[7.8] Return program results to home screen

A TI-89/TI-92 Plus function can return a result to the command line, but a program usually cannot.
However, there are two methods to get around this limitation.

Method 1: Samuel Stearly's copyto_h():

Samuel Stearly has written an ASM program that copies program results to the home screen. For the
latest version, search for copyto_h on ticalc.org. The call syntax for copyto_h() is

copyto_h([name1[,name2]])

namel and name?2 are variable name strings. If no arguments are passed, copyto_h() displays the call
syntax in the status line. If namel is passed, the contents of namel are copied to the entry and
answer areas of the home screen. If namel and name2 are passed, the contents of namel and name?2
are copied to the entry and answer areas, respectively. This feature provides a very convenient way to
label multiple results. namel and name2 may include a folder specification. This simple test routine
demonstrates the usage:

t()
Prgm
local v1,v2,v3,v4,v5

1.224-v1

"Label 1"-»>v2
2.222-v3
"expression"-v4
atb/c-v5

util\copyto_h("v1")
util\copyto_h("v2","v3")
util\copyto_h("v4", "v5")

EndPrgm

For this example, copyto_h() is installed in the util\ folder on the calculator, so the function calls specify
that folder. After running t(), the home screen looks like this:

|’F1 T Fev TrgvTruvT F§ T FE~ T]
- E Algebra|Calc|Other|PrgmI0|Clean Up

=],.224 1.224e0
" ghel 1" 2. 2220
B 'gwpression" a+ %
LA Date
tC>

HMAIN FAD AFFEDG FUMC 4430

The first call to copyto_h() has only one argument (1.224), so that argument is placed in both the entry
and answer columns of the history area. The next two calls have two arguments, so the first argument
(the strings) is placed in the entry column, and the second argument is placed in the answer column.
The last call shows that expressions are pretty-printed, as expected. Note that multiple calls to
copyto_h() push each result up in the history display.

copyto_h() seems to run reliably on both HW1 and HW2 calculators, running AMS 2.05. | have had no
problem with this routine, but there is always the risk that this type of program could cause unreliable

1

calculator operation or a crash. | know of no problems that have been reported, and this program is so
useful that | accept the small amount of risk that is involved. Mr. Stearly is to be congratulated for this
accomplishment.

Mr. Stearly has also written:

sendstr() which works only with keyboard programs (kbdprgmx()) to send a string to the entry line:
http://www.ticalc.org/archives/files/fileinfo/166/16623.html

copytobc() which works with keyboard programs to copy an expression to the calculator clipboard:
http://www.ticalc.org/archives/files/fileinfo/146/14628.html

Method 2: expr(result & ":stop™)

If the last line of your program is
expr(result & ":stop")

where result is a string, then result will be returned to the history area. For example,
expr("10"&":stop")

will return
19 : Stop

Now, this isn't exactly what we want, since the ":Stop" is tagged onto the result, but at least it works.
The ":Stop" can be edited out.

Timité Hassan provides this routine tohome() to return results to the history area:

tohome(1res)

Prgm

Local zkk,execstr

"">execstr

If dim(1res)=@:return

For zkk,1,dim(1res)

Tres-wstr

If instring(lres[zkk],"@")=1 then

execstr&string(mid(Ilres[zkk],2))&":"->execstr
Else
execstr&lres[zkk]&":"-execstr
endif

Endfor

expr(execstr&":stop")

EndPrgm

Ires is a list of strings to return to the history area. You can use the "@" character to add labels to the
results. Note that the input string Ires is stored to the global variable wstr, so that you can also recall
wstr to get the results.

Some examples:

tohome({"45"}) returns 45 :: Stop

tohome({"45","x=6*p0"}) returns 45 : x=6*po : : Stop
tohome({"@res1","45","@res2","x=6*p0o"}) returns "resl": 45 :"res2": x=6*po: : Stop
¢j points out that tohome() does not work if called from a keyboard program; those executed with
[DIAMOND][n], where n is a number from 1 to 9. However, tohome() works if kbdprgmn() is called from

the command line.

(Credit to Timité Hassan and cj for Method 2)

