

Arrays
Array representation and manipulation routines

Version 1.1
Authors: Doug Burkett, Bhuvanesh Bhatt

Last updated: January 20, 2001
Documentation updated: December 16, 2001

Introduction:
This is a package to facilitate representation and manipulation of cuboidal arrays with
rank>2 (tensors). Tensors are generalizations of scalars, vectors and matrices, and are
used in many areas of physics, engineering, and math. The rank is the number of indices
needed to specify a particular but arbitrary element of the array. For example, for a
matrix we need to specify two numbers – the row and the column, so it is a rank-2 tensor.
Tensors can be represented using index notation:
Tensor Description Example
A Scalar (no indices) Temperature
Bα Vector (one index) Velocity
Cβ One-form (dual of vectors) Gradient
Dα

β Matrix (two indices) Inertia tensor
gαβ Metric tensor 3-space Cartesian metric has

diagonal elements {1,1,1}
Eα

βµν Rank-4 tensor Riemann curvature tensor

Note:
w Greek indices run through the possible dimensions

(1…3 if dealing with space, 0…3 if dealing with spacetime)
w A superscripted index is called contravariant
w A subscripted index is called covariant
w A tensor with both contravariant and covariant indices is called a mixed tensor

You can perform several operations on tensors:
Operation Examples Notes
Addition Aα + Bα

Cαβ
λ + Dβα

λ

Only tensors of the same type can
be added; rank remains the same.

Multiplication
(outer product)

AαBβ The new rank is rank(A)+rank(B)

Contraction
(inner product)

AαBαβ The new rank is
rank(A)+rank(B)−2

Differentiation Aα
,β The new rank is rank(A)+1

Covariant differentiation Aα
;β=Aα

,β+ΓΓ α
βµA

µ A special kind of tensor derivative;
ΓΓ α

βµ is called a Christoffel symbol.
Transposing indices Aαβ → Aβα Indices are just shuffled around, so

the rank remains the same.

Raising/lowering indices gαβAβ → Aα
gαβgµνBβν → Bαµ

Only the position (and labeling) of
the indices changes, so the rank
remains the same.

Common mathematical
functions

sin(Aαβ) The function is applied element-
by-element (sin(A11), sin(A12), …)

We often use the Einstein summation convention, which states that two indices with the
same symbol, one contravariant and the other covariant, are implicitly to be summed
over. For example, in the expression AαBα , the index α is to be summed over its possible
values, so this would effectively be a dot product and would return a scalar.

Notes for this package:
The functions in this package are subdivided into three logical levels (not necessarily
levels of difficulty). Level-3 operations are specific to general relativity and differential
geometry and may take more than 5 minutes. Note that these functions have no notion of
contravariant and covariant indices, so you will have to keep track of them by hand.
Please do not use the variable ‘i’ in arrays, as this will give incorrect results. I will try to
fix this as soon as I can.

Included functions:
1. Basic array storage/recalling functions:

§ aInd(i,{dims}) returns the array location corresponding to the ith list index for an
array of dimensions dims
Examples: aInd(5,{4,4}) ⇒ {2,1}, aInd(53,{4,4,4}) ⇒ {4,2,1}
 aInd(17,{d}) ⇒ {17}, aInd(992,{2,3,4,5,6}) ⇒ {}

§ aRcl({loc},{dims},{arr}) returns the array element at location loc for an array arr
of dimensions dims

§ aSto(val,{loc},{dims},{arr}) returns the array arr of dimensions dims with the
value val stored at location loc. To store this changed array, use
aSto(val,{loc},{dims},{arr})→myarray

§ newArray({dims}) returns the list corresponding to an array of dimensions dims
2. Fundamental tensor operations:

§ Contract({arr1},{dims1},{arr2},{dims2}) contracts on the last index of arr1 and
the first index of arr2. To contract on other indices, first use transpos() to
transpose the indices, contract, and then transpose the indices back.
Example: Contract(seq(1,i,12),{3,2,2},seq(2,i,6),{2,3,1}) ⇒ {4,4,4,4,4,4,…}

§ Diverg({arr},{dims},{coord},i) returns the divergence of arr in the coordinates
given by coord wrt index i

§ Gradient({arr},{dims},{coord}) returns the tensor gradient of arr in the
coordinates given by coord

§ Inner({arr},{dims},i1,i2) performs an internal inner/dot product on indices i1 and
i2 of arr
Example: Inner({a,b,c,d,e,f,g,h},{2,2,2},1,2) ⇒ {a+g,b+h}

§ Outer(f,{arr1},{dims1},{arr2},{dims2}) performs an outer/tensor/Kronecker
product of arr1 and arr2, using the function f to combine elements of arr1 and
arr2. f is usually "*" (multiplication).

Examples: Outer(f,{a,b,c},{3},{d,e},{2})
 ⇒ {f(a,d),f(a,e),f(b,d),f(b,e),f(c,d),f(c,e)}
 Outer("*",{a,b,c,d,e,f},{3,2},{k,l,m},{3})
 ⇒ {a*k,a*l,a*m,b*k,b*l,b*m,c*k,c*l,c*m,d*k,d*l,d*m,
 e*k,e*l,e*m,f*k,f*l,f*m}
Note: Please do not use the variable ‘i’ in arrays, as this will give incorrect
results. I will try to fix this as soon as I can.

§ Transpos({arr},{dims},i1,i2) transposes arr on indices i1 and i2
Examples: Transpos({a,b,c,d,e,f,g,h},{2,2,2},2,3) ⇒ {a,c,b,d,e,g,f,h}
 Transpos({a,b,c,d,e,f,g,h},{2,2,2},1,2) ⇒ {a,b,e,f,c,d,g,h}

3. Higher-level tensor operations from general relativity:
§ Christof({g},{coord}) returns the components of the Christoffel symbol of the

2nd kind for the metric g in coordinates coord
Example: Christof(mat� list(diag({-1,1,1,1})),{t,x,y,z}) ⇒ {0,0,0,0,0,0,0,0,…}

§ Riemann({g},{coord}) returns the components of the Riemann tensor for the
metric g in coordinates coord
Example: Riemann(mat� list(diag({-1,1,1,1})),{t,x,y,z}) ⇒ {0,0,0,0,0,0,0,0,…}

§ Ricci({g},{coord}) returns the components of the Ricci tensor for the metric g in
coordinates coord

§ RicciSc({g},{coord}) returns the Ricci scalar for the metric g in coordinates
coord

§ Einstein({g},{coord}) returns the components of the Einstein tensor for the
metric g in coordinates coord

Included programs:

§ arrays() creates a custom menu, which also helps with syntax
§ aPrint(arr,dims) displays nonzero components of the array arr

Auxiliary functions:

§ delElem({list},i) returns list with the ith element deleted
§ listSwap({list},i1,i2) swaps the i1 and i2 elements of list

Future plans:
w Common metrics, such as the Minkowski and Schwarzchild metrics
w Curl (using permutation functions from MathTools)
w Covariant derivative
w Geodesic equation
w Weyl tensor

For more details on this array representation method, check the included PDF file. It is a
tip from Doug’s tip-list (site hosted by Andrew Cacovean):
http://www.angelfire.com/realm/ti_tiplist/

Copyright:
This package may be freely distributed, provided it is not modified, is not sold/licensed
for monetary profit, and this documentation is provided with it. If you wish to distribute a
modified version, please contact the authors.

Questions/comments/suggestions are welcome at bbhatt1@towson.edu

