

– apache with dhttpd/thttpd/wn (tux?)

– exim/sendmail with ssmtpd/smtpd/postfix

– squid with tinyproxy

– ftpd with oftpd/vsftp

– . . .

• More information regarding security-related kernel patches in Debian, including the ones
shown above and specific information on how to enable these patches in a Debian system.

– Linux Intrusion Detection (lids-2.2.19)

– Linux Trustees (in package trustees)

– NSA Enhanced Linux (http://www.coker.com.au/selinux/)

– kernel-patch-2.2.18-openwall (http://packages.debian.org/kernel-patch-2.
2.18-openwall)

– kernel-patch-2.2.19-harden

– Linux capabilities (in package lcap

– kernel-patch-freeswan,kernel-patch-int

• Details of turning off unnecessary network services (besides inetd), it is partly in the
hardening procedure but could be broadened a bit.

• Information regarding password rotation which is closely related to policy.

http://rr.sans.org/linux/debian_laptop.php
http://rr.sans.org/linux/debian_laptop.php
http://www.coker.com.au/selinux/
http://packages.debian.org/kernel-patch-2.2.18-openwall
http://packages.debian.org/kernel-patch-2.2.18-openwall

Chapter 1. Introduction 4

• Policy, and educating users about policy.

• More about tcpwrappers, and wrappers in general?

• hosts.equiv and other major security holes.

• Issues with file sharing servers such as Samba and NFS?

• suidmanager/dpkg-statoverrides.

• lpr and lprng.

• Switching off the gnome IP things.

• Talk about pam_chroot (see http://http://lists.debian.org/debian-security/
2002/debian-security-200205/msg00011.html) and its usefulness to limit users.
Introduce information related to http://online.securityfocus.com/infocus/
1575 . Pdmenu, for example is available in Debian (while as flash is not).

• Talk about chrooting services, some more info on http://www.linuxfocus.org/
English/January2002/aritcle225.shtml , http://www.networkdweebs.com/
chroot.html and http://www.linuxsecurity.com/feature_stories/feature_
story-99.html

• Talk about programs to make chroot jails. Compartment and chrootuid are waiting in
incoming. Some others (makejail, jailer) could also be introduced.

• Add information provided by Karl Hegbloom regarding chrooting Bind 9, see http://
people.pdxlinux.org/~karlheg/Secure_Bind9_uHOWTO/Secure_Bind_9_uHOWTO.
xhtml .

• Add information provided by Pedro Zornenon to chrooting Bind 8 only for potato though
:(, see http://people.debian.org/~pzn/howto/chroot-bind.sh.txt (include
the whole script?).

• More information regarding log analysis software (i.e. logcheck and logcolorise).

• ’advanced’ routing (traffic policing is security related)

• limiting ssh access to running certain commands.

• using dpkg-statoverride.

• secure ways to share a CD burner among users.

• secure ways of providing networked sound in addition to network display capabilities
(so that X clients’ sounds are played on the X server’s sound hardware)

• securing web browsers.

• setting up ftp over ssh .

• using crypto loopback file systems.

http://http://lists.debian.org/debian-security/2002/debian-security-200205/msg00011.html
http://http://lists.debian.org/debian-security/2002/debian-security-200205/msg00011.html
http://online.securityfocus.com/infocus/1575
http://online.securityfocus.com/infocus/1575
http://www.linuxfocus.org/English/January2002/aritcle225.shtml
http://www.linuxfocus.org/English/January2002/aritcle225.shtml
http://www.networkdweebs.com/chroot.html
http://www.networkdweebs.com/chroot.html
http://www.linuxsecurity.com/feature_stories/feature_story-99.html
http://www.linuxsecurity.com/feature_stories/feature_story-99.html
http://people.pdxlinux.org/~karlheg/Secure_Bind9_uHOWTO/Secure_Bind_9_uHOWTO.xhtml
http://people.pdxlinux.org/~karlheg/Secure_Bind9_uHOWTO/Secure_Bind_9_uHOWTO.xhtml
http://people.pdxlinux.org/~karlheg/Secure_Bind9_uHOWTO/Secure_Bind_9_uHOWTO.xhtml
http://people.debian.org/~pzn/howto/chroot-bind.sh.txt

Chapter 1. Introduction 5

• encrypting the entire file system.

• steganographic tools.

• setting up a PKA for an organization.

• using LDAP to manage users. There is a HOWTO of ldap+kerberos for Debian at www.bayour.com
written by Turbo Fredrikson.

• How to remove information of reduced utility in production systems such as /usr/share/doc,
/usr/share/man (yes, security by obscurity).

1.5 Changelog/History

1.5.1 Version 2.6 (september 2002)

Changes by Chris Tillman, tillman@voicetrak.com.

• Changed around to improve grammar/spelling.

• s/host.deny/hosts.deny/ (1 place)

• Applied Larry Holish’s patch (quite big, fixes a lot of FIXMEs)

1.5.2 Version 2.5 (september 2002)

Changes by Javier Fernández-Sanguino Peña (me).

• Fixed minor typos submitted by Thiemo Nagel.

• Added a footnote suggested by Thiemo Nagel.

• Fixed an URL link.

1.5.3 Version 2.5 (august 2002)

Changes by Javier Fernández-Sanguino Peña (me). There were many things waiting on my
inbox (as far back as February) to be included, so I’m going to tag this the back from honeymoon
release :)

• Applied a patch contributed by Philipe Gaspar regarding the Squid which also kills a
FIXME.

• Yet another FAQ item regarding service banners taken from the debian-security mailing
list (thread “Telnet information” started 26th July 2002).

Chapter 1. Introduction 6

• Added a note regarding use of CVE cross references in the How much time does the Debian
security team. . . FAQ item.

• Added a new section regarding ARP attacks contributed by Arnaud “Arhuman” Assad.

• New FAQ item regarding dmesg and console login by the kernel.

• Small tidbits of information to the signature-checking issues in packages (it seems to not
have gotten past beta release).

• New FAQ item regarding vulnerability assessment tools false positives.

• Added new sections to the chapter that contains information on package signatures and
reorganised it as a new Debian Security Infrastructure chapter.

• New FAQ item regarding Debian vs. other Linux distributions.

• New section on mail user agents with GPG/PGP functionality in the security tools chapter.

• Clarified how to enable MD5 passwords in woody, added a pointer to PAM as well as a
note regarding the max definition in PAM.

• Added a new appendix on how to create chroot environments (after fiddling a bit with
makejail and fixing, as well, some of its bugs), integrated duplicate information in all the
appendix.

• Added some more information regarding SSHchrooting and its impact on secure file
transfers. Some information has been retrieved from the debian-security mailing list
(June 2002 thread: secure file transfers).

• New sections on how to do automatic updates on Debian systems as well as the caveats
of using testing or unstable regarding security updates.

• New section regarding keeping up to date with security patches in the Before compromise
section as well as a new section about the debian-security-announce mailing list.

• Added information on how to automatically generate strong passwords.

• New section regarding login of idle users.

• Reorganised the securing mail server section based on the Secure/hardened/minimal Debian
(or “Why is the base system the way it is?”) thread on the debian-security mailing list (May
2002).

• Reorganised the section on kernel network parameters, with information provided in the
debian-security mailing list (May 2002, syn flood attacked? thread) and added a new FAQ
item as well.

• New section on how to check users passwords and which packages to install for this.

• New section on PPTP encryption with Microsoft clients discussed in the debian-security
mailing list (April 2002).

Chapter 1. Introduction 7

• Added a new section describing what problems are there when binding any given service
to a specific IP address, this information was written based on the bugtraq mailing list in
the thread: Linux kernel 2.4 “weak end host” issue (previously discussed on debian-security as
“arp problem”) (started on May 9th 2002 by Felix von Leitner).

• Added information on ssh protocol version 2.

• Added two subsections related to Apache secure configuration (the things specific to
Debian, that is).

• Added a new FAQ related to raw sockets, one related to /root, an item related to users’
groups and another one related to log and configuration files permissions.

• Added a pointer to a bug in libpam-cracklib that might still be open. . . (need to check)

• Added more information regarding forensics analysis (pending more information on
packet inspection tools such as tcpflow).

• Changed the “what should I do regarding compromise” into a bullet list and included
some more stuff.

• Added some information on how to set up the Xscreensaver to lock the screen automat-
ically after the configured timeout.

• Added a note related to the utilities you should not install in the system. Included a
note regarding Perl and why it cannot be easily removed in Debian. The idea came after
reading Intersect’s documents regarding Linux hardening.

• Added information on lvm and journalling file systems, ext3 recommended. The inform-
ation there might be too generic, however.

• Added a link to the online text version (check).

• Added some more stuff to the information on firewalling the local system, triggered by a
comment made by Hubert Chan in the mailing list.

• Added more information on PAM limits and pointers to Kurt Seifried’s documents (re-
lated to a post by him to bugtraq on April 4th 2002 answering a person that had “dis-
covered” a vulnerability in Debian GNU/Linux related to resource starvation).

• As suggested by Julián Muñoz, provided more information on the default Debian umask
and what a user can access if he has been given a shell in the system (scary, huh?)

• Included a note in the BIOS password section due to a comment from Andreas Wohlfeld.

• Included patches provided by Alfred E. Heggestad fixing many of the typos still present
in the document.

• Added a pointer to the changelog in the Credits section since most people who contribute
are listed here (and not there).

Chapter 1. Introduction 8

• Added a few more notes to the chattr section and a new section after installation talking
about system snapshots. Both ideas were contributed by Kurt Pomeroy.

• Added a new section after installation just to remind users to change the boot-up se-
quence.

• Added some more TODO items provided by Korn Andras.

• Added a pointer to the NIST’s guidelines on how to secure DNS provided by Daniel
Quinlan.

• Added a small paragraph regarding Debian’s SSL certificates infrastructure.

• Added Daniel Quinlan’s suggestions regarding ssh authentication and exim’s relay con-
figuration.

• Added more information regarding securing bind including changes suggested by Daniel
Quinlan and an appendix with a script to make some of the changes commented on in
that section.

• Added a pointer to another item regarding Bind chrooting (needs to be merged).

• Added a one liner contributed by Cristian Ionescu-Idbohrn to retrieve packages with
tcpwrappers support.

• Added a little bit more info on Debian’s default PAM setup.

• Included a FAQ question about using PAM to provide services without shell accounts.

• Moved two FAQ items to another section and added a new FAQ regarding attack detec-
tion (and compromised systems).

• Included information on how to set up a bridge firewall (including a sample Appendix).
Thanks go to Francois Bayar who sent this to me in March.

• Added a FAQ regarding the syslogd’s MARK heartbeat from a question answered by
Noah Meyerhans and Alain Tesio in December 2001.

• Included information on buffer overflow protection as well as some information on ker-
nel patches.

• Added more information (and reorganised) the firewall section. Updated the information
regarding the iptables package and the firewall generators available.

• Reorganized the information regarding log checking, moved logcheck information from
host intrusion detection to that section.

• Added some information on how to prepare a static package for bind for chrooting (un-
tested).

• Added a FAQ item regarding some specific servers/services (could be expanded with
some of the recommendations from the debian-security list).

Chapter 1. Introduction 9

• Added some information on RPC services (and when it’s necessary).

• Added some more information on capabilities (and what lcap does). Is there any good
documentation on this? I haven’t found any documentation on my 2.4 kernel.

• Fixed some typos.

1.5.4 Version 2.4

Changes by Javier Fernández-Sanguino Peña.

• Rewritten part of the BIOS section.

1.5.5 Version 2.3

Changes by Javier Fernández-Sanguino Peña.

• Wrapped most file locations with the file tag.

• Fixed typo noticed by Edi Stojicevi.

• Slightly changed the remote audit tools section.

• Added some todo items.

• Added more information regarding printers and cups config file (taken from a thread on
debian-security).

• Added a patch submitted by Jesus Climent regarding access of valid system users to
Proftpd when configured as anonymous server.

• Small change on partition schemes for the special case of mail servers.

• Added Hacking Linux Exposed to the books section.

• Fixed directory typo noticed by Eduardo Pérez Ureta.

• Fixed /etc/ssh typo in checklist noticed by Edi Stojicevi.

1.5.6 Version 2.3

Changes by Javier Fernández-Sanguino Peña.

• Fixed location of dpkg conffile.

• Remove Alexander from contact information.

Chapter 1. Introduction 10

• Added alternate mail address.

• Fixed Alexander mail address (even if commented out).

• Fixed location of release keys (thanks to Pedro Zorzenon for pointing this out).

1.5.7 Version 2.2

Changes by Javier Fernández-Sanguino Peña.

• Fixed typos, thanks to Jamin W. Collins.

• Added a reference to apt-extracttemplate manpage (documents the APT::ExtractTemplate
config).

• Added section about restricted SSH. Information based on that posted by Mark Janssen,
Christian G. Warden and Emmanuel Lacour on the debian-security mailing list.

• Added information on anti-virus software.

• Added a FAQ: su logs due to the cron running as root.

1.5.8 Version 2.1

Changes by Javier Fernández-Sanguino Peña.

• Changed FIXME from lshell thanks to Oohara Yuuma.

• Added package to sXid and removed comment since it *is* available.

• Fixed a number of typos discovered by Oohara Yuuma.

• ACID is now available in Debian (in the acidlab package) thanks to Oohara Yuuma for
noticing.

• Fixed LinuxSecurity links (thanks to Dave Wreski for telling).

1.5.9 Version 2.0

Changes by Javier Fernández-Sanguino Peña. I wanted to change to 2.0 when all the FIXMEs
were, er, fixed but I ran out of 1.9X numbers :(

• Converted the HOWTO into a Manual (now I can properly say RTFM)

• Added more information regarding tcp wrappers and Debian (now many services are
compiled with support for them so it’s no longer an inetd issue).

Chapter 1. Introduction 11

• Clarified the information on disabling services to make it more consistent (rpc info still
referred to update-rc.d)

• Added small note on lprng.

• Added some more info on compromised servers (still very rough)

• Fixed typos reported by Mark Bucciarelli.

• Added some more steps in password recovery to cover the cases when the admin has set
paranoid-mode=on.

• Added some information to set paranoid-mode=on when login in console.

• New paragraph to introduce service configuration.

• Reorganised the After installation section so it is more broken up into several issues and
it’s easier to read.

• Wrote information on how to set up firewalls with the standard Debian 3.0 setup (iptables
package).

• Small paragraph explaining why installing connected to the Internet is not a good idea
and how to avoid this using Debian tools.

• Small paragraph on timely patching referencing to IEEE paper.

• Appendix on how to set up a Debian snort box, based on what Vladimir sent to the
debian-security mailing list (September 3rd 2001)

• Information on how logcheck is set up in Debian and how it can be used to set up HIDS.

• Information on user accounting and profile analysis.

• Included apt.conf configuration for read-only /usr copied from Olaf Meeuwissen’s post
to the debian-security mailing list

• New section on VPN with some pointers and the packages available in Debian (needs
content on how to set up the VPNs and Debian-specific issues), based on Jaroslaw Tabor’s
and Samuli Suonpaa’s post to debian-security.

• Small note regarding some programs to automatically build chroot jails

• New FAQ item regarding identd based on a discussion in the debian-security mailing list
(February 2002, started by Johannes Weiss).

• New FAQ item regarding inetd based on a discussion in the debian-security mailing
list (February 2002).

• Introduced note on rcconf in the “disabling services” section.

• Varied the approach regarding LKM, thanks to Philipe Gaspar

• Added pointers to CERT documents and Counterpane resources

Chapter 1. Introduction 12

1.5.10 Version 1.99

Changes by Javier Fernández-Sanguino Peña.

• Added a new FAQ item regarding time to fix security vulnerabilities.

• Reorganised FAQ sections.

• Started writing a section regarding firewalling in Debian GNU/Linux (could be broadened
a bit)

• Fixed typos sent by Matt Kraai

• Fixed DNS information

• Added information on whisker and nbtscan to the auditing section.

• Fixed some wrong URLs

1.5.11 Version 1.98

Changes by Javier Fernández-Sanguino Peña.

• Added a new section regarding auditing using Debian GNU/Linux.

• Added info regarding finger daemon taken from the security mailing list.

1.5.12 Version 1.97

Changes by Javier Fernández-Sanguino Peña.

• Fixed link for Linux Trustees

• Fixed typos (patches from Oohara Yuuma and Pedro Zorzenon)

1.5.13 Version 1.96

Changes by Javier Fernández-Sanguino Peña.

• Reorganized service installation and removal and added some new notes.

• Added some notes regarding using integrity checkers as intrusion detection tools.

• Added a chapter regarding package signatures.

Chapter 1. Introduction 13

1.5.14 Version 1.95

Changes by Javier Fernández-Sanguino Peña.

• Added notes regarding Squid security sent by Philipe Gaspar.

• Fixed rootkit links thanks to Philipe Gaspar.

1.5.15 Version 1.94

Changes by Javier Fernández-Sanguino Peña.

• Added some notes regarding Apache and Lpr/lpng.

• Added some information regarding noexec and read-only partitions.

• Rewrote how users can help in Debian security issues (FAQ item).

1.5.16 Version 1.93

Changes by Javier Fernández-Sanguino Peña.

• Fixed location of mail program.

• Added some new items to the FAQ.

1.5.17 Version 1.92

Changes by Javier Fernández-Sanguino Peña.

• Added a small section on how Debian handles security

• Clarified MD5 passwords (thanks to ‘rocky’)

• Added some more information regarding harden-X from Stephen van Egmond

• Added some new items to the FAQ

1.5.18 Version 1.91

Changes by Javier Fernández-Sanguino Peña.

• Added some forensics information sent by Yotam Rubin.

• Added information on how to build a honeynet using Debian GNU/Linux.

• Added some more TODOS.

• Fixed more typos (thanks Yotam!)

Chapter 1. Introduction 14

1.5.19 Version 1.9

Changes by Javier Fernández-Sanguino Peña.

• Added patch to fix misspellings and some new information (contributed by Yotam Ru-
bin)

• Added references to other online (and offline) documentation both in a section (see ‘Be
aware of general security problems’ on page 19) by itself and inline in some sections.

• Added some information on configuring Bind options to restrict access to the DNS server.

• Added information on how to automatically harden a Debian system (regarding the
harden package and bastille).

• Removed some done TODOs and added some new ones.

1.5.20 Version 1.8

Changes by Javier Fernández-Sanguino Peña.

• Added the default user/group list provided by Joey Hess to the debian-security mailing
list.

• Added information on LKM root-kits (‘Loadable Kernel Modules (LKM)’ on page 123)
contributed by Philipe Gaspar.

• Added information on Proftp contributed by Emmanuel Lacour.

• Recovered the checklist Appendix from Era Eriksson.

• Added some new TODO items and removed other fixed ones.

• Manually included Era’s patches since they were not all included in the previous version.

1.5.21 Version 1.7

Changes by Era Eriksson.

• Typo fixes and wording changes

Changes by Javier Fernández-Sanguino Peña.

• Minor changes to tags in order to keep on removing the tt tags and substitute prgn/package
tags for them.

Chapter 1. Introduction 15

1.5.22 Version 1.6

Changes by Javier Fernández-Sanguino Peña.

• Added pointer to document as published in the DDP (should supersede the original in
the near future)

• Started a mini-FAQ (should be expanded) with some questions recovered from my mail-
box.

• Added general information to consider while securing.

• Added a paragraph regarding local (incoming) mail delivery.

• Added some pointers to more information.

• Added information regarding the printing service.

• Added a security hardening checklist.

• Reorganized NIS and RPC information.

• Added some notes taken while reading this document on my new Visor :)

• Fixed some badly formatted lines.

• Fixed some typos.

• Added a Genius/Paranoia idea contributed by Gaby Schilders.

1.5.23 Version 1.5

Changes by Josip Rodin and Javier Fernández-Sanguino Peña.

• Added paragraphs related to BIND and some FIXMEs.

1.5.24 Version 1.4

• Small setuid check paragraph

• Various minor cleanups

• Found out how to use sgml2txt -f for the txt version

Chapter 1. Introduction 16

1.5.25 Version 1.3

• Added a security update after installation paragraph

• Added a proftpd paragraph

• This time really wrote something about XDM, sorry for last time

1.5.26 Version 1.2

• Lots of grammar corrections by James Treacy, new XDM paragraph

1.5.27 Version 1.1

• Typo fixes, miscellaneous additions

1.5.28 Version 1.0

• Initial release

1.6 Credits and Thanks!

• Alexander Reelsen wrote the original document.

• Javier Fernández-Sanguino added more info to the original doc.

• Robert van der Meulen provided the quota paragraphs and many good ideas.

• Ethan Benson corrected the PAM paragraph and had some good ideas.

• Dariusz Puchalak contributed some information to several chapters.

• Gaby Schilders contributed a nice Genius/Paranoia idea.

• Era Eriksson smoothed out the language in a lot of places and contributed the checklist
appendix.

• Philipe Gaspar wrote the LKM information.

• Yotam Rubin contributed fixes for many typos as well as information regarding bind
versions and md5 passwords.

• All the people who made suggestions for improvement that (eventually) got included
here (see ‘Changelog/History’ on page 5)

Chapter 1. Introduction 17

• (Alexander) All the folks who encouraged me to write this HOWTO (which was later
turned into a Manual).

• The whole Debian project.

Chapter 1. Introduction 18

19

Chapter 2

Before you begin

2.1 What do you want this system for?

Securing Debian is not very different from securing any other system; in order to do it properly,
you must first decide what you intend to do with it. After this, you will have to consider that
the following tasks need to be taken care of if you want a really secure system.

You will find that this manual is written from the bottom up, that is, you will read some in-
formation on tasks to do before, during and after you install your Debian system. The tasks
can also be thought of as:

• Decide which services you need and limit your system to those. This includes deactivat-
ing/uninstalling unneeded services, and adding firewall-like filters, or tcpwrappers.

• Limit users and permissions in your system.

• Harden offered services so that, in the event of a service compromise, the impact to your
system is minimized.

• Use appropriate tools to guarantee that unauthorized use is detected so that you can take
appropriate measures.

2.2 Be aware of general security problems

The following manual does not (usually) go into the details on why some issues are considered
security risks. However, you might want to have a better background regarding general UNIX
and (specific) Linux security. Take some time to read over security related documents in or-
der to make informed decisions when you are encountered with different choices. Debian
GNU/Linux is based on the Linux kernel, so much of the information regarding Linux, as well
as from other distributions and general UNIX security also apply to it (even if the tools used,
or the programs available, differ).

Some useful documents include:

Chapter 2. Before you begin 20

• The Linux Security HOWTO (http://www.linuxdoc.org/HOWTO/Security-HOWTO.
html) (also available at LinuxSecurity (http://www.linuxsecurity.com/docs/LDP/
Security-HOWTO.html)) is one of the best references regarding general Linux Security.

• The Security Quick-Start HOWTO for Linux (http://www.linuxsecurity.com/docs/
LDP/Security-Quickstart-HOWTO/) is also a very good starting point for novice
users (both to Linux and security).

• The Linux Security Administrator’s Guide (http://seifried.org/lasg/) (provided
in Debian through the lasg package) is a complete guide that touches all the issues
related to security in Linux, from kernel security to VPNs. It is somewhat obsolete
(not updated since 1999) and has been superseded by the Linux Security Knowledge
Base (http://seifried.org/lskb). This documentation is also provided in Debian
through the lskb package.

• Kurt Seifried’s Securing Linux Step by Step (http://seifried.org/security/os/
linux/20020324-securing-linux-step-by-step.html).

• In Securing and Optimizing Linux: RedHat Edition (http://www.linuxdoc.org/
links/p_books.html#securing_linux) you can find a similar document to this
manual but related to RedHat, some of the issues are not distribution-specific and also
apply to Debian.

• IntersectAlliance has published some documents that can be used as reference cards on
how to harden linux servers (and their services), the documents are available at their site
(http://www.intersectalliance.com/projects/index.html).

• For network administrators, a good reference for building a secure network is the Secur-
ing your Domain HOWTO (http://www.linuxsecurity.com/docs/LDP/Securing-Domain-HOWTO/).

• If you want to evaluate the programs you are going to use (or want to build up some new
ones) you should read the Secure Programs HOWTO (http://www.linuxdoc.org/
HOWTO/Secure-Programs-HOWTO.html).

• If you are considering installing Firewall capabilities, you should read the Firewall HOWTO
(http://www.linuxdoc.org/HOWTO/Firewall-HOWTO.html) and the IPCHAINS
HOWTO (http://www.linuxdoc.org/HOWTO/IPCHAINS-HOWTO.html) (for kernels
previous to 2.4).

• Finally, a good card to keep handy is the Linux Security ReferenceCard (http://www.
linuxsecurity.com/docs/QuickRefCard.pdf)

In any case, there is more information regarding the services explained here (NFS, NIS, SMB. . .)
in many of the HOWTOs of the Linuxdoc Project (http://www.linuxdoc.org/). Some of
these documents speak on the security side of a given service, so be sure to take a look there
too.

The HOWTO documents from the Linux Documentation Project are available in Debian GNU/Linux
through the installation of the doc-linux-text (text version) or doc-linux-html (html

http://www.linuxdoc.org/HOWTO/Security-HOWTO.html
http://www.linuxdoc.org/HOWTO/Security-HOWTO.html
http://www.linuxsecurity.com/docs/LDP/Security-HOWTO.html
http://www.linuxsecurity.com/docs/LDP/Security-HOWTO.html
http://www.linuxsecurity.com/docs/LDP/Security-Quickstart-HOWTO/
http://www.linuxsecurity.com/docs/LDP/Security-Quickstart-HOWTO/
http://seifried.org/lasg/
http://seifried.org/lskb
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://www.linuxdoc.org/links/p_books.html#securing_linux
http://www.linuxdoc.org/links/p_books.html#securing_linux
http://www.intersectalliance.com/projects/index.html
http://www.linuxsecurity.com/docs/LDP/Securing-Domain-HOWTO/
http://www.linuxdoc.org/HOWTO/Secure-Programs-HOWTO.html
http://www.linuxdoc.org/HOWTO/Secure-Programs-HOWTO.html
http://www.linuxdoc.org/HOWTO/Firewall-HOWTO.html
http://www.linuxdoc.org/HOWTO/IPCHAINS-HOWTO.html
http://www.linuxsecurity.com/docs/QuickRefCard.pdf
http://www.linuxsecurity.com/docs/QuickRefCard.pdf
http://www.linuxdoc.org/

Chapter 2. Before you begin 21

version). After installation these documents will be available at the /usr/share/doc/HOWTO
/en-txt and /usr/share/doc/HOWTO/en-html directories, respectively.

Other recommended Linux books:

• Maximum Linux Security : A Hacker’s Guide to Protecting Your Linux Server and Net-
work. Anonymous. Paperback - 829 pages. Sams Publishing. ISBN: 0672313413. July
1999.

• Linux Security By John S. Flowers. New Riders; ISBN: 0735700354. March 1999

• Hacking Linux Exposed (http://www.linux.org/books/ISBN_0072127732.html)
By Brian Hatch. McGraw-Hill Higher Education. ISBN 0072127732. April, 2001

Other books (which might be related to general issues regarding UNIX and security and not
Linux specific):

• Practical Unix and Internet Security (2nd Edition) (http://www.ora.com/catalog/
puis/noframes.html) Garfinkel, Simpson, and Spafford, Gene; O’Reilly Associates;
ISBN 0-56592-148-8; 1004pp; 1996.

• Firewalls and Internet Security Cheswick, William R. and Bellovin, Steven M.; Addison-
Wesley; 1994; ISBN 0-201-63357-4; 320pp.

Some useful Web sites to keep up to date regarding security:

• NIST Security Guidelines (http://csrc.nist.gov/fasp/index.html).

• Security Focus (http://www.securityfocus.com) the server that hosts the Bugtraq
vulnerability database and list, and provides general security information, news and re-
ports.

• Linux Security (http://www.linuxsecurity.com/). General information regarding
Linux security (tools, news. . .). Most useful is the main documentation (http://www.
linuxsecurity.com/resources/documentation-1.html) page.

• Linux firewall and security site (http://www.linux-firewall-tools.com/linux/).
General information regarding Linux firewalls and tools to control and administrate
them.

2.3 How does Debian handle security?

Just so you have a general overview of security in Debian GNU/Linux you should take note
of the different issues that Debian tackles in order to provide an overall secure system:

http://www.linux.org/books/ISBN_0072127732.html
http://www.ora.com/catalog/puis/noframes.html
http://www.ora.com/catalog/puis/noframes.html
http://csrc.nist.gov/fasp/index.html
http://www.securityfocus.com
http://www.linuxsecurity.com/
http://www.linuxsecurity.com/resources/documentation-1.html
http://www.linuxsecurity.com/resources/documentation-1.html
http://www.linux-firewall-tools.com/linux/

Chapter 2. Before you begin 22

• Debian problems are always handled openly, even security related. Security issues are
discussed openly on the debian-security mailing list. Debian Security Advisories are sent
to public mailing lists (both internal and external) and are published on the public server.
As the Debian Social Contract (http://www.debian.org/social_contract) states:

We Won’t Hide Problems

We will keep our entire bug-report database open for public view at all times. Reports that users
file on-line will immediately become visible to others.

• Debian follows security issues closely. The security team checks many security related
sources, the most important being Bugtraq (http://www.securityfocus.com/cgi-bin/
vulns.pl), on the lookout for packages with security issues that might be included in
Debian.

• Security updates are the first priority. When a security problem arises in a Debian pack-
age, the security update is prepared as fast as possible and distributed for our stable and
unstable releases, including all architectures.

• Information regarding security is centralized in a single point, http://security.
debian.org/ .

• Debian is always trying to improve the overall security of the distribution for starting
new projects, like automatic package signature verification mechanisms.

• Debian provides a number of useful security related tools for system administration and
monitoring. Developers try to tightly integrate these tools with the distribution in order
to make them a better suite to enforce local security policies. Tools include: integrity
checkers, auditing tools, hardening tools, firewall tools, intrusion detection tools, etc.

• Package maintainers are aware of security issues. This leads to many “secure by de-
fault” service installations which might put some limits, sometimes, on its normal use.
However, Debian does try to balance security issues and ease of administration, systems
are not installed de-activated, for example, like the BSD family distributions. In any
case, some special security issues, like setuid programs, are part of the Debian Policy
(http://www.debian.org/doc/debian-policy/).

This document as well, tries to enforce a better distribution security-wise, by publishing secur-
ity information specific to Debian which complements other information-security documents
related to the tools used by Debian or the operating system itself (see ‘Be aware of general
security problems’ on page 19.

http://www.debian.org/social_contract
http://www.securityfocus.com/cgi-bin/vulns.pl
http://www.securityfocus.com/cgi-bin/vulns.pl
http://security.debian.org/
http://security.debian.org/
http://www.debian.org/doc/debian-policy/

23

Chapter 3

Before and during the installation

3.1 Choose a BIOS password

Before you install any operating system on your computer, set up a BIOS password. After
installation (once you have enabled bootup from the hard disk) you should go back to the
BIOS and change the boot sequence to disable booting from floppy, cdrom and other devices
that shouldn’t boot. Otherwise a cracker only needs physical access and a boot disk to access
your entire system.

Disabling booting unless a password is supplied is even better. This can be very effective if you
run a server, because it is not rebooted very often. The downside to this tactic is that rebooting
requires human intervention which can cause problems if the machine is not easily accessible.

Note: many BIOSes have well known default master passwords, and applications also exist
to retrieve the passwords from the BIOS. Corollary: don’t depend on this measure to secure
console access to system.

3.2 Partitioning the system

3.2.1 Choose an intelligent partition scheme

An intelligent partition scheme depends on the how the machine is used. A good rule of thumb
is to be fairly liberal with your partitions and to pay attention to the following factors:

• Any directory tree which a user has write permissions to, such as e.g. /home and /tmp ,
should be on a separate partition. This reduces the risk of a user DoS by filling up your
“/” mount point and rendering the system unusable. (Note: this is not strictly true, since
there is always some space reserved for root which a normal user cannot fill.)

• Any partition which can fluctuate, e.g. /var (especially /var/log) should also be on a
separate partition. On a Debian system, you should create /var a little bit bigger than on

Chapter 3. Before and during the installation 24

other systems, because downloaded packages (the apt cache) are stored in /var/cache
/apt/archives .

• Any partition where you want to install non-distribution software should be on a sep-
arate partition. According to the File Hierarchy Standard, this is /opt or /usr/local .
If these are separate partitions, they will not be erased if you (have to) reinstall Debian
itself.

• From a security point of view, it makes sense to try to move static data to its own par-
tition, and then mount that partition read-only. Better yet, put the data on read-only
media. See below for more details.

In the case of a mail server it is important to have a separate partition for the mail spool.
Remote users (either knowingly or unknowingly) can fill the mail spool (/var/mail and/or
/var/spool/mail). If the spool is on a separate partition, this situation will not render the
system unusable. Otherwise (if the spool directory is on the same partition as /var) the system
might have important problems: log entries will not be created, packages can not be installed,
and some programs might even have problems starting up (if they use /var/run).

Also, for partitions in which you cannot be sure of the needed space, installing Logical Volume
Manager (lvm-common and the needed binaries for your kernel, this might be either lvm10 ,
lvm6 , or lvm5). Using lvm , you can create volume groups that expand multiple physical
volumes.

Selecting the appropriate file systems

During the system partitioning you also have to decide which file system you want to use. The
default file system selected in the Debian installation for Linux partitions is ext2 . However,
it is recommended you switch to a journalling file system, such as ext3 , reiserfs , jfs or
xfs , to minimize the problems derived from a system crash in the following cases:

• for laptops in all the file systems installed. That way if you run out of battery unexpec-
tedly or the system freezes due to a hardware issue (such as X configuration which is
somewhat common) you will be less likely to lose data during a hardware reboot.

• for production systems which store large amounts of data (like mail servers, ftp servers,
network file systems. . .) it is recommended on these partitions. That way, in the event of
a system crash, the server will take less time to recover and check the file systems, and
data loss will be less likely.

Leaving aside the performance issues regarding journalling file systems (since this sometimes
can turn into a religious war), it is usually better to use the ext3 file system. The reason for this
is that it is backwards compatible with ext2 , so if there are any issues with the journalling you
can disable it and still have a working file system. Also, if you need to recover the system with
a bootdisk (or CDROM) you do not need a custom kernel. If the kernel is 2.4 ext3 support is
already available, if it is a 2.2 kernel you will be able to boot the file system even if you lose

Chapter 3. Before and during the installation 25

journalling capabilities. If you are using other journalling file systems you will find that you
might not be able to recover unless you have a 2.4 kernel with the needed modules built-in.
If you are stuck with a 2.2 kernel in the rescue disk it might even be more difficult to have it
access reiserfs or xfs .

In any case, data integrity might be better under ext3 since it does file-data journalling while
others do only meta-data journalling, see http://lwn.net/2001/0802/a/ext3-modes.
php3 .

3.3 Do not plug to the Internet until ready

The system should not be immediately connected to the Internet during installation. This could
sound stupid but network installation is a common method. Since the system will install and
activate services immediately, if the system is connected to the Internet and the services are not
properly configured you are opening it to attack.

Also note that some services might have security vulnerabilities not fixed in the packages you
are using for installation. This is usually true if you are installing from old media (like CD-
ROMs). In this case, the system could even be compromised before you finish installation!

Since Debian installation and upgrades can be done over the Internet you might think it is a
good idea to use this feature on installation. If the system is going to be directly connected to
the Internet (and not protected by a firewall or NAT), it is best to install without connection
to the Internet, using a local packages mirror for both the Debian package sources and the
security updates. You can set up package mirrors by using another system connected to the
Internet with Debian-specific tools (if it’s a Debian system) like apt-move or apt-proxy , or
other common mirroring tools, to provide the archive to the installed system. If you cannot
do this, you can set up firewall rules to limit access to the system while doing the update (see
‘Security update protected by a firewall’ on page 175).

3.4 Set a root password

Setting a good root password is the most basic requirement for having a secure system. See
passwd(1) for some hints on how to create good passwords. You can also use an automatic
password generation program to do this for you (see ‘Generating user passwords’ on page 48).

FIXME: Add pointers to information about good passwords.

3.5 Activate shadow passwords and MD5 passwords

At the end of the installation, you will be asked if shadow passwords should be enabled. An-
swer yes to this question, so passwords will be kept in the file /etc/shadow . Only the root
user and the group shadow have read access to this file, so no users will be able to grab a

http://lwn.net/2001/0802/a/ext3-modes.php3
http://lwn.net/2001/0802/a/ext3-modes.php3

Chapter 3. Before and during the installation 26

copy of this file in order to run a password cracker against it. You can switch between shadow
passwords and normal passwords at any time by using shadowconfig .

Read more on Shadow passwords in Shadow Password (http://www.linuxdoc.org/HOWTO/
Shadow-Password-HOWTO.html) (/usr/share/doc/HOWTO/en-txt/Shadow-Password.txt.gz).

Furthermore, you are queried during installation whether you want to use MD5 hashed pass-
words. This is generally a very good idea since it allows longer passwords and better encryp-
tion. MD5 allows for passwords longer than 8 characters. This, if used wisely, can make it
more difficult for attackers to brute-force the system’s passwords. Regarding MD5 passwords,
this is the default option when installing the latest password package. You can change this
anytime after installation by doing dpkg-reconfigure -plow passwd . You can recognize
md5 passwords in the /etc/shadow file by their 1 prefix.

This, as a matter of fact, modifies all files under /etc/pam.d by substituting the password
line and include md5 in it:

password required pam_unix.so md5 nullok obscure min=6 max=16

If max is not set over 8 the change will not be useful at all. For more information on this read
‘User authentication: PAM’ on page 39.

Note: the default configuration in Debian, even when activating MD5 passwords, does not
modify the previously set max value.

3.6 Run the minimum number of services required

Services are programmes such as ftp servers and web servers. Since they have to be listening
for incoming connections that request the service, external computers can connect to yours.
Services are sometimes vulnerable (i.e. can be compromised under a given attack) and are
hence a security risk.

You should not install services which are not needed on your machine. Every installed service
might introduce new, perhaps not obvious (or known), security holes on your computer.

As you may already know, when you install a given service the default behavior is to activate it.
In a default Debian installation, with no services installed, the footprint of running services is
quite low and it’s even lower when talking about services offered to the network. The footprint
in Debian 2.1 wasn’t as tight as in Debian 2.2 (some inetd services were enabled by default)
and in Debian 2.2 the rpc portmapper is enabled upon installation. Rpc is installed by default
because it is needed for many services, for example NFS, to run on a given system. It can be
easily removed, however, see ‘Disabling daemon services’ on the facing page on how to disable
it.

When you install a new network-related service (daemon) in your Debian GNU/Linux system
it can be enabled in two ways: through the inetd superdaemon (i.e. a line will be added to
/etc/inetd.conf) or through a standalone program that binds itself to your network inter-
faces. Standalone programs are controlled through the /etc/init.d files, which are called at

http://www.linuxdoc.org/HOWTO/Shadow-Password-HOWTO.html
http://www.linuxdoc.org/HOWTO/Shadow-Password-HOWTO.html

Chapter 3. Before and during the installation 27

boot time through the SysV mechanism (or an alternative one) by using symlinks in /etc
/rc?.d/* (for more information on how this is done read /usr/share/doc/sysvinit
/README.runlevels.gz).

If you want to keep some services but use them rarely, use the update-commands, e.g. update-inetd
and update-rc.d to remove them from the startup process.

3.6.1 Disabling daemon services

Disabling a daemon service is quite simple. There are different methods:

• remove links from /etc/rc${runlevel}.d/ or rename the links (so that they do not
begin with ’S’)

• move the script file (/etc/init.d/_service_name_) to another name (for example
/etc/init.d/OFF._service_name_)

• remove the execute permission from the /etc/init.d/_service_name_ file.

• edit the /etc/init.d/_service_name_ script to have it stop immediately.

You can remove the links from /etc/rc${runlevel}.d/ manually or using update-rc.d
(see update-rc.d(8)). For example, you can disable a service from executing in the multi-
user runlevels by doing:

update-rc.d stop XX 2 3 4 5 .

Please note that, if you are not using file-rc , update-rc.d -f _service_ remove will
not work properly, since all links are removed, upon re-installation or upgrade of the package
these links will be re-generated (probably not what you wanted). If you think this is not intu-
itive you are probably right (see Bug 67095 (http://bugs.debian.org/67095)). From the
manpage:

If any files /etc/rcrunlevel.d/[SK]??name already exist then
update-rc.d does nothing. This is so that the system administrator
can rearrange the links, provided that they leave at least one
link remaining, without having their configuration overwritten.

If you are using file-rc all the information regarding services bootup is handled by a com-
mon configuration file and is maintained even if packages are removed from the system.

You can use the TUI (Text User Interface) provided by rcconf to do all these changes easily
(rcconf works both for file-rc and normal System V runlevels).

Other (not recommended) methods of disabling services are: chmod 644 /etc/init.d/daemon
(but that gives an error message when booting), or modifying the /etc/init.d/daemon

http://bugs.debian.org/67095

Chapter 3. Before and during the installation 28

script (by adding an exit 0 line at the beginning or commenting out the start-stop-daemon
part in it). Since init.d files are config files, they will not get overwritten upon upgrade.

Unfortunately, unlike other (UNIX) operating systems, services in Debian cannot be disabled
by modifying files in /etc/default/_servicename_ .

FIXME: Add more information on handling daemons using file-rc

3.6.2 Disabling inetd services

You should stop all unneeded services on your system, like echo, chargen, discard,
daytime, time, talk, ntalk and r-services (rsh, rlogin and rcp) which are con-
sidered HIGHLY insecure (use ssh instead). After disabling those, you should check if you
really need the inetd daemon. Many people prefer to use daemons instead of calling ser-
vices via inetd . Denial of Service possibilities exist against inetd , which can increase the
machine’s load tremendously. If you still want to run some kind of inetd service, switch to a
more configurable inet daemon like xinetd or rlinetd .

You can disable services by editing /etc/inetd.conf directly, but Debian provides a better
alternative: update-inetd (which comments the services in a way that it can easily be turned
on again). You could remove the telnet daemon by executing this commands to change the
config file and to restart the daemon (in this case the telnet service is disabled):

/usr/sbin/update-inetd --disable telnet

If you do want services listening, but do not want to have them listen on all IP addresses of
your host, you might want to use an undocumented feature on inetd . . Or use an alternate
inetd daemon like xinetd .

3.7 Install the minimum amount of software required

Debian comes with a lot of software, for example the Debian 3.0 woody release includes almost
6 CD-ROMs of software and thousands of packages. With so much software, and even if the
base system installation is quite reduced 1 you might get carried away and install more than is
really needed for your system.

Since you already know what the system is for (don’t you?) you should only install software
that is really needed for it to work. Any unnecessary tool that is installed might be used by
a user that wants to compromise the system or by an external intruder that has gotten shell
access (or remote code execution through an exploitable service).

1For example, in Debian woody it is around 40Mbs, try this:

$ size=0 $ for i in ‘grep -A 1 -B 1 "^Section: base" /var/lib/dpkg/available |
grep -A 2 "^Priority: required" |grep "^Installed-Size" |cut -d : -f 2 ‘; do
size=$(($size+$i)); done $ echo $size 34234

Chapter 3. Before and during the installation 29

The presence, for example, of development utilities (a C compiler) or interpreted languages
(such as perl - but see below -, python , tcl . . .) may help an attacker compromise the system
even further:

• allowing him to do privilege escalation. It’s easier, for example, to run local exploits in
the system if there is a debugger and compiler ready to compile and test them!

• providing tools that could help the attacker to use the compromised system as a base of
attack against other systems 2

Of course, an intruder with local shell access can download his own set of tools and execute
them, and even the shell itself can be used to make complex programs. Removing unnecesary
software will not help prevent the problem but will make it slightly more difficult for an at-
tacker to proceed (and some might give up in this situation looking for easier targets). So, if
you leave tools in a production system that could be used to remotely attack systems (see ‘Re-
mote vulnerability assesment tools’ on page 109) you can expect an intruder to use them too if
available.

3.7.1 Removing Perl

You must take into account that removing perl might not be too easy (as a matter of fact it
can be quite difficult) in a Debian system since it is used by many system utilities. Also, the
perl-base is Priority: required (that about says it all). It’s still doable, but you will not be able
to run any perl application in the system; you will also have to fool the package management
system to think that the perl-base is installed even if it’s not. 3

Which utilities use perl ? You can see for yourself:

$ for i in /bin/* /sbin/* /usr/bin/* /usr/sbin/*; do [-f $i] && {
type=‘file $i | grep -il perl‘; [-n "$type"] && echo $i; }; done

These include the following utilities in packages with priority required or important:

• /usr/bin/chkdupexe of package util-linux .

• /usr/bin/replay of package bsdutils .

• /usr/sbin/cleanup-info of package dpkg .

• /usr/sbin/dpkg-divert of package dpkg .

• /usr/sbin/dpkg-statoverride of package dpkg .

2Many intrusions are made just to get access to resources to do illegitimate activity (denial of service attacks,
spam, rogue ftp servers, dns pollution. . .) rather than to obtain confidential data from the compromised system.

3You can make (on another system) a dummy package with equivs

Chapter 3. Before and during the installation 30

• /usr/sbin/install-info of package dpkg .

• /usr/sbin/update-alternatives of package dpkg .

• /usr/sbin/update-rc.d of package sysvinit .

• /usr/bin/grog of package groff-base .

• /usr/sbin/adduser of package adduser .

• /usr/sbin/debconf-show of package debconf .

• /usr/sbin/deluser of package adduser .

• /usr/sbin/dpkg-preconfigure of package debconf .

• /usr/sbin/dpkg-reconfigure of package debconf .

• /usr/sbin/exigrep of package exim .

• /usr/sbin/eximconfig of package exim .

• /usr/sbin/eximstats of package exim .

• /usr/sbin/exim-upgrade-to-r3 of package exim .

• /usr/sbin/exiqsumm of package exim .

• /usr/sbin/keytab-lilo of package lilo .

• /usr/sbin/liloconfig of package lilo .

• /usr/sbin/lilo_find_mbr of package lilo .

• /usr/sbin/syslogd-listfiles of package sysklogd .

• /usr/sbin/syslog-facility of package sysklogd .

• /usr/sbin/update-inetd of package netbase .

So, without Perl and, unless you remake these utilities in shell script, you will probably not
be able to manage any packages (so you will not be able to upgrade the system, which is not a
Good Thing).

If you are determined to remove Perl from the Debian base system, and you have spare time,
submit bug reports to the previous packages including (as a patch) replacements for the utilit-
ies above written in shell script.

Chapter 3. Before and during the installation 31

3.8 Read the debian security mailing lists

It is never wrong to take a look at either the debian-security-announce mailing list, where
advisories and fixes to released packages are announced by the Debian security team, or
at mailto:debian-security@lists.debian.org , where you can participate in discus-
sions about things related to Debian security.

In order to receive important security update alerts, send an email to debian-security-announce-
request@lists.debian.org (mailto:debian-security-announce-request@lists.debian.
org) with the word “subscribe” in the subject line. You can also subscribe to this moderated
email list via the web page at http://www.debian.org/MailingLists/subscribe

This mailing list has very low volume, and by subscribing to it you will be immediately alerted
of security updates for the Debian distribution. This allows you to quickly download new
packages with security bug fixes, which is very important in maintaining a secure system. (See
‘Execute a security update’ on page 38 for details on how to do this.)

mailto:debian-security@lists.debian.org
mailto:debian-security-announce-request@lists.debian.org
mailto:debian-security-announce-request@lists.debian.org
http://www.debian.org/MailingLists/subscribe

Chapter 3. Before and during the installation 32

33

Chapter 4

After Installation

Once the system is installed you can still do more to secure the system; some of the steps
described in this chapter can be taken. Of course this really depends on your setup but for
physical access prevention you should read ‘Change the BIOS (again)’ on the current page,‘Set
a LILO or GRUB password’ on this page,‘Remove root prompt on the kernel’ on the next page,
‘Disallow floppy booting’ on page 35, ‘Restricting console login access’ on page 36, and ‘Re-
stricting system reboots through the console’ on page 36.

Before connecting to any network, especially if it’s a public one you should, at the very least,
execute a security update (see ‘Execute a security update’ on page 38). Optionally, you could
take a snapshot of your system (see ‘Taking a snapshot of the system’ on page 64).

4.1 Change the BIOS (again)

Remember ‘Choose a BIOS password’ on page 23? Well, then you should now, once you do
not need to boot from removable media, to change the default BIOS setup so that it only boots
from the hard drive. Make sure you will not lose the BIOS password, otherwise, in the event
of a hard disk failure you will not be able to return to the BIOS and change the setup so you
can recover it using, for example, a CD-ROM.

Another less secure but more convenient way is to change the setup to have the system boot up
from the hard disk and, if it fails, try removable media. By the way, this is often done because
most people don’t use the BIOS password that often; it’s easily forgotten.

4.2 Set a LILO or GRUB password

Anybody can easily get a root-shell and change your passwords by entering <name-of-your-bootimage>
init=/bin/sh at the boot prompt. After changing the passwords and rebooting the system,
the person has unlimited root-access and can do anything he/she wants to the system. After
this procedure you will not have root access to your system, as you do not know the root
password.

Chapter 4. After Installation 34

To make sure that this cannot happen, you should set a password for the boot loader. You can
choose between a global password or a password for a certain image.

For LILO you need to edit the config file /etc/lilo.conf and add a password and restricted
line as in the example below.

image=/boot/2.2.14-vmlinuz
label=Linux
read-only
password=hackme
restricted

When done, rerun lilo. Omitting the restricted line causes lilo to always prompt for a
password, regardless of whether LILO was passed parameters. The default permissions for
/etc/lilo.conf grant read and write permissions to root, and enable read-only access for
lilo.conf ’s group, root.

If you use GRUB instead of LILO, edit /boot/grub/menu.lst and add the following two
lines at the top (substituting, of course hackme with the desired password). This prevents
users from editing the boot items. timeout 3 specifies a 3 second delay before grub boots
the default item.

timeout 3
password hackme

To further harden the integrity of the password, you may store the password in an encrypted
form. The utility grub-md5-crypt generates a hashed password which is compatible with
grub’s encrypted password algorithm (md5). To specify in grub that an md5 format password
will be used, use the following directive:

timeout 3
password --md5 1bw0ez$tljnxxKLfMzmnDVaQWgjP0

The –md5 parameter was added to instruct grub to perform the md5 authentication process.
The provided password is the md5 encrypted version of hackme. Using the md5 password
method is preferable to choosing its cleartext counterpart. More information about grub pass-
words may be found in the grub-doc package.

4.3 Remove root prompt on the kernel

Linux 2.4 kernels provide a way to access a root shell while booting which will be presented
just after loading the cramfs file system. A message will appear to permit the administrator
to enter an executable shell with root permissions, this shell can be used to manually load
modules when autodetection fails. This behavior is the default for initrd ’s linuxrc . The
following message will appear:

Chapter 4. After Installation 35

Press ENTER to obtain a shell (waits 5 seconds)

In order to remove this behavior you need to change /etc/mkinitrd/mkinitrd.conf and
set:

DELAY The number of seconds the linuxrc script should wait to
allow the user to interrupt it before the system is brought up
DELAY=0

Then regenerate your ramdisk image. You can do this for example with:

cd /boot
mkinitrd -o initrd.img-2.4.18-k7 /lib/modules/2.4.18-k7

or (preferred):

dpkg-reconfigure -plow kernel-image-2.4.x-yz

Note that Debian 3.0 woody allows users to install 2.4 kernels (selecting flavors), however the
default kernel is 2.2 (save for some architectures for which kernel 2.2 was not ported). If you
consider this a bug consider Bug 145244 (http://bugs.debian.org/145244) before send-
ing it.

4.4 Disallow floppy booting

The default MBR in Debian before version 2.2 did not act as a usual master boot record and left
open a method to easily break into a system:

• Press shift at boot time, and an MBR prompt appears

• Then press F, and your system will boot from floppy disk. This can be used to get root
access to the system.

This behavior can be changed by entering:

lilo -b /dev/hda

Now LILO is put into the MBR. This can also be achieved by adding boot=/dev/hda to
lilo.conf . There is another solution which will disable the MBR prompt completely:

install-mbr -i n /dev/hda

On the other hand, this “back door”, of which many people are just not aware, may save your
skin as well if you run into deep trouble with your installation for whatever reasons.

FIXME check whether this really is true as of 2.2 or was it 2.1? INFO: The bootdisks as of
Debian 2.2 do NOT install the mbr, but only LILO.

http://bugs.debian.org/145244

Chapter 4. After Installation 36

4.5 Restricting console login access

Some security policies might force administrators to log in to the system through the console
with their user/password and then become superuser (with su or sudo). This policy is imple-
mented in Debian by editing the /etc/login.defs file or /etc/securetty when using
PAM. In:

• login.defs , editing the CONSOLE variable which defines a file or list of terminals on
which root logins are allowed

• securetty by adding/removing the terminals to which root access will be allowed.

When using PAM, other changes to the login process, which might include restrictions to users
and groups at given times, can be configured in /etc/pam.d/login . An interesting feature
that can be disabled is the possibility to login with null (blank) passwords. This feature can be
limited by removing nullok from the line:

auth required pam_unix.so nullok

4.6 Restricting system reboots through the console

If your system has a keyboard attached to it anyone (yes anyone) can reboot the system through
it without login to the system. This might, or might not, adhere to your security policy. If
you want to restrict this, you must check the /etc/inittab so that the line that includes
ctrlaltdel calls shutdown with the -a switch (remember to run init q after making any
changes to this file). The default in Debian includes this switch:

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

Now, in order to allow some users to shutdown the system, as the manpage shutdown(8)
describes, you must create the file /etc/shutdown.allow and include there the name of
users which can boot the system. When the three finger salute (a.k.a. ctrl+alt+del) is given the
program will check if any of the users listed in the file are logged in. If none of them is,
shutdown will not reboot the system.

4.7 Mounting partitions the right way

When mounting an ext2 partition, there are several additional options you can apply to the
mount call or to /etc/fstab . For instance, this is my fstab entry for the /tmp partition:

/dev/hda7 /tmp ext2 defaults,nosuid,noexec,nodev 0 2

Chapter 4. After Installation 37

You see the difference in the options sections. The option nosuid ignores the setuid and setgid
bits completely, while noexec forbids execution of any program on that mount point, and
nodev , ignores devices. This sounds great, but it

• only applies to ext2 file systems

• can be circumvented easily

The noexec option prevents binaries from being executed directly, but is easily circumvented:

alex@joker:/tmp# mount | grep tmp
/dev/hda7 on /tmp type ext2 (rw,noexec,nosuid,nodev)
alex@joker:/tmp# ./date
bash: ./date: Permission denied
alex@joker:/tmp# /lib/ld-linux.so.2 ./date
Sun Dec 3 17:49:23 CET 2000

However, many script kiddies have exploits which try to create and execute files in /tmp . If
they do not have a clue, they will fall into this pit. In other words, a user cannot be tricked into
executing a trojanized binary in /tmp e.g. when he incidentally adds /tmp into his PATH.

Also be forewarned, some script might depend on /tmp being executable. Most notably, De-
bconf has (had?) some issues regarding this, for more information see Bug 116448 (http:
//bugs.debian.org/116448).

The following is a more thorough example. A note, though: /var could be set noexec, but
some software like Smartlist keeps its programs in /var. The same applies to the nosuid option.

/dev/sda6 /usr ext2 defaults,ro,nodev 0 2
/dev/sda12 /usr/share ext2 defaults,ro,nodev,nosuid 0 2
/dev/sda7 /var ext2 defaults,nodev,usrquota,grpquota 0 2
/dev/sda8 /tmp ext2 defaults,nodev,nosuid,noexec,usrquota,grpquota 0 2
/dev/sda9 /var/tmp ext2 defaults,nodev,nosuid,noexec,usrquota,grpquota 0 2
/dev/sda10 /var/log ext2 defaults,nodev,nosuid,noexec 0 2
/dev/sda11 /var/account ext2 defaults,nodev,nosuid,noexec 0 2
/dev/sda13 /home ext2 rw,nosuid,nodev,exec,auto,nouser,async,usrquota,grpquota 0 2
/dev/fd0 /mnt/fd0 ext2 defaults,users,nodev,nosuid,noexec 0 0
/dev/fd0 /mnt/floppy vfat defaults,users,nodev.nosuid,noexec 0 0
/dev/hda /mnt/cdrom iso9660 ro,users,nodev.nosuid,noexec 0 0

4.7.1 Setting /tmp noexec

Be careful if setting /tmp noexec when you want to install new software, since some programs
might use it for installation. Apt is one such program (see http://bugs.debian.org/
116448) if not configured properly APT::ExtractTemplates::TempDir (see apt-extracttemplates(1)).

http://bugs.debian.org/116448
http://bugs.debian.org/116448
http://bugs.debian.org/116448
http://bugs.debian.org/116448

Chapter 4. After Installation 38

You can set this variable in /etc/apt/apt.conf to another directory with exec privileges
other than /tmp .

Regarding noexec, please be aware that it might not offer you that much security. Consider
this:

$ cp /bin/date /tmp
$ /tmp/date
(does not execute due to noexec)
$/lib/ld-linux.so.2 /tmp/date
(works since date is not executed directly)

4.7.2 Setting /usr read-only

If you set /usr read-only you will not be able to install new packages on your Debian GNU/Linux
system. You will have to first remount it read-write, install the packages and then remount it
read-only. The latest apt version (in Debian 3.0 ’woody’) can be configured to run commands
before and after installing packages, so you might want to configure it properly.

To do this modify /etc/apt/apt.conf and add:

DPkg
{

Pre-Invoke { "mount /usr -o remount,rw" };
Post-Invoke { "mount /usr -o remount,ro" };

};

Note that the Post-Invoke may fail with a “/usr busy” error message. This happens mainly
when you are using files during the update that got updated. Annoying but not really a big
deal. Just make sure these are no longer used and run the Post-Invoke manually.

4.8 Execute a security update

As soon as new security bugs are detected in packages, Debian maintainers and upstream
authors generally patch them within days or even hours. After the bug is fixed, a new package
is provided on http://security.debian.org .

If you are installing a Debian release you must take into account that since the release was made
there might have been security updates after it has been determined that a given package is
vulnerable. Also, there might have been minor releases (there were seven in Debian 2.2 potato
release) which include these package updates.

You need to note down the date the removable media (if you are using it) was made and
check the security site in order to see if there are security updates. If there are and you cannot
download the packages from the security site on another system (you are not connected to the

http://security.debian.org

Chapter 4. After Installation 39

Internet yet? are you?) before connecting to the network you could consider (if not protected
by a firewall for example) adding firewall rules so that your system could only connect to
security.debian.org and then run the update. A sample configuration is shown in ‘Security
update protected by a firewall’ on page 175.

To update the system, put the following line in your sources.list and you will get security
updates automatically, whenever you update your system.

deb http://security.debian.org/ stable/updates main contrib non-free

Most people who don’t live in a country which prohibits importing or using strong crypto-
graphy, should add this line as well:

deb http://security.debian.org/debian-non-US stable/non-US main contrib non-free

If you like, you can add the deb-src lines to /etc/apt/sources.list as well. See apt(8)
for further details.

FIXME: Add info on how the signature of packages is done so that this can be done automat-
ically through a cron job (big warning: DNS spoofing).

4.9 Subscribe to the Debian Security Announce mailing List

In order to receive information on available security updates you should subscribe yourself to
the debian-security-announce mailing list in order to receive the Debian Security Advisories
(DSAs). See ‘The Debian Security Team’ on page 95 for more information on how the Debian
security team works. For information on how to subscribe to the Debian mailing lists read
http://lists.debian.org .

DSAs are signed with the Debian Security Team’s signature which can be retrieved from http:
//security.debian.org .

You should consider, also, subscribing to the debian-security mailing list for general discussion
on security issues in the Debian operating system.

FIXME: add the key here too?

4.10 Providing secure user access

4.10.1 User authentication: PAM

PAM (Pluggable Authentication Modules) allows system administrators to choose how ap-
plications authenticate users. Note that PAM can do nothing unless an application is com-
piled with support for PAM. Most of the applications that are shipped with Debian 2.2 have

http://lists.debian.org
http://security.debian.org
http://security.debian.org

Chapter 4. After Installation 40

this support built in. Furthermore, Debian did not have PAM support before 2.2. The cur-
rent default configuration for any PAM-enabled service is to emulate UNIX authentication
(read /usr/share/doc/libpam0g/Debian-PAM-MiniPolicy.gz for more information
on how PAM services should work in Debian).

Each application with PAM support provides a configuration file in /etc/pam.d/ which can
be used to modify its behavior:

• what backend is used for authentication.

• what backend is used for sessions.

• how do password checks behave.

The following description is far from complete, for more information you might want to read
the The Linux-PAM System Administrator’s Guide (http://www.kernel.org/pub/linux/
libs/pam/Linux-PAM-html/pam.html) (at the primary PAM distribution site (http://
www.kernel.org/pub/linux/libs/pam/)), this document is also provided in the libpam-doc .

PAM offers you the possibility to go through several authentication steps at once, without
the user’s knowledge. You could authenticate against a Berkeley database and against the
normal passwd file, and the user only logs in if he authenticates correct in both. You can
restrict a lot with PAM, just as you can open your system doors very wide. So be careful. A
typical configuration line has a control field as its second element. Generally it should be set
to requisite , which returns a login failure if one module fails.

The first thing I like to do, is to add MD5 support to PAM applications, since this helps protect
against dictionary cracks (passwords can be longer if using MD5). The following two lines
should be added to all files in /etc/pam.d/ that grant access to the machine, like login and
ssh .

Be sure to install libpam-cracklib first or you will not be able to log in
password required pam_cracklib.so retry=3 minlen=12 difok=3
password required pam_unix.so use_authtok nullok md5

So, what does this incantation do? The first line loads the cracklib PAM module, which
provides password strength-checking, prompts for a new password with a minimum length
of 12 characters, a difference of at least 3 characters from the old password, and allows 3 re-
tries. The second line introduces the standard authentication module with MD5 passwords
and allows a zero length password. The use_authtok directive is necessary to hand over the
password from the previous module.

FIXME: Check if Bug #112965 (http://bugs.debian.org/112965) still stands (i.e. you can
run into problems if you do not have a wordlist (such as wenglish , wspanish , wbritish . . .).
It does not seem to have a dependency to wordlist in woody.

To make sure that the user root can only log into the system from local terminals, the following
line should be enabled in /etc/pam.d/login :

http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam.html
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam.html
http://www.kernel.org/pub/linux/libs/pam/
http://www.kernel.org/pub/linux/libs/pam/
http://bugs.debian.org/112965

Chapter 4. After Installation 41

auth requisite pam_securetty.so

Then you should add the terminals from which the user root can log into the system, in /etc
/security/access.conf . Last but not least the following line should be enabled if you
want to set up user limits.

session required pam_limits.so

This restricts the system resources that users are allowed (see below in ‘Limiting resource us-
age: the limits.conf file’ on the following page). For example, you could restrict the num-
ber of concurrent logins (of a given group of users, or system-wide) you may have, the number
of processes, the memory size. . .

Now edit /etc/pam.d/passwd and change the first line. You should add the option “md5”
to use MD5 passwords, change the minimum length of password from 4 to 6 (or more) and set
a maximum length, if you desire. The resulting line will look something like:

password required pam_unix.so nullok obscure min=6 max=11 md5

If you want to protect su, so that only some people can use it to become root on your system,
you need to add a new group “wheel” to your system (that is the cleanest way, since no file
has such a group permission yet). Add root and the other users that should be able to su to
the root user to this group. Then add the following line to /etc/pam.d/su :

auth requisite pam_wheel.so group=wheel debug

This makes sure that only people from the group “wheel” can use su to become root. Other
users will not be able to become root. In fact they will get a denied message if they try to
become root.

If you want only certain users to authenticate at a PAM service, this is quite easy to achieve
by using files where the users who are allowed to login (or not) are stored. Imagine you only
want to allow user ’ref’ to log in via ssh . So you put him into /etc/sshusers-allowed
and write the following into /etc/pam.d/ssh :

auth required pam_listfile.so item=user sense=allow file=/etc/sshusers-allowed onerr=fail

Last, but not least, create /etc/pam.d/other and enter the following lines:

auth required pam_securetty.so
auth required pam_unix_auth.so
auth required pam_warn.so
auth required pam_deny.so
account required pam_unix_acct.so

Chapter 4. After Installation 42

account required pam_warn.so
account required pam_deny.so
password required pam_unix_passwd.so
password required pam_warn.so
password required pam_deny.so
session required pam_unix_session.so
session required pam_warn.so
session required pam_deny.so

These lines will provide a good default configuration for all applications that support PAM
(access is denied by default).

4.10.2 Limiting resource usage: the limits.conf file

You should really take a serious look into this file. Here you can define user resource limits. If
you use PAM, the file /etc/limits.conf is ignored and you should use /etc/security
/limits.conf instead.

If you do not restrict resource usage, any user with a valid shell in your system (or even an
intruder who compromised the system through a service) can use up as much CPU, memory,
stack, etc. as the system can provide. This resource exhaustion problem can only be fixed by the
use of PAM. Note that there is a way to add resource limits to some shells (for example, bash
has ulimit , see bash(1)), but since not all of them provide the same limits and since the user
can change shells (see chsh(1)) it is better to place the limits on the PAM modules.

For more information read:

• PAM configuration article (http://www.samag.com/documents/s=1161/sam0009a/
0009a.htm).

• Seifried’s Securing Linux Step by Step (http://seifried.org/security/os/linux/
20020324-securing-linux-step-by-step.html) on the Limiting users overview
section.

• LASG (http://seifried.org/lasg/users/) in the Limiting and monitoring users
section.

FIXME: Get a good limits.conf up here

4.10.3 User Login actions: edit /etc/login.defs

The next step is to edit the basic configuration and action upon user login.

FAIL_DELAY 10

http://www.samag.com/documents/s=1161/sam0009a/0009a.htm
http://www.samag.com/documents/s=1161/sam0009a/0009a.htm
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/lasg/users/

Chapter 4. After Installation 43

This variable should be set to a higher value to make it harder to use the terminal to log in
using brute force. If a wrong password is typed in, the possible attacker (or normal user!) has
to wait for 10 seconds to get a new login prompt, which is quite time consuming when you test
passwords (manually). Pay attention to the fact that this setting is useless if using a program
other than getty , such as mingetty for example.

FAILLOG_ENAB yes

If you enable this variable, failed logins will be logged. It is important to keep track of them to
catch someone who tries a brute force attack.

LOG_UNKFAIL_ENAB yes

If you set the variable FAILLOG_ENAB to yes, then you should also set this variable to yes. This
will record unknown usernames if the login failed. If you do this, make sure the logs have the
proper permissions (640 for example, with an appropriate group setting such as adm), because
users often accidentally enter their password as the username and you do not want others to
see it.

SYSLOG_SU_ENAB yes

This one enables logging of su attempts to syslog . Quite important on serious machines but
note that this can create privacy issues as well.

SYSLOG_SG_ENAB yes

The same as SYSLOG_SU_ENAB but applies to the sg program.

MD5_CRYPT_ENAB yes

As stated above, MD5 sum passwords greatly reduce the problem of dictionary attacks, since
you can use longer passwords. If you are using slink, read the docs about MD5 before enabling
this option. Otherwise this is set in PAM.

PASS_MAX_LEN 50

If MD5 passwords are activated in your PAM configuration, then this variable should be set to
the same value as used there.

Chapter 4. After Installation 44

4.10.4 Restricting ftp: editing /etc/ftpusers

The /etc/ftpusers file contains a list of users who are not allowed to log into the host using
ftp. Only use this file if you really want to allow ftp (which is not recommended in general,
because it uses cleartext passwords). If your daemon supports PAM, you can also use that to
allow and deny users for certain services.

FIXME (BUG): Is it a bug that the default ftpusers in Debian does not include all the admin-
istrative users (in base-passwd).

4.10.5 Using su

If you really need users to become the super user on your system, e.g. for installing packages
or adding users, you can use the command su to change your identity. You should try to avoid
any login as user root and instead use su . Actually, the best solution is to remove su and
switch to sudo , as it has more features than su . However, su is more common as it is used on
many other Unices.

4.10.6 Using sudo

sudo allows the user to execute defined commands under another user’s identity, even as
root. If the user is added to /etc/sudoers and authenticates himself correctly, he is able
to run commands which have been defined in /etc/sudoers . Violations, such as incorrect
passwords or trying to run a program you don’t have permission for, are logged and mailed to
root.

4.10.7 Disallow remote adminitrative access

You should modify /etc/security/access.conf also so that remote administrative login
is disallowed. This way the users need to use su (or sudo) so that there is always an audit
trace whenever a local user wants to use administrative powers.

You need to add the following line to /etc/security/access.conf , the default Debian
configuration file has a sample line commented out:

-:wheel:ALL EXCEPT LOCAL

4.10.8 Restricting users’s access

Sometimes you might think you need to have users created in your local system in order to
provide a given service (pop3 mail service or ftp). Before doing so, first remember that the
PAM implementation in Debian GNU/Linux allows you to validate users with a wide variety
of external directory services (radius, ldap, etc.) provided by the libpam packages.

Chapter 4. After Installation 45

If users need to be created and the system can be accessed remotely take into account that users
will be able to log in to the system. You can fix this by giving users a null (/dev/null) shell (it
would need to be listed in /etc/shells). If you want to allow users to access the system but
limit their movements, you can use the /bin/rbash , equivalent to adding the -r option in
bash (RESTRICTED SHELL see bash(1)). Please note that even with restricted shell, a user
that access an interactive program (that might allow execution of a subshell) could be able to
bypass the limits of the shell.

Debian currently provides in the unstable release (and might be included in the next stable
releases) the pam_chroot module (in the libpam-chroot). An alternative to it is to chroot
the service that provides remote logging (ssh , telnet). 1

If you wish to restrict when users can access the system you will have to customize /etc
/security/access.conf for your needs.

Information on how to chroot ssh for users is described in ‘Chroot environment for SSH’
on page 177.

4.10.9 Hand-made user auditing

If you are paranoid you might want to add a defined .profile in users’ home directories that
sets the environment in a way such that they cannot remove audit capabilities from the shell
(commands are dumped to $HISTFILE . The .profile could be set as follows:

HISTFILE=/home/_user_/.bash_history
HISTSIZE=100000000000000000
HISTFILESIZE=10000000000000000
set -o HISTFILE
set -o HISTSIZE
set -o HISTFILESIZE
export HISTFILE HISTSIZE HISTFILESIZE

Note: the -o attribute sets a variable read-only in bash .

For this to work the user cannot modify the .profile or .bash_history but must be able
to read the first one and write in the second one. You can do this easily by changing these
files and the directory where they reside to be owned by another user (root), and give write
permissions to the user’s group to the history file. Another option is through the use of the
chattr program.

If you are completely paranoid and want to audit every user’s command, you could take
bash source code, edit it and have it send all that the user typed into another file. Or have
ttysnoop constantly monitor any new ttys and dump the output into a file. Other useful
program is Snoopy (http://sourceforge.net/project/?group_id=2091) which is a
user-transparent program that hooks in as a library providing a wrapper around execve() calls,

1Libpam-chroot has not been yet thoroughly tested, it does work for login but it might not be easy to set
up the environment for other programs

http://sourceforge.net/project/?group_id=2091

Chapter 4. After Installation 46

any command executed is logged to syslogd using the authpriv facility (usually stored at
/var/log/auth.log .

Note that you cannot use the script command for this since it will not work as a shell (even
if you add it to /etc/shells .

4.10.10 Complete user audit

The previous example is a simple way to configure user auditing which might be not useful
for complex systems. If this is your case, you need to look at acct , the accounting utilities.
These will log all the commands run by users or processes in the system, at the expense of disk
space.

When activating accounting, all the information on processes and users is kept under /var
/account/ , more specifically in the pacct . The accounting package includes some tools (sa
and ac) to analyse this data.

4.10.11 Reviewing user profiles

If you want to see what users are usually doing, when they are connecting you can use the wtmp
database that includes all login information. This file can be processed with several utilities,
amongst them sac which can output a profile on each user showing in which timeframe they
usually log on to the system.

In case you have accounting activated, you can also use the tools provided by it in order to
determine when the users access the system and what they execute.

4.10.12 Setting users umasks

Depending on your user policy you might want to change how information is shared between
users, that is, what the default permissions of new files created by users are. This change is set
by defining a proper umask setting for all users. You can change the UMASK setting in /etc
/limits.conf , /etc/profile , /etc/csh.cshrc , /etc/csh.login , /etc/zshrc and
probably some others (depending on the shells you have installed on your system). Of all of
these the last one that gets loaded takes precedence. The order is: PAM’s limits.conf ,
the default system configuration for the user’s shell, the user’s shell (his ~/.profile , ~
/.bash_profile . . .)

Debian’s default umask setting is 022 this means that files (and directories) can be read and
accessed by the user’s group and by any other users in the system. If this is too permissive for
your system you will have to change the umask setting for all the shells (and for PAM). Don’t
forget to modify the files under /etc/skel/ since these will be new user’s defaults when
created with the adduser command.

Note, however that users can modify their own umask setting if they want too, making it more
permissive or more restricted.

Chapter 4. After Installation 47

4.10.13 Limiting what users can see/access

FIXME: Content needed. Tell of consequences of changing packages permissions when up-
grading (and admin this paranoid should chroot his users BTW).

If you need to grant users access to the system with a shell think about it very carefully. A user
can, by default unless in a severely restricted environment (like a chroot jail), retrieve quite a
lot of information from your system including:

• some configuration files in /etc . However, Debian’s default permissions for some sens-
itive files (which might, for example, contain passwords), will prevent access to critical
information. To see which files are only accessible by the root user for example find
/etc -type f -a -perm 600 -a -uid 0 as superuser.

• your installed packages, either by looking at the package database, at the /usr/share
/doc directory or by guessing by looking at the binaries and libraries installed in your
system.

• some log files at /var/log . Note also that some log files are only accessible to root and
the adm group (try find /var/log -type f -a -perm 640) and some are even
only available to the root user (try find /var/log -type f -a -perm 600 -a -uid
0).

What can a user see in your system? Probably quite a lot of things, try this (take a deep breath):

find / -type f -a -perm +006 2>/dev/null
find / -type d -a -perm +007 2>/dev/null

The output is the list of files that a user can see and the directories to which he has access.

Limiting access to other user’s information

If you still grant shell access to users you might want to limit what information they can view
from other users. Users with shell access have a tendency to create quite a number of files
under their $HOMEs: mailboxes, personal documents, configuration of X/GNOME/KDE ap-
plications. . .

In Debian each user is created with one associated group, and no two users belong to the same
group. This is the default behavior: when the userX is created a group with name userX is
created and the user is assigned to it. This avoids the concept of a users group which might
make it more difficult for users to hide information from other users.

However, users’ $HOME directories are created with 0755 permissions (group-readable and
world-readable). The group permissions is not an issue since only the user belongs to the
group, however the world permissions might (or might not) be an issue depending on your
local policy.

Chapter 4. After Installation 48

You can change this behaviour so that user creation provides different $HOME permissions.
To change the behaviour for new users when they get created, change DIR_MODE in the con-
figuration file /etc/adduser.conf to 0750 (no world-readable access).

Users can still share information, but not directly in their $HOME directories unless they
change its permissions.

Note that this will prevent users from being able to set up personal pages (~userX) if a web
server is present, since the web server will not be able to read the $HOME directory and thus,
the public_html directory under it.

4.10.14 Generating user passwords

There are many cases when an administrator needs to create many user accounts and provide
passwords for all of them. Of course, the administrator could easily just set the password to
be the same as the user’s account name, but that would not be very sensitive security-wise.
A better approach is to use a password generating program. Debian provides makepasswd ,
apg and pwgen packages which provide programs (the name is the same as the package) that
can be used for this purpose. Makepasswd will generate true random passwords with an
emphasis on security over pronounceability while pwgen will try to make meaningless but
pronounceable passwords (of course this might depend on your mother language). Apg has
algorithms to provide for both (there is a client/server version for this program but it is not
included in the Debian package).

Passwd does not allow non-interactive assignation of passwords (since it uses direct tty ac-
cess). If you want to change passwords when creating a large number of users you can create
them using adduser with the --disabled-login option and then use chpasswd 2 (in the
passwd package so you already have it installed). If you want to use a file with all the inform-
ation to make users as a batch process you might be better off using newusers .

4.10.15 Checking user passwords

User passwords can sometimes become the weakest link in the security of a given system. This
is due to some users choosing weak passwords for their accounts (and the more of them that
have access to it the greater the chances of this happening). Even if you established checks with
the cracklib PAM module and password limits as described in ‘User authentication: PAM’ on
page 39 users will still be able to use weak passwords. Since user access might include remote
shell access (over ssh , hopefully) it’s important that a remote attacker is not able to guess user
passwords (after he has been able to do user enumeration by other means).

A system administrator must, given a big number of users, check if the passwords they have
are consistent with the local security policy. How to check? Try to crack them as an attacker
would if he had access to the hashed passwords (the /etc/shadow file).

2Chpasswd cannot handle MD5 password generation so it needs to be given the password in encrypted form
before using it, with the -e option.

Chapter 4. After Installation 49

An administrator can use john together with an appropriate wordlist 3 to check users’ pass-
words and take appropriate action when a weak password is detected.

4.10.16 Logging off idle users

Idle users are usually a security problem, a user might be idle maybe because he’s out to lunch
or because a remote connection was broken and not re-established. For whatever the reason,
idle users might lead to a compromise:

• because the user’s console might not be locked and can be accessed by an intruder.

• because an attacker might be able to re-attach himself to a closed network connection and
send commands to the remote shell (this is fairly easy if the remote shell is not encrypted
as in the case of telnet).

Some remote systems have even been compromised through an idle (detached) screen .

Automatic disconnection of idle users is usually a part of the local security policy that must be
enforced. There are several ways to do this:

• If bash is the user shell, a system administrator can set a default TMOUTvalue (see
bash(1)) which will make the shell automatically remote idle users. Note that it must
be set with the -o option or users will be able to change (or unset) it.

• Install timeoutd and configure /etc/timeouts according to your local security policy.
The daemon will watch for idle users and time out their shells accordingly.

• Install autolog and configure it to remove idle users.

The timeoutd or autolog daemons are the preferred method since, after all, users can
change their default shell or can, after running their default shell, switch to another (uncon-
trolled) shell.

4.11 Using tcpwrappers

TCP wrappers were developed when there were no real packet filters available and access
control was needed. The TCP wrappers allow you to allow or deny a service for a host or a
domain and define a default allow or deny rule. If you want more information take a look at
hosts_access(5) .

Many services installed in Debian are either:

3Try apt-cache search wordlist for a list of available packages which might provide wordlists. You can
also retrieve wordlists from many ftp sites over the Internet. FIXME: add links

Chapter 4. After Installation 50

• launched through the tcpwrapper service (tcpd)

• compiled with libwrapper support built-in.

On the one hand, for services configured in /etc/inetd.conf (this includes telnet , ftp ,
netbios , swat and finger) you will see that the configuration file executes /usr/sbin/tcpd
first. On the other hand, even if a service is not launched by the inetd superdaemon, support
for the tcp wrappers rules can be compiled into it. Services compiled with tcp wrappers in
Debian include ssh, portmap, in.talk, rpc.statd, rpc.mountd, gdm, oaf (the
GNOME activator daemon), nessus and many others.

To see which packages use tcpwrappers try:

$ apt-cache showpkg libwrap0 | egrep ’^[[:space:]]’ | sort -u | \
sed ’s/,libwrap0$//;s/^[[:space:]]\+//’

Take this into account when running tcpchk . You can add services that are linked to the
wrapper library into the hosts.deny and hosts.allow files but tcpchk will warn that it is
not able to find those services since it looks for them in /etc/inetd.conf (the manpage is
not totally accurate here).

Now, here comes a small trick, and probably the smallest intrusion detection system available.
In general, you should have a decent firewall policy as a first line, and tcp wrappers as the
second line of defense. One little trick is to set up a SPAWN 4 command in /etc/hosts.deny
that sends mail to root whenever a denied service triggers wrappers:

ALL: ALL: SPAWN (\
echo -e "\n\
TCP Wrappers\: Connection refused\n\
By\: $(uname -n)\n\
Process\: %d (pid %p)\n\
User\: %u\n\
Host\: %c\n\
Date\: $(date)\n\

" | /usr/bin/mail -s "Connection to %d blocked" root) &

Beware: The above printed example is open to a DoS attack by making many connections in a
short period of time. Many emails mean a lot of file I/O by sending only a few packets.

4.12 The importance of logs and alerts

It is easy to see that the treatment of logs and is an important issue in a secure system. Suppose
a system is perfectly configured and 99% secure. If the 1% attack occurs, and there are no

4be sure to use uppercase here since spawn will not work

Chapter 4. After Installation 51

security measures in place to, first, detect this and, second, raise alarms, the system is not
secure at all.

Debian GNU/Linux provides some tools to perform log analysis, most notably logcheck or
loganalysis (both will need some customisation to remove unnecessary things from the
report). It might also be useful, if the system is nearby, to have the system logs printed on a
virtual console. This is useful since you can (from a distance) see if the system is behaving
properly. Debian’s /etc/syslog.conf comes with a commented default configuration; to
enable it uncomment the lines and restart syslogd (/etc/init.d/syslogd restart):

daemon,mail.*;\
news.=crit;news.=err;news.=notice;\
.=debug;.=info;\
.=notice;.=warn /dev/tty8

There is a lot regarding log analysis that cannot be fully covered here, a good resource for
information is Counterpane’s Log Analysis Resources (http://www.counterpane.com/
log-analysis.html). In any case, even automated tools are no match for the best analysis
tool: your brain.

4.12.1 Using and customising logcheck

The logcheck package in Debian is divided into two packages logcheck (the main program)
and logcheck-database (a database of regular expressions for the program). The Debian
default (in /etc/cron.d/logcheck) is that logcheck is run daily at 2 AM and once after
each reboot.

This tool can be quite useful if properly customised to alert the administrator to unusual events
in the system. Logcheck can be fully customised so that it can send mails from events re-
covered from the logs that are worthy of attention. The default installation includes profiles for
ignored events and policy violations for three different setups (workstation, server and para-
noid). The Debian package includes a configuration file /etc/logcheck/logcheck.conf ,
sourced by the program, that defines which user the checks are sent to. It also provides a
way for packages that provide services to implement new policies in the directories: /etc
/logcheck/hacking.d/_packagename_ , /etc/logcheck/violations.d/_packagename_ ,
/etc/logcheck/violations.ignore.d/_packagename_ , /etc/logcheck/ignore.d.paranoid
/_packagename_ , /etc/logcheck/ignore.d.server/_packagename_ , and /etc/logcheck
/ignore.d.workstation/_packagename_ . However, not many packages currently do
so. If you have a policy that can be useful for other users, please send it as a bug report for
the appropriate package (as a wishlist bug). For more information read /usr/share/doc
/logcheck/README.Debian

The best way to configure logcheck is to install it (it will ask for the user to which reports
should be mailed and generate /etc/logcheck/logcheck.logfiles from syslog entries).
If you wish to add new log files just add them to /etc/logcheck/logcheck.logfiles .

http://www.counterpane.com/log-analysis.html
http://www.counterpane.com/log-analysis.html

Chapter 4. After Installation 52

The package dependency will also force the installation of logcheck-database ; during in-
stallation it will ask which security level is desired: workstation, server or paranoid. This
will make /etc/logcheck/ignore.d point to the appropriate directories (through symbolic
links). To change this run dpkg-reconfigure -plow logcheck-database . Then create
the /etc/ignore.d/local , this file will hold all the rules to exclude messages that should
not be reported. Leave it empty for the moment (a simple cp /dev/null /etc/ignore.d/local
will work).

Once this is done you might want to check the mails that are sent, for the first few days/weeks/months.
If you find you are sent messages you do not wish to receive, just add the regular expressions
(see regex(7)) that correspond to these messages to the /etc/ignore.d/local . It’s an
ongoing tuning process; once the messages that are sent are always relevant you can consider
the tuning finished. Note that if logcheck does not find anything relevant in your system
it will not mail you even if it does run (so you might get a mail only once a week, if you are
lucky).

4.12.2 Configuring where alerts are sent

Debian comes with a standard syslog configuration (in /etc/syslog.conf) that logs mes-
sages to the appropriate files depending on the system facility. You should be familiar with
this; have a look at the syslog.conf file and the documentation if not. If you intend to main-
tain a secure system you should be aware of where log messages are sent so they do not go
unnoticed.

For example, sending messages to the console also is an interesting setup useful for many
production-level systems. But for many such systems it is also important to add a new machine
that will serve as loghost (i.e. it receives logs from all other systems).

Root’s mail should be considered also, many security controls (like snort) send alerts to
root’s mailbox. This mailbox usually points to the first user created in the system (check /etc
/aliases). Take care to send root’s mail to some place where it will be read (either locally or
remotely).

There are other role accounts and aliases on your system. On a small system, it’s probably
simplest to make sure that all such aliases point to the root account, and that mail to root is
forwarded to the system administrator’s personal mailbox.

FIXME: it would be interesting to tell how a Debian system can send/receive SNMP traps
related to security problems (jfs). Check: snmptraglogd , snmp and snmpd.

4.12.3 Using a loghost

A loghost is a host which collects syslog data remotely over the network. If one of your ma-
chines is cracked, the intruder is not able to cover his tracks, unless he hacks the loghost as well.
So, the loghost should be especially secure. Making a machine a loghost is simple. Just start
the syslogd with syslogd -r and a new loghost is born. In order to do this permanently in
Debian, edit /etc/init.d/sysklogd and change the line

Chapter 4. After Installation 53

SYSLOGD=""

to

SYSLOGD="-r"

Next, configure the other machines to send data to the loghost. Add an entry like the following
to /etc/syslog.conf :

facility.level @your_loghost

See the documentation for what to use in place of facility and level (they should not be entered
verbatim like this). If you want to log everything remotely, just write:

. @your_loghost

into your syslog.conf . Logging remotely as well as locally is the best solution (the attacker
might presume to have covered his tracks after deleting the local log files). See the syslog(3) ,
syslogd(8) and syslog.conf(5) manpages for additional information.

4.12.4 Log file permissions

It is not only important to decide how alerts are used, but also who has read/modify access to
the log files (if not using a remote loghost). Security alerts which the attacker can change or
disable are not worth much in the event of an intrusion. Also, you have to take into account
that log files might reveal quite a lot of information about your system to an intruder if he has
access to them.

Some log file permissions are not perfect after the installation (but of course this really depends
on your local security policy). First /var/log/lastlog and /var/log/faillog do not
need to be readable by normal users. In the lastlog file you can see who logged in recently,
and in the faillog you see a summary of failed logins. The author recommends chmod 660
for both. Take a brief look at your log files and decide very carefully which log files to make
readable/writeable for a user with a UID other than 0 and a group other than ’adm’ or ’root’.
You can easily check this in your system with:

find /var/log -type f -exec ls -l {} \; | cut -c 17-35 |sort -u
(see to what users do files in /var/log belong)
find /var/log -type f -exec ls -l {} \; | cut -c 26-34 |sort -u
(see to what groups do files in /var/log belong)
find /var/log -perm +004
(files which are readable by any user)
find /var/log \! -group root \! -group adm -exec ls -ld {} \;
(files which belong to groups not root or adm)

Chapter 4. After Installation 54

To customize how log files are created you will probably have to customize the program that
generates them. If the log file gets rotated, however, you can customize the behavior of creation
and rotation.

4.13 Using chroot

chroot is one of the most powerful possibilities to restrict a daemon or a user or another
service. Just imagine a jail around your target, which the target cannot escape from (normally,
but there are still a lot of conditions that allow one to escape out of such a jail). If you do not
trust a user, you can create a change root environment for him. This can use quite a bit of disk
space as you need to copy all needed executables, as well as libraries, into the jail. Even if the
user does something malicious, the scope of the damage is limited to the jail.

A good example for this case is, if you do not authenticate against /etc/passwd but use
LDAP or MySQL instead. So your ftp-daemon only needs a binary and perhaps a few libraries.
A chroot ed environment would be an excellent security improvement; if a new exploit is
found for this ftp-daemon, then attackers can only exploit the UID of the ftp-daemon-user and
nothing else.

Of course, many other daemons could benefit from this sort of arrangement as well.

However, be forewarned that a chroot jail can be broken if the user running in it is the super-
user. So, you need to make the service run as a non-privileged user. By limiting its environment
you are limiting the world readable/executable files the service can access, thus, you limit the
possibilities of a privilege escalation by use of local system security vulnerabilities. Even in this
situation you cannot be completely sure that there is no way for a clever attacker to somehow
break out of the jail. Using only server programs which have a reputation for being secure is a
good additional safety measure. Even minuscule holes like open file handles can be used by a
skilled attacker for breaking into the system. After all, chroot was not designed as a security
tool but as a testing tool.

As an additional note, the Debian default BIND (the Internet name service) is not shipped
chroot ’ed per default; in fact, no daemons come chroot ’ed.

There is also some software (not currently in Debian but which might be packaged in the
future) that can help set up chroot environments. See

4.14 Adding kernel patches

FIXME: More content

Debian GNU/Linux provides some of the patches for the Linux kernel that enhance its security.
These include:

• Linux Intrusion Detection (in package lids-2.2.19)

Chapter 4. After Installation 55

• Linux Capabilities (in package lcap)

• Linux Trustees (in package trustees)

• NSA Enhanced Linux (in package selinux also available from the developer’s website
(http://www.coker.com.au/selinux/))

• kernel-patch-2.2.18-openwall (http://packages.debian.org/kernel-patch-2.2.
18-openwall).

• kernel-patch-2.2.19-harden

• Linux capabilities (in package lcap

• IPSEC kernel support (in package kernel-patch-freeswan)

• kernel-patch-int

However, some patches have not been provided in Debian yet. If you feel that some of these
should be included please ask for it at the Work Needing and Prospective Packages (http:
//wnpp.debian.org). Some of these are:

• PaX patch (http://pageexec.virtualave.net/)

• HAP patch (http://www.theaimsgroup.com/~hlein/hap-linux/)

• Stealth patch (http://www.energymech.net/madcamel/fm/)

4.15 Protecting against buffer overflows

Buffer overflow is the name of a common attack to software which makes use of insufficient
boundary checking (a common programming error) in order to execute machine code through
a program’s inputs. These attacks, against server software which listens to connections re-
motely and against local software which grant higher privileges to users (setuid or setgid)
can result in the compromise of any given system.

There are mainly four methods to protect against buffer overflows:

• patch the kernel to prevent stack execution.

• using a library, such as libsafe, to overwrite vulnerable functions and introduce proper
checking (for information on how to install libsafe read this (http://www.Linux-Sec.
net/harden/libsafe.uhow2.txt)).

• recompile code to introduce proper checks that prevent overflows, using, for example,
stackguard.

• use tools to find and fix code that might introduce this vulnerability.

http://www.coker.com.au/selinux/
http://packages.debian.org/kernel-patch-2.2.18-openwall
http://packages.debian.org/kernel-patch-2.2.18-openwall
http://wnpp.debian.org
http://wnpp.debian.org
http://pageexec.virtualave.net/
http://www.theaimsgroup.com/~hlein/hap-linux/
http://www.energymech.net/madcamel/fm/
http://www.Linux-Sec.net/harden/libsafe.uhow2.txt
http://www.Linux-Sec.net/harden/libsafe.uhow2.txt

Chapter 4. After Installation 56

Debian GNU/Linux, as of the 3.0 release, only provides software to implement the first and
last of these methods (kernel patches and tools to detect possible buffer overflows). The use of
tools to detect buffer overflows requires, in any case, of programming experience in order to fix
(and recompile) the code. Debian provides, for example: bfbtester (a buffer overflow tester
that brute-forces binaries through command line and environment overflows) and njamd .

As for kernel patches (described in the section ‘Adding kernel patches’ on page 54), the Op-
enwall patch provides protection against buffer overflows in 2.2 linux kernels. However, for
2.4 kernels, you need to use the Grsecurity patch (in the kernel-patch-2.4-grsecurity
which includes the Openwall patch and many more features (http://www.grsecurity.
net/features.htm) (including ACLs and network randomness to make it more difficult to
remote OS fingerprinting), or the Linux Security Modules (in the kernel-patch-2.4-lsm
and kernel-patch-2.5-lsm packages).

In any case, be aware, that even these workarounds might not prevent buffer overflows since
there are ways to circumvent these, as described in phrack’s magazine issue 58 (http://
packetstorm.linuxsecurity.com/mag/phrack/phrack58.tar.gz).

4.16 Secure file transfers

During normal system administration one usually needs to transfer files in and out from the
installed system. Copying files in a secure manner from a host to another can be achieved by
using the sshd server package. Another possibility is the use of ftpd-ssl , a ftp server which
uses the Secure Socket Layer to encrypt the transmissions.

Any of these methods needs, of course, special clients. Debian provides clients, for example the
ssh provides scp . It works like rcp but is encrypted completely, so the bad guys cannot even
find out WHAT you copy. There is also a ftp-ssl client package for the equivalent server.
You can find clients for these software even for other operating systems (non-UNIX), putty
and winscp provide secure copy implementations for any version of Microsoft’s operating
system.

Note that using scp provides access to the users to all the file system unless chroot ’ed as
described in ‘Chrooting ssh’ on page 69. FTP access can be chroot ’ed, probably easier de-
pending on you chosen daemon, as described in ‘Securing FTP’ on page 71. If you are worried
about users browsing your local files and want to have encrypted communication you can
either use an ftp daemon with SSL support or combine cleartext ftp and a VPN setup (see
‘Virtual Private Networks’ on page 111).

4.17 File System limits and control

4.17.1 Using quotas

Having a good quota policy is important, as it keeps users from filling up the hard disk(s).

http://www.grsecurity.net/features.htm
http://www.grsecurity.net/features.htm
http://packetstorm.linuxsecurity.com/mag/phrack/phrack58.tar.gz
http://packetstorm.linuxsecurity.com/mag/phrack/phrack58.tar.gz

Chapter 4. After Installation 57

You can use two different quota systems: user quota and group quota. As you probably figured
out, user quota limits the amount of space a user can take up, group quota does the equivalent
for groups. Keep this in mind when you’re working out quota sizes.

There are a few important points to think about in setting up a quota system:

• Keep the quotas small enough, so users do not eat up your disk space.

• Keep the quotas big enough, so users do not complain or their mail quota keeps them
from accepting mail over a longer period.

• Use quotas on all user-writable areas, on /home as well as on /tmp .

Every partition or directory which users have full write access should be quota enabled. Cal-
culate and assign a workable quota size for those partitions and directories which combines
usability and security.

So, now you want to use quotas. First of all you need to check whether you enabled quota
support in your kernel. If not, you will need to recompile it. After this, control whether the
package quota is installed. If not you will need this one as well.

Enabling quota for the respective file systems is as easy as modifying the defaults set-
ting to defaults,usrquota in your /etc/fstab file. If you need group quota, substi-
tute usrquota to grpquota . You can also use them both. Then create empty quota.user
and quota.group files in the roots of the file systems you want to use quotas on (e.g. touch
/home/quota.user /home/quota.group for a /home file system).

Restart quota by doing /etc/init.d/quota stop;/etc/init.d/quota start . Now
quota should be running, and quota sizes can be set.

Editing quotas for a specific user (say ’ref’) can be done by edquota -u ref . Group quotas
can be modified with edquota -g <group> . Then set the soft and hard quota and/or inode
quotas as needed.

For more information about quotas, read the quota man page, and the quota mini-howto(/usr
/share/doc/HOWTO/en-html/mini/Quota.html).

You might or might not like lshell , since it violates the FHS. Also take into account that
pam_limits.so might provide the same functionality and lshell is currently orphaned (http:
//bugs.debian.org/93894)

4.17.2 chattr/lsattr

These two commands are very useful, but they only work for the ext2 file system. With ’lsattr’
you can list the attributes of a file and with ’chattr’ you can change them. Note that attributes
are not the same thing as permissions. There are many attributes, but only the most important
for increasing security are mentioned here. There are two flags which can only be set by the
superuser.

http://bugs.debian.org/93894
http://bugs.debian.org/93894

Chapter 4. After Installation 58

First there is the ’a’ flag. If set on a file, this file can only be opened for appending. This
attribute is useful for some of the files in /var/log/ , though you should consider they get
moved sometimes due to the log rotation scripts.

The second flag is the ’i’ flag, short for immutable. If set on a file, it can neither be modified
nor deleted or renamed and no link be created to it. If you do not want users to look into your
config files you could set this flag and remove readability. Furthermore it can give you a little
bit more security against intruders, because the cracker might be confused by not being able
to remove a file. Nevertheless, you should never assume that the cracker is blind. After all, he
got into your system.

You can, also, remove the chattr and lsattr programs from the system so that an intruder
with root access cannot change (or list) this attributes. Since they are part of the e2fsprogs
and it’s Required priority you cannot simply remove it. However, you can safely delete these
two applications (and probably some others) from the file system. Copy them before to a
removable media (floppy disk?) along with they md5sums.

An intruder in the system would have to download his own copies of the binaries in the system
(probably even compile them in it) which might give you a littler more time to detect and
recover from the compromise before the whole system is overrun.

FIXME: This is a bug that could be reported, are any of the binaries provided by the program
useful in production systems? If not, and since the libraries are needed by many packages a
new package e2fsprogs-utils could be included with less than Required priority.

Remember: lsattr and chattr are only available on ext2 file systems.

4.17.3 Checking file system integrity

Are you sure /bin/login on your hard drive is still the binary you installed there some
months ago? What if it is a hacked version, which stores the entered password in a hidden file
or mails it in cleartext version all over the internet?

The only method to have some kind of protection is to check your files every hour/day/month
(I prefer daily) by comparing the actual and the old md5sum of this file. Two files cannot have
the same md5sum (the MD5 digest is 128 bits, so the chance that two different files will have
the same md5sum is roughly one in 3.4e3803), so you’re on the safe site here, unless someone
has also hacked the algorithm that creates md5sums on that machine. This is, well, extremely
difficult and very unlikely. You really should consider this auditing of your binaries as very
important, since it is an easy way to recognize changes at your binaries. Common tools used
for this are sXid , AIDE (Advanced Intrusion Detection Environment), TripWire (non-free;
the new version will be GPL), integrit and samhain .

Installing debsums will help to check the file system integrity, by comparing the md5sums of
every file against the md5sums used in the Debian package archive. But beware, those files
can easily be changed.

Furthermore you can replace locate with slocate . slocate is a security enhanced version of
GNU locate. When using slocate, the user only sees the files he really has access to and you
can exclude any files or directories on the system.

Chapter 4. After Installation 59

FIXME: put references to the snapshot taken after installation.

FIXME: Add a note regarding packages not providing debsums for all apps installed (not man-
datory).

4.17.4 Setting up setuid check

Debian provides a cron job that runs daily in /etc/cron.daily/standard . This cron job
will run the /usr/sbin/checksecurity script that will store information of this changes.

In order for this check to be made you must set CHECKSECURITY_DISABLE=“FALSE”in /etc
/checksecurity.conf . Note, this is the default, so unless you have changed something,
this option will already be set to “FALSE”.

The default behavior does not send this information to the superuser but, instead keeps daily
copies of the changes in /var/log/setuid.changes . You should set the CHECKSECUR-
ITY_EMAIL (in /etc/checksecurity.conf) to ’root’ to have this information mailed to
him. . See checksecurity(8) for more configuration info.

4.18 Securing network access

FIXME. More (Debian-specific) content needed

4.18.1 Configuring kernel network features

FIXME: Content missing

Many features of the kernel can be modified while running by echoing something into the
/proc file system or by using sysctl . By entering /sbin/sysctl -A you can see what you
can configure and what the options are, and it can be modified running /sbin/sysctl -w
variable=value (see sysctl(8)). Only in rare cases do you need to edit something here,
but you can increase security that way as well. For example:

net/ipv4/icmp_echo_ignore_broadcasts = 1

This is a Windows emulator because it acts like Windows on broadcast ping if this option is set
to 1. That is, ICMP_ECHO request sent to the broadcast address will be ignored. Otherwise, it
does nothing.

If you want to block any ICMP echo requests on your system, enable this configuration option:

net/ipv4/icmp_echo_ignore_all = 0

To log packets with impossible addresses (due to wrong routes) on your network use:

Chapter 4. After Installation 60

/proc/sys/net/ipv4/conf/all/log_martians = 1

For more information on what things can be done with /proc/sys/net/ipv4/* read /usr
/src/linux/Documentation/filesystems/proc.txt . All the options are describe thor-
oughly under /usr/src/linux/Documentation/networking/ip-sysctl.txt 5.

Configuring Syncookies

This option is a double-edged sword. On the one hand it protects your system against syn
flooding; on the other hand it violates defined standards (RFCs).

net/ipv4/tcp_syncookies = 1

If you want to change this option you each time the kernel is working you need to change
it in /etc/network/options by setting syncookies=yes . This will take effect whener
/etc/init.d/networking is run (which is done at boot time) whileas this will only work
with the current running kernel:

echo 1 > /proc/sys/net/ipv4/tcp_syncookies

This option will only be available if the kernel is compiled with the CONFIG_SYNCOOKIES. All
Debian kernels are compiled with this option builtin but you can verify it running:

$ sysctl -A |grep syncookies
net/ipv4/tcp_syncookies = 1

For more information on TCP syncookies read http://cr.yp.to/syncookies.html .

4.18.2 Securing the network on boot-time

When setting configuration options for the kernel networking you need configure it so that it’s
loaded every time the system is restarted. The following example enables many of the previous
options as well as other useful options.

Create the script in /etc/network/interface-secure (the name is given as an example)
and call it from /etc/network/interfaces like this:

auto eth0
iface eth0 inet static

address xxx.xxx.xxx.xxx
5In Debian the kernel-image package installs the sources under /usr/src/kernel-souce-2.X.X , just

substitute linux to whatever kernel is installed

http://cr.yp.to/syncookies.html

Chapter 4. After Installation 61

netmask 255.255.255.xxx
broadcast xxx.xxx.xxx.xxx
gateway xxx.xxx.xxx.xxx
pre-up /etc/network/interface-secure

Script-name: /etc/network/interface-secure
Modifies some default behaviour in order to secure against
some TCP/IP spoofing & attacks
#
Contributed by Dariusz Puchalak
#
echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

broadcast echo protection enabled
echo 0 > /proc/sys/net/ipv4/ip_forward # ip forwarding disabled
echo 1 > /proc/sys/net/ipv4/tcp_syncookies # TCP syn cookie protection enabled
echo 1 >/proc/sys/net/ipv4/conf/all/log_martians

Log packets with impossible addresses
but be careful with this on heavy loaded web servers

echo 1 > /proc/sys/net/ipv4/ip_always_defrag
defragging protection always enabled

echo 1 > /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses
bad error message protection enabled

now ip spoofing protection
for f in /proc/sys/net/ipv4/conf/*/rp_filter; do

echo 1 > $f
done

and finally some more things:
Disable ICMP Redirect Acceptance
for f in /proc/sys/net/ipv4/conf/*/accept_redirects; do

echo 0 > $f
done

for f in /proc/sys/net/ipv4/conf/*/send_redirects; do
echo 0 > $f

done

Disable Source Routed Packets
for f in /proc/sys/net/ipv4/conf/*/accept_source_route; do

echo 0 > $f
done

Log Spoofed Packets, Source Routed Packets, Redirect Packets
for f in /proc/sys/net/ipv4/conf/*/log_martians; do

echo 1 > $f

Chapter 4. After Installation 62

done

You can also create a init.d script and have it run on bootup (using update-rc.d to create
the appropriate rc.d links).

4.18.3 Configuring firewall features

In order to have firewall capabilities, either to protect the local system or others behind it, the
kernel needs to be compiled with firewall capabilities. The standard Debian 2.2 kernel (also 2.2)
provides the packet filter ipchains firewall, Debian 3.0 standard kernel (kernel 2.4) provides
the stateful packet filter iptables (netfilter) firewall. Older Debian distributions would need
the appropriate kernel patch (Debian 2.1 uses kernel 2.0.34).

In any case, it is pretty easy to use a kernel different from the one provided by Debian. You
can find pre-compiled kernels as packages you can easily install in the Debian system. You
can also download the kernel sources using the kernel-source-X and build custom kernel
packages using make-kpkg .

Setting up firewalls in Debian is discussed more thoroughly in ‘Adding firewall capabilities’
on page 87.

4.18.4 Disabling weak-end hosts issues

Systems with more than one interface on different networks can have services configured so
that they will bind only to a given IP address. This usually prevents services when requested
through a given address. However, this does not mean (although it’s a common misconception
even I had) that the service is bound to a given hardware address (interface card). 6

This is not an ARP issue and it’s not an RFC violation (it’s called weak end host in RFC1122 (ftp:
//ftp.isi.edu/in-notes/rfc1122.txt), section 3.3.4.2). Remember, IP addresses have
nothing to do with physical interfaces.

On 2.2 (and previous) kernels this can be fixed with:

echo 1 > /proc/sys/net/ipv4/conf/all/hidden
echo 1 > /proc/sys/net/ipv4/conf/eth0/hidden
echo 1 > /proc/sys/net/ipv4/conf/eth1/hidden
.....

On later kernels this can be fixed either with:
6To reproduce this (example provided by Felix von Leitner on the bugtraq mailing list):

host a (eth0 connected to eth0 of host b): ifconfig eth0 10.0.0.1 ifconfig eth1
23.0.0.1 tcpserver -RHl localhost 23.0.0.1 8000 echo fnord host b: ifconfig eth0
10.0.0.2 route add 23.0.0.1 gw 10.0.0.1 telnet 23.0.0.1 8000

It seems, however, not to work with services bound to 127.0.0.1, you might need to write the tests using raw sockets.

ftp://ftp.isi.edu/in-notes/rfc1122.txt
ftp://ftp.isi.edu/in-notes/rfc1122.txt

Chapter 4. After Installation 63

• iptables rules.

• properly configured routing. 7

• kernel patching. 8

Along this text there will be many ocasions in which it is shown how to configure some services
(sshd server, apache, printer service. . .) in order to have them listening on any given address,
the reader should take into account that, without the fixes given here, the fix would not prevent
accesses from within the same (local) network. 9

FIXME: comments on bugtraq indicate there is a Linux specific method to bind to a given
interface.

FIXME: Submit a bug against netbase so that the routing fix is standard behaviour in Debian?

4.18.5 Protecting against ARP attacks

When you don’t trust the other boxes on your LAN (which should always be the case, because
it’s the safest attitude) you should protect yourself from the various existing ARP attacks.

As you know the ARP protocol is used to link IP addresses to MAC addresses. (see RFC826
(ftp://ftp.isi.edu/in-notes/rfc826.txt) for all the details). Every time you send a
packet to an IP address an arp resolution is done (first by looking into the local ARP cache then
if the IP isn’t present in the cache by broadcasting an arp query) to find the target’s hardware
address. All the ARP attacks aim to fool your box into thinking that box B’s IP address is
associated to the intruder’s box’s MAC address; Then every packet that you want to send to
the IP associated to box B will be send to the intruder’s box. . .

Those Attacks (Cache poisonning, ARP spoofing. . .) allow the attacker to sniff the traffic
even on switched networks, to easily hijack connections, to disconnect any host from the
network. . . Arp attack are powerful and simple to implement, several tools exists : arpspoof
(present in package dsniff), arpmim (http://www.team-teso.net/releases/arpmim-0.
2.tar.gz), arpoison (http://web.syr.edu/~sabuer/arpoison/). . .

However, there is always a solution:

7The fact that this behaviour can be changed through routing was described by Matthew G. Marsh in the
bugtraq thread:

eth0 = 1.1.1.1/24 eth1 = 2.2.2.2/24 ip rule add from 1.1.1.1/32 dev lo table 1 prio
15000 ip rule add from 2.2.2.2/32 dev lo table 2 prio 16000 ip route add default dev
eth0 table 1 ip route add default dev eth1 table 2

8There are some patches available for this behaviour as described in bugtraq’s thread at http://www.
linuxvirtualserver.org/~julian/#hidden and http://www.fefe.de/linux-eth-forwarding.
diff .

9An attacker might have many problems pulling the access through after configuring the IP-address binding if
he is not on the same broadcast domain (same network) as the attacked host. If the attack goes through a router it
might be quite difficult for the answers to return somewhere.

ftp://ftp.isi.edu/in-notes/rfc826.txt
http://www.team-teso.net/releases/arpmim-0.2.tar.gz
http://www.team-teso.net/releases/arpmim-0.2.tar.gz
http://web.syr.edu/~sabuer/arpoison/
http://www.linuxvirtualserver.org/~julian/#hidden
http://www.linuxvirtualserver.org/~julian/#hidden
http://www.fefe.de/linux-eth-forwarding.diff
http://www.fefe.de/linux-eth-forwarding.diff

Chapter 4. After Installation 64

• Use a static arp cache. You can set up “static” entries in your arp cache :

arp -s host_name hdwr_addr

By setting static entries for each important host in your network you ensure that nobody
will create/modify a (fake) entry for these hosts (static entries don’t expire and can’t be
modified) and spoofed arp replies will be ignored.

• Detect suspicious ARP traffic. You can use arpwatch , karpski or more general IDS that
can also detect suspicious arp traffic (snort , prelude (http://www.mandrakelinux.
com/prelude). . .).

• Implement IP traffic filtering validating the the MAC address.

4.19 Taking a snapshot of the system

Before putting the system into production system you culd take a snapshot of the whole sys-
tem. This snapshot could be used in the event of a compromise (see ‘After the compromise’ on
page 127). You should remake this upgrade whenever the system is upgraded, specially if you
upgrade to a new Debian release.

For this you can use a writable removable-media that can be set up read-only, this could be a
floppy disk (read protected after use) or a CD on a CD-ROM unit (you could use a rewriteable
CD-ROM so you could even keep backups of md5sums in different dates).

The following script creates such a snapshot:

#!/bin/bash
/bin/mount /dev/fd0 /mnt/floppy
/bin/cp /usr/bin/md5sum /mnt/floppy
echo "Calculating md5 database"
>/mnt/floppy/md5checksums.txt
for dir in /bin/ /sbin/ /usr/bin/ /usr/sbin/ /lib/ /usr/lib/
do

find $dir -type f | xargs /usr/bin/md5sum >>/mnt/floppy/md5checksums-lib.txt
done
/bin/umout /dev/fd0
echo "post installation md5 database calculated"

Note that the md5sum binary is placed on the floppy drive so it can be used later on to check
the binaries of the system (just in case it gets trojaned).

The snapshot does not include the files under /var/lib/dpkg/info which includes the md5
hashes of installed packages (in files ended with .md5sums). You could copy this information
along too, however you should notice:

http://www.mandrakelinux.com/prelude
http://www.mandrakelinux.com/prelude

Chapter 4. After Installation 65

• the md5sums provided by the Debian packages include all the files provided by them,
which makes the database bigger (5 Mbs versus 600kbs in a Debian GNU/Linux system
with graphical system and around 2.5 Gbs of software installed)

• not all Debian packages provide md5sums for the files installed since it is not (currently)
mandated policy.

Once the snapshot is done you should make sure to set the medium read-only. You can then
store it for backup or place it in the drive and use it to drive a cron check nightly comparing
the original md5sums against those on the snapshot.

4.20 Other recommendations

4.20.1 Do not use software depending on svgalib

SVGAlib is very nice for console lovers like me, but in the past it has been proven several times
that it is very insecure. Exploits against zgv were released, and it was simple to become root.
Try to prevent using SVGAlib programs wherever possible.

Chapter 4. After Installation 66

67

Chapter 5

Securing services running on your
system

Services can be secured in a running system in two ways:

• Making them only accessible in the access points (interfaces) they need to be in.

• Configuring them properly so that they can only be used by legitimate users in an au-
thorised manner.

Restricting services so that they can only be accessed from a given place can be done by re-
stricting access to them at the kernel (i.e. firewall) level, configure them to listen only on a
given interface (some services might not provide this feature) or using some other methods,
for example the linux vserver patch (for 2.4.16) can be used to force processes to use only one
interface.

Regarding the services running from inetd (telnet , ftp , finger , pop3 . . .) it is worth not-
ing that inetd cannot be configured so that services only listen on a given interface. However,
its substitute, the xinetd meta-daemon includes a bind just for this matter. See xinetd.conf(5) .

service nntp
{

socket_type = stream
protocol = tcp
wait = no
user = news
group = news
server = /usr/bin/env
server_args = POSTING_OK=1 PATH=/usr/sbin/:/usr/bin:/sbin/:/bin

+/usr/sbin/snntpd logger -p news.info
bind = 127.0.0.1

}

Chapter 5. Securing services running on your system 68

The following sections detail how determined services can be configured properly depending
on their intented use.

5.1 Securing ssh

If you are still running telnet instead of ssh, you should take a break from this manual and
change this. Ssh should be used for all remote logins instead of telnet. In an age where it is
easy to sniff internet traffic and get cleartext passwords, you should use only protocols which
use cryptography. So, perform an apt-get install ssh on your system now.

Encourage all the users on your system to use ssh instead of telnet, or even better, uninstall
telnet/telnetd. In addition you should avoid logging into the system using ssh as root and use
alternative methods to become root instead, like su or sudo . Finally, the sshd_config file,
in /etc/ssh , should be modified to increase security as well:

• ListenAddress 192.168.0.1

Have ssh listen only on a given interface, just in case you have more than one (and do
not want ssh available on it) or in the future add a new network card (and don’t want ssh
connections from it).

• PermitRootLogin No

Try not to permit Root Login wherever possible. If anyone wants to become root via ssh,
now two logins are needed and the root password cannot be brute forced via SSH.

• Listen 666

Change the listen port, so the intruder cannot be completely sure whether a sshd daemon
runs (be forewarned, this is security by obscurity).

• PermitEmptyPasswords no

Empty passwords make a mockery of system security.

• AllowUsers alex ref me@somewhere

Allow only certain users to have access via ssh to this machine. user@host can also be
used to restrict a given user from accessing only at a given host.

• AllowGroups wheel admin

Allow only certain group members to have access via ssh to this machine. AllowGroups
and AllowUsers have equivalent directives for denying access to a machine. Not surpris-
ingly they are called “DenyUsers” and “DenyGroups”.

• PasswordAuthentication yes

It is completely your choice what you want to do. It is more secure only to allow access
to machine from users with ssh-keys placed in the ~/.ssh/authorized_keys file. If you
want so, set this one to “no”.

Chapter 5. Securing services running on your system 69

• Disable any forms of authentication you do not really need, if you do not use, for example
RhostsRSAAuthentication , HostbasedAuthenticatio , KerberosAuthentication
or RhostsAuthentication (for exaple) you should disable them, even if they are
already by default (see the manpage sshd_config(5)).

• Protocol 2

Disable the protocol version 1, since it has some design flaws that make it easier to crack
passwords. For more information read a paper regarding ssh protocol problems (http:
//paris.cs.berkeley.edu/~dawnson/papers/ssh-timing.pdf) or the Xforce
advisory (http://xforce.iss.net/static/6449.php).

• Banner /etc/some_file

Add a banner (it will retrieved from the file) to users connecting to the ssh server, in some
countries sending a warning before access to a given system warning about unauthorised
access or user monitoring should be added to have legal protection.

You can also restrict access to the ssh server using pam_listfile or pam_wheel in the PAM
control file for ssh to restrict ssh logins. For example, you could keep anyone not listed in /etc
/loginusers by adding this line to /etc/pam.d/ssh :

auth required pam_listfile.so sense=allow onerr=fail item=user file=/etc/loginusers

As a final note, be aware that these directives are from a OpenSSH configuration file. Right
now, there are three commonly used SSH daemons, ssh1, ssh2, and OpenSSH by the OpenBSD
people. Ssh1 was the first ssh daemon available and it is still the most commonly used (there
are rumors that there is even a Windows port). Ssh2 has many advantages over ssh1 except
it is released under an closed-source license. OpenSSH is completely free ssh daemon, which
supports both ssh1 and ssh2. OpenSSH is the version installed on Debian when the package
ssh is chosen.

You can read more information on how to set up SSH with PAM support in the security mailing
list archives (http://lists.debian.org/debian-security/2001/debian-security-200111/
msg00395.html).

5.1.1 Chrooting ssh

Currently OpenSSH does not provide a way to chroot automatically users upon connection
(the commercial version does provide this functionality). However there is a project to provide
this functionality for OpenSSH too, see http://chrootssh.sourceforge.net , it is not
currently packaged for Debian, though. You could use, however, the pam_chroot module as
described in ‘Restricting users’s access’ on page 44.

In ‘Chroot environment for SSH’ on page 177 you can several options to make chroot envir-
onment for SSH.

http://paris.cs.berkeley.edu/~dawnson/papers/ssh-timing.pdf
http://paris.cs.berkeley.edu/~dawnson/papers/ssh-timing.pdf
http://xforce.iss.net/static/6449.php
http://lists.debian.org/debian-security/2001/debian-security-200111/msg00395.html
http://lists.debian.org/debian-security/2001/debian-security-200111/msg00395.html
http://chrootssh.sourceforge.net

Chapter 5. Securing services running on your system 70

5.1.2 Ssh clients

If you are using an SSH client against the SSH server you must make sure that it supports the
same protocols that are enforced on the server. For example, if you use the mindterm package,
it only supports protocol version 1. However, the sshd server is, by default, configured to only
accept version 2 (for security reasons).

5.1.3 Disallowing file transfers

If you do not want users to transfer files to and from the ssh server you need to restrict access
to the sftp-server and the scp access. You can restrict sftp-server by configuring the
proper Subsystem in the /etc/ssh/sshd_config . However, to restrict scp access, how-
ever, you must either:

• disallow users from login to the ssh server (as described above either through the config-
uration file or PAM configuration).

• do not give valid shells to users which are not allowed secure transfers. The shells
provided, however, should be programs that would make connecting to the ssh server
was useful at all, such as menu programs (ala BBS). Otherwise the previous option is
preferred.

5.2 Securing Squid

Squid is one of the most popular proxy/cache server, and there are some security issues that
should be taken into account. Squid’s default configuration file denies all users requests.
However the Debian package allows access from ’localhost’, you just need to configure your
browser properly. You should configure Squid to allow access to trusted users, hosts or net-
works defining an Access Control List on /etc/squid.conf , see the Squid User’s Guide
(http://squid-docs.sourceforge.net/latest/html/book1.htm) for more inform-
ation about defining ACLs rules.

Also, if not properly configured, someone may relay a mail message through Squid, since the
HTTP and SMTP protocols are designed similarly. Squid’s default configuration file denies
access to port 25. If you wish to allow connections to port 25 just add it to Safe_ports lists.
However, this is NOT recommended.

Setting and configuring the proxy/cache server properly is only part of keeping your site se-
cure. Another necessary task is to analyse Squid’s logs to assure that all things are working
as they should be working. There are some packages in Debian GNU/Linux that can help an
administrator to do this. The following packages are available in woody (Debian 3.0):

• calamaris - Log analyzer for Squid or Oops proxy log files.

• modlogan - A modular logfile analyzer.

http://squid-docs.sourceforge.net/latest/html/book1.htm

Chapter 5. Securing services running on your system 71

• squidtaild - Squid log monitoring program.

When using Squid in Accelerator Mode it acts as a web server too. Turning on this option
code complexity increases, making it less reliable. By default Squid is not configured to act
as a web server, so you don’t need to worry about this. Note that if you want to use this
feature be sure that it is really necessary. Too find more information about Accelerator Mode on
Squid see the Squid User’s Guide #Chapter9 (http://squid-docs.sourceforge.net/
latest/html/c2521.htm).

5.3 Securing FTP

If you really have to use FTP (without wrapping it with sslwrap or inside a SSL or SSH tunnel),
you should chroot ftp into the ftp users’ home directory, so that the user is unable to see any-
thing else than their own directory. Otherwise they could traverse your root file system just
like if they had a shell in it. You can add the following line in your proftpd.conf in your
global section to enable this chroot feature:

DefaultRoot ~

Restart proftpd by /etc/init.d/proftpd restart and check whether you can escape
from your homedir now.

To prevent Proftp DoS attacks using ../../.., add the following line in /etc/proftpd.conf :
DenyFilter *.*/

Always remember that FTP sends login and authentication passwords in clear text (this is not
an issue if you are providing an anonymous public service) and there are better alternatives
in Debian for this. For example, sftp (provided by ssh). There are also free implement-
ations of SSH for other operating systems: putty (http://www.chiark.greenend.org.
uk/~sgtatham/putty/) and cygwin (http://www.cygwin.com) for example.

However, if you still maintain the FTP server while making users access through SSH you migh
encounter a typical problem. Users accessing Anonymous FTP servers inside SSH-secured
systems might try to log in the FTP server. While the access will be refused, the password
will nevertheless be sent through the net in clear form. To avoid that, ProFTPd developer
TJ Saunders has created a patch that prevents users feeding the anonymous FTP server with
valid SSH acounts. More information and patch available at: ProFTPD Patches (http://www.
castaglia.org/proftpd/#Patches).

5.4 Securing access to the X Window System

Today, X terminals are used by more and more companies where one server is needed for a lot
of workstations. This can be dangerous, because you need to allow the file server to connect

http://squid-docs.sourceforge.net/latest/html/c2521.htm
http://squid-docs.sourceforge.net/latest/html/c2521.htm
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.cygwin.com
http://www.castaglia.org/proftpd/#Patches
http://www.castaglia.org/proftpd/#Patches

Chapter 5. Securing services running on your system 72

to the the clients (X server from the X point of view. X switches the definition of client and
server). If you follow the (very bad) suggestion of many docs, you type xhost + on your
machine. This allows any X client to connect to your system. For slightly better security, you
can use the command xhost +hostname instead to only allow access from specific hosts.

A much more secure solution, though, is to use ssh to tunnel X and encrypt the whole session.
This is done automatically when you ssh to another machine. This has to be enabled in /etc
/ssh/ssh_config by setting X11Forwarding to yes . In times of SSH, you should drop the
xhost based access control completely.

For best security, if you do not need X access from other machines, is to switch off the binding
on tcp port 6000 simply by typing:

$ startx -- -nolisten tcp

This is the default behavior in Xfree 4.1.0 (the Xserver provided in Debian 3.0). If you are run-
ning Xfree 3.3.6 (i.e. you have Debian 2.2 installed) you can edit /etc/X11/xinit/xserverrcc
to have it something along the lines of:

#!/bin/sh
exec /usr/bin/X11/X -dpi 100 -nolisten tcp

If you are using XDM set /etc/X11/xdm/Xservers to: :0 local /usr/bin/X11/X vt7
-dpi 100 -nolisten tcp . If you are using Gdm make sure that the -nolisten tcp
option is set in the /etc/gdm/gdm.conf (which is the default in Debian) such as this:

[server-Standard]
name=Standard Server
command=/usr/bin/X11/X -nolisten tcp

You can also set the default’s system timeout for xscreensaver locks. Even if the user can
override it, you should edit the /etc/X11/app-defaults/XScreenSaver configuration
file and change the lock line:

*lock: False

(which is the default in Debian) to:

*lock: True

FIXME: add information on how to disable the screensavers which show the user desktop
(which might have sensitive information).

Read more on X Window security in XWindow-User-HOWTO (http://www.linuxdoc.
org/HOWTO/XWindow-User-HOWTO.html) (/usr/share/doc/HOWTO/en-txt/XWindow-User-HOWTO.txt.gz).

FIXME: Add info on thread of debian-security on how to change config files of XFree 3.3.6 to
do this.

http://www.linuxdoc.org/HOWTO/XWindow-User-HOWTO.html
http://www.linuxdoc.org/HOWTO/XWindow-User-HOWTO.html

Chapter 5. Securing services running on your system 73

5.4.1 Check your display manager

If you only want to have a display manager installed for local usage (having a nice graphical
login, that is), make sure the XDMCP (X Display Manager Control Protocol) stuff is disabled.
In XDM you can do this with this line in /etc/X11/xdm/xdm-config :

DisplayManager.requestPort: 0

Normally, all display managers are configured not to start XDMCP services per default in
Debian.

5.5 Securing printing access (The lpd and lprng issue)

Imagine, you arrive at work, and the printer is spitting out endless amounts of paper because
someone is DoSing your line printer daemon. Nasty, isn’t it?

In any unix printing architecture, there has to be a way to get the client’s data to the host’s
print server. In traditional lpr and lp , the client command copies or symlinks the data into
the spool directory (which is why these programs is usually SUID or SGID).

In order to avoid any issues you should keep your printer servers specially secure. This means
you need to configure your printer service so it will only allow connections from a set of trus-
ted servers. In order to do this, add the servers you want to allow printing to your /etc
/hosts.lpd .

However, even if you do this, the lpr daemon accepts incoming connections on port 515 of
any interface. You should consider firewalling connections from networks/hosts which are
not allowed printing (the lpr daemon cannot be limited to listen only on a given IP address).

Lprng should be preferred over lpr since it can be configured to do IP access control. And
you can specify which interface to bind to (although somewhat weirdly).

If you are using a printer in your system, but only locally, you will not want to share this
service over a network. You can consider using other printing systems, like the one provided
by cups or PDQ (http://pdq.sourceforge.net/) which is based on user permissions of
the /dev/lp0 device.

In cups , the print data is transferred to the server via the http protocol. This means the client
program doesn’t need any special privileges, but does require that the server be listening on a
port somewhere.

However, if you want to use cups , but only locally, you can configure it to bind to the loopback
interface by changing /etc/cups/cupsd.conf :

Listen 127.0.0.1:631

http://pdq.sourceforge.net/

Chapter 5. Securing services running on your system 74

There are many other security options like allowing or denying networks and hosts in this
config file. However, if you do not need them you might be better off just limiting the listening
port. Cups also serves documentation through the HTTP port, if you do not want to disclose
potential useful information to outside attackers (and the port is open) add also:

<Location />
Order Deny,Allow

Deny From All
Allow From 127.0.0.1

</Locationi>

This configuration file can be modified to add some more features including SSL/TLS certific-
ates and crypto. The manuals are available at http://localhost:631/ or at cups.org .

FIXME: Add more content (the article on Amateur Fortress Building (http://www.rootprompt.
org) provides some very interesting views).

FIXME: Check if PDG is available in Debian, and if so, suggest this as the preferred printing
system.

FIXME: Check if Farmer/Wietse has a replacement for printer daemon and if it’s available in
Debian.

5.6 Securing the mail service

If your server is not a mailing system, you do not really need to have a mail daemon listening
for incoming connections, but you might want local mail delivered in order, for example, to
receive mail for the root user from any alert systems you have in place.

If you have exim you do not need the daemon to be working in order to do this since the
standard cron job flushes the mail queue. See ‘Disabling daemon services’ on page 27 on how
to do this.

5.6.1 Configuring a Nullmailer

However you might want to have a local mailer daemon so that it can relay the mails sent
locally to a realy system. This is common when you have to administer a number of systems
and do not want to connect to each of them to read the local mail sent, it is usual to relay the
local mail to a remote system that consolidates all of it (similarly to what should be done to
logging for those systems).

Such a relay-only system should be configured properly for this. The daemon could, as well, be
configured to only listen on the loopback address.

To do this in a Debian system, you will have to remove the smtp daemon from inetd :

cups.org
http://www.rootprompt.org
http://www.rootprompt.org

Chapter 5. Securing services running on your system 75

$ update-inetd --disable smtp

and configure the mailer daemon to only listen on the loopback interface. In exim (the default
MTA) you can do this by editing the file /etc/exim.conf and adding the following line:

local_interfaces = "127.0.0.1"

Restart both daemons (inetd and exim) and you will have exim listening on the 127.0.0.1:25
socket only. Be careful, and first disable inetd, otherwise, exim will not start since the inetd
daemon is already handling incoming connections.

For postfix edit /etc/postfix/main.conf :

inet_interfaces = localhost

If you only want local mail, this approach is better than tcp-wrapping the mailer daemon or
adding firewalling rules to limit anybody accessing it. However, if you do need it to listen
on other interfaces, you might consider launching it from inetd and adding a tcp wrapper
so incoming connections are checked against /etc/hosts.allow and /etc/hosts.deny .
Also, you will be aware of when an unauthorized access is attempted against your mailer
daemon, if you set up proper logging for any of the methods above.

In any case, to reject mail relay attempts at the SMTP level, you can change /etc/exim
/exim.conf to include:

receiver_verify = true

Even if you mail server will not relay the message, this kind of configuration is needed for the
relay tester at http://www.abuse.net/relay.html to determine that your server is not
relay capable.

If you want a relay-only setup, however, you can consider changing the mailer daemon to
programs that can only be configured to forward the mail to a remote mail server. Debian
provides currently both ssmtp and nullmailer for this purpose. In any case, you can evalu-
ate for yourself any of the mail transport agents 1 provided by Debian and see which one suits
best to the system’s purposes.

1To retrieve the list of mailer daemons available in Debian try:

$ apt-cache search mail-transport-agent

The list will not include qmail , which is distributed only as source code in the qmail-src package.

http://www.abuse.net/relay.html

Chapter 5. Securing services running on your system 76

5.6.2 Providing secure access to mailboxes

If you want to give remote access to mailboxes there are a number of POP3 and IMAP daemons
available 2 . However, if you provide IMAP access note that it is a general file access protocol,
it can become the equivalent of a shell access because users might be able to retrieve any file
that they can through it.

Try, for example, to configure as your inbox path {server.com}/etc/passwd if it succeeds
your IMAP daemon is not properly configured to prevent this kind of access.

Of the IMAP servers in Debian the cyrus server (in the cyrus-imapd package) gets around
this by having all access be to a database in a restricted part of the file system. Also, uw-imapd
(either installing the uw-imapd or, better if your IMAP clients support it, uw-imapd-ssl)
can be configured to chroot the users mail directory but this is not enabled by default. The
documentation provided gives more information on how to configure it.

Also, you might want to run an IMAP server that does not need valid users to be created
on the local system (which would might grant shell access too), both courier-imap (for
IMAP) and courier-pop teapop (for POP3) and cyrus-imapd (for both POP3 and IMAP)
provide servers with authentication methods beside the local user accounts. cyrus can use
any authentication method that can be configured through PAM whileas teapop might use
databases (such as postgresql and mysql) for user authentication.

FIXME: Check: uw-imapd might be configured with user authentication through PAM too..

5.6.3 Receiving mail securely

Reading/receiving mail is the most common cleartext protocol. If you use either POP3 or
IMAP to get your mail, you send your cleartext password across the net, so almost anyone can
read your mail from now on. Instead, use SSL (Secure Sockets Layer) to receive your mail. The
other alternative is ssh, if you have a shell account on the box which acts as your POP or IMAP
server. Here is a basic fetchmailrc to demonstrate this:

poll my-imap-mailserver.org via "localhost"
with proto IMAP port 1236

user "ref" there with password "hackme" is alex here warnings 3600
folders

.Mail/debian
preconnect ’ssh -f -P -C -L 1236:my-imap-mailserver.org:143 -l ref

my-imap-mailserver.org sleep 15 </dev/null > /dev/null’

The preconnect is the important line. It fires up a ssh session and creates the necessary tunnel,
which automatically forwards connections to localhost port 1236 to the IMAP mail server, but
encrypted. Another possibility would be to use fetchmail with the ssl feature.

2A list of servers/daemons which support these protocols in Debian can be retrieved with:

$ apt-cache search pop3-server $ apt-cache search imap-server

Chapter 5. Securing services running on your system 77

If you want to provide encrypted mail services like POP and IMAP, apt-get install stunnel
and start your daemons this way:

stunnel -p /etc/ssl/certs/stunnel.pem -d pop3s -l /usr/sbin/popd

This command wraps the provided daemon (-l) to the port (-d) and uses the specified ssl cert
(-p).

5.7 Securing BIND

There are different issues that can be tackled in order to secure the Domain server daemon,
which are similar to the ones considered when securing any given service:

• configure the daemon itself properly so it cannot be misused from the outside. This
includes limiting possible queries from clients: zone transfers and recursive queries.

• limit the access of the daemon to the server itself so if it is used to break in, the damage
to the system is limited. This includes running the daemon as a non-privileged user and
chrooting it.

You should restrict some of the information that is served from the DNS server to outside
clients so that it cannot be used to retrieve valuable information from your organization that
you do not want to give away. This includes adding the following options: allow-transfer,
allow-query, allow-recursive and version. You can either limit this on the global section (so it
applies to all the zones served) or on a per-zone basis. This information is documented on
the bind-doc package, read more on this on /usr/share/doc/bind/html/index.html
once the package is installed.

Imagine that your server is connected to the Internet and to your internal (your internal IP is
192.168.1.2) network (a basic multi-homed server), you do not want to give any service to the
Internet and you just want to enable DNS lookups from your internal hosts. You could restrict
it by including in /etc/bind/named.conf :

options {
allow-query { 192.168.1/24; } ;
allow-transfer { none; } ;
allow-recursive { 192.168.1/24; } ;
listen-on { 192.168.1.2; } ;
forward { only; } ;
forwarders { A.B.C.D; } ;

};

The listen-on option makes the DNS bind to only the interface that has the internal address, but,
even if this interface is the same as the interface that connects to the Internet (if you are using

Chapter 5. Securing services running on your system 78

NAT, for example), queries will only be accepted if coming from your internal hosts. If the
system has multiple interfaces and the listen-on is not present, only internal users could query,
but, since the port would be accessible to outside attackers, they could try to crash (or exploit
buffer overflow attacks) on the DNS server. You could even make it listen only on 127.0.0.1 if
you are not giving DNS service for any other systems than yourself.

The version.bind record in the chaos class contains the version of the of the currently running
bind process. This information is often used by automated scanners and malicious individuals
who wish to determine if one’s bind is vulnerable to a specific attack. By providing false or
no information in the version.bind record, one limits the probability that one’s server will be
attacked based on its publicized version. To provide your own version, use the version directive
in the following manner:

options {
... various options here ...
version "Not available.";

};

Changing the version.bind record does not provide actual protection against attacks, but it
might be considered a useful safeguard.

A sample named.conf configuration file might be the following:

acl internal {
127.0.0.1/32; // localhost
10.0.0.0/8; // internal
aa.bb.cc.dd; // eth0 IP

};

acl friendly {
ee.ff.gg.hh; // slave DNS
aa.bb.cc.dd; // eth0 IP
127.0.0.1/32; // localhost
10.0.0.0/8; // internal

};

options {
directory "/var/cache/bind";
allow-query { internal; };
allow-recursive { internal; };
allow-transfer { none; };

};
// From here to the mysite.bogus zone
// is basically unmodified from the debian default
logging {

category lame-servers { null; };

Chapter 5. Securing services running on your system 79

category cname { null; };
};

zone "." {
type hint;
file "/etc/bind/db.root";

};

zone "localhost" {
type master;
file "/etc/bind/db.local";

};

zone "127.in-addr.arpa" {
type master;
file "/etc/bind/db.127";

};

zone "0.in-addr.arpa" {
type master;
file "/etc/bind/db.0";

};

zone "255.in-addr.arpa" {
type master;
file "/etc/bind/db.255";

};

// zones I added myself
zone "mysite.bogus" {

type master;
file "/etc/bind/named.mysite";
allow-query { any; };
allow-transfer { friendly; };

};

Please (again) check the Bug Tracking System regarding Bind, specifically Bug #94760 (regard-
ing ACLs on zone transfers) (http://bugs.debian.org/94760). Feel free to contribute to
the bug report if you think you can add useful information.

5.7.1 Changing BIND’s user

Regarding limiting BIND’s privileges you must be aware that if a non-root user runs BIND,
then BIND cannot detect new interfaces automatically. For example, if you stick a PCMCIA
card into your laptop. Check the README.Debian file in your named documentation (/usr

http://bugs.debian.org/94760

Chapter 5. Securing services running on your system 80

/share/doc/bind/README.Debian) directory for more information about this issue. There
have been many recent security problems concerning BIND, so switching the user is useful
when possible. We will detail here the steps needed in order to do this, however, if you want
to do this in an automatic way you might try the script provided in ‘Sample script to change
the default Bind installation.’ on page 169.

To run BIND under a different user, first create a separate user and group for it (it is not a good
idea to use nobody or nogroup for every service not running as root). In this example, the user
and group named will be used. You can do this by entering:

addgroup named
adduser --system --home /home/named --no-create-home --ingroup named \

--disabled-password --disabled-login named

Notice that the user named will be quite restricted. If you want, for whatever reason, to have a
less restrictive setup use:

adduser --system --ingroup named named

Now edit /etc/init.d/bind with your favorite editor and change the line beginning with

start-stop-daemon --start

to

start-stop-daemon --start --quiet --exec /usr/sbin/named -- -g named -u named

Also, in order to avoid running anything as root, change the reload line commenting out:

reload)
/usr/sbin/ndc reload

And change it to:

reload)
$0 stop
sleep 1
$0 start

Note: Depending on your Debian version you might have to change the restart line too.
This was fixed in Debian’s bind version 1:8.3.1-2 .

All you need to do now is to restart bind via ’/etc/init.d/bind restart’, and then check your
syslog for two entries like this:

Chapter 5. Securing services running on your system 81

Sep 4 15:11:08 nexus named[13439]: group = named
Sep 4 15:11:08 nexus named[13439]: user = named

Voilá! Your named now does not run as root. If you want to read more information on why
BIND does not run as non-root user on Debian systems, please check the Bug Tracking System
regarding Bind, specifically Bug #50013: bind should not run as root (http://bugs.debian.
org/50013) and Bug #132582: Default install is potentially insecure (http://bugs.debian.
org/132582), Bug #53550 (http://bugs.debian.org/53550), Bug #128120 (http://
bugs.debian.org/52745), and Bug #128120 (http://bugs.debian.org/128129). Feel
free to contribute to the bug reports if you think you can add useful information.

5.7.2 Chrooting the name server

To achieve maximum BIND security, now build a chroot jail (see ‘Using chroot ’ on page 54)
around your daemon. There is an easy way to do this: the -t option (see the named(8)
manpage). This will make Bind chroot itself into the given directory without you needing to
set up a chroot jail and worry about dynamic libraries. The only files there needs to be in these
chroot jail:

dev/null
etc/bind/ - should hold named.conf and all the server zones
sbin/named-xfer - if you do name transfers
var/run/named/ - should hold the pid and the name server cache (if

any) this directory needs to be writable by named
user

var/log/named - if you set up logging to a file, needs to be writable
for the named user

dev/log - syslogd should be listening here if named is configure to
log through it

In order for your Bind daemon to work properly it needs permission in the named files. This
is an easy task since the configuration files are always at /etc/named/ . Take in account that
it only needs read-only access to the zone files, unless it is a secondary or cache name server.
If this is your case you will have to give read-write permissions to the necessary zones (so that
zone transfers from the primary server work).

Also, you can find more information regarding Bind chrooting in the Chroot-BIND-HOWTO
(http://www.linuxdoc.org/HOWTO/Chroot-BIND-HOWTO.html) (regarding Bind 9) and
Chroot-BIND8-HOWTO (http://www.linuxdoc.org/HOWTO/Chroot-BIND8-HOWTO.html)
(regarding Bind 8). This same documents should be available through the installation of the
doc-linux-text (text version) or doc-linux-html (html version). Another useful docu-
ment is http://www.psionic.com/papers/dns/dns-linux .

If you are setting up a full chroot jail (i.e. not just -t) for Bind 8.2.3 in Debian (potato), make
sure you have the following files in it:

http://bugs.debian.org/50013
http://bugs.debian.org/50013
http://bugs.debian.org/132582
http://bugs.debian.org/132582
http://bugs.debian.org/53550
http://bugs.debian.org/52745
http://bugs.debian.org/52745
http://bugs.debian.org/128129
http://www.linuxdoc.org/HOWTO/Chroot-BIND-HOWTO.html
http://www.linuxdoc.org/HOWTO/Chroot-BIND8-HOWTO.html
http://www.psionic.com/papers/dns/dns-linux

Chapter 5. Securing services running on your system 82

dev/log - syslogd should be listening here
dev/null
etc/bind/named.conf
etc/localtime
etc/group - with only a single line: "named:x:GID:"
etc/ld.so.cache - generated with ldconfig
lib/ld-2.1.3.so
lib/libc-2.1.3.so
lib/ld-linux.so.2 - symlinked to ld-2.1.3.so
lib/libc.so.6 - symlinked to libc-2.1.3.so
sbin/ldconfig - may be deleted after setting up the chroot
sbin/named-xfer - if you do name transfers
var/run/

And modify also syslogd listen on $CHROOT/dev/log so the named server can write syslog
entries into the local system log.

If you want to avoid problems with dynamic libraries, you can compile bind statically. You can
use apt-get for this, with the source option. It can even download the packages you need
to properly compile it. You would need to do someting similar to:

$ apt-get --download-only source bind build-dep bind
$ cd bind-8.2.5-2
(edit the Makefile.in so CFLAGS includes the ’-static’ option
before the @CFLAGS@ definition substituted by autoconf)
$ dpkg-buildpackage -rfakeroot
$ cd ..
$ dpkg -i bind-8.2.5-2*deb

After installation, you will need to move around the files to the chroot jail 3 you can keep the
init.d scripts in /etc/init.d so that the system will automatically start the name server,
but edit them to add --chroot /location_of_chroot in the calls to start-stop-daemon
in those scripts.

For more information on how to set up chroots seee ‘General chroot and suid paranoia’ on
page 85.

FIXME, merge info from http://people.debian.org/~pzn/howto/chroot-bind.sh.
txt , http://people.pdxlinux.org/~karlheg/ (Bind9 on Debian), http://www.cryptio.
net/~ferlatte/config/ (Debian-specific), http://www.psionic.com/papers/whitep01.
html , http://csrc.nist.gov/fasp/FASPDocs/NISTSecuringDNS.htm and http://
www.acmebw.com/papers/securing.pdf .

3unless you use the instdir option when calling dpkg but then the chroot jail might be a little more complex

http://people.debian.org/~pzn/howto/chroot-bind.sh.txt
http://people.debian.org/~pzn/howto/chroot-bind.sh.txt
http://people.pdxlinux.org/~karlheg/
http://www.cryptio.net/~ferlatte/config/
http://www.cryptio.net/~ferlatte/config/
http://www.psionic.com/papers/whitep01.html
http://www.psionic.com/papers/whitep01.html
http://csrc.nist.gov/fasp/FASPDocs/NISTSecuringDNS.htm
http://www.acmebw.com/papers/securing.pdf
http://www.acmebw.com/papers/securing.pdf

Chapter 5. Securing services running on your system 83

5.8 Securing Apache

FIXME: Add content: modules provided with the normal Apache installation (under /usr/lib/apache/X.X/mod_*)
and modules that can be installed separately in libapache-mod-XXX packages.

You can limit access to the Apache server if you only want to use it internally (for testing
purposes, to access the doc-central archive, etc..) and do not want outsiders to access it. To
do this use the Listen or BindAddress directives in /etc/apache/http.conf .

Using Listen:

Listen 127.0.0.1:80

Using BindAddress:

BindAddress 127.0.0.1

Then restart apache with /etc/init.d/apache restart and you will see that it is only
listening on the loopback interface.

In any case, if you are not using all the functionality provided by Apache, you might want to
take a look at other web servers provided in Debian like dhttpd .

The Apache Documentation (http://httpd.apache.org/docs/misc/security_tips.
html) provides information regarding security measures to be taken on Apache webserver
(this same information is provided in Debian by the apache-doc package).

FIXME: Add pointer to Intersect’s Alliance.

5.8.1 Disabling users from publishing web contents

The default Apache installation in Debian permits users to publish contents under the $HOME
/publish_html . These contents can be retrieved remotely using an URL such as: http://your_apache_server/~user.

If you do not want to permit this you must change the /etc/apache/http.conf configura-
tion file which includes:

<Directory /home/*/public_html>
AllowOverride FileInfo AuthConfig Limit
Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
<Limit GET POST OPTIONS PROPFIND>

Order allow,deny
Allow from all

</Limit>
<Limit PUT DELETE PATCH PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>

Order deny,allow

http://httpd.apache.org/docs/misc/security_tips.html
http://httpd.apache.org/docs/misc/security_tips.html

Chapter 5. Securing services running on your system 84

Deny from all
</Limit>

</Directory>

Change it to:

<Directory /home/*/public_html>
AllowOverride None
Order deny,allow
Deny from all

</Directory>

Note: An attacker might still do user enumeration, since the answer of the web server will be
a 403 Permission Denied and not a 404 Not available.

5.8.2 Logfiles permissions

Apache logfiles, since 1.3.22-1, are owned by user ’root’ and group ’adm’ with permissions 640
this permissions are changed after rotation. An intruder that accesed the system through the
web server would not be able (without priviledge escalation) to remove old log file entries.

5.8.3 Published web files

Apache files are located under /var/www . Just after installation the default file provides some
information on the system (mainly that it’s a Debian system running Apache). The default
webpages are owned by user root and group root by default, whileas the Apache process runs
as user www-data and group www-data. This should make attackers that compromise the
system through the web server harder to deface the site. You should, of course, substitute the
default web pages (which might provide information you do not want to show to outsiders)
with your own.

5.9 Securing finger

If you want to run the finger service first ask yourself if you need to do so. If you do, you
will find out that Debian provides many finger daemons (output from apt-cache search
fingerd):

• cfingerd - Configurable finger daemon

• efingerd - Another finger daemon for unix capable of fine-tuning your output.

• ffingerd - a secure finger daemon

Chapter 5. Securing services running on your system 85

• fingerd - Remote user information server.

• BSD-like finger daemon with qmail support.

ffingerd is the recommended finger daemon if you are going to use it for a public service.
In any case, you are encouraged to, when setting it up through inetd, xinetd or tcpserver to:
limit the number of processes that will be running at the same time, limit access to the finger
daemon from a given number of hosts (using tcp wrappers) and having it only listening to the
interface you need it to be in.

5.10 General chroot and suid paranoia

It is probably fair to say that the complexity of BIND is the reason why it has been exposed to
a lot of attacks in recent years. (see ‘Securing BIND’ on page 77)

Other programs with complex features and a large installed user base include Sendmail and
some ftp daemons (e.g. WUftpd). (Of course, a program with no features and no satisfied
users can be just as insecure, besides being useless.)

Anyway, if you run any of these, consider similar arrangements for them — revoking root
privileges, running in a chroot jail — or replacing them with a more secure equivalent.

5.10.1 Automaking chrooting programs

There are several programs to chroot automatically servers and services. Debian currently (ac-
cepted in may 2002) provides Wietse Venema’s chrootuid in the chrootuid package. This
program can be used to set up a restricted environment for executing a command (including
running it as a restricted user). However, you must set up the chroot environment yourself.

In the near future Debian will provide tools to set up the chroot environment easily. The
makejail program for example, can create and update a chroot jail with short configura-
tion files (it provides sample configuration files for bind , apache , postgresql and mysql).
It attempts to guess and install into the jail all files required by the daemon using strace ,
stat and Debian’s package dependancies. More information at http://www.floc.net/
makejail/ . Jailer is a similar tool which can be retrieved from http://www.balabit.
hu/downloads/jailer/ .

FIXME: I have packages ready for makejail and jailer, update this when they get accepted.

Also useful to create chroots (or jails) is deb.pl , a script that analyses dependencies of a set of
files.

5.11 General cleartext password paranoia

You should try to avoid any network service which sends and receives passwords in cleartext
over a net like FTP/Telnet/NIS/RPC. The author recommends the use of ssh instead of telnet

http://www.floc.net/makejail/
http://www.floc.net/makejail/
http://www.balabit.hu/downloads/jailer/
http://www.balabit.hu/downloads/jailer/

Chapter 5. Securing services running on your system 86

and ftp to everybody.

Keep in mind that migrating from telnet to ssh, but using other cleartext protocols does not
increase your security in ANY way! Best would be to remove ftp, telnet, pop, imap, http and
to supersede them with their respective encrypted services. You should consider moving from
these services to their SSL versions, ftp-ssl, telnet-ssl, pop-ssl, https . . .

Most of these above listed hints apply to every Unix system (you will find them if reading any
other hardening-related document related to Linux and other Unices).

5.12 Disabling NIS

You should not use NIS, the Network Information Service, if it is possible, because it allows
password sharing. This can be highly insecure if your setup is broken.

If you need password sharing between machines, you might want to consider using other
alternatives. For example, you can set a LDAP server and configure PAM on your system
in order to contact the LDAP server for user authentication. You can find a detailed setup
in the LDAP-HOWTO (http://www.linuxdoc.org/HOWTO/LDAP-HOWTO.html) (/usr
/share/doc/HOWTO/en-txt/LDAP-HOWTO.txt.gz).

Read more on NIS security in NIS-HOWTO (http://www.linuxdoc.org/HOWTO/NIS-HOWTO.
html) (/usr/share/doc/HOWTO/en-txt/NIS-HOWTO.txt.gz).

FIXME (jfs): Add info on how to set up this in Debian

5.13 Disabling RPC services

You should disable RPC wherever possible, that is, when you do not need it. 4 Many security
holes for both the portmapper service and RPC-based services are known and could be easily
exploited. On the other hand NFS services are quite important in some networks, so find a bal-
ance of security and usability in your network. Some of the DDoS (distributed denial of service)
attacks use rpc exploits to get into the system and act as a so called agent/handler. Read more
on NFS security in NFS-HOWTO (http://www.linuxdoc.org/HOWTO/NFS-HOWTO.html)
(/usr/share/doc/HOWTO/en-txt/NFS-HOWTO.txt.gz).

Disabling portmap is quite simple. There are different methods. The simplest one in a Debian
3.0 system is to do uninstall the portmap package. If you are running another version you
will have to disable the service as seen in ‘Disabling daemon services’ on page 27, this is due
to the program being a part of the net-base package (which cannot be de-installed without
breaking the system).

This in fact removes every symlink relating to portmap in /etc/rc${runlevel}.d/ , which
is something you could also do manually. Another possibility is to chmod 644 /etc/init.d/portmap ,

4You only probably need it if using NFS (Network File System), NIS (Network Information System) or some
other RPC-based service.

http://www.linuxdoc.org/HOWTO/LDAP-HOWTO.html
http://www.linuxdoc.org/HOWTO/NIS-HOWTO.html
http://www.linuxdoc.org/HOWTO/NIS-HOWTO.html
http://www.linuxdoc.org/HOWTO/NFS-HOWTO.html

Chapter 5. Securing services running on your system 87

but that gives an error message when booting. You can also strip off the start-stop-daemon
part in /etc/init.d/portmap shell script.

5.14 Adding firewall capabilities

The Debian GNU/Linux operating system has the built-in capabilities provided by the Linux
kernel. This means that if you install a potato (Debian 2.2 release) system (default kernel is 2.2)
you will have ipchains firewalling available in the kernel, you need to install the ipchains
which will be surely (due to its priority) be already installed. If you install a woody (Debian 3.0
release) system (default kernel is 2.4) you will have iptables (neftfilter) firewalling available.
The main different between ipchains and iptables is that the later is based on stateful packet
inspection which provides for more secure (and easier to build) filtering configurations.

5.14.1 Firewalling the local system

You can use firewall rules as a way to secure the access to your local system and, even, to limit
the outbound communications made by it. Firewall rules can be used also to protect processes
that cannot be properly configured not to provide services to some networks, IP addresses, etc..

However, this step is presented last in this manual basically because it is much better to not
depend solely on firewalling capabilities in order to protect a given system. Security in a sys-
tem is made up of layers, firewalling should be the last to include, once all services have been
hardened. You can easily imagine a setup in which the system is solely protected by a built-in
firewall and an administrator blissfully removes the firewall rules for whatever reason (prob-
lems with the setup, annoyance, human error. . .), this system would be wide open to an attack
if there were no other hardening in the system to protect from it.

On the other hand, having firewall rules on the local system also prevents some bad things
from happening. Even if the services provided are configured securely, a firewall can protect
from misconfigurations or from fresh installed services that have not yet been properly con-
figured. Also, a tight configuration will prevent trojans calling home from working unless the
firewalling code is removed. Note that an intruder does not need superuser access to install a
trojan locally that could be remotely controlled (since binding on ports is allowed if they are
not priviledge ports and capabilities have not been removed).

Thus, a proper firewall setup would be one with a default deny policy, that is:

• incoming connections are allowed only to local services by allowed machines.

• outgoing connections are only allowed to services used by your system (DNS, web brows-
ing, pop, email. . . .) 5

• the forward rule denies everything (unless you are protecting other systems, see below).
5Unlike personal firewalls in other operating systems, Debian GNU/Linux does not (yet) provide firewall

generation interfaces that can make rules limiting them per process or user. However, the iptables code can be
configured to do this (see the owner module in the iptables(8) manpage)

Chapter 5. Securing services running on your system 88

• all other incoming or outgoing connections are denied.

5.14.2 Using a firewall to protect other systems

A Debian firewall can also be installed in order to protect, with filtering rules, access to systems
behind it, limiting their exposure to the Internet. The firewall can be configured to prevent
systems outside the local network to access services (ports) that are not public. For example,
on a mail server, only port 25 (where the mail service is being given) needs to be accesible from
the outside. A firewall can be configured to, even if there are other services besides the public
ones, throw away packets (this is known as filtering) directed towards them.

You can even set up a Debian GNU/Linux box as a bridge firewall, i.e. a filtering firewall
completely transparent to the network that lacks an IP address and thus cannot be attacked
directly. Depending on the kernel you have installed, you might need to might to install the
bridge firewall patch and then go to 802.1d Ethernet Bridging when configuring the kernel and
a new option netfilter (firewalling) suport. See the ‘Setting up a bridge firewall’ on page 163 for
more information on how to set this up in a Debian GNU/Linux system).

5.14.3 Configuring the firewall

Of course, the configuration of the firewall is always system and network dependant. An
administrator must know beforehand what is the network layout and the systems he wants to
protect, the services that need to be accessed, and wether or not other network considerations
(like NAT or routing) need to be taken into account. Be careful when configuring your firewall,
as Laurence J. Lane says in the iptables package:

The tools can easily be misused, causing enormous amounts of grief by completely cripple network access
to a computer system. It is not terribly uncommon for a remote system administrator to accidentally
lock himself out of a system hundreds or thousands of miles away. One can even manage to lock himself
out of a computer who’s keyboard is under his fingers. Please, use due caution.

Remember this: just installing the iptables (or the older firewalling code) does not give you
any protection, just provides the software. In order to have a firewall you need to configure it!

If you do not know much about firewalling, read the Firewalling-HOWTO that can be found in
doc-linux-text package (other document formats also available). See ‘Be aware of general
security problems’ on page 19 for more (general) pointers.

Doing it the Debian way

If you are using Debian 3.0, you will notice that you have the iptables package installed.
This is the support for the 2.4.4+ kernels netfilter implementation. Since just after installation
the system cannot know any firewall rules (firewall rules are too system-specific) you have to
enable iptables. However, the scripts have been configured so that the administrator can set
up firewall rules and then have the init scripts learn them and use them always as the setup for
the firewall.

Chapter 5. Securing services running on your system 89

In order to do so you must:

• Configure the package so that it starts with the system. On newer versions (since 1.2.6a-
1) this is asked for when the package is installed. You can configure it afterwards with
dpkg-reconfigure -plow iptables . Note: on older versions this was done by edit-
ing /etc/default/iptables so that the variable enable_iptables_initd was set
to true.

• create a firewall setup using iptables, you can use the command line (see iptables(8))
or some of the tools provided by the Debian firewall packages (see ‘Using Firewall pack-
ages’ on the current page). You need to create one set of firewall rules to be used when
the firewall is in active state and another to be used when the firewall is in inactive state
(these can be just empty rules).

• save the rules you created using /etc/init.d/iptables save_active and /etc/init.d/iptables
save_active by running these scripts with the firewall rules you want enabled.

Once this is done your firewall setup is saved in the /var/lib/iptables/ directory and
will be executed when the system boots (or when running the initd script with start and stop
arguments). Please notice that the default Debian setups starts the firewalling code in the
multiuser runlevels (2 to 5) pretty soon (10). Also, it is stopped in singleuser runlevel (1),
change this if it does not mach your local policy.

If you do not have a clue on how to set up your firewall rules manually consult the Packet Fil-
tering HOWTO and NAT HOWTO provided by iptables for offline reading at /usr/share
/doc/iptables/html/ . Also, the configuration file /etc/default/iptables provides
some more information about the issues regarding this package.

Using Firewall packages

Setting up manually a firewall can be complicated for novice (and sometimes even expert)
administrators. However, the free software community has created a number of tools that
can be used to easily configure a local firewall. Be forewarned that some of this tools are
oriented more towards local-only protection (also known as personal firewall) and some are
more versatile and can be used to configure complex rules to protect whole networks.

Some software that can be used to set up firewall rules in a Debian system is:

• firestarter , oriented towards end-users including a wizard to quickly defined the
firewall rules.

• knetfilter

• fwbuilder , an object oriented GUI which includes policy compilers for various firewall
platforms including iptables as well as router’s access-lists.

• shorewall which provides support for IPsec as well as limited support for traffic shap-
ing as well as the definition of the firewall rules.

Chapter 5. Securing services running on your system 90

• mason, which can propose firewall rules based on the network traffic your system “sees”.

• bastille (among the hardening steps that can make new versions of bastille is the
possibility of adding firewall rules to the system to be executed on startup)

• ferm

• fwctl

• easyfw

• firewall-easy

• ipac-ng

• gfcc

• lokkit or gnome-lokkit

The last packages: gfcc,firestarter and knetfilter are administration GUIs using either GNOME
(first two) or KDE (last one) which are much more user-oriented (i.e. for home users) than the
other packages in the list which might be more administrator-oriented.

Be forewarned that some of the packages outlined previousline will probably introduce fire-
walling scripts to be run when the system boots, this will undoubtedly conflict with the com-
mon setup (if configured) and you might undesireds effects. Usually, the firewalling script
that runs last will be the one that configures the system (which might not be what you pre-
tend). Consult the package documentation and use either one of these setups. Generally, other
programs that help you set up the firewalling rules can tweak othe conriguration files.

FIXME: Add more info regarding this packages

FIXME: Check Information on Debian firewalling and what/how does it change from other
distributions.

FIXME: Where should the custom firewalling code be enabled (common FAQ in debian-firewall?)

FIXME: Add information on Zorp (http://www.balabit.hu/downloads/zorp/debian/)
in Debian (see Bug #88347 (http://bugs.debian.org/88347). Debian packages are provided
but they depend on libglib1.3 which is not yet available in Debian distribution.

http://www.balabit.hu/downloads/zorp/debian/
http://bugs.debian.org/88347

91

Chapter 6

Automatic hardening of Debian
systems

After reading through all the information in the previous chapters you might be wondering
“I have to do quite a lot of things in order to harden my system, couldn’t this things be auto-
mated?”. The question is yes, but be careful with automated tools. Some people believe, that
a hardening tool does not eliminate the need for good administration. So do not be fooled to
think that you can automate all the process and will fix all the related issues. Security is an
ever-ongoing process in which the administrator must participate and cannot just stand away
and let the tools do all the work since no single tool can cope: with all the possible security
policy implementations, all the attacks and all the environments.

Since woody (Debian 3.0) there are two specific packages that are useful for security harden-
ing. The harden which takes an approach based on the package dependencies to quickly
install valuable security packages and remove those with flaws, configuration of the packages
must be done by the administrator. The bastille that implements a given security policy
on the local system based on previous configuration by the administrator (the building of the
configuration can be a guided process done with simple yes/no questions).

6.1 Harden

The harden package tries to make it more easy to install and administer hosts that need good
security . This package should be used by people that want some quick help to enhance the
security of the system. To do this it conflicts with packages with known flaws, including (but
not limited to): known security bugs (like buffer overflows), use of plaintext passwords, lack
of access control, etc. It also automatically installs some tools that should enhance security in
some way: intrusion detection tools, security analysis tools, etc. Harden installs the following
virtual packages (i.e. no contents, just dependencies on others):

• harden-tools : tools to enhance system security (integrity checkers, intrusion detec-
tion, kernel patches. . .)

Chapter 6. Automatic hardening of Debian systems 92

• harden-doc : provides this same manual and other security-related documentation pack-
ages.

• harden-environment : helps configure a hardened environment (currently empty).

• harden-servers : removes servers considered insecure for some reason.

• harden-clients : removes clients considered insecure for some reason.

• harden-remoteflaws : removes packages with known security holes that could be
used by a remote attacker to compromise the system (uses versioned Conflicts:).

• harden-localflaws : removes packages with known security holes that could be used
by a local attacker to compromise the system (uses versioned Conflicts:).

• harden-remoteaudit : tools to remotely audit a system.

Be careful because if you have software you need (and which you do not wish to uninstall for
some reason) and it conflicts with some of the packages above you might not be able to fully use
harden . The harden packages do not (directly) do a thing. They do have, however, intentional
package conflicts with known non-secure packages. This way, the Debian packaging system
will not approve the installation of these packages. For example, when you try to install a
telnet daemon with harden-servers , apt will say:

apt-get install telnetd
The following packages will be REMOVED:

harden-servers
The following NEW packages will be installed:
telnetd
Do you want to continue (Y/n)

This should set off some warnings in the administrator head, who should reconsider his ac-
tions.

6.2 Bastille Linux

Bastille Linux (http://www.bastille-linux.org) is an automatic hardening tool origin-
ally oriented towards the RedHat and Mandrake Linux distributions. However, the bastille
package provided in Debian (since woody) is patched in order to provide the same functional-
ity for the Debian GNU/Linux system.

Bastille can be used with different frontends (all are documented in their own manpage in the
Debian package) which enables the administrator to:

• Answer questions step by step regarding the desired security of your system (using
InteractiveBastille(8))

http://www.bastille-linux.org

Chapter 6. Automatic hardening of Debian systems 93

• Use a default setting for security (amongst three: Lax, Moderate or Paranoia) in a given
setup (server or workstation) and let Bastille decide which security policy to implement
(using BastilleChooser(8))

• Take a predefined configuration file (could be provided by Bastille or made by the ad-
ministrator) and implement a given security policy (using AutomatedBastille(8))

Chapter 6. Automatic hardening of Debian systems 94

95

Chapter 7

Debian Security Infrastructure

7.1 The Debian Security Team

Debian has a Security Team, made up of five members and two secretaries who handle secur-
ity in the stable distribution. Handling security means they keep track of vulnerabilities that
arise in software (watching forums such as bugtraq, or vuln-dev) and determine if the stable
distribution is affected by it.

Also, the Debian Security Team, is the contact point for problems that are coordinated by up-
stream developers or organisations such as CERT (http://www.cert.org) which might af-
fect multiple vendors. That is, when problems are not Debian-specific. There are two contact
points with the Security Team:

• team@security.debian.org (mailto:team@security.debian.org) which only the mem-
bers of the security team read.

• security@debian.org (mailto:security@debian.org) which is read by all Debian
developers (including the security team). Mails sent to this list are not published in the
Internet (it’s not a public mailing list).

Sensitive information should be sent to the first address and, in some cases, should be encryp-
ted with the Debian Security Contact key (key ID 363CCD95).

Once a probable problem is received by the Security Team it will investigate if the stable dis-
tribution is affected, if it is, a fix is worked for the source code base. This fix will sometimes
include backporting the patch made upstream (which usually is some versions ahead of the
one distributed by Debian). After testing of the fix is done, new packages are prepared and
published in the security.debian.org site so they can be retrieved through apt (see ‘Ex-
ecute a security update’ on page 38). At the same time a Debian Security Advisory (DSA) is
published on the web site and sent to public mailing lists including debian-security-announce
(lists.debian.org/debian-security-announce) and bugtraq.

Some other frequently asked questions on the Debian Security Team can be found at ‘Questions
regarding the Debian security team’ on page 147.

http://www.cert.org
mailto:team@security.debian.org
mailto:security@debian.org
security.debian.org
lists.debian.org/debian-security-announce

Chapter 7. Debian Security Infrastructure 96

7.2 Debian Security Advisories

Debian Security Advisories are made whenever a security vulnerability is discovered that af-
fects a Debian package. This advisories, signed by one of the Security Team members, include
information of the versions affected as well as the location of the updates and their MD5sums.
This information is:

• version number for the fix.

• problem type.

• wether it is remote or locally exploitable.

• short description of the package.

• description of the problem.

• description of the exploit.

• description of the fix.

DSAs are published both in Debian’s mainserver frontpage (http://www.debian.org/)
and in the Debian security pages (http://www.debian.org/security/). Usually this
does not happen until the website is rebuilt (once daily) so they might not be present inme-
diately, the preferred channel is the debian-security-announce mailing list.

Interested users can, however (and this is done in some Debian-related portals) use the RDF
channel to download automatically the DSAs to their desktop. Some applications, such as
Evolution (an email client and personal information assistant) and Multiticker (a GNOME
applet), can be used to retrieve the advisories automatically. The RDF channel is available at
http://www.debian.org/security/dsa.rdf .

DSAs published on the website might be updated after being sent to the public-mailing lists.
A common update is adding cross references to security vulnerability databases such as CVE
(http://cve.mitre.org), CERT/CC vulnerability notes (http://www.cert.org) or Bugtraq
(http://www.securityfocus.com/bid/). This feature was added to the website on june
2002.

One of the advantages of adding cross references to these vulnerability databases is that:

• it makes Debian users easier to see and track which general (published) advisories have
already been covered by Debian.

• system administrators can learn more of the vulnerability and its impact by following
the cross references.

• this information can be used to cross-check output from vulnerability scanners that in-
clude references to CVE to remove false positives (see ‘Vulnerability assessment scanner
X says my Debian system is vulnerable!’ on page 143).

http://www.debian.org/
http://www.debian.org/security/
http://www.debian.org/security/dsa.rdf
http://cve.mitre.org
http://www.cert.org
http://www.securityfocus.com/bid/

Chapter 7. Debian Security Infrastructure 97

7.3 Debian Security Build Infrastructure

Since Debian is currently supported in a large number of arquitectures, administrators some-
times wonder if a given arquitecture might take more time to receive security updates than
another. As a matter of fact, except for rare circumstances, updates are available to all arqui-
tectures at the same time.

While previously the task to build security updates was done by hand, it is currently not (as
Anthony Thowns describes in a mail sent to the debian-devel-announce mailing list dated 8th
june 2002. FIXME: add pointer).

Packages uploaded by the security team (to security.debian.org:/org/security.debian.
org/queue/unchecked or ftp://security.debian.org/pub/SecurityUploadQueue
with an appropriate patch are checked for signatures withing fifteen minutes of being up-
loaded, once this is done they get added to the list of the autobuilders (which no longer do
a daily archive run). Thus, packages can get automatically built for all arquitectures thirty
minutes or an hour or so after they’re uploaded. However, security updates are a little more
different than normal uploads sent by package maintainers since, in some cases, before being
published they need to wait until they can be tested further, an advisory written, or need to
wait for a week or more to avoid publicising the flaw until all vendors have had a reasonable
chance to fix it.

Thus, the security upload archive works with the following procedure (called “Accepted-Autobuilding”):

• Someone finds a security problem.

• Someone fixes the problem, and makes an upload to security.debian.org’s incoming (this
someone is usually a Security Team member but can be also a package maintainer with
an appropriate fix that has contacted the Security Team previously). The Changelog in-
cludes a testing-security or stable-security as target distribution.

• The upload gets checked and processed by a Debian system and moved into queue/accepted,
and the buildds are notified. Files in here can be accessed by the security team and (some-
what indirectly) by the buildds.

• Security-enabled buildds pick up the source package (prioritized over normal builds),
build it, and send the logs to the security team.

• The security team reply to the logs, and the newly built packages are uploaded to queue/unchecked,
where they’re processed by a Debian system, and moved into queue/accepted.

• When the security team find the source package acceptable (i.e., that it’s been correctly
built for all applicable architectures and that it fixes the security hole and doesn’t intro-
duce new problems of its own) they run a script which:

– installs the package into the security archive.

– updates the Packages, Sources and Release files of security.debian.org in the usual
way (dpkg-scanpackages , dpkg-scansources . . .)

security.debian.org:/org/security.debian.org/queue/unchecked
security.debian.org:/org/security.debian.org/queue/unchecked
ftp://security.debian.org/pub/SecurityUploadQueue

Chapter 7. Debian Security Infrastructure 98

– sets up a template advisory that the security team can finish off.

– (optionally) forwards the packages to the appropriate proposed-updates so that it
can be included in the real archive as soon as possible.

This procedure, previously done by hand, was tested and put through during the freezing
stage of Debian 3.0 woody (july 2002). Thanks to this infrastructure the Security Team was
able to have updated packages ready for the apache and OpenSSH issues for all the supported
(almost twenty) arquitectures in less than a day.

7.3.1 Developer’s guide to security updates

This mail was sent by Wichert Akkerman to the Debian-devel-announce mailing list (+http:
//lists.debian.org/debian-devel-announce/2002/debian-devel-announce-200206/
msg00004.html) in order to describe Debian developer’s behaviour for handling security
problems in their packages. It is published here both for the benefit of developers as well as
for users to understand better how security is handled in Debian.

Coordinating with the security team

If a developer learns of a security problem, either in his package or someone else’s he should
always contact the security team (at team@security.debian.org). They keep track of outstand-
ing security problems, can help maintainers with security problems or fix them themselves,
are responsible for sending security advisories and maintaining security.debian.org.

Please note that security advisories are only done for release distributions, not for testing,
unstable (see ‘How is security handled for testing and unstable ?’ on page 148) or older
distributions (see ‘I use an older version of Debian, is it supported by the Debian Security
Team?’ on page 148).

Learning of security problems

There are a few ways a developer can learn of a security problem:

• he notices it on a public forum (mailing list, website, etc.):

• someone files a bugreport (the Security tag should be used, or added by the developer)

• someone informs him via private email.

In the first two cases the information is public and it is important to have a fix as soon as
possible. In the last case however it might not be public information. In that case there are a
few possible options for dealing with the problem:

+http://lists.debian.org/debian-devel-announce/2002/debian-devel-announce-200206/msg00004.html
+http://lists.debian.org/debian-devel-announce/2002/debian-devel-announce-200206/msg00004.html
+http://lists.debian.org/debian-devel-announce/2002/debian-devel-announce-200206/msg00004.html

Chapter 7. Debian Security Infrastructure 99

• if it is a trivial problem (like insecure temporary files) there is no need to keep the problem
a secret and a fix should be made and released.

• if the problem is severe (remote exploitable, possibility to gain root privileges) it is prefer-
able to share the information with other vendors and coordinate a release. The security
team keeps contacts with the various organizations and individuals and can take care of
that.

In all cases if the person who reports the problem asks to not disclose the information that
should be respected, with the obvious exception of informing the security team (the developer
should make sure he tells the security team that the information can not be disclosed).

Please note that if secrecy is needed the developer can also not upload a fix to unstable (or
anywhere else), since the changelog information for unstable is public information.

There are two reasons for releasing information even though secrecy is requested/required:
the problem has been known for too long, or the information becomes public.

Building a package

The most important guideline when making a new package that fixes a security problem is to
make as few changes as possible. People are relying on the exact behaviour of a release once it
is made, so any change made to it can possibly break someone’s system. This is especially true
of libraries: the developer must make sure he never changes the API or ABI, no matter how
small the change.

This means that moving to a new upstream version is not a good solution, instead the relevant
changes should be backported. Generally upstream maintainers are willing to help if needed,
if not the Debian security team might be able to help.

In some cases it is not possible to backport a security fix, for example when large amounts of
sourcecode need to be modified or rewritten. If that happens it might be necessary to move to a
new upstream version, but it should always be coordinated with the security team beforehand.

Related to this is another import aspect: developers must always test your change. If their is
an exploit the developer should try if it indeed succeeds on the unpatched package and fails
on the fixed package. The developer should try normal usage as well, sometimes a security fix
can break normal use subtly.

Finally a few technical things for developers to keep in mind:

• Make sure you target the right distribution in your debian/changelog. For stable this
is stable-security and for testing this is testing-security. Do not target <codename>-
proposed-updates.

• Make sure the version number is proper. It has to be higher than the current package,
but lower than package versions in later distributions. For testing this means there has to
be a higher version in unstable. If there is none yet (testing and unstable have the same
version for example) upload a new version to unstable first.

Chapter 7. Debian Security Infrastructure 100

• Do not make source-only uploads if your package has any binary-all packages. The
buildd infrastructure will not build those.

• Make sure when compiling a package you compile on a clean system which only has
package installed from the distribution you are building for. If you do not have such a
system yourself yourself you can try a debian.org machine (see http://db.debian.org/machines.cgi
or set up a chroot (the pbuilder and debootstrap packages can be helpful in that
case).)

Uploading security fixes

After the developer has created and tested the new package it needs to be uploaded so it can be
installed in the archives. For security uploads the place to upload to is ftp://security.debian.org/pub/SecurityUploadQueue/
.

Once an upload to the security queue has been accepted the package will automatically be
rebuilt for all architectures and stored for verification by the security team.

Uploads waiting for acceptance or verification are only accessible by the security team. This is
necessary since there might be fixes for security problems that can not be disclosed yet.

If a member of the security team accepts a package it will be installed on security.debian.org as
well as the proper <codename>-proposed-updates in ftp-master or non-US archive.

The security advisory

Security advisories are written and posted by the security team. However they certainly do
not mind if a maintainer can supply (part of) the text for them. Information that should be in
an advisory is described in ‘Debian Security Advisories’ on page 96.

7.4 Package signing in Debian

This section could also be titled “how to upgrade/update safely your Debian GNU/Linux
system” and it deserves its own section basically because it is an important part of the Security
Infrastructure. Package signing is an important issue since it avoids tampering of packages
distributed in mirrors and of downloads with man-in-the-middle attacks. Automatic software
update is an important feature but it’s also important to remove security threats that could
help the distribution of trojans and the compromise of systems during updates 1

As of today (december 2001) Debian does not provide signed packages for the distribution and
the woody release (3.0) does not integrate that feature. There is a solution for signed packages
which will be, hopefully, provided in the next release (sarge).

1Some operating systems have already been plagued with automatic-updates problems such as the Mac
OS X Software Update vulnerabity (http://www.cunap.com/~hardingr/projects/osx/exploit.html).
FIXME: probably the Internet Explorer vulnerability handling certificate chains has an impact on security updates
on Microsoft Windows.

http://www.cunap.com/~hardingr/projects/osx/exploit.html

Chapter 7. Debian Security Infrastructure 101

This issue is better described in the Strong Distribution HOWTO (http://www.cryptnet.
net/fdp/crypto/strong_distro.html) by V. Alex Brennen.

7.4.1 The proposed scheme for package signature checks

The current (unimplemented) scheme for package signature checking using apt is:

• the Release file includes the md5sum of Packages.gz (which contains the md5sums of
packages) and will be signed. The signature is one of a trusted source.

• This signed Release file is downloaded by ’apt-get update’ and stored in the HD along
with Packages.gz.

• When a package is going to be installed, it is first downloaded, then the md5sum is
generated.

• The signed Release file is checked (signature ok) and it extracts from it the md5sum for
the Packages.gz file, the Packages.gz checksum is generated and (if ok) the md5sum of
the downloaded package is extracted from it.

• If the md5sum from the downloaded package is the same as the one in the Packages.gz
file the package will be installed otherwise the administrator will be alerted and the pack-
age will be left in cache (so the administrator can decide wether to install it or not). If the
package is not in the Packages.gz and the administrator has configured the system to
only install checked packages it will not be installed either.

By following the chain of MD5 sums apt is capable of verifying that a package originates
from a a specific release. This is less flexible than signing each package one by one, but can be
combined with that scheme too (see below).

Package signing has been discussed in Debian for quite some time, for more information you
can read: http://www.debian.org/News/weekly/2001/8/ and http://www.debian.
org/News/weekly/2000/11/ .

7.4.2 Alternative per-package signing scheme

The additional scheme of signing each and every packages allows packages to be checked
when they are no longer referenced by an existing Packages file, and also third-party packages
where no Packages ever existed for them can be also used in Debian but will not be default
scheme.

This package signing scheme can be implemented using debsig-verify and debsigs . These
two packages can sign and verify embeded signatures in the .deb itself. Debian already has the
capability to do this now, but implementing the policy and tools won’t be started until after
woody releases.

http://www.cryptnet.net/fdp/crypto/strong_distro.html
http://www.cryptnet.net/fdp/crypto/strong_distro.html
http://www.debian.org/News/weekly/2001/8/
http://www.debian.org/News/weekly/2000/11/
http://www.debian.org/News/weekly/2000/11/

Chapter 7. Debian Security Infrastructure 102

Latest dpkg versions (since 1.9.21) incorporate a patch (http://lists.debian.org/debian-dpkg/
2001/debian-dpkg-200103/msg00024.html) that provides this functionality as soon as
debsig-verify is installed.

NOTE: Currently /etc/dpkg/dpkg.cfg ships with “no-debsig” as per default.

NOTE2: Signatures from developers are currently stripped when they enter off the package
archive since the currently preferred method is release checks as described previously.

7.4.3 Checking distribution releases

In case you want to add now the additional security checks you can use the script below,
provided by Anthony Thown. This script can automatically do some new security checks to
allow the user to be sure that the software s/he’s downloading matches the software Debian’s
distributing. This stops Debian developers from hacking into someone’s system without the
accountability provided by uploading to the main archive, or mirrors mirroring something
almost, but not quite like Debian, or mirrors providing out of date copies of unstable with
known security problems.

This sample code, renamed as apt-check-sigs , should be used in the following way:

apt-get update
apt-check-sigs
(...results...)
apt-get dist-upgrade

First you need to:

• get the keys the archive software uses to to sign Release files, http://ftp-master.
debian.org/ziyi_key_2002.asc and add them to ~/.gnupg/trustedkeys.gpg
(which is what gpgv uses by default).

gpg --no-default-keyring --keyring trustedkeys.gpg --import ziyi_key_2002.asc

• remove any /etc/apt/sources.list lines that don’t use the normal “dists” struc-
ture, or change the script so that it works with them.

• be prepared to ignore the fact that Debian security updates don’t have signed Release
files, and that Sources files don’t have appropriate checksums in the Release file (yet).

• be prepared to check that the appropriate sources are signed by the appropriate keys.

This is the example code for apt-check-sigs , the latest version can be retrieved from http:
//people.debian.org/~ajt/apt-check-sigs . This code is currently in beta, for more
information read http://lists.debian.org/debian-devel/2002/debian-devel-200207/
msg00421.html .

http://lists.debian.org/debian-dpkg/2001/debian-dpkg-200103/msg00024.html
http://lists.debian.org/debian-dpkg/2001/debian-dpkg-200103/msg00024.html
http://ftp-master.debian.org/ziyi_key_2002.asc
http://ftp-master.debian.org/ziyi_key_2002.asc
http://people.debian.org/~ajt/apt-check-sigs
http://people.debian.org/~ajt/apt-check-sigs
http://lists.debian.org/debian-devel/2002/debian-devel-200207/msg00421.html
http://lists.debian.org/debian-devel/2002/debian-devel-200207/msg00421.html

Chapter 7. Debian Security Infrastructure 103

#!/bin/bash
This script is copyright (c) 2001, Anthony Towns
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

rm -rf /tmp/apt-release-check
mkdir /tmp/apt-release-check || exit 1
cd /tmp/apt-release-check

>OK
>MISSING
>NOCHECK
>BAD

arch=‘dpkg --print-installation-architecture‘

am_root () {
[‘id -u‘ -eq 0]

}

get_md5sumsize () {
cat "$1" | awk ’/^MD5Sum:/,/^SHA1:/’ |

MYARG="$2" perl -ne ’@f = split /\s+/; if ($f[3] eq $ENV{"MYARG"}) { print "$f[1] $f[2]\n"; exit(0); }’
}
checkit () {

local FILE="$1"
local LOOKUP="$2"

Y="‘get_md5sumsize Release "$LOOKUP"‘"
Y="‘echo "$Y" | sed ’s/^ *//;s/ */ /g’‘"

if [! -e "/var/lib/apt/lists/$FILE"]; then
if ["$Y" = ""]; then

No file, but not needed anyway
echo "OK"
return

fi
echo "$FILE" >>MISSING

Chapter 7. Debian Security Infrastructure 104

echo "MISSING $Y"
return

fi
if ["$Y" = ""]; then

echo "$FILE" >>NOCHECK
echo "NOCHECK"
return

fi
X="‘md5sum < /var/lib/apt/lists/$FILE‘ ‘wc -c < /var/lib/apt/lists/$FILE‘"
X="‘echo "$X" | sed ’s/^ *//;s/ */ /g’‘"
if ["$X" != "$Y"]; then

echo "$FILE" >>BAD
echo "BAD"
return

fi
echo "$FILE" >>OK
echo "OK"

}

echo
echo "Checking sources in /etc/apt/sources.list:"
echo "~~"
echo
(echo "You should take care to ensure that the distributions you’re downloading"
echo "are the ones you think you are downloading, and that they are as up to"
echo "date as you would expect (testing and unstable should be no more than"
echo "two or three days out of date, stable-updates no more than a few weeks"
echo "or a month)."
) | fmt
echo

cat /etc/apt/sources.list |
sed ’s/^ *//’ | grep ’^[^#]’ |
while read ty url dist comps; do

if ["${url%%:*}" = "http" -o "${url%%:*}" = "ftp"]; then
baseurl="${url#*://}"

else
continue

fi
echo "Source: ${ty} ${url} ${dist} ${comps}"

rm -f Release Release.gpg
wget -q -O Release "${url}/dists/${dist}/Release"

if ! grep -q ’^’ Release; then
echo " * NO TOP-LEVEL Release FILE"

Chapter 7. Debian Security Infrastructure 105

else
origline=‘sed -n ’s/^Origin: *//p’ Release | head -1‘
lablline=‘sed -n ’s/^Label: *//p’ Release | head -1‘
suitline=‘sed -n ’s/^Suite: *//p’ Release | head -1‘
codeline=‘sed -n ’s/^Codename: *//p’ Release | head -1‘
dateline=‘grep "^Date:" Release | head -1‘
dscrline=‘grep "^Description:" Release | head -1‘
echo " o Origin: $origline/$lablline"
echo " o Suite: $suitline/$codeline"
echo " o $dateline"
echo " o $dscrline"

if ["${dist%%/*}" != "$suitline" -a "${dist%%/*}" != "$codeline"]; then
echo " * WARNING: asked for $dist, got $suitline/$codeline"

fi

wget -q -O Release.gpg "${url}/dists/${dist}/Release.gpg"
sigline="‘gpgv --status-fd 3 Release.gpg Release 3>&1 >/dev/null 2>&1 | sed -n "s/^\[GNUPG:\] GOODSIG [0-9A-Fa-f]* //p"‘"
if ["$sigline"]; then

echo " o Signed by: $sigline"
else

echo " * NO VALID SIGNATURE"
>Release

fi
fi
okaycomps=""
for comp in $comps; do

if ["$ty" = "deb"]; then
X=$(checkit "‘echo "${baseurl}/dists/${dist}/${comp}/binary-${arch}/Release" | sed ’s,//*,_,g’‘" "${comp}/binary-${arch}/Release")
Y=$(checkit "‘echo "${baseurl}/dists/${dist}/${comp}/binary-${arch}/Packages" | sed ’s,//*,_,g’‘" "${comp}/binary-${arch}/Packages")
if ["$X $Y" = "OK OK"]; then

okaycomps="$okaycomps $comp"
else

echo " * PROBLEMS WITH $comp ($X, $Y)"
fi

elif ["$ty" = "deb-src"]; then
X=$(checkit "‘echo "${baseurl}/dists/${dist}/${comp}/source/Release" | sed ’s,//*,_,g’‘" "${comp}/source/Release")
Y=$(checkit "‘echo "${baseurl}/dists/${dist}/${comp}/source/Sources" | sed ’s,//*,_,g’‘" "${comp}/source/Sources")
if ["$X $Y" = "OK OK"]; then

okaycomps="$okaycomps $comp"
else

echo " * PROBLEMS WITH component $comp ($X, $Y)"
fi

fi
done
["$okaycomps" = ""] || echo " o Okay:$okaycomps"

Chapter 7. Debian Security Infrastructure 106

echo
done

echo "Results"
echo "~~~~~~~"
echo

allokay=true

cd /tmp/apt-release-check
diff <(cat BAD MISSING NOCHECK OK | sort) <(cd /var/lib/apt/lists && find . -type f -maxdepth 1 | sed ’s,^\./,,g’ | grep ’_’ | sort) | sed -n ’s/^> //p’ >UNVALIDATED

cd /tmp/apt-release-check
if grep -q ^ UNVALIDATED; then

allokay=false
(echo "The following files in /var/lib/apt/lists have not been validated."
echo "This could turn out to be a harmless indication that this script"
echo "is buggy or out of date, or it could let trojaned packages get onto"
echo "your system."
) | fmt
echo
sed ’s/^/ /’ < UNVALIDATED
echo

fi

if grep -q ^ BAD; then
allokay=false
(echo "The contents of the following files in /var/lib/apt/lists does not"
echo "match what was expected. This may mean these sources are out of date,"
echo "that the archive is having problems, or that someone is actively"
echo "using your mirror to distribute trojans."
if am_root; then

echo "The files have been renamed to have the extension .FAILED and"
echo "will be ignored by apt."
cat BAD | while read a; do

mv /var/lib/apt/lists/$a /var/lib/apt/lists/${a}.FAILED
done

fi) | fmt
echo
sed ’s/^/ /’ < BAD
echo

fi

if grep -q ^ MISSING; then
allokay=false
(echo "The following files from /var/lib/apt/lists were missing. This"

Chapter 7. Debian Security Infrastructure 107

echo "may cause you to miss out on updates to some vulnerable packages."
) | fmt
echo
sed ’s/^/ /’ < MISSING
echo

fi

if grep -q ^ NOCHECK; then
allokay=false
(echo "The contents of the following files in /var/lib/apt/lists could not"
echo "be validated due to the lack of a signed Release file, or the lack"
echo "of an appropriate entry in a signed Release file. This probably"
echo "means that the maintainers of these sources are slack, but may mean"
echo "these sources are being actively used to distribute trojans."
if am_root; then

echo "The files have been renamed to have the extension .FAILED and"
echo "will be ignored by apt."
cat NOCHECK | while read a; do

mv /var/lib/apt/lists/$a /var/lib/apt/lists/${a}.FAILED
done

fi) | fmt
echo
sed ’s/^/ /’ < NOCHECK
echo

fi

if $allokay; then
echo ’Everything seems okay!’
echo

fi

rm -rf /tmp/apt-release-check

You might need to apply the following patch for sid since md5sumadds an ’-’ after the sum
when the input is stdin:

@@ -37,7 +37,7 @@
local LOOKUP="$2"

Y="‘get_md5sumsize Release "$LOOKUP"‘"
- Y="‘echo "$Y" | sed ’s/^ *//;s/ */ /g’‘"
+ Y="‘echo "$Y" | sed ’s/-//;s/^ *//;s/ */ /g’‘"

if [! -e "/var/lib/apt/lists/$FILE"]; then
if ["$Y" = ""]; then

Chapter 7. Debian Security Infrastructure 108

@@ -55,7 +55,7 @@
return

fi
X="‘md5sum < /var/lib/apt/lists/$FILE‘ ‘wc -c < /var/lib/apt/lists/$FILE‘"

- X="‘echo "$X" | sed ’s/^ *//;s/ */ /g’‘"
+ X="‘echo "$X" | sed ’s/-//;s/^ *//;s/ */ /g’‘"

if ["$X" != "$Y"]; then
echo "$FILE" >>BAD
echo "BAD"

109

Chapter 8

Security tools in Debian

FIXME: More content needed.

Debian provides also a number of security tools that can make a Debian box suited for security
purposes. This purposes include protection of information systems through firewalls (either
packet or application-level), intrusion detection (both network and host based), vulnerability
assesment, antivirus, private networks, etc.

Since Debian 3.0 (woody), the distribution features cryptographic software integrated into the
main distribution. OpenSSH and GNU Privacy Guard are included in the default install, and
strong encryption is now present in web browsers and web servers, databases, and so forth.
Further integration of cryptography is planned for future releases. This software, due to export
restrictions in the US, was not distributed along with the main distribution but included only
in non-US sites.

8.1 Remote vulnerability assesment tools

The tools provided by Debian to perform remote vulnerability assesment are: 1

• nessus

• raccess

• whisker

• nikto (whisker’s replacement)

• bass (non-free)

• satan (non-free)

1Some of them are provided when installing the harden-remoteaudit package.

Chapter 8. Security tools in Debian 110

By far, the most complete and up-to-date tools is nessus which is composed of a client (nessus)
used as a GUI and a server (nessusd) which launches the programmed attacks. Nessus in-
cludes remote vulnerabilities for quite a number of systems including network appliances, ftp
servers, www servers, etc. The latest releases are able even to parse a web site and try to dis-
cover which interactive pages are available which could be attacked. There are also Java and
Win32 clients (not included in Debian) which can be used to contact the management server.

Whisker is a web-only vulnerability assessment scanner including anti-IDS tactics (most of
which are not anti-IDS anymore). It is one of the best cgi-scanners available, being able to
detect WWW servers and launch only a given set of attacks against it. The database used for
scanning can be easily modified to provide for new information.

Bass (Bulk Auditing Security Scanner) and Satan (Security Auditing Tool for Analysing Net-
works) must be thought of more like “proof of concept” programs than as tools to be used while
performing audits. Both are quite ancient and are not kept up-to-date. However, SATAN was
the first tool to provide vulnerability assesment in a simple (GUI) way and Bass is still a very
high-perfomance assesment tool.

8.2 Network scanner tools

Debian does provide some tools used for remote scanning of hosts (but not vulnerability as-
sesment). These tools are, in some cases, used by vulnerability assesment scanners as the first
type of “attack” run against remote hosts in an attempt to determine remote services available.
Currently Debian provides:

• nmap

• xprobe

• queso

• knocker

• hping2

• isic

• icmpush

• nbtscan

• fragrouter

Whileas queso and xprobe provide only remote operating system detection (using TCP/IP
fingerprinting), nmap and knocker do both operating system detection and port scanning of
the remote hosts. On the other hand, hping2 and icmpush can be used for remote ICMP
attack techniques.

Chapter 8. Security tools in Debian 111

Designed specifically for Netbios networks, nbtscan can be used to scan IP networks and
retrieve name information from SMB-enabled servers, including: usernames, network names,
MAC addresses. . .

On the other hand, fragrouter can be used to test network intrusion detection systems and
see if the NIDS can be eluded by fragmentation attacks.

FIXME: Check Bug #153117 (http://bugs.debian.org/153117) (ITP fragrouter) to see if
it’s included.

FIXME add information based on Debian Linux Laptop for Road Warriors (http://rr.sans.
org/linux/debian_laptop.php) which describes how to use Debian and a laptop to scan
for wireless (803.1) networks.

8.3 Internal audits

Currently, only the tiger tool used in Debian can be used to perform internal (also called
white box) audit of hosts in order to determine if the file system is properly set up, which
processes are listening on the host, etc.

8.4 Auditing source code

Debian provides two packages that can be used to audit C/C++ source code programs and
find programming errors that might lead to potential security flaws:

• flawfinder

• rats

8.5 Virtual Private Networks

A virtual private network (VPN) is a group of two or more computer systems, typically connec-
ted to a private network with limited public network access, that communicate securely over a
public network. VPNs may connect a single computer to a private network (client-server), or
a remote LAN to a private network (server-server). VPNs often include the use of encryption,
strong authentication of remote users or hosts, and methods for hiding the private network’s
topology.

Debian provides quite a few packages to set up encrypted virtual private networks:

• vtun

• tunnelv

http://bugs.debian.org/153117
http://rr.sans.org/linux/debian_laptop.php
http://rr.sans.org/linux/debian_laptop.php

Chapter 8. Security tools in Debian 112

• cipe

• vpnd

• tinc

• secvpn

• pptpd

• freeswan

The FreeSWAN package is probably the best choice overall, since it promises to interoperate
with almost anything that uses the IP security protocol, IPsec (RFC 2411). However, the other
packages listed above can also help you get a secure tunnel up in a hurry. The point to point
tunneling protocol (PPTP) is a proprietary Microsoft protocol for VPN. It is supported under
Linux, but is known to have serious security issues.

For more information see the VPN-Masquerade HOWTO (http://www.linuxdoc.org/
HOWTO/VPN-Masquerade-HOWTO.html) (covers IPsec and PPTP), VPN HOWTO (http:
//www.linuxdoc.org/HOWTO/VPN-HOWTO.html) (covers PPP over SSH), and Cipe mini-
HOWTO (http://www.linuxdoc.org/HOWTO/mini/Cipe+Masq.html), and PPP and SSH
mini-HOWTO (http://www.linuxdoc.org/HOWTO/mini/ppp-ssh/index.html).

8.5.1 Point to Point tunneling

If you want to provide a tunneling server for a mixed environment (both Microsoft operating
systems and Linux clients) and IPsec is not an option (since it’s only provided for Windows
2000 and Windows XP), you can use PoPToP (Point to Point Tunneling Server), provided in the
pptpd package.

If you want to use Microsoft’s authentication and encryption with the server provided in the
ppp package, note the following from the FAQ:

It is only necessary to use PPP 2.3.8 if you want Microsoft compatible
MSCHAPv2/MPPE authentication and encryption. The reason for this is that
the MSCHAPv2/MPPE patch currently supplied (19990813) is against PPP
2.3.8. If you don’t need Microsoft compatible authentication/encryption
any 2.3.x PPP source will be fine.

However, you also have to apply the kernel patch provided by the kernel-patch-mppe
package, which provides the pp_mppe module for pppd.

Take into account that the encryption in ppptp forces you to store user passwords in clear text,
and that the MS-CHAPv2 protocol contains known security holes (http://mopo.informatik.
uni-freiburg.de/pptp_mschapv2/).

http://www.linuxdoc.org/HOWTO/VPN-Masquerade-HOWTO.html
http://www.linuxdoc.org/HOWTO/VPN-Masquerade-HOWTO.html
http://www.linuxdoc.org/HOWTO/VPN-HOWTO.html
http://www.linuxdoc.org/HOWTO/VPN-HOWTO.html
http://www.linuxdoc.org/HOWTO/mini/Cipe+Masq.html
http://www.linuxdoc.org/HOWTO/mini/ppp-ssh/index.html
http://mopo.informatik.uni-freiburg.de/pptp_mschapv2/
http://mopo.informatik.uni-freiburg.de/pptp_mschapv2/

Chapter 8. Security tools in Debian 113

8.6 Public Key Infrastructure (PKI)

Public Key Infrastructure (PKI) is a security architecture introduced to provide an increased
level of confidence for exchanging information over insecure networks. It makes use of the
concept of public and private cryptographic keys to verify the identity of the sender (signing)
and to ensure privacy (encryption).

When considering a PKI, you are confronted with a wide variety of issues:

• a Certificate Authority (CA) that can issue and verify certificates, and that can work un-
der a given hierarchy

• a Directory to hold user’s public certificates

• a Database (?) to maintain Certificate Revocation Lists (CRL)

• devices that interoperate with the CA in order to print out smart cards/USB tokens/whatever
to securely store certificates

• certificate-aware applications that can use certificates issued by a CA to enroll in encryp-
ted communication and check given certificates against CRL (for authentication and full
Single Sign On solutions)

• a Time stamping authority to digitally sign documents

• a management console from which all of this can be properly used (certificate generation,
revocation list control, etc. . .)

Debian GNU/Linux has software packages to help you with some of these PKI issues. They
include OpenSSL (for certificate generation), OpenLDAP (as a directory to hold the certific-
ates), gnupg and freeswan (with X.509 standard support). However, as of the Woody release
(Debian 3.0), Debian does not have any of the freely available Certificate Authorities such as
pyCA, OpenCA (http://www.openca.org) or the CA samples from OpenSSL. For more
information read the Open PKI book (http://ospkibook.sourceforge.net/).

8.7 SSL Infrastructure

Debian does provide some SSL certificates with the distribution so that they can be installed
locally. They are found in the ca-certificates package. This package provides a central
repository of certificates that have been submitted to Debian and approved (that is, verified)
by the package maintainer, useful for any OpenSSL applications which verify SSL connections.

FIXME: read debian-devel to see if there was something added to this.

http://www.openca.org
http://ospkibook.sourceforge.net/

Chapter 8. Security tools in Debian 114

8.8 Anti-virus tools

There are not many anti-virus tools included with Debian GNU/Linux, probably because
GNU/Linux users are not plagued by viruses. The UN*X security model makes a distinction
between privileged (root) processes and user-owned processes, therefore a “hostile” executable
that a non-root user receives or creates and then executes cannot “infect” or otherwise manipu-
late the whole system. However, GNU/Linux worms and viruses do exist, although there has
not (yet, hopefully) been any that has spread in the wild over any Debian distribution. In any
case, administrators might want to build up anti-virus gateways that protect against viruses
arising on other, more vulnerable systems in their network.

Debian GNU/Linux currently provides the following tools for building anti-virus environ-
ments:

• sanitizer (http://packages.debian.org/sanitizer), a tool that uses the procmail
package, which can scan email attachments for viruses, block attachments based on their
filenames, and more.

• amavis-postfix (http://packages.debian.org/amavis-postfix), a script that provides
an interface from a mail transport agent to one or more commercial virus scanners (this
package is built with support for the postfix MTA only).

• scannerdaemon , a daemon written in Java that accepts incoming requests to scan files
for viruses.

As you can see, Debian does not currently provide any anti-virus software in the main distri-
bution. There are, however, free software anti-virus projects which might be included in future
Debian GNU/Linux releases:

• Open Antivirus (http://sourceforge.net/projects/openantivirus/) (see Bug
#150698 (ITP oav-scannerdaemon (http://bugs.debian.org/150698) and Bug #150695
(ITP oav-update (http://bugs.debian.org/150695)).

• Clam Antivirus (http://clamav.elektrapro.com/)

• jvirus (http://sourceforge.net/projects/jvirus/).

• Amavis Next Generation (http://www.sourceforge.net/projects/amavis), a
mail virus scanner which integrates with your MTA and supports multiple virus scan-
ning engines (see Bug #154294 (http://bugs.debian.org/154294)).

There is also a virussignatures package, which provides signatures for all packages, this
package provides a script to download the latest virus signatures from http://www.openantivirus.
org/latest.php .

FIXME: Check to determine which packages are available for antivirus. Is clamav available?
(there seem to be Debian packages for it).

http://packages.debian.org/sanitizer
http://packages.debian.org/amavis-postfix
http://sourceforge.net/projects/openantivirus/
http://bugs.debian.org/150698
http://bugs.debian.org/150695
http://clamav.elektrapro.com/
http://sourceforge.net/projects/jvirus/
http://www.sourceforge.net/projects/amavis
http://bugs.debian.org/154294
http://www.openantivirus.org/latest.php
http://www.openantivirus.org/latest.php

Chapter 8. Security tools in Debian 115

FIXME: check if scannerdaemon is the same as the open antivirus scanner daemon (read ITPs).

However, Debian will never provide commercial anti-virus software such as: Panda Anti-
virus (http://www.pandasoftware.com/com/linux/linux.asp), NAI Netshield (uvs-
can) (http://www.nai.com/naicommon/buy-try/try/products-evals.asp), Sophos
Sweep (http://www.sophos.com/), TrendMicro Interscan (http://www.antivirus.com/
products/), or RAV (http://www.ravantivirus.com). For more pointers see the Linux
anti-virus software mini-FAQ (http://www.computer-networking.de/~link/security/
av-linux_e.txt). This does not mean that this software can be installed properly in a
Debian system.

For more information on how to set up an a virus detection system read Dave Jones’ article
Building an E-mail Virus Detection System for Your Network (http://www.linuxjournal.
com/article.php?sid=4882).

8.9 GPG agent

It is very common nowadays to digitally sign (and sometimes encrypt) e-mail. You might, for
example, find that many people participating on mailing lists sign their list e-mail. Public key
signatures are currently the only means to verify that an e-mail was sent by the sender and not
by some other person.

Debian GNU/Linux provides a number of e-mail clients with built-in e-mail signing capabil-
ities that interoperate either with gnupg or pgp :

• Evolution .

• mutt .

• kmail .

• sylpheed . Depending on how the stable version of this package evolves, you may need
to use the bleeding edge version, sylpheed-claws .

• gnus , which when installed with the mailcrypt package, is an emacs interface to
gnupg .

• kuvert , which provides this functionality independently of your chosen mail user agent
(MUA) by interacting with the mail transport agent (MTA).

Key servers allow you to download published public keys so that you may verify signatures.
One such key server is http://wwwkeys.pgp.net . gnupg can automatically fetch public
keys that are not already in your public keyring. For example, to configure gnupg to use the
above key server, edit the file ~/.gnupg/options and add the following line: 2

keyserver wwwkeys.pgp.net

2For more examples of how to configure gnupg check /usr/share/doc/mutt/examples/gpg.rc .

http://www.pandasoftware.com/com/linux/linux.asp
http://www.nai.com/naicommon/buy-try/try/products-evals.asp
http://www.sophos.com/
http://www.antivirus.com/products/
http://www.antivirus.com/products/
http://www.ravantivirus.com
http://www.computer-networking.de/~link/security/av-linux_e.txt
http://www.computer-networking.de/~link/security/av-linux_e.txt
http://www.linuxjournal.com/article.php?sid=4882
http://www.linuxjournal.com/article.php?sid=4882
http://wwwkeys.pgp.net

Chapter 8. Security tools in Debian 116

Most key servers are linked, so that when your public key is added to one server, the addition
is propagated to all the other public key servers. There is also a Debian GNU/Linux package
debian-keyring , that provides all the public keys of the Debian developers. The gnupg
keyrings are installed in /usr/share/keyrings/ .

For more information:

• GnuPG FAQ (http://www.gnupg.org/faq.html).

• GnuPG Handbook (http://www.gnupg.org/gph/en/manual.html).

• GnuPG Mini Howto (English) (http://www.dewinter.com/gnupg_howto/english/
GPGMiniHowto.html).

• comp.security.pgp FAQ (http://www.uk.pgp.net/pgpnet/pgp-faq/).

• Keysigning Party HOWTO (http://www.cryptnet.net/fdp/crypto/gpg-party.
html).

http://www.gnupg.org/faq.html
http://www.gnupg.org/gph/en/manual.html
http://www.dewinter.com/gnupg_howto/english/GPGMiniHowto.html
http://www.dewinter.com/gnupg_howto/english/GPGMiniHowto.html
http://www.uk.pgp.net/pgpnet/pgp-faq/
http://www.cryptnet.net/fdp/crypto/gpg-party.html
http://www.cryptnet.net/fdp/crypto/gpg-party.html

117

Chapter 9

Before the compromise

9.1 Continuously update the system

You should conduct security updates frequently. The vast majority of exploits result from
known vulnerabilities that have not been patched in time, as this http://www.cs.umd.edu/
~waa/vulnerability.html name=“paper by Bill Arbaugh”> (presented at the 2001 IEEE
Symposium on Security and Privacy) explains. Updates are described under ‘Execute a secur-
ity update’ on page 38.

9.1.1 Using Tiger to check for security updates

If you’re looking for a tool to quickly check and report system security vulnerabilities, try
the tiger package. This package is a set of Bourne shell scripts, C programs and data files
used to perform security audits. The Debian GNU/Linux package has additional enhance-
ments oriented toward the Debian distribution, providing more functionality than the Tiger
scripts provided by TAMU (or even TARA, a tiger version distributed by ARSC). See the
README.Debian file and the man page tiger(8) for more information.

One of these enhancements is the deb_checkadvisories script. This script takes a list of
DSA’s and checks against the installed package base, reporting back any packages that are vul-
nerable according to the Debian Security Team. This is a slightly different, more general ap-
proach than is implemented by the Tiger check_signatures script, which checks MD5sums
of known vulnerable programs.

Since Debian currently does not ship a list of MD5sums of known vulnerable programs (util-
ized by some other operating systems like Sun Solaris), the check-against-DSA approach is used.
The DSA approach and the MD5sums approach both suffer from the problem that signatures
have to be updated regularly.

This is currently solved by making new versions of the Tiger package, but the package main-
tainer might not make a new version every time a DSA is announced. A nice addition, which
is not yet implemented, might be to do this proactively. That is, download the DSAs from the

http://www.cs.umd.edu/~waa/vulnerability.html
http://www.cs.umd.edu/~waa/vulnerability.html

Chapter 9. Before the compromise 118

web, make the list and then run the check. The DSAs are currently updated from the main-
tainer’s local CVS update of the WML sources used to build http://security.debian.
org (the web server, that is).

A program to parse published DSAs, either received through e-mail or available in secur-
ity.debian.org, and then generate the file used by ’deb_checkadvisories’ to confirm vulner-
abilities would be appreciated. Send it as a bug report for tiger .

The mentioned check is run through the standard program configuration once installed (see
/etc/tiger/cronrc):

Check for Debian security measures every day at 1 AM
#
1 * * deb_checkmd5sums deb_nopackfiles deb_checkadvisories
#

There is an additional check that you might want to add, which is not yet part of the standard
cron scripts. That check is the script check_patches , which works in the following way:

• run # apt-get update

• checks if there are new packages available

If you are running a stable system and add the security.debian.org apt source line to your /etc
/apt/sources.list (as described in ‘Execute a security update’ on page 38), this script will
be able to tell you if there are new packages that you need to install. Since the only packages
changing in this setup are security updates, then you have just what you wanted.

Of course, this will not work if you are running testing or sid/unstable, since currently, the new
packages are probably much more than security updates.

You can add this script to the checks done by the cron job (in the above configuration file)
and tigercron would mail (to whomever Tiger_Mail_RCPT was set to in /etc/tiger
/tigerrc) the new packages:

Check for Debian security measures every day at 1 am
#
1 * * deb_checkmd5sums deb_nopackfiles check_patches
#

9.1.2 Avoid using the unstable branch

Unless you want to dedicate time to patch packages yourself when a vulnerability arises, you
should not use Debian’s unstable branch for production-level systems. The main reason for this
is that there are no security updates for unstable (see ‘How is security handled for testing and
unstable ?’ on page 148).

http://security.debian.org
http://security.debian.org

Chapter 9. Before the compromise 119

The fact is that some security issues might appear in unstable and not in the stable distribution.
This is due to new functionality constantly being added to the applications provided there, as
well as new applications being included which might not yet have been throughly tested.

In order to do security upgrades in the unstable branch, you might have to do full upgrades
to new versions (which might update much more than just the affected package). Although
there have been some exceptions, security patches are usually only back ported into the stable
branch. The main idea being that between updates, no new code should be added, just fixes for
important issues.

9.1.3 Avoid using the testing branch

If you are using the testing branch, there are some issues that you must take into account re-
garding the availability of security updates:

• When a security fix is prepared, packages are prepared for unstable and the patch is back
ported to stable (since stable is usually some minor or major versions behind). Packages
for the stable distribution are more thoroughly tested than unstable, since the latter might
just provide the latest upstream release.

• Security updates are available immediately for both branches (but not yet for the testing
branch).

• If no (new) bugs are detected in the unstable version of the package, it moves to testing
after several days (usually over a week). However, this does depend on the release state
of the distribution.

9.1.4 Automatic updates in a Debian GNU/Linux system

First of all, automatic updates are not fully recommended, since administrators should review
the DSAs and understand the impact of any given security update.

If you want to update your system automatically you should:

• Configure apt so that those packages that you do not want to update stay at their cur-
rent version, either with apt ’s pinning feature or marking them as hold with dpkg or
dselect .

To pin the packages under a given release, you must edit /etc/apt/preferences (see
apt_preferences(5)) and add:

Package: *
Pin: release a=stable
Pin-Priority: 100

FIXME: verify if this configuration is OK.

Chapter 9. Before the compromise 120

• Add a cron entry so that the update is run daily, for example:

apt-get update && apt-get -y upgrade

The -y option will have apt assume ’yes’ for all the prompts that might arise during the
update. In some cases, you might want to use the --trivial-only option instead of
the --assume-yes (equivalent to -y). 1

• Configure cron so that debconf will not ask for any input during upgrades, that way
they are done non-interactively. 2

• Check the results of the cron execution, which will be mailed to the superuser (unless
changed with MAILTOenvironment variable in the script).

A safer alternative might be to use the -d (or --download-only) option, which will down-
load but not install the necessary packages. Then if the cron execution shows that the system
needs to be updated, it can be done manually.

In order to accomplish any of these tasks, the system must be properly configured to download
security updates as discussed in ‘Execute a security update’ on page 38.

However, this is not recommended for unstable without careful analysis, since you might bring
your system into an unusable state if some serious bug creeps into an important package and
gets installed in your system. Testing is slightly more secure with regard to this issue, since
serious bugs have a better chance of being detected before the package is moved into the testing
branch (although, you may have no security updates available whatsoever).

If you have a mixed distribution, that is, a stable installation with some packages updated to
testing or unstable, you can fiddle with the pinning preferences as well as the --target-release
option in apt-get to update only those packages that you have updated. 3

9.2 Set up Intrusion Detection

Debian GNU/Linux includes tools for intrusion detection, which is the practice of detecting
inappropriate or malicious activity on your local system, or other systems in your private net-
work. This kind of defense is important if if the system is very critical or you are truly para-
noid. The most common approaches to intrusion detection are statistical anomaly detection
and pattern-matching detection.

1You may also want to use the --quiet (-q) option to reduce the output of apt-get , which will stop the
generation of any output if no packages are installed.

2Note that some packages might not use debconf and updates will stall due to packages asking for user input
during configuration.

3This is a common issue since many users want to maintain a stable system while updating some packages to
unstable to gain the latest functionality. This need arises due to some projects evolving faster than the time between
Debian’s stable releases.

Chapter 9. Before the compromise 121

Always be aware that in order to really improve the system’s security with the introduction of
any of these tools, you need to have an alert+response mechanism in place. Intrusion detection
is a waste of time if you are not going to alert anyone.

When a particular attack has been detected, most intrusion detection tools will either log the
event with syslogd or send e-mail to the root user (the mail recipient is usually configurable).
An administrator has to properly configure the tools so that false positives do not trigger alerts.
Alerts may also indicate an ongoing attack and might not be useful, say, one day later, since
the attack might have already succeeded. So be sure that there is a proper policy on handling
alerts and that the technical mechanisms to implement this policy are in place.

An interesting source of information is CERT’s Intrusion Detection Checklist (http://www.
cert.org/tech_tips/intruder_detection_checklist.html)

9.2.1 Network based intrusion detection

Network based intrusion detection tools monitor the traffic on a network segment and use this
information as a data source. Specifically, the packets on the network are examined, and they
are checked to see if they match a certain signature.

Snort is a flexible packet sniffer or logger that detects attacks using an attack signature dic-
tionary. It detects a variety of attacks and probes, such as buffer overflows, stealth port scans,
CGI attacks, SMB probes, and much more. Snort also has real-time alerting capability. You
can use snort for a range of hosts on your network as well as for your own host. This is a tool
which should be installed on every router to keep an eye on your network. Just install it with
apt-get install snort , follow the questions, and watch it log.

Debian’s snort package has many security checks enabled by default. However, you should
customize the setup to take into account the particular services you run on your system. You
may also want to seek additional checks specific to these services.

There are other, simpler tools that can be used to detect network attacks. portsentry is an
interesting package that can tip you off to port scans against your hosts. Other tools like ippl
or iplogger will also detect some IP (TCP and ICMP) attacks, even if they do not provide the
kind of advanced techniques snort does.

You can test any of these tools with the Debian package idswakeup , a shell script which
generates false alarms, and includes many common attack signatures.

9.2.2 Host based intrusion detection

Host based intrusion detection involves loading software on the system to be monitored which
uses log files and/or the systems auditing programs as a data source. It looks for suspicious
processes, monitors host access, and may even monitor changes to critical system files.

Tiger is an older intrusion detection tool which has been ported to Debian since the Woody
branch. Tiger provides checks of common issues related to security break-ins, like password

http://www.cert.org/tech_tips/intruder_detection_checklist.html
http://www.cert.org/tech_tips/intruder_detection_checklist.html

Chapter 9. Before the compromise 122

strength, file system problems, communicating processes, and other ways root might be com-
promised. This package includes new Debian-specific security checks including: MD5sums
checks of installed files, locations of files not belonging to packages, and analysis of local listen-
ing processes. The default installation sets up tiger to run each day, generating a report that
is sent to the superuser about possible compromises of the system.

Log analysis tools, such as logcheck can also be used to detect intrusion attempts. See ‘Using
and customising logcheck ’ on page 51.

In addition, packages which monitor file system integrity (see ‘Checking file system integrity’
on page 58) can be quite useful in detecting anomalies in a secured environment. It is most
likely that an effective intrusion will modify some files in the local file system in order to
circumvent local security policy, install Trojans, or create users. Such events can be detected
with file system integrity checkers.

9.3 Useful kernel patches

FIXME: This section needs to cover how these specific patches can be installed in Debian using
the kernel-2.x.x-patch-XXX packages.

The following are some kernel patches which can significantly enhance system security:

• OpenWall patch, by Solar Designer. This is a useful set of kernel restrictions, like restricted
links, FIFOs in /tmp , a restricted /proc file system, special file descriptor handling,
non-executable user stack area and other. Homepage: http://www.openwall.com/
linux/

• LIDS — Linux intrusion detection system by Huagang Xie & Philippe Biondi. This kernel patch
makes the process of hardening your Linux system easier by allowing you to restrict,
hide and protect processes, even from root. It also allows you to protect or hide certain
files so that even root cannot modify them. Furthermore, you can also set capabilities
for certain processes. A must for the paranoid system administrator. Homepage: http:
//www.lids.org

• POSIX Access Control Lists (ACLs) for Linux This kernel patch adds access control lists, an
advanced method for restricting access to files. Homepage: http://acl.bestbits.
at/

• Linux trustees. This patch adds a decent advanced permissions management system
to your Linux kernel. Special objects (called trustees) are bound to every file or dir-
ectory, and are stored in kernel memory, which allows fast lookup of all permissions.
Homepage: http://trustees.sourceforge.net/

• International kernel patch. This is a crypt-oriented kernel patch, therefore you have to
pay attention to your local laws regarding the use of cryptography. It basically adds the
possibility of using encrypted file systems. Homepage: http://www.kerneli.org

http://www.openwall.com/linux/
http://www.openwall.com/linux/
http://www.lids.org
http://www.lids.org
http://acl.bestbits.at/
http://acl.bestbits.at/
http://trustees.sourceforge.net/
http://www.kerneli.org

Chapter 9. Before the compromise 123

• SubDomain. A kernel extension designed to provide least privilege confinement to pos-
sibly insecure programs. SubDomain complements and extends native access controls.
While similar to a chroot environment, it claims to be easier to construct and more flex-
ible than a chroot environment. Homepage: http://www.immunix.org/subdomain.
html

• UserIPAcct. This is not really a security related patch, but it does allow you to create per
user quotas for the traffic on your system. You can also fetch statistics about the user
traffic. Homepage: http://ramses.smeyers.be/useripacct .

• FreeSWAN. If you want to use the IPsec protocol with Linux, you need this patch. You
can create VPNs with this quite easily, even to Windows machines, as IPsec is a common
standard. Homepage: http://www.freeswan.org

9.4 Avoiding root-kits

9.4.1 Loadable Kernel Modules (LKM)

Loadable kernel modules are files containing dynamically loadable kernel components used
to expand the functionality of the kernel. The main benefit of using modules is the ability to
add additional devices, like an Ethernet or sound card, without patching the kernel source and
recompiling the entire kernel. However, crackers are now using LKMs for root-kits (knark and
adore), opening up back doors in GNU/Linux systems.

LKM back doors are more sophisticated and less detectable than traditional root-kits. They can
hide processes, files, directories and even connections without modifying the source code of
binaries. For example, a malicious LKM can force the kernel into hiding specific processes from
procfs , so that even a known good copy of the binary ps would not list accurate information
about the current processes on the system.

9.4.2 Detecting root-kits

There are two approaches to defending your system against LKM root-kits, a proactive defense
and a reactive defense. The detection work can be simple and painless, or difficult and tiring,
depending on the approach taken.

Proactive defense

The advantage of this kind of defense is that it prevents damage to the system in the first place.
One such strategy is getting there first, that is, loading a LKM designed to protect the system
from other malicious LKMs. A second strategy is to remove capabilities from the kernel itself.
For example, you can remove the capability of loadable kernel modules entirely.

Debian GNU/Linux has a few packages that can be used to mount a proactive defense:

http://www.immunix.org/subdomain.html
http://www.immunix.org/subdomain.html
http://ramses.smeyers.be/useripacct
http://www.freeswan.org

Chapter 9. Before the compromise 124

• kernel-patch-2.4-lsm - LSM is the Linux Security Modules framework.

• lcap - A user friendly interface to remove capabilities (kernel-based access control) in the
kernel, making the system more secure. For example, executing lcap CAP_SYS_MODULE
4 will remove module loading capabilities (even for the root user). 5

If you don’t really need many kernel features on your GNU/Linux system, you may want
to disable loadable modules support during kernel configuration. To disable loadable mod-
ule support, just set CONFIG_MODULES=n during the configuration stage of building your
kernel, or in the .config file. This will prevent LKM root-kits, but you lose this powerful fea-
ture of the Linux kernel. Also, disabling loadable modules can sometimes overload the kernel,
making loadable support necessary.

Reactive defense

The advantage of a reactive defense is that it does not overload system resources. It works
by comparing the system call table with a known clean copy in a disk file, System.map . Of
course, a reactive defense will only notify the system administrator after the system has already
been compromised.

Detection of some root-kits in Debian can be accomplished with the chkrootkit package.
The Chkrootkit (http://www.chkrootkit.org) program checks for signs of several known
root-kits on the target system, but is not a definitive test.

Another helpful tool is KSTAT (http://www.s0ftpj.org/en/site.html) (Kernel Secur-
ity Therapy Anti Trolls) by the S0ftproject group. KSTAT checks the kernel memory area /dev
/kmem) for information about the target host to assist the system administrator in finding and
removing malicious LKMs.

9.5 Genius/Paranoia Ideas — what you could do

This is probably the most unstable and funny section, since I hope that some of the “duh,
that sounds crazy” ideas might be realized. The following are just some ideas for increasing
security — maybe genius, paranoid, crazy or inspired depending on your point of view.

• Playing around with Pluggable Authentication Modules (PAM). As quoted in the Phrack
56 PAM article, the nice thing about PAM is that “You are limited only by what you can

4There are over 28 capabilities including: CAP_BSET, CAP_CHOWN, CAP_FOWNER, CAP_FSETID,
CAP_FS_MASK, CAP_FULL_SET, CAP_INIT_EFF_SET , CAP_INIT_INH_SET , CAP_IPC_LOCK,
CAP_IPC_OWNER, CAP_KILL , CAP_LEASE, CAP_LINUX_IMMUTABLE, CAP_MKNOD, CAP_NET_ADMIN,
CAP_NET_BIND_SERVICE, CAP_NET_RAW, CAP_SETGID, CAP_SETPCAP, CAP_SETUID, CAP_SYS_ADMIN,
CAP_SYS_BOOT, CAP_SYS_CHROOT, CAP_SYS_MODULE, CAP_SYS_NICE, CAP_SYS_PACCT, CAP_SYS_PTRACE,
CAP_SYS_RAWIO, CAP_SYS_RESOURCE, CAP_SYS_TIME, and CAP_SYS_TTY_CONFIG. All of them can be
activated or de-activated to harden your kernel.

5You don’t need to install lcap to do this, but it’s easier than setting /proc/sys/kernel/cap-bound by
hand.

http://www.chkrootkit.org
http://www.s0ftpj.org/en/site.html

Chapter 9. Before the compromise 125

think of.” It is true. Imagine root login only being possible with fingerprint or eye scan
or cryptocard (why did I use an OR conjunction instead of AND?).

• Fascist Logging. I would refer to all the previous logging discussion above as “soft log-
ging”. If you want to perform real logging, get a printer with fanfold paper, and send all
logs to it. Sounds funny, but it’s reliable and it cannot be tampered with or removed.

• CD distribution. This idea is very easy to realize and offers pretty good security. Create
a hardened Debian distribution, with proper firewall rules. Turn it into a boot-able ISO
image, and burn it on a CDROM. Now you have a read-only distribution, with about 600
MB space for services. Just make sure all data that should get written is done over the
network. It is impossible for intruders to get read/write access on this system, and any
changes an intruder does make can be disabled with a reboot of the system.

• Switch module capability off. As discussed earlier, when you disable the usage of ker-
nel modules at kernel compile time, many kernel based back doors are impossible to
implement because most are based on installing modified kernel modules.

• Logging through serial cable. (contributed by Gaby Schilders) As long as servers still
have serial ports, imagine having one dedicated logging system for a number of servers.
The logging system is disconnected from the network, and connected to the servers via
a serial-port multiplexer (Cyclades or the like). Now have all your servers log to their
serial ports, write only. The log-machine only accepts plain text as input on its serial
ports and only writes to a log file. Connect a CD/DVD-writer, and transfer the log file
to it when the log file reaches the capacity of the media. Now if only they would make
CD writers with auto-changers. . . Not as hard copy as direct logging to a printer, but this
method can handle larger volumes and CDROMs use less storage space.

• Change file attributes using chattr . (taken from the Tips-HOWTO, written by Jim Den-
nis). After a clean install and initial configuration, use the chattr program with the +i
attribute to make files unmodifiable (the file cannot be deleted, renamed, linked or writ-
ten to). Consider setting this attribute on all the files in /bin , /sbin/ , /usr/bin , /usr
/sbin , /usr/lib and the kernel files in root. You can also make a copy of all files in
/etc/ , using tar or the like, and mark the archive as immutable.

This strategy will help limit the damage that you can do when logged in as root. You
won’t overwrite files with a stray redirection operator, and you won’t make the system
unusable with a stray space in a rm -fr command (you might still do plenty of damage
to your data — but your libraries and binaries will be safer.)

This strategy also makes a variety of security and denial of service (DoS) exploits either
impossible or more difficult (since many of them rely on overwriting a file through the
actions of some SETUID program that isn’t providing an arbitrary shell command).

One inconvenience of this strategy arises during building and installing various system
binaries. On the other hand, it prevents the make install from over-writing the files.
When you forget to read the Makefile and chattr -i the files that are to be overwritten,
(and the directories to which you want to add files) - the make command fails, and you
just use the chattr command and rerun it. You can also take that opportunity to move
your old bin’s and libs out of the way, into a .old/ directory or tar archive for example.

Chapter 9. Before the compromise 126

Note that this strategy also prevents you from upgrading your system’s packages, since
the files updated packages provide cannot be overwritten. You might want to have a
script or other mechanism to disable the immutable flag on all binaries right before doing
an apt-get update .

9.5.1 Building a honeypot

FIXME: More Content specific to Debian needed.

A honeypot is a system designed to teach system administrators how crackers probe for and
exploit a system. It is a system setup with the expectation and goal that the system will be
probed, attacked and potentially exploited. By learning the tools and methods employed by
the cracker, a system administrator can learn to better protect their own systems and network.

A Debian GNU/Linux system can easily be setup as a honeypot, if you dedicate the time
to implement and monitor it. Simply setup the fake server with a firewall and some sort of
network intrusion detector, put it on the Internet, and wait. Do take care that if the system is
exploited, you are alerted in time (see ‘The importance of logs and alerts’ on page 50) so that
you can take appropriate measures and terminate the compromise when you’ve seen enough.
Here are some of the packages and issues to consider when setting up your honeypot:

• The firewall technology you will use (provided by the Linux kernel).

• syslog-ng , useful for sending logs from the honeypot to a remote syslog server.

• snort , to set up capture of all the incoming network traffic to the honeypot and detect
the attacks.

• osh , a SETUID root, security enhanced, restricted shell with logging (see Lance Spitzner’s
article below).

• Of course, all the daemons you will be using for your fake server honeypot (but do not
harden the honeypot).

• The Deception Toolkit, which uses deception to counter attacks. Homepage: Deception
Toolkit (http://www.all.net/dtk/)

• Integrity checkers (see ‘Checking file system integrity’ on page 58) and The Coroner’s
Toolkit (tct) to do post-attack audits.

You can read more about building honeypots in Lanze Spitzner’s excellent article To Build a
Honeypot (http://www.net-security.org/text/articles/spitzner/honeypot.shtml)
(from the Know your Enemy series), or David Raikow’s Building your own honeypot (http:
//www.zdnetindia.com/techzone/resources/security/stories/7601.htm). Also,
the Honeynet Project (http://project.honeynet.org/) provides valuable information
about building honeypots and auditing the attacks made on them.

http://www.all.net/dtk/
http://www.net-security.org/text/articles/spitzner/honeypot.shtml
http://www.zdnetindia.com/techzone/resources/security/stories/7601.htm
http://www.zdnetindia.com/techzone/resources/security/stories/7601.htm
http://project.honeynet.org/

127

Chapter 10

After the compromise

10.1 General behavior

If you are physically present when an attack is happening, your first response should be to re-
move the machine from the network by unplugging the network card (if this will not adversely
affect any business transactions). Disabling the network at layer 1 is the only true way to keep
the attacker out of the compromised box (Phillip Hofmeister’s wise advice).

However, some rootkits or back doors are able to detect this event and react to it. Seeing a
rm -rf / executed when you unplug the network from the system is not really much fun.
If you are unwilling to take the risk, and you are sure that the system is compromised, you
should unplug the power cable (all of them if more than one) and cross your fingers. This may
be extreme but, in fact, will avoid any logic-bomb that the intruder might have programmed.
In this case, the compromised system should not be re-booted. Either the hard disks should be
moved to another system for analysis, or you should use other media (a CD-ROM) to boot the
system and analyze it. You should not use Debian’s rescue disks to boot the system, but you
can use the shell provided by the installation disks (remember, Alt+F2 will take you to it) to
analyze the system. 1

The most recommended method for recovering a compromised system is to use a live-filesystem
on CDROM with all the tools (and kernel modules) you might need to access the comprom-
ised system. You can use the mkinitrd-cd package to build such a CDROM2. You might find
the Biatchux (http://biatchux.dmzs.com/) CDROM useful here too, since it’s also a live
CDROM with forensic tools useful in these situations. There is not (yet) a Debian-based tool
such as this, nor an easy way to build the CDROM using your own selection of Debian pack-
ages and mkinitrd-cd (so you’ll have to read the documentation provided with it to make
your own CDROMs).

1If you are adventurous, you can login to the system and save information on all running processes (you’ll get a
lot from /proc/nnn/). It is possible to get the whole executable code from memory, even if the attacker has deleted
the executable files from disk. Then pull the power cord.

2In fact, this is the tool used to build the CDROMs for the Gibraltar (http://www.gibraltar.at/) project
(a firewall on a live CDROM based on the Debian distribution).

http://biatchux.dmzs.com/
http://www.gibraltar.at/

Chapter 10. After the compromise 128

If you really want to fix the compromise quickly, you should remove the compromised host
from your network and re-install the operating system from scratch. Of course, this may not
be effective because you will not learn how the intruder got root in the first place. For that
case, you must check everything: firewall, file integrity, log host, log files and so on. For more
information on what to do following a break-in, see Sans’ Incident Handling Guide (http://
www.sans.org/y2k/DDoS.htm) or CERT’s Steps for Recovering from a UNIX or NT System
Compromise (http://www.cert.org/tech_tips/root_compromise.html).

Some common questions on how to handle a compromised Debian GNU/Linux system are
also available in ‘My system is vulnerable! (Are you sure?)’ on page 143.

10.2 Backing up the system

Remember that if you are sure the system has been compromised you cannot trust the installed
software or any information that it gives back to you. Applications might have been Trojanized,
kernel modules might be installed, etc.

The best thing to do is a complete file system backup copy (using dd) after booting from a safe
medium. Debian GNU/Linux CDROMs can be handy for this since they provide a shell in
console 2 when the installation is started (jump to it using Alt+2 and pressing Enter). From
this shell, backup the information to another host if possible (maybe a network file server
through NFS/FTP). Then any analysis of the compromise or re-installation can be performed
while the affected system is offline.

If you are sure that the only compromise is a Trojan kernel module, you can try to run the
kernel image from the Debian CDROM in rescue mode. Make sure to startup in single user
mode, so no other Trojan processes run after the kernel.

10.3 Forensic analysis

If you wish to gather more information, the tct (The Coroner’s Toolkit from Dan Farmer and
Wietse Venema) package contains utilities which perform a ’post mortem’ of a system. tct
allows the user to collect information about deleted files, running processes and more. See the
included documentation for more information.

Some other tools that can be used for forensic analysis provided in the Debian distribution are:

• Fenris .

• Strace .

• Ltrace .

Any of these packages can be used to analyze rogue binaries (such as back doors), in order to
determine how they work and what they do to the system. Some other common tools include
ldd (in libc6), strings and objdump (both in binutils).

http://www.sans.org/y2k/DDoS.htm
http://www.sans.org/y2k/DDoS.htm
http://www.cert.org/tech_tips/root_compromise.html

Chapter 10. After the compromise 129

If you try to do forensic analysis with back doors or suspected binaries retrieved from com-
promised systems, you should do so in a secure environment (for example in a bochs or
flex86 image or a chroot ’ed environment using a user with low privileges). Otherwise
your own system can be back doored/r00ted too!

Also, remember that forensics analysis should be done always on the backup copy of the data,
never on the data itself, in case the data is altered during analysis and the evidence is lost.

FIXME: This paragraph will hopefully provide more information about forensics in a Debian
system in the coming future.

FIXME: talk on how to do a debsums on a stable system with the MD5sums on CD and with
the recovered file system restored on a separate partition.

FIXME add pointers to forensic analysis papers (like the Honeynet’s reverse challenge or David
Dittirch’s papers (http://staff.washington.edu/dittrich/).

http://staff.washington.edu/dittrich/

Chapter 10. After the compromise 130

131

Chapter 11

Frequently asked Questions (FAQ)

This chapter introduces some of the most common questions from the Debian security mailing
list. You should read them before posting there or else people might tell you to RTFM.

11.1 Security in the Debian operating system

11.1.1 Is Debian more secure than X?

A system is only as secure as its administrator is capable of making it. Debian’s default install-
ation of services aims to be secure, but may not be as paranoid as some other operating systems
which install all services disabled by default. In any case, the system administrator needs to
adapt the security of the system to his local security policy.

For a collection of data regarding security vulnerabilities for many operating systems, see
http://securityfocus.com/vulns/stats.shtml . Is this data useful? The site lists
several factors to consider when interpreting the data, and warns that the data cannot be used
to compare the vulnerabilities of one operating system versus another.1 Also, keep in mind
that some Bugtraq vulnerabilities regarding Debian apply only to the unstable branch.

Is Debian more secure than other Linux distributions (such as RedHat, SuSE. . .)?

There are not really many differences between Linux distributions, with exceptions to the base
installation and package management system. Most distributions share many of the same
applications, with differences mainly in the versions of these applications that are shipped
with the distribution’s stable release. For example, the kernel, Bind, Apache, OpenSSH, XFree,
gcc, zlib, etc. are all common across Linux distributions.

1For example, based on the Securityfocus data, it might seem that Windows NT is more secure than Linux,
which is a questionable assertion. After all, Linux distributions usually provide many more applications compared
to Microsoft’s Windows NT.

http://securityfocus.com/vulns/stats.shtml

Chapter 11. Frequently asked Questions (FAQ) 132

For example, RedHat was unlucky and shipped when foo 1.2.3 was current, which was then
later found to have a security hole. Debian, on the other hand, was lucky enough to ship foo
1.2.4, which incorporated the bug fix. That was the case in the big rpc.statd (http://www.
cert.org/advisories/CA-2000-17.html) problem from a couple years ago.

There is a lot of collaboration between the respective security teams for the major Linux dis-
tributions. Known security updates are rarely, if ever, left unfixed by a distribution vendor.
Knowledge of a security vulnerability is never kept from another distribution vendor, as fixes
are usually coordinated upstream, or by CERT (http://cert.org). As a result, necessary
security updates are usually released at the same time, and the relative security of the different
distributions is very similar.

One of Debian’s main advantages with regards to security is the ease of system updates through
the use of apt . Here are some other aspects of security in Debian to consider:

• Debian provides more security tools than other distributions, see ‘Security tools in Debian’
on page 109.

• Debian’s standard installation is smaller (less functionality), and thus more secure. Other
distributions, in the name of usability, tend to install many services by default, and some-
times they are not properly configured (remember the Ramen or Lion worms (http://
www.sans.org/y2k/lion.htm)). Debian’s installation is not as limited as OpenBSD
(no daemons are active per default), but it’s a good compromise. 2

• Debian documents best security practices in documents like this one.

11.1.2 There are many Debian bugs in Bugtraq. Does this mean that it is very
vulnerable?

The Debian distribution boasts a large and growing number of software packages, probably
more than provided by many proprietary operating systems. The more packages installed, the
greater the potential for security issues in any given system.

More and more people are examining source code for flaws. There are many advisories related
to source code audits of the major software components included in Debian. Whenever such
source code audits turn up security flaws, they are fixed and an advisory is sent to lists such as
Bugtraq.

Bugs that are present in the Debian distribution usually affect other vendors and distributions
as well. Check the “Debian specific: yes/no” section at the top of each advisory (DSA).

11.1.3 Does Debian have any certification related to security?

Short answer: no.
2Without diminishing the fact that some distributions, such as RedHat or Mandrake, are also taking into ac-

count security in their standard installations by having the user select security profiles, or using wizards to help with
configuration of personal firewalls.

http://www.cert.org/advisories/CA-2000-17.html
http://www.cert.org/advisories/CA-2000-17.html
http://cert.org
http://www.sans.org/y2k/lion.htm
http://www.sans.org/y2k/lion.htm

Chapter 11. Frequently asked Questions (FAQ) 133

Long answer: certification costs money and nobody has dedicated the resources in order to
certify Debian GNU/Linux to any level of, for example, the Common Criteria. If you are
interested in having a certified GNU/Linux distribution, try to provide the resources needed
to make it possible.

11.1.4 Are there any hardening programs for Debian?

Yes. Bastille Linux (http://www.bastille-linux.org), originally oriented toward other
Linux distributions (RedHat and Mandrake), currently works for Debian. Steps are being
taken to integrate the changes made to the upstream version into the Debian package, named
bastille .

Some people believe, however, that a hardening tool does not eliminate the need for good
administration.

11.1.5 I want to run XYZ service, which one should I choose?

One of Debian’s great strengths is the wide variety of choice available between packages that
provide the same functionality (DNS servers, mail servers, ftp servers, web servers, etc.). This
can be confusing to the novice administrator when trying to determine which package is right
for you. The best match for a given situation depends on a balance between your feature
and security needs. Here are some questions to ask yourself when deciding between similar
packages:

• Is the software maintained upstream? When was the last release?

• Is the package mature? The version number really does not tell you about its maturity.
Try to trace the software’s history.

• Is the software bug-ridden? Have there been security advisories related to it?

• Does the software provide all the functionality you need? Does it provide more than you
really need?

11.1.6 How can I make service XYZ more secure in Debian?

You will find information in this document to make some services (FTP, Bind) more secure
in Debian GNU/Linux. For services not covered here, check the program’s documentation,
or general Linux information. Most of the security guidelines for Unix systems also apply to
Debian. In most cases, securing service X in Debian is like securing that service in any other
Linux distribution (or Un*x, for that matter).

http://www.bastille-linux.org

Chapter 11. Frequently asked Questions (FAQ) 134

11.1.7 How can I remove all the banners for services?

If you do not like users connecting to your POP3 daemon, for example, and retrieving inform-
ation about your system, you might want to remove (or change) the banner the service shows
to users. 3 Doing so depends on the software you are running for a given service. For example,
in postfix , you can set your SMTP banner in /etc/postfix/main.cf :

smtpd_banner = $myhostname ESMTP $mail_name (Debian/GNU)

Other software is not as easy to change. OpenSSHwill need to be recompiled in order to change
the version that it prints. Take care not to remove the first part (SSH-2.0) of the banner, which
clients use to identify which protocol(s) is supported by your package.

11.1.8 Are all Debian packages safe?

The Debian security team cannot possibly analyze all the packages included in Debian for po-
tential security vulnerabilities, since there are just not enough resources to source code audit
the whole project. However, Debian does benefit from the source code audits made by up-
stream developers or by other projects like the Linux Kernel Security Audit Project (http://
kernel-audit.sourceforge.net/), or the Linux Security-Audit Project (http://www.
lsap.org/).

As a matter of fact, a Debian developer could distribute a Trojan in a package, and there is no
possible way to check it out. Even if introduced into a Debian branch, it would be impossible
to cover all the possible situations in which the Trojan would execute. This is why Debian has
a “no guarantees” license clause.

However, Debian users can take confidence in the fact that the stable code has a wide audi-
ence and most problems would be uncovered through use. Installing untested software is not
recommended in a critical system (if you cannot provide the necessary code audit). In any
case, if there were a security vulnerability introduced into the distribution, the process used to
include packages (using digital signatures) ensures that the problem can be ultimately traced
back to the developer. The Debian project has not taken this issue lightly.

11.1.9 Why are some log files/configuration files world-readable, isn’t this insec-
ure?

Of course, you can change the default Debian permissions on your system. The current policy
regarding log files and configuration files is that they are world readable unless they provide
sensitive information.

Be careful if you do make changes since:

3Note that this is ’security by obscurity’, and will probably not be worth the effort in the long term.

http://kernel-audit.sourceforge.net/
http://kernel-audit.sourceforge.net/
http://www.lsap.org/
http://www.lsap.org/

Chapter 11. Frequently asked Questions (FAQ) 135

• Processes might not be able to write to log files if you restrict their permissions.

• Some applications may not work if the configuration file they depend on cannot be
read. For example, if you remove the world-readable permission from /etc/samba
/smb.conf , the smbclient program will not work when run by a normal user.

FIXME: Check if this is written in the Policy. Some packages (i.e. ftp daemons) seem to enforce
different permissions.

11.1.10 Why does /root/ (or UserX) have 755 permissions?

As a matter of fact, the same questions stand for any other user. Since Debian’s installation
does not place any file under that directory, there’s no sensitive information to protect there. If
you feel these permissions are too broad for your system, consider tightening them to 750. For
users, read ‘Limiting access to other user’s information’ on page 47.

This Debian security mailing list thread (http://lists.debian.org/debian-devel/2000/
debian-devel-200011/msg00783.html) has more on this issue.

11.1.11 After installing a grsec/firewall, I started receiving many console messages!
How do I remove them?

If you are receiving console messages, and have configured /etc/syslog.conf to redirect
them to either files or a special TTY, you might be seeing messages sent directly to the console.

The default console log level for any given kernel is 7, which means that any message with
lower priority will appear in the console. Usually, firewalls (the LOG rule) and some other
security tools log lower that this priority, and thus, are sent directly to the console.

To reduce messages sent to the console, you can use dmesg (-n option, see dmesg(8)), which
examines and controls the kernel ring buffer. To fix this after the next reboot, change /etc
/init.d/klogd from:

KLOGD=""

to:

KLOGD="-c 4"

Use a lower number for -c if you are still seeing them. A description of the different log levels
can be found in /usr/include/sys/syslog.h :

#define LOG_EMERG 0 /* system is unusable */
#define LOG_ALERT 1 /* action must be taken immediately */

http://lists.debian.org/debian-devel/2000/debian-devel-200011/msg00783.html
http://lists.debian.org/debian-devel/2000/debian-devel-200011/msg00783.html

Chapter 11. Frequently asked Questions (FAQ) 136

#define LOG_CRIT 2 /* critical conditions */
#define LOG_ERR 3 /* error conditions */
#define LOG_WARNING 4 /* warning conditions */
#define LOG_NOTICE 5 /* normal but significant condition */
#define LOG_INFO 6 /* informational */
#define LOG_DEBUG 7 /* debug-level messages */

11.1.12 Operating system users and groups

Are all system users necessary?

Yes and no. Debian comes with some predefined users (user id (UID) < 99 as described in
Debian Policy (http://www.debian.org/doc/debian-policy/) or /usr/share/doc
/base-passwd/README) to ease the installation of some services that require that they run
under an appropriate user/UID. If you do not intend to install new services, you can safely
remove those users who do not own any files in your system and do not run any services. In
any case, the default behavior is that UID’s from 0 to 99 are reserved in Debian, and UID’s
from 100 to 999 are created by packages on install (and deleted when the package is purged).

To easily find users who don’t own any files, execute the following command (run it as root,
since a common user might not have enough permissions to go through some sensitive direct-
ories):

cut -f 1 -d : /etc/passwd | \
while read i; do find / -user "$i" | grep -q . && echo "$i"; done

These users are provided by base-passwd . Look in its documentation for more information
on how these users are handled in Debian. The list of default users (with a corresponding
group) follows:

• root: Root is (typically) the superuser.

• daemon: Some unprivileged daemons that need to write to files on disk run as dae-
mon.daemon (e.g., portmap , atd , probably others). Daemons that don’t need to own
any files can run as nobody.nogroup instead, and more complex or security conscious
daemons run as dedicated users. The daemon user is also handy for locally installed
daemons.

• bin: maintained for historic reasons.

• sys: same as with bin. However, /dev/vcs* and /var/spool/cups are owned by
group sys.

• sync: The shell of user sync is /bin/sync . Thus, if its password is set to something easy
to guess (such as “”), anyone can sync the system at the console even if they have don’t
have an account.

http://www.debian.org/doc/debian-policy/

Chapter 11. Frequently asked Questions (FAQ) 137

• games: Many games are SETGID to games so they can write their high score files. This is
explained in policy.

• man: The man program (sometimes) runs as user man, so it can write cat pages to /var
/cache/man

• lp: Used by printer daemons.

• mail: Mailboxes in /var/mail are owned by group mail, as explained in policy. The
user and group are used for other purposes by various MTA’s as well.

• news: Various news servers and other associated programs (such as suck) use user and
group news in various ways. Files in the news spool are often owned by user and group
news. Programs such as inews that can be used to post news are typically SETGID news.

• uucp: The uucp user and group is used by the UUCP subsystem. It owns spool and
configuration files. Users in the uucp group may run uucico.

• proxy: Like daemon, this user and group is used by some daemons (specifically, proxy
daemons) that don’t have dedicated user id’s and that need to own files. For example,
group proxy is used by pdnsd , and squid runs as user proxy.

• majordom: Majordomo has a statically allocated UID on Debian systems for historical
reasons. It is not installed on new systems.

• postgres: Postgresql databases are owned by this user and group. All files in /var
/lib/postgresql are owned by this user to enforce proper security.

• www-data: Some web browsers run as www-data. Web content should *not* be owned
by this user, or a compromised web server would be able to rewrite a web site. Data
written out by web servers, including log files, will be owned by www-data.

• backup: So backup/restore responsibilities can be locally delegated to someone without
full root permissions.

• operator: Operator is historically (and practically) the only ’user’ account that can login
remotely, and doesn’t depend on NIS/NFS.

• list: Mailing list archives and data are owned by this user and group. Some mailing list
programs may run as this user as well.

• irc: Used by irc daemons. A statically allocated user is needed only because of a bug in
ircd , which SETUID()s itself to a given UID on startup.

• gnats.

• nobody, nogroup: Daemons that need not own any files run as user nobody and group
nogroup. Thus, no files on a system should be owned by this user or group.

Other groups which have no associated user:

Chapter 11. Frequently asked Questions (FAQ) 138

• adm: Group adm is used for system monitoring tasks. Members of this group can read
many log files in /var/log , and can use xconsole. Historically, /var/log was /usr
/adm (and later /var/adm), thus the name of the group.

• tty: TTY devices are owned by this group. This is used by write and wall to enable them
to write to other people’s TTYs.

• disk: Raw access to disks. Mostly equivalent to root access.

• kmem: /dev/kmem and similar files are readable by this group. This is mostly a BSD
relic, but any programs that need direct read access to the system’s memory can thus be
made SETGID kmem.

• dialout: Full and direct access to serial ports. Members of this group can reconfigure the
modem, dial anywhere, etc.

• dip: The group’s name stands for “Dial-up IP”, and membership in dip allows you to use
tools like ppp , dip , wvdial , etc. to dial up a connection. The users in this group cannot
configure the modem, but may run the programs that make use of it.

• fax: Allows members to use fax software to send / receive faxes.

• voice: Voicemail, useful for systems that use modems as answering machines.

• cdrom: This group can be used locally to give a set of users access to a CDROM drive.

• floppy: This group can be used locally to give a set of users access to a floppy drive.

• tape: This group can be used locally to give a set of users access to a tape drive.

• sudo: Members of this group don’t need to type their password when using sudo . See
/usr/share/doc/sudo/OPTIONS .

• audio: This group can be used locally to give a set of users access to an audio device.

• src: This group owns source code, including files in /usr/src . It can be used locally to
give a user the ability to manage system source code.

• shadow: /etc/shadow is readable by this group. Some programs that need to be able
to access the file are SETGID shadow.

• utmp: This group can write to /var/run/utmp and similar files. Programs that need to
be able to write to it are SETGID utmp.

• video: This group can be used locally to give a set of users access to an video device.

• staff: Allows users to add local modifications to the system (/usr/local , /home) without
needing root privileges. Compare with group “adm”, which is more related to monitor-
ing/security.

• users: While Debian systems use the private user group system by default (each user has
their own group), some prefer to use a more traditional group system, in which each user
is a member of this group.

Chapter 11. Frequently asked Questions (FAQ) 139

What is the difference between the adm and the staff group?

The ’adm’ group are usually administrators, and this group permission allows them to read log
files without having to su . The ’staff’ group are usually help-desk/junior sysadmins, allowing
them to work in /usr/local and create directories in /home .

11.1.13 Why is there a new group when I add a new user? (or Why does Debian
give each user one group?)

The default behavior in Debian is that each user has its own, private group. The traditional
UN*X scheme assigned all users to the users group. Additional groups were created and used
to restrict access to shared files associated with different project directories. Managing files be-
came difficult when a single user worked on multiple projects because when someone created
a file, it was associated with the primary group to which they belong (e.g. ’users’).

Debian’s scheme solves this problem by assigning each user to their own group; so that with
a proper umask (0002) and the SETGID bit set on a given project directory, the correct group
is automatically assigned to files created in that directory. This makes it easier for people
who work on multiple projects, because they will not have to change groups or umasks when
working on shared files.

You can, however, change this behavior by modifying /etc/adduser.conf . Change the
USERGROUPS variable to ’no’, so that a new group is not created when a new user is created.
Also, set USERS_GID to the GID of the users group which all users will belong to.

11.1.14 Question regarding services and open ports

Why are all services activated upon installation?

That’s just an approach to the problem of being, on one side, security conscious and on the
other side user friendly. Unlike OpenBSD, which disables all services unless activated by the
administrator, Debian GNU/Linux will activate all installed services unless deactivated (see
‘Disabling daemon services’ on page 27 for more information). After all you installed the
service, didn’t you?

There has been much discussion on Debian mailing lists (both at debian-devel and at debian-
security) regarding which is the better approach for a standard installation. However, as of
this writing (March 2002), there still isn’t a consensus.

Can I remove inetd ?

Inetd is not easy to remove since netbase depends on the package that provides it (netkit-inetd).
If you want to remove it, you can either disable it (see ‘Disabling daemon services’ on page 27
or remove the package by using the equivs package.

Chapter 11. Frequently asked Questions (FAQ) 140

Why do I have port 111 open?

Port 111 is sunrpc’s portmapper, and it is installed by default as part of Debian’s base installa-
tion since there is no need to know when a user’s program might need RPC to work correctly.
In any case, it is used mostly for NFS. If you do not need it, remove it as explained in ‘Disabling
RPC services’ on page 86.

What use is identd (port 113) for?

Identd service is an authentication service that identifies the owner of a specific TCP/IP con-
nection to the remote server accepting the connection. Typically, when a user connects to a
remote host, inetd on the remote host sends back a query to port 113 to find the owner in-
formation. It is often used by mail, FTP and IRC servers, and can also be used to track down
which user in your local system is attacking a remote system.

There has been extensive discussion on the security of identd (See mailing list archives (http:
//lists.debian.org/debian-security/2001/debian-security-200108/msg00297.
html)). In general, identd is more helpful on a multi-user system than on a single user work-
station. If you don’t have a use for it, disable it, so that you are not leaving a service open to
the outside world. If you decide to firewall the identd port, please use a reject policy and not
a deny policy, otherwise a connection to a server utilizing identd will hang until a timeout
expires (see reject or deny issues (http://logi.cc/linux/reject_or_deny.php3)).

I have services using port 1 and 6, what are they and how can I remove them?

If you have run the command netsat -an and receive:

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
raw 0 0 0.0.0.0:1 0.0.0.0:* 7
-
raw 0 0 0.0.0.0:6 0.0.0.0:* 7
-

You are not seeing processes listening on TCP/UDP port 1 and 6. In fact, you are seeing a
process listening on a raw socket for protocols 1 (ICMP) and 6 (TCP). Such behavior is com-
mon to both Trojans and some intrusion detection systems such as iipl , iplogger and
portsentry . If you have these packages simply remove them. If you do not, try netstat’s
-p (process) option to see which process is running these listeners.

I found the port XYZ open, can I close it?

Yes, of course. The ports you are leaving open should adhere to your individual site’s policy re-
garding public services available to other networks. Check if they are being opened by inetd

http://lists.debian.org/debian-security/2001/debian-security-200108/msg00297.html
http://lists.debian.org/debian-security/2001/debian-security-200108/msg00297.html
http://lists.debian.org/debian-security/2001/debian-security-200108/msg00297.html
http://logi.cc/linux/reject_or_deny.php3

Chapter 11. Frequently asked Questions (FAQ) 141

(see ‘Disabling inetd services’ on page 28), or by other installed packages and take the appro-
priate measures (i.e, configure inetd, remove the package, avoid it running on boot-up).

Will removing services from /etc/services help secure my box?

No, /etc/services only provides a mapping between a virtual name and a given port num-
ber. Removing names from this file will not (usually) prevent services from being started. Some
daemons may not run if /etc/services is modified, but that’s not the norm. To properly
disable the service, see ‘Disabling daemon services’ on page 27.

11.1.15 Common security issues

I have lost my password and cannot access the system!

The steps you need to take in order to recover from this depend on whether or not you have
applied the suggested procedure for limiting access to lilo and your system’s BIOS.

If you have limited both, you need to disable the BIOS setting that only allows booting from
the hard disk before proceeding. If you have also forgotten your BIOS password, you will have
to reset your BIOS by opening the system and manually removing the BIOS battery.

Once you have enabled booting from a CD-ROM or diskette enable, try the following:

• Boot-up from a rescue disk and start the kernel

• Go to the virtual console (Alt+F2)

• Mount the hard disk where your /root is

• Edit (Debian 2.2 rescue disk comes with the editor ae , and Debian 3.0 comes with nano-tiny
which is similar to vi) /etc/shadow and change the line:

root:asdfjl290341274075:XXXX:X:XXXX:X::: (X=any number)

to:

root::XXXX:X:XXXX:X:::

This will remove the forgotten root password, contained in the first colon separated field after
the user name. Save the file, reboot the system and login with root using an empty password.
Remember to reset the password. This will work unless you have configured the system more
tightly, i.e. if you have not allowed users to have null passwords or not allowed root to login
from the console.

If you have introduced these features, you will need to enter into single user mode. If LILO has
been restricted, you will need to rerun lilo just after the root reset above. This is quite tricky

Chapter 11. Frequently asked Questions (FAQ) 142

since your /etc/lilo.conf will need to be tweaked due to the root (/) file system being a
ramdisk and not the real hard disk.

Once LILO is unrestricted, try the following:

• Press the Alt, shift or Control key just before the system BIOS finishes, and you should
get the LILO prompt.

• Type linux single , linux init=/bin/sh or linux 1 at the prompt.

• This will give you a shell prompt in single-user mode (it will ask for a password, but you
already know it)

• Re-mount read/write the root (/) partition, using the mount command.

mount -o remount,rw /

• Change the superuser password with passwd (since you are superuser it will not ask for
the previous password).

11.1.16 How do I accomplish setting up a service for my users without giving out
shell accounts?

For example, if you want to set up a POP service, you don’t need to set up a user account
for each user accessing it. It’s best to set up directory-based authentication through an ex-
ternal service (like Radius, LDAP or an SQL database). Just install the appropriate PAM lib-
rary (libpam-radius-auth , libpam-ldap , libpam-pgsql or libpam-mysql), read the
documentation (for starters, see ‘User authentication: PAM’ on page 39) and configure the
PAM-enabled service to use the back end you have chosen. This is done by editing the files
under /etc/pam.d/ for your service and modifying the

auth required pam_unix_auth.so shadow nullok use_first_pass

to, for example, ldap:

auth required pam_ldap.so

In the case of LDAP directories, some services provide LDAP schemas to be included in your
directory that are required in order to use LDAP authentication. If you are using a relational
database, a useful trick is to use the where clause when configuring the PAM modules. For
example, if you have a database with the following table attributes:

(user_id, user_name, realname, shell, password, UID, GID, homedir, sys, pop, imap, ftp)

Chapter 11. Frequently asked Questions (FAQ) 143

By making the services attributes boolean fields, you can use them to enable or disable access
to the different services just by inserting the appropriate lines in the following files:

• /etc/pam.d/imap :where=imap=1 .

• /etc/pam.d/qpopper :where=pop=1 .

• /etc/nss-mysql*.conf :users.where_clause = user.sys = 1; .

• /etc/proftpd.conf :SQLWhereClause “ftp=1” .

11.2 My system is vulnerable! (Are you sure?)

11.2.1 Vulnerability assessment scanner X says my Debian system is vulnerable!

Many vulnerability assessment scanners give false positives when used on Debian systems,
since they only use version checks to determine if a given software package is vulnerable,
but do not really test the security vulnerability itself. Since Debian does not change software
versions when fixing a package (many times the fix made for newer releases is back ported),
some tools tend to think that an updated Debian system is vulnerable when it is not.

If you think your system is up to date with security patches, you might want to use the cross
references to security vulnerability databases published with the DSAs (see ‘Debian Security
Advisories’ on page 96) to weed out false positives, if the tool you are using includes CVE
references.

11.2.2 I’ve seen an attack in my system’s logs. Is my system compromised?

A trace of an attack does not always mean that your system has been compromised, and you
should take the usual steps to determine if the system is indeed compromised (see ‘After the
compromise’ on page 127). Also, notice that the fact that you see the attacks in the log might
mean your system is already vulnerable to it (a determined attacker might have used some
other vulnerability besides the ones you have seen, however).

11.2.3 I have found strange ’MARK’ lines in my logs: Am I compromised?

You might find the following lines in your system logs:

Dec 30 07:33:36 debian -- MARK --
Dec 30 07:53:36 debian -- MARK --
Dec 30 08:13:36 debian -- MARK --

Chapter 11. Frequently asked Questions (FAQ) 144

This does not indicate any kind of compromise, and users changing between Debian releases
might find it strange. If your system does not have high loads (or many active services), these
lines might appear throughout your logs. This is an indication that your syslogd daemon is
running properly. From syslogd(8) :

-m interval
The syslogd logs a mark timestamp regularly. The
default interval between two -- MARK -- lines is 20
minutes. This can be changed with this option.
Setting the interval to zero turns it off entirely.

11.2.4 I found users using ’su’ in my logs: Am I compromised?

You might find lines in your logs like:

Apr 1 09:25:01 server su[30315]: + ??? root-nobody
Apr 1 09:25:01 server PAM_unix[30315]: (su) session opened for user nobody by (UID=0)

Don’t worry too much. Check to see if these entries are due to cron jobs (usually /etc
/cron.daily/find or logrotate):

$ grep 25 /etc/crontab
25 6 * * * root test -e /usr/sbin/anacron || run-parts --report
/etc/cron.daily
$ grep nobody /etc/cron.daily/*
find:cd / && updatedb --localuser=nobody 2>/dev/null

11.2.5 I have found possible ’SYN flooding’ in my logs: Am I under attack?

If you see entries like these in your logs:

May 1 12:35:25 linux kernel: possible SYN flooding on port X. Sending cookies.
May 1 12:36:25 linux kernel: possible SYN flooding on port X. Sending cookies.
May 1 12:37:25 linux kernel: possible SYN flooding on port X. Sending cookies.
May 1 13:43:11 linux kernel: possible SYN flooding on port X. Sending cookies.

Check if there is a high number of connections to the server using netstat , for example:

linux:~# netstat -ant | grep SYN_RECV | wc -l
9000

Chapter 11. Frequently asked Questions (FAQ) 145

This is an indication of a denial of service (DoS) attack against your system’s X port (most
likely against a public service such as a web server or mail server). You should activate TCP
syncookies in your kernel, see ‘Configuring Syncookies’ on page 60. Note, however, that a DoS
attack might flood your network even if you can stop it from crashing your systems (due to file
descriptors being depleted, the system might become unresponsive until the TCP connections
timeout). The only effective way to stop this attack is to contact your network provider.

11.2.6 I have found strange root sessions in my logs: Am I compromised?

You might see these kind of entries in your /var/log/auth.log file:

May 2 11:55:02 linux PAM_unix[1477]: (cron) session closed for user root
May 2 11:55:02 linux PAM_unix[1476]: (cron) session closed for user root
May 2 12:00:01 linux PAM_unix[1536]: (cron) session opened for user root by
(UID=0)
May 2 12:00:02 linux PAM_unix[1536]: (cron) session closed for user root

These are due to a cron job being executed (in this example, every five minutes). To determine
which program is responsible for these jobs, check entries under: /etc/crontab , /etc
/cron.d , /etc/crond.daily and root’s crontab under /var/spool/cron/crontabs .

11.2.7 I have suffered a break-in, what do I do?

There are several steps you might want to take in case of a break-in:

• Check if your system is up to date with security patches for published vulnerabilities.
If your system is vulnerable, the chances that the system is in fact compromised are in-
creased. The chances increase further if the vulnerability has been known for a while,
since there is usually more activity related to older vulnerabilities. Here is a link to SANS
Top 20 Security Vulnerabilities (http://www.sans.org/top20.htm).

• Read this document, especially the ‘After the compromise’ on page 127 section.

• Ask for assistance. You might use the debian-security mailing list and ask for advice on
how to recover/patch your system.

• Notify your local CERT (http://www.cert.org) (if it exists, otherwise you may want
to consider contacting CERT directly). This might or might not help you, but, at the
very least, it will inform CERT of ongoing attacks. This information is very valuable in
determining which tools and attacks are being used by the blackhat community.

http://www.sans.org/top20.htm
http://www.cert.org

Chapter 11. Frequently asked Questions (FAQ) 146

11.2.8 How can I trace an attack?

By watching the logs (if they have not been tampered with), using intrusion detection systems
(see ‘Set up Intrusion Detection’ on page 120), traceroute , whois and similar tools (includ-
ing forensic analysis), you may be able to trace an attack to the source. The way you should
react to this information depends solely on your security policy, and what you consider is an
attack. Is a remote scan an attack? Is a vulnerability probe an attack?

11.2.9 Program X in Debian is vulnerable, what do I do?

First, take a moment to see if the vulnerability has been announced in public security mailing
lists (like Bugtraq) or other forums. The Debian Security Team keeps up to date with these
lists, so they are may also be aware of the problem. Do not take any further actions if you see
an announcement at http://security.debian.org .

If no information seems to be published, please send e-mail about the affected package(s),
as well as a detailed description of the vulnerability (proof of concept code is also OK), to
security@debian.org. This will get you in touch with Debian’s security team.

11.2.10 The version number for a package indicates that I am still running a vul-
nerable version!

Instead of upgrading to a new release, Debian back ports security fixes to the version that was
shipped in the stable release. The reason for this is to make sure that the stable release changes
as little as possible, so that things will not change or break unexpectedly as a result of a security
fix. You can check if you are running a secure version of a package by looking at the package
changelog, or comparing its exact (upstream version -slash- debian release) version number
with the version indicated in the Debian Security Advisory.

11.2.11 Specific software

proftpd is vulnerable to a Denial of Service attack.

Add DenyFilter *.*/ to your configuration file, and for more information see http:
//www.proftpd.org/critbugs.html .

After installing portsentry , there are a lot of ports open.

That’s just the way portsentry works. It opens about twenty unused ports to try to detect
port scans.

http://security.debian.org
http://www.proftpd.org/critbugs.html
http://www.proftpd.org/critbugs.html

Chapter 11. Frequently asked Questions (FAQ) 147

11.3 Questions regarding the Debian security team

11.3.1 What is a Debian Security Advisory (DSA)?

It is information sent by the Debian Security Team (see below) regarding the discovery and fix
for a security related vulnerability in a package available in Debian GNU/Linux. Signed DSAs
are sent to public mailing lists (debian-security-announce) and posted on Debian’s web site
(both in the front page and in the security area (http://www.debian.org/security/)).

DSAs include information on the affected package(s), the security flaw that was discovered
and where to retrieve the updated packages (and their MD5 sums).

11.3.2 The signature on Debian advisories does not verify correctly!

This is most likely a problem on your end. The debian-security-announce list has a filter that
only allows messages with a correct signature from one of the security team members to be
posted.

Most likely some piece of mail software on your end slightly changes the message, thus break-
ing the signature. Make sure your software does not do any MIME encoding or decoding, or
tab/space conversions. Known culprits are evolution, fetchmail (with the mimedecode option
enabled) and formail (from procmail 3.14 only).

11.3.3 How are security incidents handled in Debian?

Once the Security Team receives a notification of an incident, one or more members review
it and consider Debian/stable vulnerable or not. If our system is vulnerable, it is worked on
a fix for the problem. The package maintainer is contacted as well, if he didn’t contact the
Security Team already. Finally, the fix is tested and new packages are prepared, which then
are compiled on all stable architectures and uploaded afterward. After all this tasks are done a
DSA is sent to the public mailing lists.

11.3.4 How much time will it take Debian to fix vulnerability XXXX?

The Debian security team works quickly to send advisories and produce fixed packages for
the stable branch once a vulnerability is discovered. A report published in the debian-security
mailing list (http://lists.debian.org/debian-security/2001/debian-security-200112/
msg00257.html) showed that in the year 2001, it took the Debian Security Team an average of
35 days to fix security-related vulnerabilities. However, over 50% of the vulnerabilities where
fixed in a 10-day time frame, and over 15% of them where fixed the same day the advisory was
released.

However, when asking this question people tend to forget that:

• DSAs are not sent until:

http://www.debian.org/security/
http://lists.debian.org/debian-security/2001/debian-security-200112/msg00257.html
http://lists.debian.org/debian-security/2001/debian-security-200112/msg00257.html

Chapter 11. Frequently asked Questions (FAQ) 148

– packages are available for all architectures supported by Debian (which takes some
time for packages that are part of the system core, especially considering the number
of architectures supported in the stable release).

– new packages are thoroughly tested in order to ensure that no new bugs are intro-
duced

• Packages might be available before the DSA is sent (in the incoming queue or on the
mirrors).

• Debian is a volunteer-based project.

• Debian is licensed with a “no guarantees” clause.

If you want more in-depth analysis on the time it takes for the Security Team to work on vul-
nerabilities, you should consider that new DSAs (see ‘Debian Security Advisories’ on page 96)
published on the security website (http://security.debian.org), and the metadata used
to generate them, include links to vulnerability databases. You could download the sources
from the web server (from the CVS (http://cvs.debian.org)) or use the HTML pages to
determine the time that it takes for Debian to fix vulnerabilities and correlate this data with
public databases.

11.3.5 How is security handled for testing and unstable ?

The short answer is: it’s not. Testing and unstable are rapidly moving targets and the security
team does not have the resources needed to properly support those branches. If you want to
have a secure (and stable) server you are strongly encouraged to stay with stable.

However, the unstable branch usually gets security fixes quite quickly, because those fixes are
usually available upstream faster (other versions, like those in the stable branch, usually need
to be back ported).

11.3.6 I use an older version of Debian, is it supported by the Debian Security
Team?

No. Unfortunately, the Debian Security Team cannot handle both the stable release (unoffi-
cially, also the unstable) and other older releases. However, you can expect security updates
for a limited period of time (usually several months) immediately following the release of a
new Debian distribution.

11.3.7 Why are there no official mirrors for security.debian.org?

The purpose of security.debian.org is to make security updates available as quickly and easily
as possible. Mirrors would add extra complexity that is not needed and can cause frustration
if they are not up to date.

http://security.debian.org
http://cvs.debian.org

Chapter 11. Frequently asked Questions (FAQ) 149

11.3.8 I’ve seen DSA 100 and DSA 102, what happened to DSA 101?

Several vendors (mostly of GNU/Linux, but also of BSD derivatives) coordinate security ad-
visories for some incidents and agree to a particular timeline so that all vendors are able to
release an advisory at the same time. This was decided in order to not discriminate against
some vendors that need more time to prepare patches.

In some cases, the Debian Security Team prepares advisories in advance, and holds the advis-
ory number until the advisory can be released. Hence, the gaps in DSA numbers.

11.3.9 How can I reach the security team?

Security information can be sent to security@debian.org, which is read by all Debian developers.
If you have sensitive information please use team@security.debian.org which only the mem-
bers of the security team read. If desired email can be encrypted with the Debian Security
Contact key (key ID 0x363CCD95).

11.3.10 What difference is there between security@debian.org and debian-security@lists.debian.org?

When you send messages to security@debian.org, they are sent to the developers mailing list
(debian-private). All Debian developers are subscribed to this list and posts are kept private
(i.e. are not archived at the public website). The public mailing list, debian-security@lists.debian.org,
is open to anyone that wants to subscribe (http://www.debian.org/MailingLists/),
and there are searchable archives available id=“http://lists.debian.org/search.html” name=“here”>.

11.3.11 How can I contribute to the Debian security team?

• By contributing to this document, fixing FIXMEs or providing new content. Documenta-
tion is important and reduces the overhead of answering common issues. Translation of
this documentation into other languages is also of great help.

• By packaging applications that are useful for checking or enhancing security in a Debian
GNU/Linux system. If you are not a developer, file a WNPP bug (http://www.debian.
org/devel/wnpp/) and ask for software you think would be useful, but is not currently
provided.

• Audit applications in Debian or help solve security bugs and report issues to secur-
ity@debian.org. Other projects’ work like the Linux Kernel Security Audit Project (http:
//kernel-audit.sourceforge.net/) or the Linux Security-Audit Project (http:
//www.lsap.org/) increase the security of Debian GNU/Linux, since contributions
will eventually help here, too.

In all cases, please review each problem before reporting it to security@debian.org. If you are
able to provide patches, that would speed up the process. Do not simply forward Bugtraq
mails, since they are already received. Providing additional information, however, is always a
good idea.

http://www.debian.org/MailingLists/
http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://kernel-audit.sourceforge.net/
http://kernel-audit.sourceforge.net/
http://www.lsap.org/
http://www.lsap.org/

Chapter 11. Frequently asked Questions (FAQ) 150

11.3.12 Who is the Security Team composed of?

The Debian Security Team currently consists of five members and two secretaries. The Security
Team itself appoints people to join the team.

11.3.13 Does the Debian Security team check every new package in Debian?

No, the Debian security team does not check every new package and there is no automatic (lin-
tian) check to detect malicious new packages, since those checks are rather impossible to detect
automatically. Maintainers, however, are fully responsible for the packages they introduce into
Debian, and all packages are first signed by an authorized developer(s). The developer is in
charge of analyzing the security of all packages that they maintain.

151

Appendix A

The hardening process step by step

Below is a post-installation, step-by-step procedure for hardening a Debian 2.2 GNU/Linux
system. This is one possible approach to such a procedure and is oriented toward the harden-
ing of network services. It is included to show the entire process you might use during config-
uration. Also, see ‘Configuration checklist’ on page 155.

• Install the system, taking into account the information regarding partitioning included
earlier in this document. After base installation, go into custom install. Do not select task
packages. Select shadow passwords.

• Using dselect , remove all unneeded but selected packages before doing [I]nstall. Keep
the bare minimum of packages for the system.

• Update all software from the latest packages available at security.debian.org as explained
previously in ‘Execute a security update’ on page 38.

• Implement the suggestions presented in this manual regarding user quotas, login defini-
tions and lilo

• Make a list of services currently running on your system. Try:

$ ps -aux
$ netstat -pn -l -A inet
/usr/sbin/lsof -i | grep LISTEN

You will need to install lsof-2.2 for the third command to work (run it as root). You
should be aware that lsof can translate the word LISTEN to your locale settings.

• In order to remove unnecessary services, first determine what package provides the ser-
vice and how it is started. This can be accomplished by checking the program that listens
in the socket. The following shell script, which uses the programs lsof and dpkg , does
just that:

Chapter A. The hardening process step by step 152

#!/bin/sh
FIXME: this is quick and dirty; replace with a more robust script snippet
for i in ‘sudo lsof -i | grep LISTEN | cut -d " " -f 1 |sort -u‘ ; do

pack=‘dpkg -S $i |grep bin |cut -f 1 -d : | uniq‘
echo "Service $i is installed by $pack";
init=‘dpkg -L $pack |grep init.d/ ‘
if [! -z "$init"]; then

echo "and is run by $init"
fi

done

• Once you find any unwanted services, remove the associated package (with dpkg -purge),
or disable the service from starting automatically at boot time using update-rc.d (see
‘Disabling daemon services’ on page 27).

• For inetd services (launched by the superdaemon), check which services are enabled in
/etc/inetd.conf using:

$ grep -v "^#" /etc/inetd.conf | sort -u

Then disable those services that are not needed by commenting out the line that includes
them in /etc/inetd.conf , removing the package, or using update-inetd .

• If you have wrapped services (those using /usr/sbin/tcpd), check that the files /etc
/hosts.allow and /etc/hosts.deny are configured according to your service policy.

• If the server uses more than one external interface, depending on the service, you may
want to limit the service to listen on a specific interface. For example, if you want internal
FTP access only, make the FTP daemon listen only on your management interface, not on
all interfaces (i.e, 0.0.0.0:21).

• Re-boot the machine, or switch from single user user and then back to multiuser using
the commands:

$ init 1
(....)
$ init 2

• Check the services now available, and, if necessary, repeat the steps above.

• Now install the needed services, if you have not done so already, and configure them
properly.

• Use the following shell command to determine what user each available service is run-
ning as:

Chapter A. The hardening process step by step 153

$ for i in ‘/usr/sbin/lsof -i |grep LISTEN |cut -d " " -f 1 |sort -u‘; \
> do user=‘ps -ef |grep $i |grep -v grep |cut -f 1 -d " "‘ ; \
> echo "Service $i is running as user $user"; done

Consider changing these services to a specific user/group and maybe chroot ’ing them
for increased security. You can do this by changing the /etc/init.d scripts which start
the service. Most services in Debian use start-stop-daemon , which has $$$$options
(--change-uid and --chroot) for accomplishing this. A word of warning regarding
the chroot ’ing of services: you may need to put all the files installed by the package (use
dpkg -L) providing the service, as well as any packages it depends on, in the chroot ’ed
environment. Information about setting up a chroot environment for the ssh program
can be found in ‘Chroot environment for SSH’ on page 177.

• Repeat the steps above in order to check that only desired services are running and that
they are running as the desired user/group combination.

• Test the installed services in order to see if they work as expected.

• Check the system using a vulnerability assessment scanner (like nessus), in order to
determine vulnerabilities in the system (i.e., misconfigurations, old services or unneeded
services).

• Install network and host intrusion measures like snort and logsentry .

• Repeat the network scanner step and verify that the intrusion detection systems are
working correctly.

For the truly paranoid, also consider the following:

• Add firewalling capabilities to the system, accepting incoming connections only to offered
services and limiting outgoing connections only to those that are authorized.

• Re-check the installation with a new vulnerability assessment using a network scanner.

• Using a network scanner, check outbound connections from the system to an outside host
and verify that unwanted connections do not find their way out.

FIXME: this procedure considers service hardening but not system hardening at the user level,
include information regarding checking user permissions, SETUID files and freezing changes
in the system using the ext2 file system.

Chapter A. The hardening process step by step 154

155

Appendix B

Configuration checklist

This appendix briefly reiterates points from other sections in this manual in a condensed check-
list format. This is intended as a quick summary for someone who has already read the manual.
There are other good checklists available, including Kurt Seifried’s Securing Linux Step by Step
(http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.
html) and CERT’s Unix Security Checklist (http://www.cert.org/tech_tips/usc20_
full.html).

FIXME: This is based on v1.4 of the manual and might need to be updated.

• Limit physical access and booting capabilities

– Enable BIOS password

– Disable floppy/cdrom/. . . booting

– Set a LILO or GRUB password (/etc/lilo.conf or /boot/grub/menu.lst ,
respectively); check that the LILO or GRUB configuration file is read-protected.

– Disallow MBR floppy booting back door by overwriting the MBR (maybe not?)

• Partitioning

– Separate user-writable data, non-system data, and rapidly changing run-time data
to their own partitions

– Set nosuid,noexec,nodev mount options in /etc/fstab on ext2 partitions such
as /tmp .

• Password hygiene and login security

– Set a good root password

– Enable password shadowing and MD5

– Install and use PAM

http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://www.cert.org/tech_tips/usc20_full.html
http://www.cert.org/tech_tips/usc20_full.html

Chapter B. Configuration checklist 156

* Add MD5 support to PAM and make sure that (generally speaking) entries in
/etc/pam.d/ files which grant access to the machine have the second field in
the pam.d file set to requisite or required .

* Tweak /etc/pam.d/login so as to only permit local root logins.

* Also mark authorized tty:s in /etc/security/access.conf and generally
set up this file to limit root logins as much as possible.

* Add pam_limits.so if you want to set per-user limits

* Tweak /etc/pam.d/passwd : set minimum length of passwords higher (6
characters maybe) and enable MD5

* Add group wheel to /etc/group if desired; add pam_wheel.so group=wheel
entry to /etc/pam.d/su

* For custom per-user controls, use pam_listfile.so entries where appropriate

* Have an /etc/pam.d/other file and set it up with tight security

– Set up limits in /etc/security/limits.conf (note that /etc/limits is not
used if you are using PAM)

– Tighten up /etc/login.defs ; also, if you enabled MD5 and/or PAM, make sure
you make the corresponding changes here, too

– Disable root ftp access in /etc/ftpusers

– Disable network root login; use su(1) or sudo(1) . (consider installing sudo)

– Use PAM to enforce additional constraints on logins?

• Other local security issues

– Kernel tweaks (see ‘Configuring kernel network features’ on page 59)

– Kernel patches (see ‘Useful kernel patches’ on page 122)

– Tighten up log file permissions (/var/log/{last,fail}log , Apache logs)

– Verify that SETUID checking is enabled in /etc/checksecurity.conf

– Consider making some log files append-only and configuration files immutable us-
ing chattr (ext2 file systems only)

– Set up file integrity (see ‘Checking file system integrity’ on page 58). Install debsums

– Consider replacing locate with slocate

– Log everything to a local printer?

– Burn your configuration on a boot-able CD and boot off that?

– Disable kernel modules?

• Limit network access

– Install and configure ssh (suggest PermitRootLogin No in /etc/ssh/sshd_config ,
PermitEmptyPasswords No; note other suggestions in text also)

– Consider disabling or removing in.telnetd

Chapter B. Configuration checklist 157

– Generally, disable gratuitous services in /etc/inetd.conf using update-inetd
-disable (or disable inetd altogether, or use a replacement such as xinetd or
rlinetd)

– Disable other gratuitous network services; mail, ftp, DNS, WWW etc should not be
running if you do not need them and monitor them regularly.

– For those services which you do need, do not just use the most common programs,
look for more secure versions shipped with Debian (or from other sources). Whatever
you end up running, make sure you understand the risks.

– Set up chroot jails for outside users and daemons.
– Configure firewall and tcpwrappers (i.e. hosts_access(5)); note trick for /etc

/hosts.deny in text.
– If you run ftp, set up your ftpd server to always run chroot ’ed to the user’s home

directory
– If you run X, disable xhost authentication and go with ssh instead; better yet, dis-

able remote X if you can (add -nolisten tcp to the X command line and turn off
XDMCP in /etc/X11/xdm/xdm-config by setting the requestPort to 0)

– Disable outside access to printers
– Tunnel any IMAP or POP sessions through SSL or ssh ; install stunnel if you want

to provide this service to remote mail users
– Set up a log host and configure other machines to send logs to this host (/etc

/syslog.conf)
– Secure BIND, Sendmail, and other complex daemons (run in a chroot jail; run as a

non-root pseudo-user)
– Install snort or a similar logging tool.
– Do without NIS and RPC if you can (disable portmap).

• Policy issues

– Educate users about the whys and hows of your policies. When you have prohibited
something which is regularly available on other systems, provide documentation
which explains how to accomplish similar results using other, more secure means.

– Prohibit use of protocols which use clear-text passwords (telnet , rsh and friends;
ftp, imap, http, . . .).

– Prohibit programs which use SVGAlib.
– Use disk quotas.

• Keep informed about security issues

– Subscribe to security mailing lists
– Configure apt for security updates – add to /etc/apt/sources.list an entry

(or entries) for http://security.debian.org/debian-security
– Also remember to periodically run apt-get update ; apt-get upgrade (per-

haps install as a cron job?) as explained in ‘Execute a security update’ on page 38.

Chapter B. Configuration checklist 158

159

Appendix C

Setting up a stand-alone IDS

You can easily set up a dedicated Debian system as a stand-alone Intrusion Detection System
using snort .

Some guidelines:

• Install a base Debian system and select no additional packages.

• Download and manually (with dpkg) install necessary packages (see installed packages
list below).

• Download and install ACID (Analysis Console for Intrusion Databases).

ACID is currently packaged for Debian as acidlab . It provides a graphical WWW interface to
snort’s output. It can also be downloaded from http://www.cert.org/kb/acid/ , http:
//acidlab.sourceforge.net or http://www.andrew.cmu.edu/~rdanyliw/snort/ .
You might also want to read the Snort Statistics HOWTO (http://www.linuxdoc.org/
HOWTO/Snort-Statistics-HOWTO/index.html).

This system should be set up with at least two interfaces: one interface connected to a manage-
ment LAN (for accessing the results and maintaining the system), and one interface with no IP
address attached to the network segment being analyzed.

The standard Debian /etc/network/interfaces file normally used to configure network
cards cannot be used, since the ifup and ifdown programs expect an IP address. Instead,
simply use ifconfig eth0 up .

Besides the base installation, acidlab also depends on the packages php4 and apache among
others. Download the following packages (Note: the versions might vary depending on which
Debian distribution you are using, this list is from Debian woody September 2001):

ACID-0.9.5b9.tar.gz
adduser_3.39_all.deb
apache-common_1.3.20-1_i386.deb

http://www.cert.org/kb/acid/
http://acidlab.sourceforge.net
http://acidlab.sourceforge.net
http://www.andrew.cmu.edu/~rdanyliw/snort/
http://www.linuxdoc.org/HOWTO/Snort-Statistics-HOWTO/index.html
http://www.linuxdoc.org/HOWTO/Snort-Statistics-HOWTO/index.html

Chapter C. Setting up a stand-alone IDS 160

apache_1.3.20-1_i386.deb
debconf_0.9.77_all.deb
dialog_0.9a-20010527-1_i386.deb
fileutils_4.1-2_i386.deb
klogd_1.4.1-2_i386.deb
libbz2-1.0_1.0.1-10_i386.deb
libc6_2.2.3-6_i386.deb
libdb2_2.7.7-8_i386.deb
libdbd-mysql-perl_1.2216-2_i386.deb
libdbi-perl_1.18-1_i386.deb
libexpat1_1.95.1-5_i386.deb
libgdbmg1_1.7.3-27_i386.deb
libmm11_1.1.3-4_i386.deb
libmysqlclient10_3.23.39-3_i386.deb
libncurses5_5.2.20010318-2_i386.deb
libpcap0_0.6.2-1_i386.deb
libpcre3_3.4-1_i386.deb
libreadline4_4.2-3_i386.deb
libstdc++2.10-glibc2.2_2.95.4-0.010703_i386.deb
logrotate_3.5.4-2_i386.deb
mime-support_3.11-1_all.deb
mysql-client_3.23.39-3_i386.deb
mysql-common_3.23.39-3.1_all.deb
mysql-server_3.23.39-3_i386.deb
perl-base_5.6.1-5_i386.deb
perl-modules_5.6.1-5_all.deb
perl_5.6.1-5_i386.deb
php4-mysql_4.0.6-4_i386.deb
php4_4.0.6-1_i386.deb
php4_4.0.6-4_i386.deb
snort_1.7-9_i386.deb
sysklogd_1.4.1-2_i386.deb
zlib1g_1.1.3-15_i386.deb

Installed packages (dpkg -l):

ii adduser 3.39
ii ae 962-26
ii apache 1.3.20-1
ii apache-common 1.3.20-1
ii apt 0.3.19
ii base-config 0.33.2
ii base-files 2.2.0
ii base-passwd 3.1.10
ii bash 2.03-6

Chapter C. Setting up a stand-alone IDS 161

ii bsdutils 2.10f-5.1
ii console-data 1999.08.29-11.
ii console-tools 0.2.3-10.3
ii console-tools- 0.2.3-10.3
ii cron 3.0pl1-57.2
ii debconf 0.9.77
ii debianutils 1.13.3
ii dialog 0.9a-20010527-
ii diff 2.7-21
ii dpkg 1.6.15
ii e2fsprogs 1.18-3.0
ii elvis-tiny 1.4-11
ii fbset 2.1-6
ii fdflush 1.0.1-5
ii fdutils 5.3-3
ii fileutils 4.1-2
ii findutils 4.1-40
ii ftp 0.10-3.1
ii gettext-base 0.10.35-13
ii grep 2.4.2-1
ii gzip 1.2.4-33
ii hostname 2.07
ii isapnptools 1.21-2
ii joe 2.8-15.2
ii klogd 1.4.1-2
ii ldso 1.9.11-9
ii libbz2-1.0 1.0.1-10
ii libc6 2.2.3-6
ii libdb2 2.7.7-8
ii libdbd-mysql-p 1.2216-2
ii libdbi-perl 1.18-1
ii libexpat1 1.95.1-5
ii libgdbmg1 1.7.3-27
ii libmm11 1.1.3-4
ii libmysqlclient 3.23.39-3
ii libncurses5 5.2.20010318-2
ii libnewt0 0.50-7
ii libpam-modules 0.72-9
ii libpam-runtime 0.72-9
ii libpam0g 0.72-9
ii libpcap0 0.6.2-1
ii libpcre3 3.4-1
ii libpopt0 1.4-1.1
ii libreadline4 4.2-3
ii libssl09 0.9.4-5
ii libstdc++2.10 2.95.2-13

Chapter C. Setting up a stand-alone IDS 162

ii libstdc++2.10- 2.95.4-0.01070
ii libwrap0 7.6-4
ii lilo 21.4.3-2
ii locales 2.1.3-18
ii login 19990827-20
ii makedev 2.3.1-46.2
ii mawk 1.3.3-5
ii mbr 1.1.2-1
ii mime-support 3.11-1
ii modutils 2.3.11-13.1
ii mount 2.10f-5.1
ii mysql-client 3.23.39-3
ii mysql-common 3.23.39-3.1
ii mysql-server 3.23.39-3
ii ncurses-base 5.0-6.0potato1
ii ncurses-bin 5.0-6.0potato1
ii netbase 3.18-4
ii passwd 19990827-20
ii pciutils 2.1.2-2
ii perl 5.6.1-5
ii perl-base 5.6.1-5
ii perl-modules 5.6.1-5
ii php4 4.0.6-4
ii php4-mysql 4.0.6-4
ii ppp 2.3.11-1.4
ii pppconfig 2.0.5
ii procps 2.0.6-5
ii psmisc 19-2
ii pump 0.7.3-2
ii sed 3.02-5
ii setserial 2.17-16
ii shellutils 2.0-7
ii slang1 1.3.9-1
ii snort 1.7-9
ii ssh 1.2.3-9.3
ii sysklogd 1.4.1-2
ii syslinux 1.48-2
ii sysvinit 2.78-4
ii tar 1.13.17-2
ii tasksel 1.0-10
ii tcpd 7.6-4
ii telnet 0.16-4potato.1
ii textutils 2.0-2
ii update 2.11-1
ii util-linux 2.10f-5.1
ii zlib1g 1.1.3-15

163

Appendix D

Setting up a bridge firewall

This information was contributed by Francois Bayart in order to help users set up a Linux
bridge/firewall with the 2.4.x kernel and iptables . The only features needed are the bridge
firewall patch, available at sourceforge download page (http://bridge.sourceforge.
net/download.html).

For example, if you are using a 2.4.18 kernel, first install the kernel source package, then down-
load the patch (http://bridge.sourceforge.net/devel/bridge-nf/bridge-nf-0.
0.6-against-2.4.18.diff) and apply it, as shown in this example:

Zipowz:/usr/src# apt-get install kernel-source-2.4.18
Zipowz:/usr/src# cd kernel-source-2.4.18
Zipowz:/usr/src/kernel-source-2.4.18# patch -p1 < ../bridge-nf-0.0.6-against-2.4.18.diff
patching file include/linux/netfilter.h
patching file include/linux/netfilter_ipv4.h
patching file include/linux/skbuff.h
patching file net/bridge/br.c
patching file net/bridge/br_forward.c
patching file net/bridge/br_input.c
patching file net/bridge/br_netfilter.c
patching file net/bridge/br_private.h
patching file net/bridge/Makefile
patching file net/Config.in
patching file net/core/netfilter.c
patching file net/core/skbuff.c
patching file net/ipv4/ip_output.c
patching file net/ipv4/netfilter/ip_tables.c
patching file net/ipv4/netfilter/ipt_LOG.c

Now, configure the kernel (i.e., make menuconfig , make xconfig). In the section Network-
ing options, enable the following options:

http://bridge.sourceforge.net/download.html
http://bridge.sourceforge.net/download.html
http://bridge.sourceforge.net/devel/bridge-nf/bridge-nf-0.0.6-against-2.4.18.diff
http://bridge.sourceforge.net/devel/bridge-nf/bridge-nf-0.0.6-against-2.4.18.diff

Chapter D. Setting up a bridge firewall 164

[*] Network packet filtering (replaces ipchains)
[] Network packet filtering debugging (NEW)
<*> 802.1d Ethernet Bridging
[*] netfilter (firewalling) support (NEW)

Caution: you must disable this if you want to apply some firewalling rules or else iptables
will not work.

[] Network packet filtering debugging (NEW)

Next, add the correct options in the section IP: Netfilter Configuration. Then, compile and install
the kernel. If you want to do it the Debian way, install kernel-package and run make-kpkg
to create a custom Debian kernel package you can install on your server using dpkg. Once the
new kernel is compiled and installed, install the bridge-utils package.

Once these steps are complete, you can complete the configuration of your bridge. The next
section presents two different possible configurations for the bridge, each with a hypothetical
network map and the necessary commands.

D.1 A bridge providing NAT and firewall capabilities

The first configuration uses the bridge as a firewall with network address translation (NAT)
that protects a server and internal LAN clients. A diagram of the network configuration is
shown below:

Internet ---- router (62.3.3.25) ---- bridge (62.3.3.26 gw 62.3.3.25 / 192.168.0.1)
|
|
|---- WWW Server (62.3.3.27 gw 62.3.3.25)
|
|

LAN --- Zipowz (192.168.0.2 gw 192.168.0.1)

The following commands show how this bridge can be configured.

Create the interface br0
/usr/sbin/brctl addbr br0

Add the Ethernet interface to use with the bridge
/usr/sbin/brctl addif br0 eth0
/usr/sbin/brctl addif br0 eth1

Start up the Ethernet interface

Chapter D. Setting up a bridge firewall 165

/sbin/ifconfig eth0 0.0.0.0
/sbin/ifconfig eth1 0.0.0.0

Configure the bridge ethernet
The bridge will be correct and invisible (transparent firewall).
It’s hidden in a traceroute and you keep your real gateway on the
other computers. Now if you want you can config a gateway on your
bridge and choose it as your new gateway for the other computers.

/sbin/ifconfig br0 62.3.3.26 netmask 255.255.255.248 broadcast 62.3.3.32

I have added this internal IP to create my NAT
ip addr add 192.168.0.1/24 dev br0
/sbin/route add default gw 62.3.3.25

D.2 A bridge providing firewall capabilities

A second possible configuration is a system that is set up as a transparent firewall for a LAN
with a public IP address space.

Internet ---- router (62.3.3.25) ---- bridge (62.3.3.26)
|
|
|---- WWW Server (62.3.3.28 gw 62.3.3.25)
|
|
|---- Mail Server (62.3.3.27 gw 62.3.3.25)

The following commands show how this bridge can be configured.

Create the interface br0
/usr/sbin/brctl addbr br0

Add the Ethernet interface to use with the bridge
/usr/sbin/brctl addif br0 eth0
/usr/sbin/brctl addif br0 eth1

Start up the Ethernet interface
/sbin/ifconfig eth0 0.0.0.0
/sbin/ifconfig eth1 0.0.0.0

Configure the bridge Ethernet
The bridge will be correct and invisible (transparent firewall).

Chapter D. Setting up a bridge firewall 166

It’s hidden in a traceroute and you keep your real gateway on the
other computers. Now if you want you can config a gateway on your
bridge and choose it as your new gateway for the other computers.

/sbin/ifconfig br0 62.3.3.26 netmask 255.255.255.248 broadcast 62.3.3.32

If you traceroute the Linux Mail Server, you won’t see the bridge. If you want access to the
bridge with ssh , you must have a gateway or you must first connect to another server, such as
the “Mail Server”, and then connect to the bridge through the internal network card.

D.3 Basic IPtables rules

This is an example of the basic rules that could be used for either of these setups.

iptables -F FORWARD
iptables -P FORWARD DROP
iptables -A FORWARD -s 0.0.0.0/0.0.0.0 -d 0.0.0.0/0.0.0.0 -m state --state INVALID -j DROP
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

Some funny rules but not in a classic Iptables sorry ...
Limit ICMP
iptables -A FORWARD -p icmp -m limit --limit 4/s -j ACCEPT
Match string, a good simple method to block some VIRUS very quickly
iptables -I FORWARD -j DROP -p tcp -s 0.0.0.0/0 -m string --string "cmd.exe"

Block all MySQL connection just to be sure
iptables -A FORWARD -p tcp -s 0/0 -d 62.3.3.0/24 --dport 3306 -j DROP

Linux Mail Server Rules

Allow FTP-DATA (20) , FTP (21) , SSH (22)
iptables -A FORWARD -p tcp -s 0.0.0.0/0 -d 62.3.3.27/32 --dport 20:22 -j ACCEPT

Allow the Mail Server to connect to the outside
Note: This is *not* needed for the previous connections
(remember: stateful filtering) and could be removed.
iptables -A FORWARD -p tcp -s 62.3.3.27/32 -d 0/0 -j ACCEPT

WWW Server Rules

Allow HTTP (80) connections with the WWW server
iptables -A FORWARD -p tcp -s 0.0.0.0/0 -d 62.3.3.28/32 --dport 80 -j ACCEPT

Allow HTTPS (443) connections with the WWW server

Chapter D. Setting up a bridge firewall 167

iptables -A FORWARD -p tcp -s 0.0.0.0/0 -d 62.3.3.28/32 --dport 443 -j ACCEPT

Allow the WWW server to go out
Note: This is *not* needed for the previous connections
(remember: stateful filtering) and could be removed.
iptables -A FORWARD -p tcp -s 62.3.3.28/32 -d 0/0 -j ACCEPT

Chapter D. Setting up a bridge firewall 168

169

Appendix E

Sample script to change the default
Bind installation.

This script automates the procedure for changing the bind name server’s default installation
so that it does not run as the superuser. It will create the user and groups to be used for the
name server. Use with extreme care since it has not been tested thoroughly.

#!/bin/sh
Change the default Debian bind configuration to have it run
with a non-root user and group.
#
WARN: This script has not been tested throughly, please
verify the changes made to the INITD script

(c) 2002 Javier Fernandez-Sanguino Peña
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
Please see the file ‘COPYING’ for the complete copyright notice.
#

restore() {
Just in case, restore the system if the changes fail

echo "WARN: Restoring to the previous setup since I’m unable to properly change it."

Chapter E. Sample script to change the default Bind installation. 170

echo "WARN: Please check the $INITDERR script."
mv $INITD $INITDERR
cp $INITDBAK $INITD

}

USER=named
GROUP=named
INITD=/etc/init.d/bind
INITDBAK=$INITD.preuserchange
INITDERR=$INITD.changeerror
START="start-stop-daemon --start --quiet --exec /usr/sbin/named -- -g $GROUP -u $USER"
AWKS="awk ’ /start-stop-daemon --start/ { print \"$START\"; noprint = 1; }; /\/usr\/sbin\/ndc reload/ { print \"stop; sleep 2; start;\"; noprint = 1; } /\\\\$/ { if (noprint != 0) { noprint = noprint + 1;} } /^.*$/ { if (noprint != 0) { noprint = noprint - 1; } else { print \$0; } } ’"

[‘id -u‘ -ne 0] && {
echo "This program must be run by the root user"
exit 1

}

RUNUSER=‘ps -eo user,fname |grep named |cut -f 1 -d " "‘

if ["$RUNUSER" = "$USER"]
then

echo "WARN: The name server running daemon is already running as $USER"
echo "ERR: This script will not many any changes to your setup."
exit 1

fi
if [! -f $INITD]
then

echo "ERR: This system does not have $INITD (which this script tries to change)"
RUNNING=‘ps -eo fname |grep named‘

[-z "$RUNNING"] && \
echo "ERR: In fact the name server daemon is not even running (is it installed?)"

echo "ERR: No changes will be made to your system"
exit 1

fi

Check if named group exists
if [-z "‘grep $GROUP /etc/group‘"]
then

echo "Creating group $GROUP:"
addgroup $GROUP

else
echo "WARN: Group $GROUP already exists. Will not create it"

fi
Same for the user

Chapter E. Sample script to change the default Bind installation. 171

if [-z "‘grep $USER /etc/passwd‘"]
then

echo "Creating user $USER:"
adduser --system --home /home/$USER \
--no-create-home --ingroup $GROUP \
--disabled-password --disabled-login $USER

else
echo "WARN: The user $USER already exists. Will not create it"

fi

Change the init.d script

First make a backup (check that there is not already
one there first)
if [! -f $INITDBAK]
then

cp $INITD $INITDBAK
fi

Then use it to change it
cat $INITDBAK |
eval $AWKS > $INITD

echo "WARN: The script $INITD has been changed, trying to test the changes."
echo "Restarting the named daemon (check for errors here)."

$INITD restart
if [$? -ne 0]
then

echo "ERR: Failed to restart the daemon."
restore
exit 1

fi

RUNNING=‘ps -eo fname |grep named‘
if [-z "$RUNNING"]
then

echo "ERR: Named is not running, probably due to a problem with the changes."
restore
exit 1

fi

Check if it’s running as expected
RUNUSER=‘ps -eo user,fname |grep named |cut -f 1 -d " "‘

if ["$RUNUSER" = "$USER"]

Chapter E. Sample script to change the default Bind installation. 172

then
echo "All has gone well, named seems to be running now as $USER."

else
echo "ERR: The script failed to automatically change the system."
echo "ERR: Named is currently running as $RUNUSER."
restore
exit 1

fi

exit 0

The previous script, run on Woody’s (Debian 3.0) custom bind , will produce the following
initd file after creating the ’named’ user and group:

#!/bin/sh

PATH=/sbin:/bin:/usr/sbin:/usr/bin

test -x /usr/sbin/named || exit 0

start () {
echo -n "Starting domain name service: named"
start-stop-daemon --start --quiet \

--pidfile /var/run/named.pid --exec /usr/sbin/named
echo "."

}

stop () {
echo -n "Stopping domain name service: named"
--exec doesn’t catch daemons running deleted instances of named,
as in an upgrade. Fortunately, --pidfile is only going to hit
things from the pidfile.
start-stop-daemon --stop --quiet \

--pidfile /var/run/named.pid --name named
echo "."

}

case "$1" in
start)

start
;;

stop)
stop

;;

Chapter E. Sample script to change the default Bind installation. 173

restart|force-reload)
stop
sleep 2
start

;;

reload)
/usr/sbin/ndc reload

;;

*)
echo "Usage: /etc/init.d/bind {start|stop|reload|restart|force-reload}" >&2
exit 1

;;
esac

exit 0

Chapter E. Sample script to change the default Bind installation. 174

175

Appendix F

Security update protected by a firewall

After a standard installation, a system may still have some security vulnerabilities. Unless you
can download updates for the vulnerable packages on another system (or you have mirrored
security.debian.org for local use), the system will have to be connected to the Internet for the
downloads.

However, as soon as you connect to the Internet you are exposing this system. If one of
your local services is vulnerable, you might be compromised even before the update is fin-
ished! This may seem paranoid but, in fact, analysis from the Honeynet Project (http://
www.honeynet.org) has shown that systems can be compromised in less than three days,
even if the system is not publicly known (i.e., not published in DNS records).

When doing an update on a system not protected by an external system like a firewall, it is
possible to properly configure your local firewall to restrict connections involving only the
security update itself. The example below shows how to set up such local firewall capabilities,
which allow connections from security.debian.org only, logging all others.

FIXME: add IP address for security.debian.org (since otherwise you need DNS up to work) on
/etc/hosts.

FIXME: test this setup to see if it works properly

FIXME: this will only work with HTTP URLs since ftp might need the ip_conntrack_ftp mod-
ule, or use passive mode.

iptables -F
iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)

http://www.honeynet.org
http://www.honeynet.org

Chapter F. Security update protected by a firewall 176

target prot opt source destination
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT DROP
iptables -A OUTPUT -d security.debian.org -p 80 -j ACCEPT
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -p icmp -j ACCEPT
iptables -A INPUT -j LOG
iptables -A OUTPUT -j LOG
iptables -L
Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0
LOG all -- anywhere anywhere LOG level warning

Chain FORWARD (policy DROP)
target prot opt source destination

Chain OUTPUT (policy DROP)
target prot opt source destination
ACCEPT 80 -- anywhere security.debian.org
LOG all -- anywhere anywhere LOG level warning

177

Appendix G

Chroot environment for SSH

Creating a restricted environment for SSHis a tough job due to its dependencies and the fact
that, unlike other servers, SSHprovides a remote shell to users. Thus, you will also have to
consider the applications users will be allowed to use in the environment. If you create this file
structure in, for example /var/chroot/ssh , you could start the ssh server chroot ’ed with
this command:

chroot /var/chroot/ssh /sbin/sshd -f /etc/sshd_config

G.1 Automatically making the environment (the easy way)

You can easily create a restricted environment with the makejail package, since it automat-
ically takes care of tracing the server daemon (with strace), and makes it run under the
restricted environment.

The advantage of programs that automatically generate chroot environments is that they are
capable of copying any package to the chroot environment (even following the package’s
dependencies and making sure it’s complete). Thus, providing user applications is easier.

To set up the environment using makejail ’s provided examples, just use the command:

makejail /usr/share/doc/examples/bind.py

Read the sample file to see what other changes need to be made to the environment. Some of
these changes, such as copying user’s home directories, cannot be done automatically. Also,
limit the exposure of sensitive information by only copying the data from a given number of
users from the files /etc/shadow or /etc/group .

The following sample environment has been (slightly) tested and is built with the configuration
file provided in the package and includes the fileutils package:

Chapter G. Chroot environment for SSH 178

.
|-- bin
| |-- ash
| |-- bash
| |-- chgrp
| |-- chmod
| |-- chown
| |-- cp
| |-- csh -> /etc/alternatives/csh
| |-- dd
| |-- df
| |-- dir
| |-- fdflush
| |-- ksh
| |-- ln
| |-- ls
| |-- mkdir
| |-- mknod
| |-- mv
| |-- rbash -> bash
| |-- rm
| |-- rmdir
| |-- sh -> bash
| |-- sync
| |-- tcsh
| |-- touch
| |-- vdir
| |-- zsh -> /etc/alternatives/zsh
| ‘-- zsh4
|-- dev
| |-- null
| |-- ptmx
| |-- pts
| |-- ptya0
(...)
| |-- tty
| |-- tty0
(...)
| ‘-- urandom
|-- etc
| |-- alternatives
| | |-- csh -> /bin/tcsh
| | ‘-- zsh -> /bin/zsh4
| |-- environment
| |-- hosts
| |-- hosts.allow

Chapter G. Chroot environment for SSH 179

| |-- hosts.deny
| |-- ld.so.conf
| |-- localtime -> /usr/share/zoneinfo/Europe/Madrid
| |-- motd
| |-- nsswitch.conf
| |-- pam.conf
| |-- pam.d
| | |-- other
| | ‘-- ssh
| |-- passwd
| |-- resolv.conf
| |-- security
| | |-- access.conf
| | |-- chroot.conf
| | |-- group.conf
| | |-- limits.conf
| | |-- pam_env.conf
| | ‘-- time.conf
| |-- shadow
| |-- shells
| ‘-- ssh
| |-- moduli
| |-- ssh_host_dsa_key
| |-- ssh_host_dsa_key.pub
| |-- ssh_host_rsa_key
| |-- ssh_host_rsa_key.pub
| ‘-- sshd_config
|-- home
| ‘-- userX
|-- lib
| |-- ld-2.2.5.so
| |-- ld-linux.so.2 -> ld-2.2.5.so
| |-- libc-2.2.5.so
| |-- libc.so.6 -> libc-2.2.5.so
| |-- libcap.so.1 -> libcap.so.1.10
| |-- libcap.so.1.10
| |-- libcrypt-2.2.5.so
| |-- libcrypt.so.1 -> libcrypt-2.2.5.so
| |-- libdl-2.2.5.so
| |-- libdl.so.2 -> libdl-2.2.5.so
| |-- libm-2.2.5.so
| |-- libm.so.6 -> libm-2.2.5.so
| |-- libncurses.so.5 -> libncurses.so.5.2
| |-- libncurses.so.5.2
| |-- libnsl-2.2.5.so
| |-- libnsl.so.1 -> libnsl-2.2.5.so

Chapter G. Chroot environment for SSH 180

| |-- libnss_compat-2.2.5.so
| |-- libnss_compat.so.2 -> libnss_compat-2.2.5.so
| |-- libnss_db-2.2.so
| |-- libnss_db.so.2 -> libnss_db-2.2.so
| |-- libnss_dns-2.2.5.so
| |-- libnss_dns.so.2 -> libnss_dns-2.2.5.so
| |-- libnss_files-2.2.5.so
| |-- libnss_files.so.2 -> libnss_files-2.2.5.so
| |-- libnss_hesiod-2.2.5.so
| |-- libnss_hesiod.so.2 -> libnss_hesiod-2.2.5.so
| |-- libnss_nis-2.2.5.so
| |-- libnss_nis.so.2 -> libnss_nis-2.2.5.so
| |-- libnss_nisplus-2.2.5.so
| |-- libnss_nisplus.so.2 -> libnss_nisplus-2.2.5.so
| |-- libpam.so.0 -> libpam.so.0.72
| |-- libpam.so.0.72
| |-- libpthread-0.9.so
| |-- libpthread.so.0 -> libpthread-0.9.so
| |-- libresolv-2.2.5.so
| |-- libresolv.so.2 -> libresolv-2.2.5.so
| |-- librt-2.2.5.so
| |-- librt.so.1 -> librt-2.2.5.so
| |-- libutil-2.2.5.so
| |-- libutil.so.1 -> libutil-2.2.5.so
| |-- libwrap.so.0 -> libwrap.so.0.7.6
| |-- libwrap.so.0.7.6
| ‘-- security
| |-- pam_access.so
| |-- pam_chroot.so
| |-- pam_deny.so
| |-- pam_env.so
| |-- pam_filter.so
| |-- pam_ftp.so
| |-- pam_group.so
| |-- pam_issue.so
| |-- pam_lastlog.so
| |-- pam_limits.so
| |-- pam_listfile.so
| |-- pam_mail.so
| |-- pam_mkhomedir.so
| |-- pam_motd.so
| |-- pam_nologin.so
| |-- pam_permit.so
| |-- pam_rhosts_auth.so
| |-- pam_rootok.so
| |-- pam_securetty.so

Chapter G. Chroot environment for SSH 181

| |-- pam_shells.so
| |-- pam_stress.so
| |-- pam_tally.so
| |-- pam_time.so
| |-- pam_unix.so
| |-- pam_unix_acct.so -> pam_unix.so
| |-- pam_unix_auth.so -> pam_unix.so
| |-- pam_unix_passwd.so -> pam_unix.so
| |-- pam_unix_session.so -> pam_unix.so
| |-- pam_userdb.so
| |-- pam_warn.so
| ‘-- pam_wheel.so
|-- sbin
| ‘-- start-stop-daemon
|-- usr
| |-- bin
| | |-- dircolors
| | |-- du
| | |-- install
| | |-- link
| | |-- mkfifo
| | |-- shred
| | |-- touch -> /bin/touch
| | ‘-- unlink
| |-- lib
| | |-- libcrypto.so.0.9.6
| | |-- libdb3.so.3 -> libdb3.so.3.0.2
| | |-- libdb3.so.3.0.2
| | |-- libz.so.1 -> libz.so.1.1.4
| | ‘-- libz.so.1.1.4
| |-- sbin
| | ‘-- sshd
| ‘-- share
| |-- locale
| | ‘-- es
| | |-- LC_MESSAGES
| | | |-- fileutils.mo
| | | |-- libc.mo
| | | ‘-- sh-utils.mo
| | ‘-- LC_TIME -> LC_MESSAGES
| ‘-- zoneinfo
| ‘-- Europe
| ‘-- Madrid
‘-- var

‘-- run
|-- sshd

Chapter G. Chroot environment for SSH 182

‘-- sshd.pid

27 directories, 733 files

G.2 Patching SSHto enable chroot functionality

Debian’s sshd does not allow restriction of a user’s movement through the server, since it lacks
the chroot function that the commercial program sshd2 includes (using ’ChrootGroups’ or
’ChrootUsers’, see sshd2_config(5)). However, there is a patch available to add this func-
tionality available from Bug report 139047 (http://bugs.debian.org/139047) or http:
//www.cag.lcs.mit.edu/~raoul/ . The patch may be included in future releases of the
OpenSSH package. Emanuel Lacour has ssh deb packages with this feature at http://
debian.home-dn.net/woody/ssh/ . Completing the compilation step is recommended,
though.

A description of all the necessary steps can be found at http://mail.incredimail.com/
howto/openssh/ (though it is aimed at RedHat 7.2 users, almost all of them are applicable
to Debian). After applying the patch, modify /etc/passwd by changing the home path of the
users (with the special /./ token):

joeuser:x:1099:1099:Joe Random User:/home/joe/./:/bin/bash

This will restrict both remote shell access, as well as remote copy through the ssh channel.

Make sure to have all the needed binaries and libraries in the chroot ’ed path for users. These
files should be owned by root to avoid tampering by the user (so as to exit the chroot ’ed
jailed). A sample might include:

./bin:
total 660
drwxr-xr-x 2 root root 4096 Mar 18 13:36 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..
-r-xr-xr-x 1 root root 531160 Feb 6 22:36 bash
-r-xr-xr-x 1 root root 43916 Nov 29 13:19 ls
-r-xr-xr-x 1 root root 16684 Nov 29 13:19 mkdir
-rwxr-xr-x 1 root root 23960 Mar 18 13:36 more
-r-xr-xr-x 1 root root 9916 Jul 26 2001 pwd
-r-xr-xr-x 1 root root 24780 Nov 29 13:19 rm
lrwxrwxrwx 1 root root 4 Mar 30 16:29 sh -> bash

./etc:
total 24
drwxr-xr-x 2 root root 4096 Mar 15 16:13 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..

http://bugs.debian.org/139047
http://www.cag.lcs.mit.edu/~raoul/
http://www.cag.lcs.mit.edu/~raoul/
http://debian.home-dn.net/woody/ssh/
http://debian.home-dn.net/woody/ssh/
http://mail.incredimail.com/howto/openssh/
http://mail.incredimail.com/howto/openssh/

Chapter G. Chroot environment for SSH 183

-rw-r--r-- 1 root root 54 Mar 15 13:23 group
-rw-r--r-- 1 root root 428 Mar 15 15:56 hosts
-rw-r--r-- 1 root root 44 Mar 15 15:53 passwd
-rw-r--r-- 1 root root 52 Mar 15 13:23 shells

./lib:
total 1848
drwxr-xr-x 2 root root 4096 Mar 18 13:37 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..
-rwxr-xr-x 1 root root 92511 Mar 15 12:49 ld-linux.so.2
-rwxr-xr-x 1 root root 1170812 Mar 15 12:49 libc.so.6
-rw-r--r-- 1 root root 20900 Mar 15 13:01 libcrypt.so.1
-rw-r--r-- 1 root root 9436 Mar 15 12:49 libdl.so.2
-rw-r--r-- 1 root root 248132 Mar 15 12:48 libncurses.so.5
-rw-r--r-- 1 root root 71332 Mar 15 13:00 libnsl.so.1
-rw-r--r-- 1 root root 34144 Mar 15 16:10
libnss_files.so.2
-rw-r--r-- 1 root root 29420 Mar 15 12:57 libpam.so.0
-rw-r--r-- 1 root root 105498 Mar 15 12:51 libpthread.so.0
-rw-r--r-- 1 root root 25596 Mar 15 12:51 librt.so.1
-rw-r--r-- 1 root root 7760 Mar 15 12:59 libutil.so.1
-rw-r--r-- 1 root root 24328 Mar 15 12:57 libwrap.so.0

./usr:
total 16
drwxr-xr-x 4 root root 4096 Mar 15 13:00 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..
drwxr-xr-x 2 root root 4096 Mar 15 15:55 bin
drwxr-xr-x 2 root root 4096 Mar 15 15:37 lib

./usr/bin:
total 340
drwxr-xr-x 2 root root 4096 Mar 15 15:55 .
drwxr-xr-x 4 root root 4096 Mar 15 13:00 ..
-rwxr-xr-x 1 root root 10332 Mar 15 15:55 env
-rwxr-xr-x 1 root root 13052 Mar 15 13:13 id
-r-xr-xr-x 1 root root 25432 Mar 15 12:40 scp
-rwxr-xr-x 1 root root 43768 Mar 15 15:15 sftp
-r-sr-xr-x 1 root root 218456 Mar 15 12:40 ssh
-rwxr-xr-x 1 root root 9692 Mar 15 13:17 tty

./usr/lib:
total 852
drwxr-xr-x 2 root root 4096 Mar 15 15:37 .
drwxr-xr-x 4 root root 4096 Mar 15 13:00 ..
-rw-r--r-- 1 root root 771088 Mar 15 13:01

Chapter G. Chroot environment for SSH 184

libcrypto.so.0.9.6
-rw-r--r-- 1 root root 54548 Mar 15 13:00 libz.so.1
-rwxr-xr-x 1 root root 23096 Mar 15 15:37 sftp-server

G.3 Handmade environment (the hard way)

It is possible to create an environment, using a trial-and-error method, by monitoring the sshd
server traces and log files in order to determine the necessary files. The following environment,
contributed by José Luis Ledesma, is a sample listing of files in a chroot environment for ssh :
1

.:
total 36
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ./
drwxr-xr-x 11 root root 4096 Jun 3 13:43 ../
drwxr-xr-x 2 root root 4096 Jun 4 12:13 bin/
drwxr-xr-x 2 root root 4096 Jun 4 12:16 dev/
drwxr-xr-x 4 root root 4096 Jun 4 12:35 etc/
drwxr-xr-x 3 root root 4096 Jun 4 12:13 lib/
drwxr-xr-x 2 root root 4096 Jun 4 12:35 sbin/
drwxr-xr-x 2 root root 4096 Jun 4 12:32 tmp/
drwxr-xr-x 2 root root 4096 Jun 4 12:16 usr/
./bin:
total 8368
drwxr-xr-x 2 root root 4096 Jun 4 12:13 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
-rwxr-xr-x 1 root root 109855 Jun 3 13:45 a2p*
-rwxr-xr-x 1 root root 387764 Jun 3 13:45 bash*
-rwxr-xr-x 1 root root 36365 Jun 3 13:45 c2ph*
-rwxr-xr-x 1 root root 20629 Jun 3 13:45 dprofpp*
-rwxr-xr-x 1 root root 6956 Jun 3 13:46 env*
-rwxr-xr-x 1 root root 158116 Jun 3 13:45 fax2ps*
-rwxr-xr-x 1 root root 104008 Jun 3 13:45 faxalter*
-rwxr-xr-x 1 root root 89340 Jun 3 13:45 faxcover*
-rwxr-xr-x 1 root root 441584 Jun 3 13:45 faxmail*
-rwxr-xr-x 1 root root 96036 Jun 3 13:45 faxrm*
-rwxr-xr-x 1 root root 107000 Jun 3 13:45 faxstat*
-rwxr-xr-x 1 root root 77832 Jun 4 11:46 grep*
-rwxr-xr-x 1 root root 19597 Jun 3 13:45 h2ph*
-rwxr-xr-x 1 root root 46979 Jun 3 13:45 h2xs*
-rwxr-xr-x 1 root root 10420 Jun 3 13:46 id*

1Notice that there are no SETUID files. This makes it more difficult for remote users to escape the chroot
environment. However, it also prevents users from changing their passwords, since the passwd program cannot
modify the files /etc/passwd or /etc/shadow .

Chapter G. Chroot environment for SSH 185

-rwxr-xr-x 1 root root 4528 Jun 3 13:46 ldd*
-rwxr-xr-x 1 root root 111386 Jun 4 11:46 less*
-r-xr-xr-x 1 root root 26168 Jun 3 13:45 login*
-rwxr-xr-x 1 root root 49164 Jun 3 13:45 ls*
-rwxr-xr-x 1 root root 11600 Jun 3 13:45 mkdir*
-rwxr-xr-x 1 root root 24780 Jun 3 13:45 more*
-rwxr-xr-x 1 root root 154980 Jun 3 13:45 pal2rgb*
-rwxr-xr-x 1 root root 27920 Jun 3 13:46 passwd*
-rwxr-xr-x 1 root root 4241 Jun 3 13:45 pl2pm*
-rwxr-xr-x 1 root root 2350 Jun 3 13:45 pod2html*
-rwxr-xr-x 1 root root 7875 Jun 3 13:45 pod2latex*
-rwxr-xr-x 1 root root 17587 Jun 3 13:45 pod2man*
-rwxr-xr-x 1 root root 6877 Jun 3 13:45 pod2text*
-rwxr-xr-x 1 root root 3300 Jun 3 13:45 pod2usage*
-rwxr-xr-x 1 root root 3341 Jun 3 13:45 podchecker*
-rwxr-xr-x 1 root root 2483 Jun 3 13:45 podselect*
-r-xr-xr-x 1 root root 82412 Jun 4 11:46 ps*
-rwxr-xr-x 1 root root 36365 Jun 3 13:45 pstruct*
-rwxr-xr-x 1 root root 7120 Jun 3 13:45 pwd*
-rwxr-xr-x 1 root root 179884 Jun 3 13:45 rgb2ycbcr*
-rwxr-xr-x 1 root root 20532 Jun 3 13:45 rm*
-rwxr-xr-x 1 root root 6720 Jun 4 10:15 rmdir*
-rwxr-xr-x 1 root root 14705 Jun 3 13:45 s2p*
-rwxr-xr-x 1 root root 28764 Jun 3 13:46 scp*
-rwxr-xr-x 1 root root 385000 Jun 3 13:45 sendfax*
-rwxr-xr-x 1 root root 67548 Jun 3 13:45 sendpage*
-rwxr-xr-x 1 root root 88632 Jun 3 13:46 sftp*
-rwxr-xr-x 1 root root 387764 Jun 3 13:45 sh*
-rws--x--x 1 root root 744500 Jun 3 13:46 slogin*
-rwxr-xr-x 1 root root 14523 Jun 3 13:46 splain*
-rws--x--x 1 root root 744500 Jun 3 13:46 ssh*
-rwxr-xr-x 1 root root 570960 Jun 3 13:46 ssh-add*
-rwxr-xr-x 1 root root 502952 Jun 3 13:46 ssh-agent*
-rwxr-xr-x 1 root root 575740 Jun 3 13:46 ssh-keygen*
-rwxr-xr-x 1 root root 383480 Jun 3 13:46 ssh-keyscan*
-rwxr-xr-x 1 root root 39 Jun 3 13:46 ssh_europa*
-rwxr-xr-x 1 root root 107252 Jun 4 10:14 strace*
-rwxr-xr-x 1 root root 8323 Jun 4 10:14 strace-graph*
-rwxr-xr-x 1 root root 158088 Jun 3 13:46 thumbnail*
-rwxr-xr-x 1 root root 6312 Jun 3 13:46 tty*
-rwxr-xr-x 1 root root 55904 Jun 4 11:46 useradd*
-rwxr-xr-x 1 root root 585656 Jun 4 11:47 vi*
-rwxr-xr-x 1 root root 6444 Jun 4 11:45 whoami*
./dev:
total 8
drwxr-xr-x 2 root root 4096 Jun 4 12:16 ./

Chapter G. Chroot environment for SSH 186

drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
crw-r--r-- 1 root root 1, 9 Jun 3 13:43 urandom
./etc:
total 208
drwxr-xr-x 4 root root 4096 Jun 4 12:35 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
-rw------- 1 root root 0 Jun 4 11:46 .pwd.lock
-rw-r--r-- 1 root root 653 Jun 3 13:46 group
-rw-r--r-- 1 root root 242 Jun 4 11:33 host.conf
-rw-r--r-- 1 root root 857 Jun 4 12:04 hosts
-rw-r--r-- 1 root root 1050 Jun 4 11:29 ld.so.cache
-rw-r--r-- 1 root root 304 Jun 4 11:28 ld.so.conf
-rw-r--r-- 1 root root 235 Jun 4 11:27 ld.so.conf~
-rw-r--r-- 1 root root 88039 Jun 3 13:46 moduli
-rw-r--r-- 1 root root 1342 Jun 4 11:34 nsswitch.conf
drwxr-xr-x 2 root root 4096 Jun 4 12:02 pam.d/
-rw-r--r-- 1 root root 28 Jun 4 12:00 pam_smb.conf
-rw-r--r-- 1 root root 2520 Jun 4 11:57 passwd
-rw-r--r-- 1 root root 7228 Jun 3 13:48 profile
-rw-r--r-- 1 root root 1339 Jun 4 11:33 protocols
-rw-r--r-- 1 root root 274 Jun 4 11:44 resolv.conf
drwxr-xr-x 2 root root 4096 Jun 3 13:43 security/
-rw-r----- 1 root root 1178 Jun 4 11:51 shadow
-rw------- 1 root root 80 Jun 4 11:45 shadow-
-rw-r----- 1 root root 1178 Jun 4 11:48 shadow.old
-rw-r--r-- 1 root root 161 Jun 3 13:46 shells
-rw-r--r-- 1 root root 1144 Jun 3 13:46 ssh_config
-rw------- 1 root root 668 Jun 3 13:46 ssh_host_dsa_key
-rw-r--r-- 1 root root 602 Jun 3 13:46 ssh_host_dsa_key.pub
-rw------- 1 root root 527 Jun 3 13:46 ssh_host_key
-rw-r--r-- 1 root root 331 Jun 3 13:46 ssh_host_key.pub
-rw------- 1 root root 883 Jun 3 13:46 ssh_host_rsa_key
-rw-r--r-- 1 root root 222 Jun 3 13:46 ssh_host_rsa_key.pub
-rw-r--r-- 1 root root 2471 Jun 4 12:15 sshd_config
./etc/pam.d:
total 24
drwxr-xr-x 2 root root 4096 Jun 4 12:02 ./
drwxr-xr-x 4 root root 4096 Jun 4 12:35 ../
lrwxrwxrwx 1 root root 4 Jun 4 12:02 other -> sshd
-rw-r--r-- 1 root root 318 Jun 3 13:46 passwd
-rw-r--r-- 1 root root 546 Jun 4 11:36 ssh
-rw-r--r-- 1 root root 479 Jun 4 12:02 sshd
-rw-r--r-- 1 root root 370 Jun 3 13:46 su
./etc/security:
total 32
drwxr-xr-x 2 root root 4096 Jun 3 13:43 ./

Chapter G. Chroot environment for SSH 187

drwxr-xr-x 4 root root 4096 Jun 4 12:35 ../
-rw-r--r-- 1 root root 1971 Jun 3 13:46 access.conf
-rw-r--r-- 1 root root 184 Jun 3 13:46 chroot.conf
-rw-r--r-- 1 root root 2145 Jun 3 13:46 group.conf
-rw-r--r-- 1 root root 1356 Jun 3 13:46 limits.conf
-rw-r--r-- 1 root root 2858 Jun 3 13:46 pam_env.conf
-rw-r--r-- 1 root root 2154 Jun 3 13:46 time.conf
./lib:
total 8316
drwxr-xr-x 3 root root 4096 Jun 4 12:13 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
-rw-r--r-- 1 root root 1024 Jun 4 11:51 cracklib_dict.hwm
-rw-r--r-- 1 root root 214324 Jun 4 11:51 cracklib_dict.pwd
-rw-r--r-- 1 root root 11360 Jun 4 11:51 cracklib_dict.pwi
-rwxr-xr-x 1 root root 342427 Jun 3 13:46 ld-linux.so.2*
-rwxr-xr-x 1 root root 4061504 Jun 3 13:46 libc.so.6*
lrwxrwxrwx 1 root root 15 Jun 4 12:11 libcrack.so -> libcrack.so.2.7*
lrwxrwxrwx 1 root root 15 Jun 4 12:11 libcrack.so.2 -> libcrack.so.2.7*
-rwxr-xr-x 1 root root 33291 Jun 4 11:39 libcrack.so.2.7*
-rwxr-xr-x 1 root root 60988 Jun 3 13:46 libcrypt.so.1*
-rwxr-xr-x 1 root root 71846 Jun 3 13:46 libdl.so.2*
-rwxr-xr-x 1 root root 27762 Jun 3 13:46 libhistory.so.4.0*
lrwxrwxrwx 1 root root 17 Jun 4 12:12 libncurses.so.4 -> libncurses.so.4.2*
-rwxr-xr-x 1 root root 503903 Jun 3 13:46 libncurses.so.4.2*
lrwxrwxrwx 1 root root 17 Jun 4 12:12 libncurses.so.5 -> libncurses.so.5.0*
-rwxr-xr-x 1 root root 549429 Jun 3 13:46 libncurses.so.5.0*
-rwxr-xr-x 1 root root 369801 Jun 3 13:46 libnsl.so.1*
-rwxr-xr-x 1 root root 142563 Jun 4 11:49 libnss_compat.so.1*
-rwxr-xr-x 1 root root 215569 Jun 4 11:49 libnss_compat.so.2*
-rwxr-xr-x 1 root root 61648 Jun 4 11:34 libnss_dns.so.1*
-rwxr-xr-x 1 root root 63453 Jun 4 11:34 libnss_dns.so.2*
-rwxr-xr-x 1 root root 63782 Jun 4 11:34 libnss_dns6.so.2*
-rwxr-xr-x 1 root root 205715 Jun 3 13:46 libnss_files.so.1*
-rwxr-xr-x 1 root root 235932 Jun 3 13:49 libnss_files.so.2*
-rwxr-xr-x 1 root root 204383 Jun 4 11:33 libnss_nis.so.1*
-rwxr-xr-x 1 root root 254023 Jun 4 11:33 libnss_nis.so.2*
-rwxr-xr-x 1 root root 256465 Jun 4 11:33 libnss_nisplus.so.2*
lrwxrwxrwx 1 root root 14 Jun 4 12:12 libpam.so.0 -> libpam.so.0.72*
-rwxr-xr-x 1 root root 31449 Jun 3 13:46 libpam.so.0.72*
lrwxrwxrwx 1 root root 19 Jun 4 12:12 libpam_misc.so.0 ->
libpam_misc.so.0.72*
-rwxr-xr-x 1 root root 8125 Jun 3 13:46 libpam_misc.so.0.72*
lrwxrwxrwx 1 root root 15 Jun 4 12:12 libpamc.so.0 -> libpamc.so.0.72*
-rwxr-xr-x 1 root root 10499 Jun 3 13:46 libpamc.so.0.72*
-rwxr-xr-x 1 root root 176427 Jun 3 13:46 libreadline.so.4.0*
-rwxr-xr-x 1 root root 44729 Jun 3 13:46 libutil.so.1*

Chapter G. Chroot environment for SSH 188

-rwxr-xr-x 1 root root 70254 Jun 3 13:46 libz.a*
lrwxrwxrwx 1 root root 13 Jun 4 12:13 libz.so -> libz.so.1.1.3*
lrwxrwxrwx 1 root root 13 Jun 4 12:13 libz.so.1 -> libz.so.1.1.3*
-rwxr-xr-x 1 root root 63312 Jun 3 13:46 libz.so.1.1.3*
drwxr-xr-x 2 root root 4096 Jun 4 12:00 security/
./lib/security:
total 668
drwxr-xr-x 2 root root 4096 Jun 4 12:00 ./
drwxr-xr-x 3 root root 4096 Jun 4 12:13 ../
-rwxr-xr-x 1 root root 10067 Jun 3 13:46 pam_access.so*
-rwxr-xr-x 1 root root 8300 Jun 3 13:46 pam_chroot.so*
-rwxr-xr-x 1 root root 14397 Jun 3 13:46 pam_cracklib.so*
-rwxr-xr-x 1 root root 5082 Jun 3 13:46 pam_deny.so*
-rwxr-xr-x 1 root root 13153 Jun 3 13:46 pam_env.so*
-rwxr-xr-x 1 root root 13371 Jun 3 13:46 pam_filter.so*
-rwxr-xr-x 1 root root 7957 Jun 3 13:46 pam_ftp.so*
-rwxr-xr-x 1 root root 12771 Jun 3 13:46 pam_group.so*
-rwxr-xr-x 1 root root 10174 Jun 3 13:46 pam_issue.so*
-rwxr-xr-x 1 root root 9774 Jun 3 13:46 pam_lastlog.so*
-rwxr-xr-x 1 root root 13591 Jun 3 13:46 pam_limits.so*
-rwxr-xr-x 1 root root 11268 Jun 3 13:46 pam_listfile.so*
-rwxr-xr-x 1 root root 11182 Jun 3 13:46 pam_mail.so*
-rwxr-xr-x 1 root root 5923 Jun 3 13:46 pam_nologin.so*
-rwxr-xr-x 1 root root 5460 Jun 3 13:46 pam_permit.so*
-rwxr-xr-x 1 root root 18226 Jun 3 13:46 pam_pwcheck.so*
-rwxr-xr-x 1 root root 12590 Jun 3 13:46 pam_rhosts_auth.so*
-rwxr-xr-x 1 root root 5551 Jun 3 13:46 pam_rootok.so*
-rwxr-xr-x 1 root root 7239 Jun 3 13:46 pam_securetty.so*
-rwxr-xr-x 1 root root 6551 Jun 3 13:46 pam_shells.so*
-rwxr-xr-x 1 root root 55925 Jun 4 12:00 pam_smb_auth.so*
-rwxr-xr-x 1 root root 12678 Jun 3 13:46 pam_stress.so*
-rwxr-xr-x 1 root root 11170 Jun 3 13:46 pam_tally.so*
-rwxr-xr-x 1 root root 11124 Jun 3 13:46 pam_time.so*
-rwxr-xr-x 1 root root 45703 Jun 3 13:46 pam_unix.so*
-rwxr-xr-x 1 root root 45703 Jun 3 13:46 pam_unix2.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_acct.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_auth.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_passwd.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_session.so*
-rwxr-xr-x 1 root root 9726 Jun 3 13:46 pam_userdb.so*
-rwxr-xr-x 1 root root 6424 Jun 3 13:46 pam_warn.so*
-rwxr-xr-x 1 root root 7460 Jun 3 13:46 pam_wheel.so*
./sbin:
total 3132
drwxr-xr-x 2 root root 4096 Jun 4 12:35 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../

Chapter G. Chroot environment for SSH 189

-rwxr-xr-x 1 root root 178256 Jun 3 13:46 choptest*
-rwxr-xr-x 1 root root 184032 Jun 3 13:46 cqtest*
-rwxr-xr-x 1 root root 81096 Jun 3 13:46 dialtest*
-rwxr-xr-x 1 root root 1142128 Jun 4 11:28 ldconfig*
-rwxr-xr-x 1 root root 2868 Jun 3 13:46 lockname*
-rwxr-xr-x 1 root root 3340 Jun 3 13:46 ondelay*
-rwxr-xr-x 1 root root 376796 Jun 3 13:46 pagesend*
-rwxr-xr-x 1 root root 13950 Jun 3 13:46 probemodem*
-rwxr-xr-x 1 root root 9234 Jun 3 13:46 recvstats*
-rwxr-xr-x 1 root root 64480 Jun 3 13:46 sftp-server*
-rwxr-xr-x 1 root root 744412 Jun 3 13:46 sshd*
-rwxr-xr-x 1 root root 30750 Jun 4 11:46 su*
-rwxr-xr-x 1 root root 194632 Jun 3 13:46 tagtest*
-rwxr-xr-x 1 root root 69892 Jun 3 13:46 tsitest*
-rwxr-xr-x 1 root root 43792 Jun 3 13:46 typetest*
./tmp:
total 8
drwxr-xr-x 2 root root 4096 Jun 4 12:32 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
./usr:
total 8
drwxr-xr-x 2 root root 4096 Jun 4 12:16 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
lrwxrwxrwx 1 root root 7 Jun 4 12:14 bin -> ../bin//
lrwxrwxrwx 1 root root 7 Jun 4 11:33 lib -> ../lib//
lrwxrwxrwx 1 root root 8 Jun 4 12:13 sbin -> ../sbin//

	Introduction
	Download the manual
	Organizational Notes/Feedback
	Prior knowledge
	Things that need to be written (FIXME/TODO)
	Changelog/History
	Version 2.6 (september 2002)
	Version 2.5 (september 2002)
	Version 2.5 (august 2002)
	Version 2.4
	Version 2.3
	Version 2.3
	Version 2.2
	Version 2.1
	Version 2.0
	Version 1.99
	Version 1.98
	Version 1.97
	Version 1.96
	Version 1.95
	Version 1.94
	Version 1.93
	Version 1.92
	Version 1.91
	Version 1.9
	Version 1.8
	Version 1.7
	Version 1.6
	Version 1.5
	Version 1.4
	Version 1.3
	Version 1.2
	Version 1.1
	Version 1.0

	Credits and Thanks!

	Before you begin
	What do you want this system for?
	Be aware of general security problems
	How does Debian handle security?

	Before and during the installation
	Choose a BIOS password
	Partitioning the system
	Choose an intelligent partition scheme

	Do not plug to the Internet until ready
	Set a root password
	Activate shadow passwords and MD5 passwords
	Run the minimum number of services required
	Disabling daemon services
	Disabling inetd services

	Install the minimum amount of software required
	Removing Perl

	Read the debian security mailing lists

	After Installation
	Change the BIOS (again)
	Set a LILO or GRUB password
	Remove root prompt on the kernel
	Disallow floppy booting
	Restricting console login access
	Restricting system reboots through the console
	Mounting partitions the right way
	Setting =1sp /tmp noexec
	Setting /usr read-only

	Execute a security update
	Subscribe to the Debian Security Announce mailing List
	Providing secure user access
	User authentication: PAM
	Limiting resource usage: the =1splimits.conf file
	User Login actions: edit =1sp /etc /login.defs
	Restricting ftp: editing =1sp /etc /ftpusers
	Using su
	Using sudo
	Disallow remote adminitrative access
	Restricting users's access
	Hand-made user auditing
	Complete user audit
	Reviewing user profiles
	Setting users umasks
	Limiting what users can see/access
	Generating user passwords
	Checking user passwords
	Logging off idle users

	Using tcpwrappers
	The importance of logs and alerts
	Using and customising logcheck
	Configuring where alerts are sent
	Using a loghost
	Log file permissions

	Using chroot
	Adding kernel patches
	Protecting against buffer overflows
	Secure file transfers
	File System limits and control
	Using quotas
	chattr/lsattr
	Checking file system integrity
	Setting up setuid check

	Securing network access
	Configuring kernel network features
	Securing the network on boot-time
	Configuring firewall features
	Disabling weak-end hosts issues
	Protecting against ARP attacks

	Taking a snapshot of the system
	Other recommendations
	Do not use software depending on svgalib

	Securing services running on your system
	Securing ssh
	Chrooting ssh
	Ssh clients
	Disallowing file transfers

	Securing Squid
	Securing FTP
	Securing access to the X Window System
	Check your display manager

	Securing printing access (The lpd and lprng issue)
	Securing the mail service
	Configuring a Nullmailer
	Providing secure access to mailboxes
	Receiving mail securely

	Securing BIND
	Changing BIND's user
	Chrooting the name server

	Securing Apache
	Disabling users from publishing web contents
	Logfiles permissions
	Published web files

	Securing finger
	General chroot and suid paranoia
	Automaking chrooting programs

	General cleartext password paranoia
	Disabling NIS
	Disabling RPC services
	Adding firewall capabilities
	Firewalling the local system
	Using a firewall to protect other systems
	Configuring the firewall

	Automatic hardening of Debian systems
	Harden
	Bastille Linux

	Debian Security Infrastructure
	The Debian Security Team
	Debian Security Advisories
	Debian Security Build Infrastructure
	Developer's guide to security updates

	Package signing in Debian
	The proposed scheme for package signature checks
	Alternative per-package signing scheme
	Checking distribution releases

	Security tools in Debian
	Remote vulnerability assesment tools
	Network scanner tools
	Internal audits
	Auditing source code
	Virtual Private Networks
	Point to Point tunneling

	Public Key Infrastructure (PKI)
	SSL Infrastructure
	Anti-virus tools
	GPG agent

	Before the compromise
	Continuously update the system
	Using Tiger to check for security updates
	Avoid using the unstable branch
	Avoid using the testing branch
	Automatic updates in a Debian GNU/Linux system

	Set up Intrusion Detection
	Network based intrusion detection
	Host based intrusion detection

	Useful kernel patches
	Avoiding root-kits
	Loadable Kernel Modules (LKM)
	Detecting root-kits

	Genius/Paranoia Ideas — what you could do
	Building a honeypot

	After the compromise
	General behavior
	Backing up the system
	Forensic analysis

	Frequently asked Questions (FAQ)
	Security in the Debian operating system
	Is Debian more secure than X?
	There are many Debian bugs in Bugtraq. Does this mean that it is very vulnerable?
	Does Debian have any certification related to security?
	Are there any hardening programs for Debian?
	I want to run XYZ service, which one should I choose?
	How can I make service XYZ more secure in Debian?
	How can I remove all the banners for services?
	Are all Debian packages safe?
	Why are some log files/configuration files world-readable, isn't this insecure?
	Why does /root/ (or UserX) have 755 permissions?
	After installing a grsec/firewall, I started receiving many console messages! How do I remove them?
	Operating system users and groups
	Why is there a new group when I add a new user? (or Why does Debian give each user one group?)
	Question regarding services and open ports
	Common security issues
	How do I accomplish setting up a service for my users without giving out shell accounts?

	My system is vulnerable! (Are you sure?)
	Vulnerability assessment scanner X says my Debian system is vulnerable!
	I've seen an attack in my system's logs. Is my system compromised?
	I have found strange 'MARK' lines in my logs: Am I compromised?
	I found users using 'su' in my logs: Am I compromised?
	I have found possible 'SYN flooding' in my logs: Am I under attack?
	I have found strange root sessions in my logs: Am I compromised?
	I have suffered a break-in, what do I do?
	How can I trace an attack?
	Program X in Debian is vulnerable, what do I do?
	The version number for a package indicates that I am still running a vulnerable version!
	Specific software

	Questions regarding the Debian security team
	What is a Debian Security Advisory (DSA)?
	The signature on Debian advisories does not verify correctly!
	How are security incidents handled in Debian?
	How much time will it take Debian to fix vulnerability XXXX?
	How is security handled for testing and unstable?
	I use an older version of Debian, is it supported by the Debian Security Team?
	Why are there no official mirrors for security.debian.org?
	I've seen DSA 100 and DSA 102, what happened to DSA 101?
	How can I reach the security team?
	What difference is there between security@debian.org and debian-security@lists.debian.org?
	How can I contribute to the Debian security team?
	Who is the Security Team composed of?
	Does the Debian Security team check every new package in Debian?

	The hardening process step by step
	Configuration checklist
	Setting up a stand-alone IDS
	Setting up a bridge firewall
	A bridge providing NAT and firewall capabilities
	A bridge providing firewall capabilities
	Basic IPtables rules

	Sample script to change the default Bind installation.
	Security update protected by a firewall
	Chroot environment for SSH
	Automatically making the environment (the easy way)
	Patching SSH to enable chroot functionality
	Handmade environment (the hard way)

