[7.23] Passing user function names as program/function arguments

You cannot directly pass user functions as arguments to programs or functions, because the 89/92+
will try to evaluate them when the function is called. Many routines require a function as an input.

The general method is to pass the function name as a string. The called function then evaluates the
function using either expr() or indirection.

Using expr()

To pass a function successfully, pass the name and argument variable (or variables) as a string, like
this:

t("FLI(x)","x")

where f1(x) is the function to be evaluated, and x is the function argument variable. To evaluate this
function in program {(), build a string and evaluate the string with expr(). We want a string of the form

f1(x)|x=xval
where xval is the value at with to evaluate the function. So, the complete program looks like this:

t(fxx,xx)

Prgm

local xval,result

-10-xval
expr(fxx&"|"&xx&"="&string(xval))>result
EndPrgm

Usually the function must be evaluated several times, and there is no need to build the entire string
expression each time. Avoid this by saving most of the expression as a local variable:

t(fxx,xx)

Prgm

local xval,result,fstring
fxx&"|"&xx&"=">fstring

10->xval
expr(fstring&string(xval))->result
EndPrgm

Most of the string is saved in local variable fstring, which is then used in expr().

t() can be be a function or a program.

Using indirection

Instead of using expr(), you can use indirection. The function name must still be passed as a string, but
the parameters can be passed as simple expressions. For example, suppose we have a function £3()
that we want to evaluate from function t1(). t3() looks like this:

t3(xx1,xx2)
Func

if xx1<@ then

return -1
else

return xx1l*xx2
endif



EndFunc

This is the calling routine routine t1():

tl1(fname,x1,x2)
Func

f#fname(x1,x2)

EndFunc
Then, to run t1() with function £3(), use this call:
t1("t3",2,3)

which returns 6.

When passing just the function name DOES work:

Sometimes you can pass the function and variable, and it will work. For example, suppose we use the
call

t(f1(x),x)
with this program

t(fxx,xx)

Prgm

local xval,result
10->xval
fxx|xx=xval>result
EndPrgm

In this case, the calculator will try to evaluate f1(x) when t() is called. If x is undefined, f1() will be
symbolically evaluated (if possible) with the variable x. This expression is then passed as fxx. Later in
the line fxx|xx=..., the symbolic expression is evaluated. For example, suppose that f1(x) is defined as

f1(x)
Func
2*%x-3
EndFunc

so, the first evaluation (when {() is called) results in fxx = 2*x-3, which is then correctly evaluated later.
However, if the function performs a conditional test on x, the program will fail. For example, if we have

f1(x)

Func

if x>0 then
2*%x-3
else

2% X+3
endif
EndFunc

the value of x is not defined at the time of the {(fxx,xx) call, so the program fails with the error message
A test did not resolve to TRUE or FALSE.



(credit for indirection method to Eric Kobrin)



