Newsroom Math

Steve Doig Cronkite School of Journalism Arizona State University

Why math?

- We make too many stupid mistakes in print and on air
 - 3 murders last year, 0 this year
- The bad news: To be a good journalist, you
 MUST be able to do math!

The good news!

- ...it's 6th grade math!
- None of this scary stuff:
 - Calculus
 - Geometry proofs
 - Base-12
 - Trigonometry
 - Ballistics
 - Etc....

SPECIAL LIBRARIES ASSOCIATION 2005 ANNUAL CONFERENCE June 5th - 8th + Toronto + Canada Putting Knowledge to Work

Newsroom math skills

- Sum and difference (duh!)
- Percent
- Percent difference
- Percentage change
- Rates: Per capita, per 100k, etc
- Consumer Price Index
- Polling
- Simple statistics
- Crowd estimating

Comparing NEW and OLD

- Percentage change!
- (NEW / OLD 1) * 100
- \$8 million this year, \$5 million last year
 - (8/5 1) * 100 = 1.6 1 = 0.6 = 60%,
 - So the budget has *increased* 60%
- \$5 million this year, \$8 million last year
 - (5/8 − 1) * 100 = 0.625 − 1 = 0.375
 - So the budget has decreased 37.5%

Beware of base changes

- Newsroom budget of \$1 million grows by 10% one year to \$1.1 million!
- Next year, recession, so boss has to cut 10% from budget
- Result: \$1.1 million 10% of \$1.1 million = \$990,000

Beware of small bases

- Easy to get big percentage change when you start with small values
- Population 1990: 1,000
 - Population 2000: 1,500
 - Percentage change: +50%
- Population 1990: 1,000,000
 - Population 2000: 1,100,000
 - Percentage change: +10%

Rates

- Number of events per some standard unit (per capita, per 100,000, etc.)
- Use to compare places of different size
- Crime rates, accident rates, etc.
- (EVENTS / POPULATION) x ("PER" Unit)

Calculating rates

- (EVENTS / POPULATION) x ("PER" Unit)
- If there were 320 murders in a population of 1,937,086, what is the murder rate per 100,000?
- 320 / 1937086 = 0.0001652...
- 0.0001652 * 100000 = 16.5 murders per 100,000 population

Consumer Price Index

http://www.bls.gov/cpi/home.htm

Consumer Price Index

Use the CPI to correct for inflation

Price NowCPI NowPrice ThenCPI Then

Using the CPI

- Gasoline in 1965 was \$0.30 per gallon.
- CPI in 2005 = 194.6
- CPI in 1965 was 30.8
- 2005 price / 0.30 = 194.6 / 30.8
- 2005 price = (194.6 / 30.8) * 0.30
- 2005 price = 6.32 * 0.30 = \$1.90
- Gas in 1965 cost the equivalent of \$1.90 per gallon in today's dollars

Newsroom Statistics

- Maximum, minimum, range
- Mean (Average): Add the values, then divide by number of values
- Median: Sort the values, then find the middle one
- Mode (rarely used): The most common value

Baseball salaries 1994-95 strike period

- Mean (average): \$1.2 million
- Median: \$350,000
- Mode: \$100,000

Weighted average

- Don't average averages
- Example:
 - Teacher average: \$37,000
 - Janitor average: \$20,000
 - Principal average: \$75,000
 - District average: \$44,000??

Weighted average (continued)

- Teachers: 10,000 x \$37,000 = \$370.0m
- Janitors: 2,000 x \$20,000 = \$40.0m
- Principals: 500 x \$75,000 = \$ 37.5m
- Sum: 12,500 \$447.5 million
 Weighted average: \$35,800

Public opinion surveys

- Survey vs. census
- A random sample is necessary
- Size of the population being sampled doesn't matter -- only sample size matters

Sampling error

- Rule: The bigger the sample, the smaller the error
- Sampling error = $1/\sqrt{N}$
 - N=100 1 / $\sqrt{100} = 1/10 = +/-10$ pts.
 - N=400 1 / √400 = 1/20 = +/- 5 pts.
 - N=900 1 / √900 = 1/30 = +/- 3.3 pts

Knowledge to Work

Reporting poll results

- Don't report unscientific polls
- Don't make a big deal about small differences
- Beware of big error margins on subgroups
- Don't forget that a poll at best is a snapshot of now, not a predictor of the future

Estimating crowds

- Beware the "official" estimate
- Better method:
 - Estimate the area in sq feet (L x W)
 - Divide by:
 - 10 for a loose crowd
 - 7.5 for a tighter crowd
 - Account for turnover?

Newsroom math test (www.ire.org)

Newsroom math bibliography

- "Numbers in the Newsroom", by Sarah Cohen, IRE
- "Precision Journalism (4th edition)", by Phil Meyer
- "Innumeracy", by John Allen Paulos
- "A Mathematician Reads the Newspaper," by John Allen Paulos

