[6.12] Find faster numerical solutions for polynomials

As shown in tip [11.5], nsolve() is accurate and reliable in solving polynomial equations, but the speed
leaves something to be desired. This tip shows a way to find the solution faster. This method requires
that the equation to be solved is a polynomial, and that an estimating function can be found. This
estimating function must be a polynomial, as well.

The basic method is to replace nsolve() with a Tl Basic program that uses Newton's method, coupled
with an accurate estimating function. Further speed improvements are possible since you control the
accuracy of the solution.

The function is called fipoly(), and here is the code:

fipoly(clist,fguess,yval,yemax,yetype)
func

oFast inverse polynomial solver

©26 nov 99 dburkett@infinet.com

oFind x, given f(x)

oclist: list of polynomial coefficients
ofguess: 1ist of guess generating polynomial coefficients
oyval: point at which to find 'x'
eyemax: max error in 'y'

oyetype: "rel": yemax is relative error;

abs": yemax is absolute error.

local fd,dm,xg,yerr,n,erstr,nm

©Set maximum iterations & error string
30->nm
"fipoly iterations"serstr

oFind Tist of derivative coefficients
dim(clist)>dm
seq(clist[k]*x(dm-k),k,1,dm-1)>fd

oFind first guess and absolute error
polyeval(fguess,yval)->xg
polyeval(clist,xg)-yval->yerr

oLoop to find solution
@->n

X

if yetype="abs" then

while abs(yerr)>yemax
xg-(polyeval(clist,xg)-yval)/polyeval(fd,xg)->xg
polyeval(clist,xg)-yval->yerr
n+l-n
if n=nm:return erstr

endwhile

else

yerr/yval>yerr

while abs(yerr)>yemax
xg-(polyeval(clist,xg)-yval)/polyeval(fd,xg)->xg
(polyeval(clist,xg)-yval)/yval-yerr
n+l-n
if n=nm:return erstr

endwhile

endif
Xg
Endfunc



Again, this routine will only work if your function to be solved is a polynomial, and you can find a fairly
accurate estimating function for the solution. (If you can find a very accurate estimating function, you
don't need this routine at all!)

The function parameters are

clist List of coefficients for the polynomial that is to be solved.

fguess List of coefficients of the estimating (guess) polynomial

yval The point at which to solve for x

yemax The maximum desired y-error at the solution for x, must be >0

yetype A string that specifies whetheryemax is absolute error or relative error:
"abs" means absolute error
"rel" means relative error

fipoly() returns the solution as a numeric value, if it can find one. If it cannot find a solution, it returns
the string "fipoly iterations". If you call fipoly() from another program, that program can use gettype() to
detect the error, like this:

fipoly(...)>x

if getype(x)#"NUM" then
{handle error here}
endif

{otherwise proceed}

With fipoly(), you can specify the y-error yemax as either a relative or absolute error. If y, is the
approximate value and y is the actual value, then

absolute error = |y -yal relative error = | y—)}/a |

You will usually want to use the relative error, because this is the same as specifying the number of
significant digits. For example, if you specify a relative error of 0.0001, and the y-values are on the
order of 1000, then fipoly() will stop when the y-error is less than 0.1, giving you 4 significant digits in
the answer.

However, suppose you specify an absolute error of 1E-12, and the y-values are on the order of 1000
as above. In this case, fipoly() will try to find a solution to an accuracy in y of 1E-12, but the y-values
only have a resolution of 1E-10. fipoly() won't be able to do this, and will return the error message
instead of the answer.

As an example, I'll use the same gamma function approximation function from tip [11.5]. The function
to be solved is

y=a+bx+cx2 +dx3 +ex? +fx5+gx6 +hx” +ix8

where these coefficients are saved in a list variable called fclist:

a =4.44240042385 b =-10.1483412133 c = 13.4835814713
d =-11.0699337662 e =6.01503554007 f=-2.15531523837
g =0.494033458314 h =-.0656632350273 i = 0.00388944540448

Using curve fitting software for a PC, | found this estimating function:
x=p+qy+ry? +sy3 +ty4 +uy®

where these coefficients are saved in a variable called fglist:



p = -788.977246657 q = 3506.8808748 r=-6213.31596202
s = 5493.68334077 t =-2422.15013853 u = 425.883370029

So, to find x when y = 1.5, with a relative error of 1E-8, the function call looks like this:
fipoly(fclist,fglist,1.5,1E-8,"rel") which returns x = 2.6627...

Using the same test cases as in tip [11.5], the table below shows the execution times and errors in x
for various maximum y error limits, for both the relative and absolute error conditions.

"abs" mean "rel" mean
execution time, execution time,
yemax "abs" max x-error  "rel" max x-error sec sec
1EA1 3.03 E-2 3.03 E-2 0.70 0.72
1E-2 3.03 E-2 3.03 E-2 0.70 0.71
1E-3 6.56 E-3 6.56 E-3 0.90 0.92
1E-4 6.96 E-4 6.96 E-4 0.95 0.99
1E-5 1.74 E-5 1.74 E-5 1.12 1.15
1E-6 3.19 E-6 3.19 E-6 1.16 1.20
1E-7 2.82 E-6 3.21 E-7 1.23 1.30
1E-8 1.35 E-8 1.35 E-8 1.27 1.32
1E-9 6.67 E-10 6.67 E-10 1.30 1.33
1E-10 6.67 E-10 6.67 E-10 1.38 1.43
1E-11 6.67 E-10 5.84 E-10 1.41 1.45
1E-12 5.84 E-10 5.84 E-10 1.77 1.83

There is little point to setting the error tolerance to less than 1E-12, since the 89/92+ only use 14
significant digits for floating point numbers and calculations. For this function, we don't gain much by
setting the error limit to less than 1E-9.

Note that this program is much faster than using nsolve(): compare these execution times of about 1.3
seconds, to those of about 4 seconds in tip [11.5].

The code is straightforward. The variable nm is the maximum number of iterations that fipoly() will
execute to try to find a solution. It is set to 30, but this is higher than needed in almost all cases. If
Newton's method can find an answer at all, it can find it very quickly. However, | set nm to 30 so that it
will be more likely to return a solution if a poor estimating function is used.

| use separate loops to handle the relative and absolute error cases, because this runs a little faster
than using a single loop and testing for the type of error each loop pass.



