
[6.3] Improving floating-point solutions to simultaneous equations

Round-off errors in matrix calculations can create errors larger than you might expect when finding
solutions to simultaneous equations with simult(). The closer the matrix is to being singular, the worse
the error becomes. In many cases this error can be reduced, as follows.

Suppose we want to find the solution vector x in

[1]A $ x = b

We would use

simult(A,b)→x

However, because of round-off error, this function really returns x with an error of dx, which results in b
being in error by db, or

[2]A $ (x + dx) = b + db

Subtracting [1] from [2], we get

[3]A $ dx = db

Solve [2] for db, and substitute into [3] to get

[4]A $ dx = A $ (x + dx) − b

Since we know everything on the right-hand side of [4], we can solve [4] for dx:

[5]dx = A−1 $A $ (x + dx) − b

So, if we subtract dx from the original solution (x+dx), we get a better estimate of the real solution x.

Usually, equation [5] is evaluated in double precision, with the intent of getting results that are at least
accurate to single precision. Even though the 89/92+ do not have double precision arithmetic, this
process still results in some improvement. It is also common to apply the improvement process several
times, to ensure convergence and to find an optimal solution. However, the limited precision of the
89/92+ usually prevent this type of repetitive improvment. Repeating the improvement process results
in a solution with more error.

Here is a function that returns the improved solution:

simulti(A,b)
func
local x

simult(A,b)→x
x-(A^⁻1*(A*x-b))

Endfunc

As an example, consider using simulti() to find the coefficients for the Langrangian interpolating
polynomial. This is just the polynomial that fits through the given points. A polynomial of degree n-1 can
be fit through n points. This function returns the coefficients as a list, given the x-y point coordinates in
a matrix:

1

polyfiti(xyd)
func
©Find coefficients of nth-order polynomial, given n+1 xy points
© 18mar00/dburkett@infinet.com

local a,k,n,xd

rowdim(xyd)→n

seq(k,k,n-1,0,⁻1)→a
seq(mat▶list(submat(xyd,1,1,n,1))[k]^a,k,1,n)→a

mat▶list(simulti(a,submat(xyd,1,2,n,2)))

Endfunc

This table shows the results of the fit for fitting a function with and without improvement. The function is
f(x) = tan(x), x in radians. x ranges from 0.4 to 1.4, with data points every 0.1 radians. This means that
11 points were fit to a 10th-order polynomial.

Without improvement: RMS residual: 3.5E-8
Maximum residual: 3.5E-6
Minimum residual: 3.4E-10

With improvement: RMS residual: 7.4E-11
Maximum residual: 5.9E-9
Minimum residual: -7.8E-10

The residual is the difference between the actual b-values and the calculated b-values. The RMS
residual is a deviation measurement of all the residuals, and the minimum and maximum residuals are
the most extreme residuals for all the fit points.

For this function and data, the improvement results in several orders of magnitude in both the RMS
residuals and the extreme residuals. Without the improvement, the calculated results are only accurate
to about five significant digits. With the improvement, the results are accurate to at least 8 significant
digits.

2

