
[6.27] Find Bernoulli numbers and polynomials

[Note: since this tip was written, Bhuvanesh Bhatt has also written a function to find both Bernoulli
numbers and polynomials. Bhuvanesh' function is smaller and handles complex arguments. You can
get it at his site (see the "More Resources - Web sites" section for the URL), and at ticalc.org. Also, M.
Daveluy has written a Bernoulli number function, which can be found at ti-cas.org.]

Bernoulli numbers are generated from the Benoulli polynomials evaluated at zero. Bernoulli
polynomials are defined by the generating function

text

et−1 = ✟n=0
∞ Bn(x) tn

n!

Bernoulli polynomials can also be defined recursively by

[1]B0(x) = 1

[2]d
dx Bn(x) = nBn−1(x)

for [3]¶0
1 Bn(x)dx = 0 n m 1

The first few Bernoulli polynomials are

B0(x) = 1 B3(x) = 2x3−3x2+x
2

B1(x) = 2x−1
2 B4(x) = 30x4−60x3+30x2−1

30

B2(x) = 6x2−6x+1
6 B5(x) = 6x5−15x4+10x3−x

6

The nth Bernoulli number is denoted as Bn. The Bernoulli numbers can be defined by the generating
function

t
et−1 = ✟n=0

∞ Bn
tn

n!

or, as mentioned above, by evaluating Bn(0). However, a faster method to find Bernoulli numbers on
the 89/92+ uses this identity:

✛(2n) =
(−1)n−1

B2n(2✜)2n

2(2n)!

The notation 2n is used since this identity is only true for even integers.   is the Riemann Zeta✛(n)
function,

✛(n) = ✟k=1
∞ 1

kn

Bernoulli numbers for odd n > 1 are zero. The first few non-zero Bernoulli numbers are

B0 = 1 B1 = -1/2 B2 = 1/6 B4 = -1/30 B6 = 1/42
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It turns out that the 89/92+ can evaluate   very quickly for even n, which is what we need. Solving✛(n)
the identity above for B2n gives

B2n = 2✛(2n)$(2n)!
(−1)n−1(2✜)2n

This function returns the Bernoulli number Bn:

bn(n)
Func
©Bernoulli number Bn
©21jun00/dburkett@infinet.com

if n=0:return 1
if n=1:return ⁻1/2
if n<0:return undef
if fpart(n/2)≠0:return 0

(Σ(z^⁻n,z,1,∞)*2*n!)/(((⁻1)^(n/2-1))*(2�)^n)

EndFunc

The first three executable lines handle the special cases for B0 = 1, B1 = -1/2 and Bn undefined when
n<0. The fourth line returns zero for odd n where n>1. Note that the expression to find Bn has been
transformed from an expression in 2n to an expression in n.

Finding the Bernoulli polynomials is a little more complicated, but can still be done on the 89/92+. The
program uses the recursive definition given above in equations [1], [2] and [3]. First, take the
antiderivative of equation [2] to find

Bn(x) = ¶nBn−1(x)dx

Since these integrals are simple polynomials, the 89/92+ can easily find the symbolic integral. I use the
definite integral of equation [3] to find the constant of integration:

ff1 = ¶nBn(x)dx

ff2 = ff1 − ¶0
1 ff1(x)dx

To find the nth Bernoulli polynomial requires finding all the (n-1) previous polynomials, so this is   
time-consuming for higher-order polynomials. For this reason I wrote two different versions of
programs to find the Bernoulli polynomials. One version is a function which returns a single polynomial
of the order specified by the function argument. The second version builds a table of the polynomials
up to a specified order. Individual polynomials can be quickly retrieved from this table by another
function.

bnpolys(n) returns a single Bernoulli polynomial of order n as a function of x:

bnpolys(n)
Func
©(n) return Bernoulli polynomial of order n
©27jun00/dburkett@infinet.com

local k,f,g

x-1/2→f
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if n=1:return f

for k,2,n
 ·(k*f,x)→g
 g-·(g,x,0,1)→f
endfor

return f

EndFunc

bnpolys() may not return the polynomial in the form you want. For example, bnpolys(3) returns

x(2x2−3x+1)
2

Use expand() to convert this result to x3 − 3x2

2 + x
2

or use comdenom() to get 2x3−3x2+x
2

bnpolys() slows down for large arguments. For example, bnpolys(20) takes about 22 seconds on my
HW2 92+ with AMS 2.04, and bnpolys(50) takes about 160 seconds. This long execution time occurs
because bnpolys() must calculate all the polynomials of order n-1, to return the polynomial of order n. If
you frequently use higher-order polynomials, it is worthwhile to build a table in advance, then use a
simple routine that just recalls the appropriate polynomial.

These routines perform those functions. bnpoly() builds the list of polynomials, and bpo() is a function
that returns a given polynomial, after bnpoly() is run.

First, use bnpoly() to build the list of polynomials:

bnpoly(nxx)
prgm
©(n) Fill Bernoulli polynomial list bpoly[] up to n.
©1jul00/dburkett@infinet.com
©Save polynomials in list bpoly[].

local k,k1,k2,bpdim,ff1,usermode,choice

©Save user's mode; set modes
getmode("all")→usermode
setmode({"Complex Format","Real","Vector
Format","Rectangular","Exact/Approx","Exact","Pretty Print","Off"})

©If bpoly[] exists unarchive it, else create it & initialize it.
if gettype(spfn\bpoly)="NONE" then
 newlist(1)→spfn\bpoly
 x-1/2→spfn\bpoly[1]
else
 unarchiv(spfn\bpoly)
endif

dim(spfn\bpoly)→bpdim
clrio

©Loop to derive Bernoulli polynomials
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if nxx>bpdim then
 augment(spfn\bpoly,newlist(nxx-bpdim))→spfn\bpoly
 for k,bpdim+1,nxx
  ·(k*spfn\bpoly[k-1],x)→ff1
  ff1-·(ff1,x,0,1)→spfn\bpoly[k]
  disp k
  disp spfn\bpoly[k]
 endfor
endif

©Prompt to archive bpoly[]
1→choice
dialog
 title "BNPOLY"
 dropdown "Archive polynomial list?",{"yes","no"},choice
enddlog

if ok=1 and choice=1 then
 archive spfn\bpoly
endif

©Restore user's modes
setmode(usermode)
clrio
disphome

Endprgm

Then, use bpo() to recall a particular polynomial:

bpo(kk)
func
©(k) Bernoulli polynomial Bk
©1jul00/dburkett@infinet.com
©Generates "Domain error" if kk>dim(bpoly)

if kk<0:return "bpo arg error"

when(kk=0,1,spfn\bpoly[kk])

Endfunc

These routines must both be installed in a folder called \spfn. The list of Bernoulli polynomials will be
created in this same folder. To create a list of polynomials, execute

bnpoly(n)

where n is the highest-order polynomial you expect to use. For example, if you use polynomials up to
the 20th order, then use bnpoly(20). If you later need higher-order polynomials, just run bnpoly() again,
and it will append the additional polynomials to the list.

As bnpoly() creates the polynomials, it displays them in the program I/O screen. After all the
polynomials are created, a dialog box is shown with the prompt

Archive polynomial list?

Answer 'yes' to archive the list in flash memory, or 'no' to leave it in RAM. I provide this option because
the list is large for high order polynomials, and there is no advantage to having it in RAM. If you later
increase the size of the list, bnpoly() will unarchive it for you.
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This table gives you some idea of the memory required for tables of various orders of polynomial. The
size is in bytes with the list archived. The size of the last polynomial in the list is also shown

Size of bpoly[] and last polynomial

1,60961,327100
96728,58175
52710,52550
2643,37030
1551,46320
7140010

Last polynomial
size (bytes

Total list
size (bytes)

Polynomial
order

Since the maximum size of an 89/92+ variable is about 64K, the maximum order that can be saved is
about 100.

Operation of bpo() is simple: just call bpo(k), where k is  the the order of the polynomial to return. For
example, if bnpoly() was executed to create a list of polynomials up to order 30, then to return the 10-th
order polynomial, use

bpo(30)

bpo() does two things, beyond simply returning the polynomial in bpoly[k]. First, it returns an error
message if k<0. Second, it returns 1 for k=0, since B0(x) is 1, and B0(x) is not stored in bpoly[].

I would usually include a test to ensure that k is less than the list size, like this:

if kk<0 or kk>dim(spfn\bpoly): return "bpo arg error"

However, it turns out that the 89/92+ are extremely slow to find the dimension of lists with large
elements, even if the lists have few elements. For example, if the bpoly[] has 70 polynomials, its size is
about 24000 bytes, and dim(spfn\bpoly) takes over 30 seconds to return the dimension of 70! If
bpoly[] has 100 elements, dim(bpoly) takes 5 seconds to fail with a "Memory" error message.

This explains the long delay when bnpoly() is used to add polynomials to lists that are already of high
order.

One potential work-around to this problem would be to use the try...else...endtry condtional test
to trap the error, but functions cannot use try...endtry!

So, rather than do a proper test for a valid input argument, I accept that fact that bpo() will not fail
gracefully, in return for fast execution times for proper arguments.

For more information on Bernoulli numbers and polynomials, these references may be helpful:
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Handbook of Mathematical Functions, Milton Abramowitz and Irene A. Stegun, Dover, 1965. This
reference defines the Bernoulli numbers and polynomials, has a very complete table of properties, and
also tables of the polynomials and numbers. Various applications are shown throughout the book
where relevant.

Numerical Methods for Scientists and Engineers, R.W. Hamming, Dover, 1962. Hamming shows
another method to generate the Bernoulli numbers using a summation (p190). 

Ada and the first computer, Eugene Eric Kim and Betty Alexandra Toole, Scientific American
magazine, May 1999. This very interesting article describes a program written in 1843, by Ada,
countess of Lovelace, for Charles Babbage's Analytical Engine. The purpose of the program was to
calculate the Bernoulli numbers. The analytical engine, a mechanical computer, was never completed,
as the British government didn't fund it adequately, and Babbage kept revising the design.

These web sites are also interesting:

http://www.treasure-troves.com/math/BernoulliNumber.html
This site describes the derivation and basic properties of the Bernoulli numbers and polynomials.

http://venus.mathsoft.com/asolve/constant/apery/brnlli.html
This site shows the expression for the tangent function, as a function of the Bernoulli number.

http://www-history.mcs.st-andrews.ac.uk/~history/Mathematicians/Bernoulli_Jacob.html
This site has a very nice biography of Jacob Bernoulli, who was the particular Bernoulli responsible for
the Bernoulli numbers and polynomials.

6


