[7.4] Return error codes as strings

It is good programming practice, and it will save you and your user lots of grief, if you write your
programs to return an error code if the program cannot run normally. As a simple example, consider a
function that finds the reciprocal of the argument:

recip(x)
func
return 1/x
endfunc

If x=0, this function will return undef, which doesn't tell the user what went wrong. Also, if this function
is called deep within a series of function calls, it can be difficult to determine just what caused the error.

This is a better method:

recip(x)
func
if x=0 then
return "bad arg in recip"
else
return 1/x
endif
endfunc

Now the program checks for a valid argument before attempting the calculation. If the calculation can't
be done, recip() returns a string instead of a number. The calling routine can use GetType() on the
result to determine if an error occurred, and handle it appropriately. The returned string can be used as
the error message displayed to the user, which tells him what went wrong (bad argument) and where it
went wrong (recip).

This method fails if the function is designed to return a string instead of a number. In that case you
may be able to use special coded strings for the error message. For example, suppose we have a
routine that is supposed to build a string from two arguments:

stringit(a,b)

func

if dim(a)=0 or dim(b)=0 then
return ""bad arg in stringit"

else
return ad&b

endif

endfunc

stringit() is supposed to return a concatenated with b, but only if both arguments have one or more
characters. If this is not true, then stringit() returns an error message, the first character of which is the
89/92+ comment symbol, character 169. In this case, the calling routine checks the first character of
the result to see if it is character 169. If so, the error is handled.

This method assumes that the strings will not start with character 169.



