[6.24] Fast Fibonacci Numbers

The Fibonacci numbers are defined by this recurrence relation:

$$F_1 = 1$$
, $F_2 = 1$, $F_{n+2} = F_n + F_{n+1}$

This formula can be used to find the nth Fibonacci number:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

However, the 89/92+ cannot use this formula for large n, because the CAS cannot simplify the result. Finding the numbers with a TI Basic program in recursion is quite slow, and limits n to about 255. However, this function can find Fibonacci numbers for large n:

Define
$$fib(n)=([[1,1][1,\emptyset]]^{(n-1)}[1,1]$$

(Credit to Alex Astashyn)