[11.4] Using solve() with multiple equations and solutions in programs

This rather involved tip relates to using the solve() function in programs, when multiple equations to be
solved are generated within the program. The basic idea is to build a string of the equations to be used
in the solve() function, evaluate the solve function string with expr(), then change the results into a
more useful list form. This tip only applies if you are interested in numeric solutions, not symbolic
solutions.

As an example, I'll use this system of equations to be solved:

axs2 + bx; + ¢ = y;

ax2+bxa+c=y,

axs2 +bxs+c=vy;
where the unknown variables are a, b and c. x4, X2, X3, y1, y» and ys are given. Actually, since this is a
linear system, you wouldn't really use solve(); instead you would use the matrix algebra functions built
into the 89/92+. But it makes a good example.

Suppose that we know that

X1=1 y1=-1
X2=2 y2=-11
X3=3 y3=-29

so the equations to be solved are

atb+c=-1
4a+2b+c=-11
9a+3b+c=-29

To make the eventual routine more general-purpose, rewrite the equations to set the right-hand sides
equal to zero:

atb+c+1=0
4a+2b+c+11=0
9a+3b+c+29=0

This routine, called solvemul(), returns the solutions as a list:

solvemul (eqlist,vlist)

func

©Solve multiple equations

oeqlist: list of expressions

ovlist: Tist of variables

oreturns list of solutions in vlist order
ocalls strsub() in same folder
©25dec99/dburkett@infinet.com

local s,vdim,k,t,vk,vloc,dloc
dim(vlist)>vdim

©Build expression to solve

"

for k,1,vdim-1
s&string(eqlist[k])&"=0 and "->s
endfor
s&string(eqlistlvdim])&"=0">s



©Solve for unknown variables
string(expr("solve("&s&","&string(vlist)&")"))>s

©Convert solution string to list
newlist(vdim)>t

strsub(s,"and",":")>s eChange "and" to ":"
strsub(s," ","")»>s oStrip blanks

for k,1,vdim
instring(s,string(vlist[k]))>vloc
instring(s,":",vloc)>dloc

if dloc=@: dim(s)+1>dloc
mid(s,vloc+2,dloc-vloc-2)>t[k]
endfor

oReturn coefficient Tist
seq(expr(t[k]l),k,1,vdim)

Endfunc
The input parameters are eqlist and viist, where eqlist is a list of expressions to solve, and viist is the
list of variables for which to solve. solvemul() assumes that the expressions in eqlist are equal to zero.
The routine returns the solutions in viist order. Note that an external function strsub() is called. strsub()
must be in the same folder as solvemul(). See tip [8.2] for details.
To use solvemul() to solve our example, store two variables:

eqstis {atb+ct+1, 4*a+2*b+c+11, 9*a+3*b+c+29}

vars1is {a,b,c}
then call solvemul() like this:

solvemul (eqsl,varsl)
and it returns

{-4, 2,1}
which means that a = -4, b = 2 and ¢ = 1, which happens to be the correct answer.
Again, there is no advantage to using this function to solve equations at the command line, or even
equations in a program, if the equations are known in advance. This type of program is necessary
when your application program generates the functions to be solved, and you don't necessarily know
what they are before you run the program. Further, solvemul() returns the solutions as a list, which your
program can use in further calculations, or display, as appropriate.
If you've read this tip list, word for word, up to this point, the first three parts of the function hold no
surprises. The two input lists are built into a string that can be used in solve(), and then expr() is used
to evaluate the string and solve for unknown variables.
However, the result of solve() is returned as a string that looks something like this:

"a=-4.0 and b = 2.0 and ¢c=1.0"

The last parts of solvemul() convert this string to a list. First, | convert all the "and" occurrences to ":",
and delete all the spaces, for a string like this:



"a=-4.0:b = 2.0:c=1.0"

Next, | loop to search the string for the variables in vlist, and extract the values for these variables.
Using the ":" character as a delimiter makes this easier. Finally, | build the string of these result and
return it.

To use this routine, you have to be sure that the solution string consists of only a single numeric
solution for each unknown variable, so that the solution string does not have any "or"s in it. It would be
easy to add a test for this error condition, and return an error code, but my example doesn't show that.

Further, a real application should test to ensure that solve() really did return valid solutions.



