[3.23] Use single bits as flags to save status information

Sometimes a program needs to save and change the status of several conditions. For example, we
may need to keep track of which operations the user has performed. If each of these operations
requires a lengthy calculation and the user has already performed the operation, we want to skip the
calculation. A typical method to accomplish this record-keeping is to use variables with boolean values
true and false. This is effective if there are only a few status items we need to modify and record, but it
becomes unwieldy if there are many items. If we had 30 status items, we would need to create and
initialize 30 separate variables. Each boolean variable requires three bytes of RAM storage, so our 30
status items would use 90 bytes.

A variable that is used to indicate the status of a condition is called a flag. We can use RAM more
efficiently if we save each status flag as a single bit in an integer. Since we will use the and, or, and xor
operators to manipulate the flags, we can have, at most, 32 flags in a single integer. If you need more
than 32 flags, you can use lists of integers. This method of using a single bit for a flag has these
advantages, compared to using a single true/false variable for each status item:

* Less RAM is used, if the program requires many status flags.

* Large groups of flags can be quickly initialized.

* Fewer variable names may be needed, since each group of flags has only one name, and the bits
are specified by a number.

* You can combine related status flags into single variables or lists, which makes it easier to
manipulate them.

* You can quickly perform status tests on groups of flags with a mask.

There are four basic operations we need to perform on flags: set a flag, clear a flag, invert the status of
a flag, and test to determine if a flag is set or cleared. While these operations can be performed most
efficiently with C or assembly programs, it is possible to code these operations in TIBasic, as these
four functions show:

Function Results
Set a bit: bitset(VarOrList,bit#) Set bit# in VarOrList to 1
Clear a bit: bitclr(VarOrList,bit#) Clear bit# in VarOrList to 0
Invert a bit: bitnot(VarOrList,bit#) Invert bit# in VarOrList: if bit# is 0, set it to 1; if 1, set it to zero
Test a bit: bittst(VarOrList,bit#) Return true if bit# in VarOrList is set, otherwise returnfalse.

For all four routines, VarOrList is a 32-bit integer variable or constant, or a list of 32-bit variables or
constants. bit# is the number of the bit to manipulate or test. Bits are numbered starting with zero, so
the bits in a 32-bit integer are numbered from zero to 31. Bit number 0 is the least significant bit, and
bit number 31 is the most significant bit.

The 89/92+ use a prefix convention to specify 32-bit integers. The two prefixes are '0b' and 'Oh'. '0b’
specifies a binary (base-2) integer consisting of digits 0 and 1. 'Oh’ specifies a hexadecimal (base-16)
integer consisting of digits 0 to 9 and A to F. If no prefix is used, the integer is represented as a
base-10 number.

To demonstrate the functions, suppose our program needs to keep track of eight status flags, which
we store in a variable called status. To clear all the flags, use

@>status
To set all the flags, use
@hFF>status

Note that | use the Oh prefix to indicate that FF is a hexadecimal (base-16) integer. You could also use
1

255-»status

since, in binary (base-2) representation, both numbers are Ob11111111.

Suppose that all the flags are cleared, or set to zero. To set bit 0, use
bitset(status,@)>status

then status would be, in binary, 0b00000001.

Next, suppose that status is 0b00000111. To clear bit 1, use
bitclr(status,l)>status

then status would be 0b00000101.

We may need to reverse the status of a flag, and bitnot() is used to do that. Suppose that status is
0b00000000, then

bitnot(status,7)>status
results in status = 0b10000000, and bit 7 has been changed from 0 to 1.

Our program will need to decide what actions to take if certain flags are set or cleared. To perform a
block of operations if flag 5 is set, use

if bittst(status,5) then
. {block}
endif

Or, to perform a block of operations if flag 7 is cleared, use

if not bittst(status,7) then
. {block}
endif

Note that the not operator is used to invert the result of bittst().

All the examples shown so far have used a single 32-bit integer to hold the status flags. If you need
more than 32 flags, you can use the same functions, but use a list of 32-bit integers instead of a single
integer. For example, if we need 96 flags, we would use a list of three integers. The following example
shows how to initialize such a list, then perform various operations on the flags in the list.

é.é1ear all the flags
{0,0,0}>stat]

o Set bit 22
bitset(statl,22)>statl

o Clear bit 87
bitclr(statl,87)>statl

© Execute {block} if bit 17 is set
if bittst(statl,17) then
...{block}...

endif

For the purposes of the functions, you can consider the flag list to be a single integer which is 32*n
bits, where n is the number of list elements. In reality, the flag bits are not numbered consecutively in
the list. The bit numbers start at the least significant bit of the first element, and end at the most
significant bit of the last element. For our example above, the bit numbers of the three integers are

{131]30]29...]2]1]0], |63|62|61|...|34|33]32], |95/94|93]...|66|65|64| }

We can simultaneously test several status flags by using a mask. A mask is simply an integer with
certain bits set or cleared, as needed to perform some desired operation. We will use the built-in
boolean operators and, or, xor and not to perform mask operations. For example, suppose we want to
execute a block of code if flags 0, 4 and 7 are all set. The mask to test these flags would be
0b10010001, and the code would look like this:

if status and 0bl10010001=0b10010GA1 then
. {block}
endif

The result of and-ing the mask with status will only equal the mask if the mask bits are set. This
method also provide more flexibility than the corresponding test with separate boolean variables,
because the mask can be a variable, which can be changed depending on program requirements.

We can also use masks to perform other manipulations and tests. First, these truth tables show the
operation of the built-in boolean operators.

a b aandb a b aorb a b axorb
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

You can use these truth tables to determine the mask values and boolean operators needed to
perform different tests and manipulations, as shown:

Description

Mask bit description

Operation

Example

Set a group of flags

0: the corresponding
flag bit is unchanged.
1: The corresponding
flag bit is set.

flags or mask

Set flags 2 and 3:
flags = 0b0001
mask = 0b1100
result = 0b1101

Clear a group of flags

0: the corresponding
flag bit is cleared.

1: the corresponding
flag bit is unchanged

flags and mask

Clear flags 0 and 3:
flags = 0b0111
mask = 0b1001
result = 0b0001

Invert a group of flags

0: the corresponding
flag bit is unchanged.
1: the corresponding
flag bit is inverted

flags xor mask

Invert flags 1 and 2:
flags = 0b0011
mask = 0b0110
result = 0b0101

Invert all the flags

(none)

not flags

flags = 0b1010
result = 0b0101

Return frue if all of a
group of flags are set

0: ignore the flag bit in
the test.
1: include the flag bit in
the test

flags and mask = mask

flags = 0b0111
mask = 0b0110
flags and mask =
0b0110

result = true

Return frue if any of a
group of flags are set

0: ignore the flag bit in
the test.
1: include the flag bit in
the test

flags and mask # 0

flags = 0b0101
mask = 0b0110
flags and mask =
0b0100

result = true

Masks can be used with lists of integers, as well as with individual integers. For example, suppose that
flags = {0b0110,0b1100} and mask = {0b1111,0b1000}, then

flags and mask = {Ob0110,0b1000}

All the previous examples have shown the bit number argument passed as a number. It may, of
course, be a variable instead, and you can improve program readability by choosing appropriate
variable names for the flags. As an example, suppose that we have a program which may or may not
calculate four sums, three limits and two integrals. We want to keep track of which operations have
been done. We need a total of 9 flags, so we can save them all in one integer. At a slight expense in
RAM usage, we can assign the flag numbers to variables like this:

@->sumlstat o©Status flag names for suml,
l->sum2stat ©...sum2,

2->sum3stat ©...sum3

3>sum4stat ©...and sum4

4-Timlstat
5-1im2stat
6>1im3stat
7>intlstat
8>int2stat

oStatus flag names for Timitl,
©...1imit2

©...and 1imit 3
oStatus flag names for integrall
©...and integral2

Now when we refer to one of the status flags, we use its name instead of the number, for example:

bitset(status,limlstat)>status

would set flag 4 in status. To test whether or not the second integral has been calculated, we would

use

if bittst(status,int2stat) then

{block}
endif

All four of the bit manipulation functions do some simple error checking:

* The flags argument must be an integer or a list of integers. Any other type will return an error
message.

* The bit number must be greater than -1, and one less than the total number of flags. If the flags
argument is an integer, the bit number must be less than 32.

The same error message is used regardless of which error occurs. The error message is a string of
the form "name() err", where name is the name of the function. Since one error message is used for all
errors, there is some ambiguity as to which condition caused the error. This is not a serious flaw,
because there are only two possible error causes. As usual, the calling routine can can use gettype() to
determine the type of the returned result; if it is a string, then an error occurred.

Some possible errors are not detected. If the flags are passed as a list, the type of the list elements are
not checked, that is, you must ensure that the list elements are integers. The functions do not
determine if the argument is an integer, only that it is a number. Both integers and floating-point
numbers have a type of "NUM", so the functons cannot distinguish between them.

A warning message is shown in the status line, when the bit number is 31 (for a single integer flag
argument), or is the most significant bit of an integer in a list argument. The warning message is
"Warning: operation requires and returns 32 bit value". This warning does not indicate a flaw in the
functions, nor does it affect the operation.

The code for the four bit manipulation functions is shown below, and some explanation follows the
listings.

Code for bitsef() - set a bit

bitset(x,b)

Func

o(wordOrList,bit#) set bit#
©l8may@l/dburkett@infinet.com

local k,msg,type
"bitset() err"smsg
gettype(x)>type

when(type="NUM" ,when(b<@ or b>31,msg,exact(x or 27b)),when(type="LIST",when(b<@
or b>32xdim(x)-1,msg,augment(left(x,k-1),augment({exact(x[k] or
27 (b-(k-1)*32))},right(x,dim(x)-k)))|k=1+intdiv(b,32)),msg))

EndFunc
Code for bitcin() - clear a bit

bitclr(x,b)

Func

o(wordOrList,bit#) clear bit#
©21may@l/dburkett@infinet.com

local k,msg,type

"bitclr() err">msg
gettype(x)>type

when(type="NUM",when(b<@ or b>31,msg,exact(x and not 272b)),when(type="LIST",
when(b<@ or b>32xdim(x)-1,msg,augment(Teft(x,k-1),augment({exact(x[k] and not
27 (b-(k-1)*32))},right(x,dim(x)-k)))|k=1+intdiv(b,32)),msg))

EndFunc

Code for bitnof() - invert a bit

bitnot(x,b)

Func

o(wordOrList,bit#) invert bit#
©21may@l/dburkett@infinet.com

local k,msg,type

"bitnot() err"smsg
gettype(x)>type

when(type="NUM" ,when(b<@ or b>31,msg,exact(x xor 27b)),when(type="LIST",when(b<@
or b>32xdim(x)-1,msg,augment(left(x,k-1),augment({exact(x[k] xor
27 (b-(k-1)*32))},right(x,dim(x)-k)))|k=1+intdiv(b,32)),msg))

EndFunc
Code for bittst() - test bit status

bittst(x,b)

Func

o(wordOrList,bit#) test bit#
©22may@l/dburkett@infinet.com

local k,msg,type
"bittst() err"smsg
gettype(x)>type

when(type="NUM" ,when(b<@ or b>31,msg,exact((x and 2”b)=0)),
when(type="LIST",when(b<@ or b>32*xdim(x)-1,msg,exact((x[k] and
27 (b-(k-1)*32))#0) | k=1+intdiv(b,32)),msg))

EndFunc

All of the calculation for each function is performed with a single nested when() function: even though
the listings above show three lines, each when() is a single TIBasic line. If the argument is a single
integer, the function tests the bit number argument to ensure that it is between 0 and 31, since an
integer has 31 bits. If the flags argument is a list, the functions test to ensure that the bit number
argument is greater than zero, and less than or equal to the total number of bits less one, which is
found by the expression 32*dim(x)-1.

For each function, a bit mask of the form 2’ is used to perform the required function. The bit mask is all
zeros except for a 1 in the bit number argument position. For example, if the bit number is 4, then the
bit mask is 0b10000. If the flags argument is a list, the bit mask is in the form 20132 which chooses
the correct bit (from 0 to 31) in list element k. The list element k is found from the expression
1+intdiv(b,32), where b is the bit number input argument. In either case, the desired bit is set, cleared
or inverted with a simple boolean expression:

bitset() uses x or 2°
bitclr() uses x and 2°
bitnot() uses x xor 2°

where x is the flags integer. From the boolean function truth tables shown above, you can verify that
these operations result in the desired effect for the different functions. Note that each boolean
operation is executed as the argument to exact(), which ensure proper results if the mode is set to
Auto or Approx when the function is called.

If the flags argument is a list, then bitset(), bitclr() and bitnot() use a nested augment() function to
assemble the original list elements, along with the changed element, into the returned list.

bittst() works a little differently, since it must return a frue or false result. bittst() uses the boolean
expression

exact((x and 27b)=0)

where x is the flags integer, and 2’ is the bit mask described above. This expression returns true if bit
number b is set, otherwise it returns false.

