[7.7] Use return instead of stop in programs for better flexibility, and to avoid a crash
Note: this bug has been fixed in AMS 2.05. stop now works correctly in archived programs

The stop instruction stops program execution. The return instruction, used without an argument, also
effectively stops program execution. It is better to use return instead of stop for two reasons. First, it
makes your programs more flexible. Second, under certain circumstances, stop can cause a crash that
can be fixed only by resetting the calculator.

The improved flexibility comes about if you call one program from another program. For example,
suppose you wrote a program called app1() which does something useful. Later, you decide it would
be helpful to call app1() from another program. If you use stop in app1(), execution stops when app1()
is finished, when you really want to return to the calling application.

Further, using stop instead of return can cause a calculator crash. The effect of this bug is to lock up
the TI192 so that it does not handle keypresses and must be reset. | have only verified this bug on my
T192 with the Plus module installed, ROM version 1.05.

The bug occurs when an archived program containing the stop instruction is executed with the expr()
instruction. To duplicate the bug, create this program in the \main folder:

stopit()
prgm
stop
endprgm

Archive stopit(), then, at the command line, enter
expr("stopit()") [ENTERI]

The BUSY annunciator in the LCD turns on and does not turn off. Keys seem to be recognized, but not
handled. For example, pressing [green diamond] will toggle the 'diamond' annunciator, and pressing
[2nd] will toggle the '2nd’ annunciator. However, neither [green diamond][ON] nor [2nd][ON] will turn
the calculator off. Pressing [ON] to break the program doesn't work, either. The calculator must be
reset with [2nd][hand] + [ON].

This bug does not occur if return is used instead of stop.

The bug also occurs if expr() is used in a program, to execute the archived program containing the
stop instruction. For example, this program

stoptry()

prgm
expr("stopit()")
endprgm

will also cause the bug, but only if stopit() is archived.
The bug will not occur if the program containing the stop instruction is not archived.
Note that the bug also occurs if stopit() is called indirectly using expr(), like this:

appl()

prgm
expr("stoptry()")
endprgm



stoptry()
prgm
stopit()
endprgm

stopit()
prgm
stop
endprgm

In this case, app1() is not archived, but stoptry() and stopit() are archived, and the bug occurs. And, in
this case, stopit() is not called with expr(), but the routine that calls stopit() does use expr().

This bug is annoying because it can prevent you from implementing desired program operation. | have
a complex application that uses an 'exit' program to clean up before the user quits the program.
Clean-up includes deleting global variables, resetting the user's mode settings, and restoring the
current folder at the time the application was called. This 'exit' routine is called from the application
mainline, so | would like to use the sfop instruction to terminate operation. There are several obvious
solutions:

1. Leave the 'exit' routine unarchived. This consumes RAM for which | have better uses.

2. Call the 'exit' routine directly, without expr(). This prevents me from using an application
launcher | wrote to manage my apps.

3. Archive most of the exit program, but put the final stop instruction in its own, unarchived
program which is called by the exit program. While this seems like an acceptable work-around,
it should not be necessary.

4. Call the 'exit' routine as usual, but use return instead of stop to terminate program operation.



