[6.10] Exact solutions to cubic and quartic equations

The 89/92+ functions csolve() and czeros() will not always return exact solutions to cubic and quartic
equations. The routines cubic() and quartic() can be used to get the exact solutions.

cubic():

cubic(é,y)

Func

© cubic(p,v) Roots of cubic equ
p - cubic equ
v - independent var

Local p,r,q,U,a,b,u,v,w
If getType(é)#"EXPR":Return "p\cubic:arg must be a cubic eq"
p\coef(é,y)-u
If dim(u)#4:Return "p\cubic:arg must be a cubic eq"
string(cZeros(é,y))->w
If inString(w,".")=0 and wz"{}":Return expr(w)
uf21/Cal11)->p
uf31/(ul1])~>q
uf4l/Cal1l)>r
(3x%q-p~2)/3-a
(2%p~3-9%pxq+27%r)/27-b
(V(3%(4%ar3+27xb"2))-9xb) A (1/3)*x27(2/3)/(2x37(2/3))>w
If getType(w)="NUM" Then
If w=0 Then
If p=@ Then
-1-u
1->v
Else
g->u
g->v
EndIf
Else
w-a/(3*w)>u
w+a/ (3*w)>v
EndIf
Else
w-a/(3*w)->u
o+a/ (3*w)->v
EndIf
{o-p/3,-0/2+/(3)/2*i*B-p/3,-a/2-V(3)/2*%i*B-p/3,0=U,B=V,0=W}
oCopyright 1998,1999 Glenn E. Fisher
EndFunc

quartic():

quartic(pp,y)

Func

o quartic(p,v) Roots of 4th degree
© polynomial

© p - the polynomial

© v - variable

Local qq,u,0,r,d,e,y,j,k

If getType(y)#"VAR": Return "p\quartic:2nd arg must be a VAR"
p\coef(pp,y)-u

If dim(u)#5: Return "p\quartic:1st arg must be a 4th degree"”
cZeros(pp,y)-r

If inString(string(r),".")=0: Return r

u/(afl1]1)~u
yr3-ul3]xyr2+(uf41*xul2]-4*u[5])*y+4*a[3]1*ul[5]-ul4]1~2-ul2]1~2*ul[5]~>qq

p\cubic(qq,y)-U
p\evalrt(i)>u
gk
For j,1,dim(a)

If real(ualjl)=0lj] Then

j=k

Exit

EndIf
EndFor
ULkl-y
vul2lr2/4-ul3]+y)->r
If r=0 Then

V(3xu[2]122/4-2x0[3]+2*V/ (y*2-4*0u[5]))~>d
V(3xu[2]122/4-2x0[3]-2%/(y*2-4*xU[5]))~e
Else
V(3xu[2]172/4-rr2-2%0[3]+(4*0[2]*u[3]-8*U[4]1-U[2]173)/(4%*r))>d
V(3xu[2]172/4-r22-2%0[3]-(4*0u[2]1*u[3]-8*uU[4]1-U[2]173)/(4%*r))>e
EndIf
{-0[2]1/4+r/2+d/2,-0[2]/4+r/2-d/2,-ul2]/4-r/2+e/2,-U[2]/4-r/2-e/2}
EndFunc

coef():

coef(e,y)

Func

© coef(p,v) Make Tist of coefficents
p - polynomial

v - independent var

Local wu,é,i

If getType(y)#"VAR":Return "p\coef:2nd arg must be a VAR"
If inString(string(e),"=")>0 Then
left(e)->é

Else

e>é

EndIf
é|ly=0~ull]
13

Loop

d(é,y)->é

If getType(é)="NUM" and é=0:Exit
i+1-7

augment ({(é|y=0)/((i-1)1)},u)>u
EndLoop
u

EndFunc

evalrt():

evalrt(1)

Func

© evalRt(1s) Evaluate Roots
1s - 1list of roots

Local i,n,o0,s,f
If getType(1)#"LIST": Return "p\evalRt:Arg must be a LIST"
dim(1)->n
{}->0
g->f
For 1i,1,n

If inString(string(1[i]),"=")>0 Then

If f=0 Then

1[i]>s

1-f
Else
s and 1[i]>s
EndIf
Else
augment(o,{1[i]})-o0
EndIf
EndFor
If f=0 Then
0
Else
ols
EndIf
EndFunc

cubic() is used to solve cubic (third-order) equations, and quartic() solves 4th-order equations. coef()
and evalrt() are used by cubic() and quartic() to find the solutions. evalrt() can also be used on the
results from cubic() and quartic(), as described below, to expand the solutions.

All of these routines must be in the same folder, called p. The mode must be set to Auto, and not to
Exact or Approx. Set Complex format to Rectangular or Polar. To help prevent "Memory" errors, these
routines should be the only variables in the folder, and there should be no other variables in the folder.
These routines can take a long time to return the result.

The input to both cubic() and quartic() is a polynomial in x or z. The output is a list of the solutions.
For example,

cubic(x®*-12x%-15x+26,x) returns {2113}
quartic(z*-2z°-13z%+38z-24,2) returns {-4123}

The advantage of using cubic() and quartic() is that they return exact answers, which czeros() or
csolve() don't always do. For example,

czeros(x3-x+1,x)
returns

{-1.32472 0.662359 - .56228i 0.662359+.56228i}
while

cubic(x3-x+1,x)

returns a list with these solution elements:

a

_7a+ﬁ.g§-i
- B3
2 2 !

A
a=w+ 3.0
pro-35
5, 2
.36.273

_(-3(,/69-9))3 2% (9-/69) |
w = 12 + 1 .l

N| w|—

The first three elements are the solutions to the cubic polynomial. The last three elements define the
variable substitutions used in the solutions. This format reduces the size of the output list, and makes
the solutions more intelligible. The function evalrt() automatically applies these substitutions. evalrt() is
called with the solution list output from cubic(), with these results returned as a list:

wl=

2 1 1.2 1.5 2 1 1
33.23 (-3(/69-9))3-23 +[(9—./69)3-36-23 __ 3623] i
12 12 Eh
6-(9-./69) 2:(9-/69)3

((9—@)%-2%+2-3%]-6% ((—3-(@—9))%.2%—6]-3%.2%
— i

126-/69)3 129-/69)3

These solutions can be verified by substituting them back into the original polynomial.

For another example, try quartic(x*-x+1,x). The results are quite long, and not shown here. Since they
involve inverse trigonometric functions, they cannot be checked by substituting them into the original
polynomial. However, if they are substituted into the original polynomial and approximate results are
found, those results are zero to within machine precision.

If the polynomial to be solved has complex coefficients, you must specify that the argument variable is

complex with the underscore character " ", or the complex solutions will not be returned. For example,
solve the polynomial generated by

(x+2)-(x-3)-(x-7i)

which obviously has roots of -2, 3 and 7i. This expression expands to
X(x=3)(x+2)-7(x-3)(x+2)i

If you call cubic like this:

cUbIC(X*(x-3)*(x+2)-7*(x-3)*(x+2)*i,X)

then the returned solutions are {-2,3}: the complex solution of 7i is not returned. However, if cubic() is
properly called with the underscore, to indicate that x is complex, like this

cubic(x_*(x_-3)*(x_+2)-7*(x_-3)*(x_+2)*i,x_)
then the correct solutions of {-2, 3, 7i} are returned.
cubic() and quartic() first try to find an exact solution with czeros(). If an exact solution is not returned,
they use Cardano's formula to find the solutions. One reference which describes Cardano's formula is

the CRC Standard Mathematical Tables and Formula, 30th edition, Daniel Zwillinger, Editor-in-Chief.

(Contributor declines credit. Credit also to Glenn Fisher and Pini Fabrizio.)

