Creating Your Personal Key Pair

GPG uses public key cryptography for encrypting and signing messages. Public key
cryptography involves your public key which is distributed to the public and is used to
encrypt messages to be delivered you and to decrypt signatures you have created, and
your private key which complements your public key by allowing you to decrypt
messages you receive and to encrypt signatures. Together, these are referred to as a key
pair.

1.1 About Key Security

When you create a key pair, both your public and private keys must be stored on your
computer. This creates a security risk, because anyone who can gain access to your
private key can decrypt your messages and impersonate you. You can't commit your
private key to memory and erase it from your computer--it is far too long (usually at least
1024 bits--that's like memorizing a 300-digit phone number!) Besides, even if you could
memorize it, it would take too long to type it out each time you wanted to use it.

The practical solution to this problem is to go a step further and actually encrypt your
private key using a reasonably short passphrase as a key for the key; this is what GPG
does. Each time you perform an operation involving your private key, GPG reads the
encrypted key from the disk, prompts you for your passphrase, decrypts the key in
memory, and finally uses it. In order for this system to work, you must have a
cryptographically strong passphrase--something that can't be guessed or brute-force
attacked. For example, "orange" is so short that a dictionary attack will find it in seconds,
and your spouse's full name is a poor choice because anyone who knows you might guess
that you used it as your passphrase. Your passphrase should be a combination of letters
and numbers and upper and lower case.

1.2 Using the GPG Gen-key Command

Now that you've got your passphrase, you're ready to generate your personal key pair. At
the command prompt, type

gpg --gen-key

GPG responds with a menu asking what kind of key pair you want to generate. Choose



the default, "DSA and ElGamal."

Next, it asks you the size of the key. Again, choose the default of "1024." If your key is
too small, it is easier to crack; if it is too large, then every operation that uses it may
execute too slowly.

The next prompt asks you when (if) the key should expire. Letting the key expire after a
certain amount of time adds a little bit of security, because documents encrypted after this
time are not connected with the old key in any way. The tradeoff, of course, is that
everyone you correspond with must fetch your new key when the old one expires. At the
prompt, choose a reasonable time period for the lifetime of your key, or select "key does
not expire."

Now you enter the Real Name and Email Address which will be used to identify the key
in everyone's key collections, not just yours. If you don't feel comfortable attaching your
full real name to your key, be sure to pick something unique so that your key won't be
confused with anyone else's.

Finally, enter the passphrase you selected. GPG will NOT give you any feedback as you
type your passphrase--it won't print asterisks or spaces as most password input functions
do. This is yet another security measure. After you enter and then confirm your
passphrase, GPG will start doing some number crunching to generate all the random bits
it needs in your key pair. It uses all sorts of sources inside the computer to simulate
randomness, including console input--so if you want to speed up the process, type some
random characters on the keyboard.

1.3 Publishing Your Public Key

The easiest way to publish your public key is to simply post it on a web page or email it
directly to people who need it. Of course, this is also one of the least secure ways of
doing it--plaintext email and web pages can be (theoretically, at least) subject to man-in-

the-middle attacks.-More advanced methods of key exchange involve things such as webs
of trust and key servers, which are beyond the scope of this guide. If you don't believe
specifically that someone will try to attack you, you may be comfortable with the method
described here.

You have been warned. The exchange of public keys without a trusted intermediary

can be subject to a man-in-the-middle attack.

To transmit your public key over the Internet, the first step is to export it to ASCII
format. Open a command prompt window and go to a folder where you want to place the



exported key. Type

gpg ——armor —-—-output "key.txt" —-—-export "YOUR-NAME"

You may change key.zxt to some other filename if you'd like. YOUR-NAME can be your
Real Name or your Email Address; GPG will find it either way. The "-—armor" option
instructs GPG to format the output "armored" for plain-text transmission. This makes it
easy to copy and paste the key to and from web pages and email messages. The "—-
armor" option applies to most GPG commands that produce any kind of output.

Open the output file, key.zxt. You should see something resembling this:

Version: GnuPG v1.2.1 (MingW32)

mQGiBD53m34RBAC6GXVDFWD3a+GOkQKubz5Kogq91ks9d+gel29/sA5kgSfQnoaeR
gqdTKL1B+0NsVjDX/Szfi3fsrK5zmKKZVHv3J04DkxtABf4HgfaGkpav2PvXevYoB
YWSGTclHOHNS5D3xsbIX6wvunkNhllcgrF1C3braG2tQnt2+PMk1gMA2 jhwCg7gam
RtC27n0RY25jMfM/fESTImcD/10tFwRtchgjPv12IHSCBl1ltJyksuStevOfAFncl
P3H+JqdUiKVE80AF4NP4KarXL34xPCIJXLK1BWHC3SH8powy2HX0mhsCjvvVQQeLOP
fU305DIxGM16hfmglD1k4a7NUjnXwlCrcedrVIoFbCnLrJTVoMDyNhowrXPbPCVM
N3FNA/0Ucizl19raTBGkwobkpsicpZG7Mk4eGFK5ssWxPx1LYoQ7yzgekWd9h6zBT
IQpdkatzdNf7xDEaUEBhO4vD7I1020L1igro95N5savsHIStTNCsIgmaiwtX5hxuF
WpW974xgfCmbGOPnbs1QTuyT85V11LxHI5fsGOYKCd/qo8H4nLOHQksgVGVzdIhZ
BBMRAgGAZBQI+d5t+BAsSHAWIDFQIDAXYCAQIeAQIXgAAKCRDCVAS5vH6AS6m7fAKDs
YVhdSgNn+u/rkjlpU6kF1dY0JwCcCCXth72RIItAIz5ggIM3m6y2+7g5AQ0EPneb
gRAEAIb/sxLIAKaahBfBpGxpn3ZKhvuglz6yP7jLWFNLFugaakYjm5LXsI5Hp 06
mAE2fJPUNclof0ZaK4La3XA81/nVaadDP6FDgnxuPv3ne5JAxcK76ecT+m01 jOXZ
oVnUkUgeNnwtcIsOfmmXnaeD680HdidYsIuuEDhrFvPAT6cfAAMFA/923B1Bm4NR
riLy8QxYNuTxImtxoVg4NtfnYuHWyoxP1Ic3C1InzZD2+fxf2685KNKx+3Zwak81zN
ZN10kNdFhB24Vmr6HM5C+eS1Hj8C+LOUdP1A/9Un5utceg/qjNYkRXIx5mjyCizh
Gg/+1mLB5e+0A9T15R+96PKPFov+UjNPu4dhGBBgRAGAGBQI+d5uBAACIEMIV3mSE £
oD3gewYAONFRCBVEbX+LKxmWOZogyQhB7j£fnAKDDOCzQhZLZmr £ 0Uqgqdk 6y j+HDmO

Copy the entire contents of that file, including the lines beginning with "————- ," and
paste them on a web page or in an email message to someone else. That's all it takes to
export your public key.

Note: it is possible to export your private key in the same manner, with the "-—export—

secret-keys" instead of "-—export." This is useful for backup or for transferring it
to another computer, as long as you know what you're doing and you can be sure the new
copy will be secure. Make sure you don't ever accidentally publish your private key!
Before you publish a key in ASCII form, check that the first line has the word
"PUBLIC," not "PRIVATE."



1.4 Backing Up Your Keys

Keeping your GPG key files safe is just as important as remembering your passphrase--
your passphrase does you no good if you don't have a copy of your full private key on
your computer. If your key file is destroyed, there is absolutely no way to reconstruct it,
short of executing a cryptanalysis on your own data. To back up your GPG keys,
including all your private keys, locate the files pubring.gpg, secring.gpg, and trustdb.gpg
in the folder where you have installed GPG, and copy them to a safe location, such as a
CD-R disc. Store this disc in a safe place where potential attackers won't likely be able to
find it. (Of course, your keys are safe long as your attacker doesn't know your
passphrase.)

Now, you are finally ready to actually encrypt something.

2. Encrypting and Decrypting Files

The basic encryption and decryption procedure in GPG is this: The sender determines the
recipient of a file, acquires that recipient's public key if he hasn't already done so, and

then runs the plaintext through GPG along with this key to obtain the cyphertext.ﬂWhen
the recipient wants to decrypt the file, he applies his private key to the cyphertext to
obtain the plaintext.

In fact, the sender and recipient aren't always different people. One important use of GPG
is to encrypt your own data, storing the cyphertext and destroying the plaintext. This is an
excellent defense against physical attacks on your computer or your local file server.

2.1 Using the GPG Encrypt Command

Choose a file you want to encrypt. For example, let's assume you have diary, where each
month is a new file, and you're done with February 2003, which is called diary 2003-
02.txt. Suppose you want to encrypt this file and then put it away in an archive folder or a
CD-R disc. At the command prompt, type (all on one line)

gpg —-recipient "YOUR-NAME" —--output "diary 2003-02.txt.gpg"
——encrypt "diary 2003-02.txt"

Don't forget to fill in YOUR-NAME with the actual name you attached to your key.
Always remember the "-output”" option when you use an encryption command in GPG; if


http://www.glump.net/content/gpg_intro/html_onepage/gpg_intro.html#foot442

you omit this option, the output will be dumped to the command prompt window instead
of to a file. Finally, notice that the command (usually an action verb) always goes in the
last position on the GPG command line, after any options. Now diary 2003-02.txt.gpg
will contain a seemingly random string of bytes. You can look at it with Notepad if you'd
like.

There is a similar command, "-encrypt-files," which will automatically choose and name
an output file for you. But the filename it chooses will be missing the extension of the
plaintext filename (.£xt, .jpg, .zip, etc.) so I don't use it, myself.

2.2 Using the GPG Decrypt-Files
Command

Now, suppose a year from now you're feeling nostalgic and you want to read February
2003's diary. You would copy the cyphertext back to your workspace on your computer,
and type the following at the command prompt:

gpg —-decrypt-files "diary 2003-02.txt.gpg"

GPG will look up your private key and prompt you for the passphrase. Provided your
private key is still installed on your computer, and you still remember your passphrase
(you didn't write it on a Post-It and stick it on your monitor, did you?) you will get back
the original plaintext exactly as it was before you encrypted it. If you want to decrypt a
short file and display it immediately in the console, you can use the "--decrypt"
command instead of the "——decrypt—-files" command.

2.3 Sending an Encrypted File by Email

Encrypting your own files is useful, but a more common use of GPG is to send encrypted
data to someone else. Before you can use GPG to encrypt a file for someone else, you
need to get their public key.

2.3.1 Importing the key

As I said before, two convenient ways of getting someone's public key are email and
personal web pages. As an example, you can download my public key from my web
server; try it right now. Go to www.glump.net/signature . If you scroll down a page or so,



http://www.glump.net/signature

you will see a familiar-looking block of text representing my public key. Save the entire
page to a text file. (In Internet Explorer, choose the type "Text File" in the "Save As"
dialog box.) Suppose you named the saved file brendan.txt. At the command prompt,
type

gpg —-—-import "brendan.txt"

GPG should say

gpg: key A3CA0378: public key "Brendan Kidwell <brendan@glump.net>"
imported

gpg: Total number processed: 1

gpg: imported: 1

Notice that GPG wasn't distracted by all the extra text on the page. It looks for the telltale
"BEGIN PGP PUBLIC KEY BLOCK" line and ignores everything outside that block
of text.

One more step you need to perform after you've imported a key from an external source
is set the trust level on it. GPG is paranoid, and if you use the key right now as it is, you
will get a warning message saying that you haven't established the authenticity of the key.
To make this warning message go away, use the GPG "--edit-key" command to set
the trust level:

gpg ——-edit-key "Brendan Kidwell"

GPG will enter the interactive key editing mode. Enter the command "trust" and select

level "S) I trust ultimately." Then enter "quit" to save your change.

2.3.2 Encrypting the message

Now you're ready to encrypt the file. Let's assume you have a file you want to send to me
called message to brendan.txt. At the command prompt, type

gpg ——armor —-recipient "Brendan Kidwell"
—-—-output "message to brendan.txt.asc"
—-—encrypt "message to brendan.txt"

GPG will produce a file called message to brendan.txt.asc, whose content you can copy
and paste into an email.

Alternatively, if you need to send a particularly large file, you should use the encrypt
command without the "-—armor" option:

gpg —-recipient "RECIPIENT" —--output "FILE.gpg" --encrypt "FILE"



and instead of pasting FILE.gpg into the body of the email, include it as an attachment.
Make sure the name of the file doesn't reveal anything that should be secret.

If you'd like, you can go ahead and try to send an encrypted message to me. I'll let you
know if I receive it correctly. If you want an encrypted reply, make sure you include your
public key or tell me where I can get it.

2.4 Decrypting Files Sent by Email

How you deal with an encrypted email message which you have received depends on
how it was sent to you. When you receive an encrypted message, its body might contain

followed by a string of random-looking characters. Or the message might simply have an
attached file whose name ends with ".gpg" or ".pgp."

2.4.1 Encrypted data is in the message body

If the encrypted data is in the message body, save the entire message to a file, and end the
file name with .asc. If you know that the encrypted data is some binary format, include
the file extension before the .asc. For example, if you know the message contains an
encrypted Microsoft Word file, you would name the file message.doc.asc. At the
command prompt, type

gpg —-decrypt-files "FILE.asc"

where FILE.asc is the filename you used to save the message. GPG will tell you who the
file was encrypted for and prompt you for the passphrase. If the file wasn't encrypted
using your public key, GPG give up and tell you that it doesn't have the private key
needed to decrypt this file. If the decryption succeeded, you should get the original file
back, with the name you gave it, minus the .asc extension.

Remember, if you know the encrypted data is just a short text message, you can display it
on the console instead of storing it in a file with the "--decrypt" command:

gpg —-decrypt "FILE.asc"

2.4.2 Encrypted data is in an attached file

If the encrypted data is in an attached file, save that file to your computer. At the



command prompt, type

gpg —-decrypt-files "FILE.gpg"

where FILE.gpg is the name of the file you saved. (If the message was created using

PGP,ﬂthe name of the attached file will probably end with ".pgp" instead.) Again, GPG
will only work if you have the private key needed to decrypt the file.

2.5 Encrypting for Multiple Recipients

Sometimes, you'll want to send an encrypted file to more than one person. This could
create a problem, though, because no one should be sharing a private key with anyone
else. You could always make a separate encrypted file for each recipient, but this can get
tiring if you need to send a file to as many as five people.

There is a better way: GPG allows you to specify a list of people who may be able to
decrypt a file. GPG will then use all of those individuals' public keys to encrypt the data
in such a way that any one of their private keys (and no one else's) can decrypt the data.

The syntax is straightforward. Just add more "--recipient" options to the command
line. Suppose you wanted to encrypt the same message as in Subsection 4.3.2 above, but
wanted to send the message so that both you and I could decrypt it later. You would type
the following at the command prompt:

gpg —-—armor —--recipient "Brendan Kidwell"
—-recipient "YOUR-NAME"
—-—-output "message to brendan.txt.asc"
—-—encrypt "message to brendan.txt"

and then copy the output file into an email message as before.

Sending encrypted email this way can make it easier to manage your saved
correspondence. Normally when you send plaintext email, a copy of the sent message is
saved somewhere in your email software (unless you specified that you don't want to save
copies.) You can always go back and review your sent email to recall what was said. If
you specify your target and yourself as recipients when you prepare an encrypted
message, then you can go back and review it in your sent email collection whenever you
need to, with only the added step that you need to decrypt it before you view it. You
needn't save a separate plaintext copy of the message, nor do you need to make another
copy encrypted for yourself.

Specifying several recipients does not adversely affect the size of the encrypted data. |
tried encrypting a large (~8MB) compressed binary file for one and then two recipients.


http://www.glump.net/content/gpg_intro/html_onepage/gpg_intro.html#foot435

The difference in the size of the output was only a few hundred bytes.

3. Signing Files

Often it is desirable to verify the origin of data, whether it is encrypted or not. GPG's
signature functions provide a means of verifying authenticity.

The theory is simple. Public and private GPG keys work either way. Once you have
encrypted data with one of the keys in a pair, it can only be decrypted with its
complement in a the same key pair. Normally GPG operates by encrypting with the
public key so that only the recipient can decrypt the data using his private key.

Digital signatures work the other way around; data is encrypted using the signer's private
key. If someone receives the file and succeeds in decrypting the data with the signer's
public key, then presumably, the data must have been encrypted by that signer. Therefore,
the signer must have created the data himself, or at least approve of its contents in some
way (depending on the nature of the actual data.) A digital signature is just as useful as a
physical one made with a pen, and arguably, it is more secure.

When GPG creates a digital signature, it doesn't encrypt the entire file with the signer's

private key. Instead, it computes a hash value,ﬁencrypts that, and appends it to the
original data as the signature. This makes it possible to create signed files that are
readable without any encryption software, and aren't significantly larger; GPG is needed
only to verify the authenticity of the file.

To verify a signature, GPG reads the data that was signed and computes its hash value.
Then it decrypts the signature, using the signer's public key, to obtain the true hash value.
If the two hash values match, the signature is valid and the data you have is exactly the
data the signer had when he created the signature.

3.1 Using the GPG Clearsign Command

Suppose you want to send a message to someone in such a way that they can prove it was
you who authored the message. First, compose the message in a text editor and save it as
message.txt in a convenient folder. Then, at the command prompt, type

gpg —-local-user "YOUR-NAME" --clearsign "message.txt"

Since this operation involves your private key, GPG will prompt you for your passphrase.
After that, GPG will compute a signature and write a new file called message.asc


http://www.glump.net/content/gpg_intro/html_onepage/gpg_intro.html#foot540

containing the plaintext and the signature. The contents of this file can be copied into an
email and sent to the intended recipient.

As an example, here is message that I have signed:

Hash: SHAl
This is a test message signed by Brendan Kidwell.
Version: GnuPG v1.2.1 (MingW32)

iD8DBQE+fnwc41x1BKPKA3gRAQL3AJ4557Md6xF1500EDYIIB+UvDQKwmwCEfcrCY
nal2Ng9W4K5mP1ZWEueNjCo=
=73hB

3.2 Verifying a Clearsigned Message

Suppose you receive a message like the one produced in the previous section. Or you
might find such a message posted on a public web site or electronic message board.
Before you can verify its signature, you need to obtain the signer's public key and install
it on your computer. This procedure is described in the previous chapter, under the
heading "Importing the key."

If the message to be verified is contained in an email, export it to a text file. If the

message 1s displayed on a web page or some other online medium, save it as a text file
(named, for example, message.txt.) Then type the following at the command prompt:

gpg —-verify "message.txt.asc"

GPG will locate the signer's key if you have it, and use it to check the signature and
report whether or not it is valid.

If you're reading the online version of this document and you've already installed my key,
you can try copying the test message displayed in the previous section into a text file and
verifying the signature with this procedure.

3.3 Signing and Verifying Binary Files

Text messages can have signatures appended to them without disrupting the contents of
the message too much, but binary files such as Microsoft Word documents and Zip
archives can't have arbitrary data attached to them. To sign binary files, it is costumary to



have GPG create a separate signature file. Suppose you have a Zip archive you want to
sign, called monthly report.zip. Type the following at the command prompt:

gpg —--local-user "YOUR-NAME" --output "monthly report.zip.sig"
—--detach-sign "monthly report.zip"

Again, GPG will prompt you for your passphrase and then it will generate a signature in
monthly report.zip.sig. If you were going to email this to someone, you would attach both
files to the email message.

Now suppose you're on the other end and you receive a file with a signature like this via
email. Save both files to the same folder and type the following at the command prompt:

gpg —--verify "monthly report.zip.sig"

GPG will verify the signature of the file using the signer's public key and report whether
or not it is valid. Again, the person doing the verifying must have a the signer's public
key installed.

Software distributed over the Internet is often signed in this manner--especially software
that relates to security. A user can download a large installation package quickly from a
local site, which need not be trusted. After the download is complete, he can go back to
the creator's web site and fetch a public key and the signature for the installation package
and use them to verify the package's authenticity.

3.4 Encrypting and Signing at the Same

Time
It is possible to encrypt and sign a file at the same time. Use this command to encrypt and
sign a file:
gpg ——-local-user "YOUR-NAME" --recipient "RECIPIENT" --armor
--sign —--output "FILENAME.asc" —--encrypt "FILENAME"

This produces an output file named FILENAME.asc.

To decrypt such a file, simply run

gpg —-decrypt-files "FILENAME.asc"

GPG will see that the file has been signed and it will automatically verify it if it has the
signer's public key.

And, as always if you prefer simple binary output, omit the "-—armor" option.






	Creating Your Personal Key Pair 
	1.1 About Key Security 
	1.2 Using the GPG Gen-key Command 
	1.3 Publishing Your Public Key 
	1.4 Backing Up Your Keys 
	2. Encrypting and Decrypting Files 
	2.1 Using the GPG Encrypt Command 
	2.2 Using the GPG Decrypt-Files Command 
	2.3 Sending an Encrypted File by Email 
	2.3.1 Importing the key 
	2.3.2 Encrypting the message 

	2.4 Decrypting Files Sent by Email 
	2.4.1 Encrypted data is in the message body 
	2.4.2 Encrypted data is in an attached file 

	2.5 Encrypting for Multiple Recipients 
	3. Signing Files 
	3.1 Using the GPG Clearsign Command 
	3.2 Verifying a Clearsigned Message 
	3.3 Signing and Verifying Binary Files 
	3.4 Encrypting and Signing at the Same Time 

