
[3.29] Convert data variables to matrices

You can use the built-in NewData command to convert matrices to data variables, but there is no
complimentary command to convert data variables to matrices. This function does it:

datamat(mσ)
Func
©("name") convert data variable to matrix
©22dec01/dburkett@infinet.com

local mθ,k,l,d,dl

list▶mat(#mσ[1],1)→mθ © Convert first data column to matrix
rowdim(mθ)→d © Find row dimension

2→k © Loop through remaining data columns
loop
 #mσ[k]→l © Convert column to a list
 dim(l)→dl © Find row dimension
 if dl=0 then © Done when row dimension is zero
 exit
 elseif dl≠d then © Error if row lengths not equal;
 return "datamat() err" © return error string
 else © Augment current column to matrix
 augment(mθ,list▶mat(l,1))→mθ
 endif
 k+1→k © Process next column
endloop

mθ © Return matrix

EndFunc

This conversion is useful if you want to use functions on data variables, because data variables cannot
be passed as function arguments. Use datamat() to convert the data variable to a matrix, then execute
the desired function.

To convert a data variable mydata to a matrix, use

datamat("mydata")

Note that the name of the data variable is passed as a string.

The code is straightforward, but is somewhat complicated because we cannot find the number of
columns in a data variable. However, I use the fact that a data variable column can be extracted to a
list with

datavar[k]→list

and the dimension of list is zero if column k does not exist. This condition exits the loop.

The only error checking ensures that all the data variable columns have the same number of rows,
since this must be true for matrices. If the row dimensions are not equal, datamat() returns the string
"datamat() err" instead of the matrix. The calling program or function can use getType() on the result to
determine if an error occurred.

1

