[2.18] Delay evaluation to simplify expressions

Sometimes the CAS will not simplify expressions because it assumes general conditions for the
variables. As an example, suppose that we have the expression

tn
and we want to extract the exponent n. We could try using the identity

_Inct")
=

but the CAS will not simplify the right-hand expression to n, because this expression is undefined for
t=0, and because this identity is not generally true for t<0. So, if we constrain the expression for t>0,
like this

Tn(trn)/(1n(t)) | t>0

the CAS returns 'n' as expected. While this example had a fairly simple solution, you may want to use
this technique for more complex expressions in which the constraints are not immediately obvious. In

addition, you may need to apply the constraints sequentially to get the desired result. To continue with
the same example, suppose that we want to use the constraints

t=p*2 and n=q”"2
This will result in the desired simplification, since
Tn(t*n)/(In(t))|t=p*2 and n=qg”2

returns g2, which is just n, as desired. But this needs one more substitution, g*2 = n, to complete the
simplification, and this does not work:

(In(t*n)/(In(t))|t=p”2 and n=q”2)|q”*2=n
and in fact returns Memory error!

To avoid this problem, Bhuvanesh Bhatt offers the following program:

delay(xpr,constr)

Func

©delay (xpr,constr) evaluates xpr and then imposes constraint

©Copyright Bhuvanesh Bhatt

©December 1999

if gettype(constr)#"EXPR" and gettype(constr)#"LIST":return "Error: argument"”

if gettype(constr)="EXPR"

return xpr|constr

Tocal 1i,tmp:1-i:while isdim(constr):constr[i]->tmp:xpr|tmp->xpr:i+1->i:endwhile:xpr
EndFunc

Xpr is an expression to be evaluated, and may include constraints. constr may be either an expression
or a list. If constr is a list of constraints, then each constraint is evaluated in the while() loop. The call to
evaluate our example is

delay(In(t*n)/In(t)|t=p”2 and n=q”"2,p”2=t and q”"2=n)

which returns n.

Finally, note there is a simpler way to extract the exponent in this example, by using part():
part(t*n,2)

returns n. This works regardless of the complexity of t or n, for example,
part((a*t+2)*(3*sin(n),2)

returns 3*sin(n).

(credit to Bhuvanesh Bhatt)

