[6.35] Cumulative normal distribution and inverse

The cumulative normal (or Gaussian) distribution is defined as

(t-m)2
e 202 dt [1]

- -1 (x

Pr[XSX} —p(X)_ am j—w
where m is the mean and +2is the variance, soc is the standard deviation. In other words, this integral
is the area under the probability function to the left of x. This is also sometimes called the 'lower tail' of

the distribution. When the mean is 0 and the variance is 1, this is called the standard cumulative
normal distribution.

You can find the cumulative normal distribution by integrating equation [1] with the nint() function. The
function below, cndint(), does this.

cndint(x,m,s)

Func

©(x,mean,std dev) find CND with integration
©29o0ct@@/dburkett@infinet.com
1/(sx/(2*%n))*nint(er(-.5%((t-m)/s)*2),t,-o,X)
Endfunc

For x = 0, mean = 0 and standard deviation = 1, cndint() returns the probability p = 0.49999999952549
in about 7.5 seconds on a HW2 92+ with AMS 2.05. The answer should be p = 0.5. For x = 6, mean =
0 and standard deviation = 1, cndint() returns p = 0.99999999853883 in about 10.5 seconds. This

answer is in error by about -5E-10. We can write functions that are much faster and somewhat more
accurate.

It turns out that the cumulative normal distribution (called CND from now on) can be found efficiently
with the error function erf(x). First, this identity relates the standard CND to the general CND:
PriX <x} =P(Xg1) [2]

where P(x) is the standard CND. This converts a distribution with mean m and standard deviations to
the standard CND. Next, this identity relates P(x) to erf(x):

erf(x) =2-P(x,/2)-1 (3]

which can be solved for
X
e”(2 J”
2

This can be combined with [2] to yield a simple function to find the general CND, like this:

p(x) = (4]

cnd(x,m,s)

func

©(x,m,s) find cum norm dist at x, mean m, std dev s

©oFind cumulative distribution at x, with mean m and standard deviation s
odburkett@infinet.com 8jun@d@

(erf(((x-m)/s)/1.4142135623731)+1)/2

Endfunc

This function calls erf(), described in tip [6.34], which must be in the same folder as cnd(). That folder
must be the current folder.

As an example, find the standard cumulative normal distribution for x = 1:
cnd(1,0,1) returns 0.841345

To find the cumulative normal distribution for at x = 12, for a distribution with a mean of 10 and a
standard deviation of 2.5, use

cnd(12,10,2.5) which returns 0.788145

For some problems you need the 'upper tail' distribution, which is the area to the right of the sample, or
the probability that the random variable is greater than some x. This can be found with cnd(), as
expected: just use 1 - cnd(). For example, to find the upper tail normal distribution for x =2, mean =0
and standard deviation = 1, use

1-cnd(2,0,1) which returns 0.0227501319482

For some other problems, you might need to find the probability that the random variable is between
two limits x1 and x2, where x2 > x1. In this case, use

cnd(x2,m,s) - cnd(x1l,m,s)

where m is the mean and s is the standard deviation. For example, to find the probability that the
random variable is between 1.6 and 2.2, for a distribution with mean = 2 and standard deviation = 0.5,
use

cnd(2.2,2,.5) - cnd(1.6,2,.5) which returns 0.443566

For real problems, the mean and standard deviation will probably have more digits, and you can save a
little typing by entering this example like this, instead:

cnd(2.2,m,s)-cnd(1.6,m,s)|m=2 and s=.5

The CND function is available in the free TI Statistics and List Editor (SLE) flash application. However,
if you don't need all the additional functions that the SLE includes, you may prefer to use these two
simple functions, instead of filling up your flash memory with the 300K SLE. In addition, the function
shown here is more accurate than that included in the SLE application. For the upper-tail distribution
with x = 2, mean = 0 and standard deviation = 2,the SLE returns a result of .022750062014, which is in
error by about 8E-8.

It is occasionally necessary to find the inverse of distribution function, that is, to find the value of the
random variable x, given a probability, a mean and a standard deviation. There is no closed-form
solution to this problem. One possiblity is to use the built-in nSolve() function with cnd(). For example,
suppose you know that the distribution has a mean of 7, a standard deviation of 1. What is the value of
the random variable x for which the probability is 0.27 Use nSolve() like this:

nSolve(cnd(x,7,1)=0.2,x)

which returns x = 6.158379 in about 19 seconds on a HW2 92+.. You can (and should) check this
solution with

cnd(6.158379,7,1) which returns 0.2, as hoped.

The execution time can be considerably reduced by providing nSolve() with a good initial guess for the
value of x. If the initial guess is good enough, we don't need to use nSolve() at all, and the result is
returned very quickly.

For the standard CND, with mean = 0 and standard deviation = 1, Odeh and Evans give this estimating
function for x, for a given probability p:

and

e s . Patt+patd+pot?4ptipg [T 20 < p <
xp =f(t) =t+ Q43030 ot2+q 1 thag and t=,/-2In(p) and 10 p<0.5 [5]

po = -0.32223 24310 88 do = 0.09934 84626 060
pi1=-1.0 g+ = 0.58858 15704 95

p2 = -0.34224 20885 47 g2 = 0.53110 34623 66

ps =-0.02042 31202 45 gs = 0.10353 77528 50

ps = -0.45364 22101 48 E-4 g4 = 0.38560 70063 4 E-2

For the general case in with mean m and standard deviation s, we have

xp =s-f(t)+m [6]

using the identity in equation [2]. Finally, we use the symmetry of the normal distribution about the
mean to account for p> 0.5, like this:

xp =[sgn(p -0.5)][s - ()] +m [7]

Here, sgn(x) is a 'sign' function such that

U-1forx<0 O
Sg”“"% Tforx>0 o [8]

We cannot use the built-in sign() function, because it returns the expression 'sign(0)' for x=0, and we
want 1. This is fixed with a when() function:

sgn(x) = when(x#0,sign(x),1)

The function shown below, cndif(), implements the algorithm just described to find the inverse of the
cumulative distribution function.

cndif(p,m,s)

func

o(probability,mean,std dev) inverse CND
©Inverse cumulative normal distribution
oReturns x with probability that X<x
oFast version.
©29o0ct@@/dburkett@infinet.com

local r,t

p>r
if p>.5:1-r>r
V(-2%Tn(r))->t

when(p=.5,sign(p-.5),1)*s*x(t+(polyeval ({-.453642210148¢e-4,-.204231210245e-1,-.34
2242088547 ,-1,-.322232431088} ,t)/polyeval ({.38560700634€c-2,.10353775285,.5311034
62366, .588581570495,.99348462606€-1},t)))+m

Endfunc

For example, find x with a probability of 0.25, for a distribution with mean = 20 and standard deviation =
0.15:

cndif(.25,20,.15) returns x = 19.898826537593
We can check this answer with cnd():
cnd(19.898826537593,20,.15) returns p = 0.25000000025933

cndif() is fast, since it simply uses two polyeval() functions to calculate the estimating rational
polynomial. The reference for Odeh and Evans' estimating function claims about 7 significant digits of
accuracy. If you need more accuracy than this, you can use this function, cndi():

cndi(p,m,s)

func

o(probability,mean,std dev) inverse CND
©Inverse cumulative normal distribution
oReturns x with p=probability that X<x
©Accurate, slow version.
©29o0ct@@/dburkett@infinet.com

local r,t

p>r
if p>.5:1-r>r
V(-2%In(r))>t

when(p<.999999713348,nsolve(cnd(x,m,s)=p,x=when(p#.5,sign(p-.5),1)*sx(t+(polyeva
1({-.453642210148e-4,-.204231210245e-1,-.342242088547,-1,-.322232431088},t)/poly
eval({.38560700634€-2,.10353775285,.531103462366, .588581570495,.99348462606€-1},
t)))+m),when(p#.5,sign(p-.5),1)*s*(t+(polyeval({-.453642210148c-4,-.204231210245
E-1,-.342242088547,-1,-.322232431088},t)/polyeval({.38560700634e-2,.10353775285,
.531103462366,.588581570495,.99348462606€-1},t)))+m)

Endfunc

cndi() uses nSolve() to find x, with an initial guess found by Odeh & Evans' expression. However, if p >
0.999999713348, cndi() just uses Odeh & Evan's expression. This value of p corresponds to a
standard deviation of 5. Above this limit, nSolve() does not improve the accuracy, and takes much
longer.

cndi() typically executes in a few seconds. While not extremely impressive, this is faster than simply
using nSolve() with no initial guess.

These are the references | used to develop the functions:

Handbook of Mathematical Functions, Abramowitz and Stegun, Dover, 1965. The standard normal
probability distribution, and the transformation to the general normal distribution, are described on

p931. The relation to the error function is shown on p934.

Statistical Computing, Kennedy and Gentle, Marcel Dekker, 1980. Odeh and Evans' approximation for
the inverse cumulative normal distribution is shown on p95.

