[9.7] Creating 'dynamic’ dialog boxes
You may run into a programming situation in which you want to prompt for user input with the Request
function, but you don't know the variable in advance. You can use expr() with a string argument to
create the dialog box, like this:
expr("request " & char(34) & promptn & char(34) & "," & vname)

where promptn is the prompt string, and vname is the variable name as a string. For example, if

promptn = "what?"
vhame = "myvar"

then the expression results in a dialog box like this:
what?:

and the string that the user enters will be stored in myvar. The value of this approach is that the actual

prompt string and variable name can be stored in promptn and vname by preceding code, then the

single expr() executes the dialog box. In other words, you can change the contents of a dialog box as

needed, depending on run-time conditions.

This idea can be extended to all functions that can be used in a dialog box: Text, DropDown, and Title,

in addition to Request. The basic principle is to build the complete Dialog ... EndDlog block up as a

string. Each program line is separated by ":".

This dialog box demonstrates the use of all four dialog box functions.

- Rl gebra|oale|other [Praniofclean Up

0 EDH TITLE o

what number-?: [100]

drop—down hered itemZ+

This iz same text

Ent.er=0K ESC=CAMCEL
dbhdemo £

HMAIN FAD AFFEDG FUMC 4430

To explain each option, as well as make it easier to build the dialog box, | have defined these
functions:

abttl(): Dialog box title (Title)

dbreq(): Dialog box request (Request)

dbdrd(): Dialog box drop-down menu (DropDown)
dbixt(): Dialog box text string (Text)

dbend(): Terminate the dialog box string

These are the steps you use in your program to create the dialog box:
1. Initialize a string variable to start building the dialog box string
2. Call the four functions above, as needed, to make the dialog box you want
3. Terminate the dialog box string
4. Display the dialog box with expr()

The code shown below creates my dialog box example.

dbdemo ()
Prgm

“dbdemo() - dynamic dialog box demo
""31 aug 99/dab
“dburkett@infinet.com

“"Define Tocal variables
local promptn,vname,boxtitle,sometext,ddtitle,dditems,ddvar,dbox

“Initialize dialog box items
"what number?"»promptn
"myvar"»vname

"BOX TITLE"»boxtitle

"This is some text"»sometext

"drop-down here:"»ddtitle
{"iteml","item2"}»dditems
"dropvar"»ddvar

“Initialize the dialog box string
"dialog"»dbox

“Build the dialog box string
dbtt1(dbox,boxtitle)»dbox
dbreq(dbox,promptn,vname)»dbox
dbdrd(dbox,ddtitle,dditems,ddvar)»dbox
dbtxt(dbox,sometext)»dbox

“Terminate the dialog box string
dbend(dbox)»dbox

“"Display the dialog box
expr(dbox)

EndPrgm

In this example, | use the local variable dbox to hold the dialog box string. Note that the dbox is
initialized to "dialog"; you must always initialize your dialog box string just like this.

After dbox is initialized, | call each of the four functions to create the title, a request, a drop-down menu
and some text. Note that the first argument of each function is the dialog box string dbox. Each
function simply appends the appropriate string to the current dbox. The table below shows the
arguments for each function.

Description Call convention Arguments

Create box title dbttl(db,titletext) db: dialog box string
titletext: string to use for title

Add Request dbreq(db,promptn,vname) db: dialog box string

promptn: prompt string

vname: variable name as a string
Add drop-down menu dbdrd(db,prmpt,ddlist,ddvar) db: dialog box string

prmpt: prompt string

ddlist: list of menu item strings
ddvar: variable name as a string
Add text dbtxt(db,txt) db: dialog box string

txt: text string

Here is the code for the functions:

dbttl1(db,titletxt)

func

db&":title "&char(34)&titletxt&char(34)
Endfunc

dbreq(db,promptn,vname)

func

db&":request "&char(34)&promptn&char(34)&","&vname
Endfunc

dbdrd(db,prmpt,ddlist,ddvar)

func

db&":dropdown "&char(34)&prmpt&char(34)&","&string(ddlist)&","&ddvar
Endfunc

dbtxt(db,txt)

func

db&":text "&char(34)&txt&char(34)
Endfunc

dbend(db)
func
db&":enddlog"
Endfunc

Note that you don't really need to use these functions, instead, you can just build the dialog box as a
big string and use it as the argument to expr(). This is a better approach if you only have a single dialog
box.

