[6.40] Write functions with multiple input argument types

Many built-in functions operate on numbers, expressions and lists. For example,

sin(a) returns sin(a)
sin(.2) returns 3.1987
sin({0@,.2}) returns {0, 0.1987}

This is very convenient in that you can use a single function to handle various argument types. You
can accomplish this convenience with your own functions, as shown in this demonstration function:

fldemo(xx)

Func

oDemo program to evaluate function of expression, 1ist or matrix.
©29mar@l/dburkett@infinet.com

local fl1,xxt,j,k,r,xxr,xxc

oDefine the function to evaluate
define fl(x)=func

Tn(x)
endfunc

oGet the input argument type
gettype(xx)->xxt

oEvaluate the function
if xxt="NUM" or xxt="EXPR" or xxt="VAR" then
return f1l(xx)
elseif xxt="LIST" then
return seq(fl(xx[j1),j,1,dim(xx))
elseif xxt="MAT" then
rowdim(xx)->xxr
coldim(xx)>xxc
newmat (xxr,xxc)->r
for j,1,xxr
for k,1,xxc
f1(xx[j,k1)>r[J, k]
endfor
endfor
return r
else
return "fldemo: type error"
endif

EndFunc

This function accepts arguments that may be expressions, numbers, lists or matrices. If the argument
is a list or matrix, the function is applied to each element. The function to be evaluated is defined as a
local function f1(); as an example, | use the In() function. Your functions will probably be more
complicated.

The argument type is determined and saved in variable xxt. If the argument is a number, expression or
variable name, the argument is evaluated by the function and returned. If the argument is a list, the
seq() function is used to evaluate each list element, and return the results as a list. If the argument is a
matrix, two nested For ... EndFor loops are used to evaluate the function of each matrix element, and
the matrix is returned.

If the argument type is not supported, f1demo() returns the text string "f1demo: type error”. The calling
program can test the type of the returned result and determine if an error occurred.



