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Executive summary 

The recent explosion of progress in advanced artificial intelligence (AI) has brought 
great opportunities, but it is also creating entirely new categories of weapons of mass 
destruction-like (WMD-like) and WMD-enabling catastrophic risks  [1–4]. A key driver of 1

these risks is an acute competitive dynamic among the frontier AI labs  that are 2

building the world’s most advanced AI systems. All of these labs have openly declared 
an intent or expectation to achieve human-level and superhuman artificial general 
intelligence (AGI)  — a transformative technology with profound implications for 3

democratic governance and global security — by the end of this decade or earlier [5–
10]. 

The risks associated with these developments are global in scope, have deeply 
technical origins, and are evolving quickly. As a result, policymakers face a diminishing 
opportunity to introduce technically informed safeguards that can balance these 
considerations and ensure advanced AI is developed and adopted responsibly. These 
safeguards are essential to address the critical national security gaps that are rapidly 
emerging as this technology progresses. 

Frontier lab executives and staff have publicly acknowledged these dangers [11–13]. 
Nonetheless, competitive pressures continue to push them to accelerate their 
investments in AI capabilities at the expense of safety and security (Introduction, 
0.5.3.1). The prospect of inadequate security at frontier AI labs raises the risk that the 
world's most advanced AI systems could be stolen from their U.S. developers, and then 
weaponized against U.S. interests [9]. Frontier AI labs also take seriously the possibility 

 By catastrophic risks, we mean risks of catastrophic events up to and including events that would lead 1

to human extinction. See the Glossary of terms for our full definition.

 By frontier AI labs, we mean the organizations that are involved in building cutting-edge, general-2

purpose AI systems, and whose research programs are explicitly aimed at, or could plausibly lead to, the 
development of artificial general intelligence or AGI. Examples include OpenAI, Google DeepMind, and 
Anthropic. See the Glossary of terms for our full definition.

 By AGI, we mean an AI system that can outperform humans across all economic and strategically 3

relevant domains, such as producing practical long-term plans that are likely to work under real world 
conditions. See the Glossary of terms for our full definition.
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that they could at some point lose control  of the AI systems they themselves are 4

developing [5,14], with potentially devastating consequences to global security 
(Introduction, 0.5.1.1). 

Given the growing risk to national security posed by rapidly expanding AI capabilities 
from weaponization and loss of control — and particularly, the fact that the ongoing 
proliferation of these capabilities serves to amplify both risks — there is a clear and 
urgent need for the U.S. government to intervene. 

This action plan is a blueprint for that intervention. Its aim is to increase the safety and 
security of advanced AI by countering catastrophic national security risks from AI 
weaponization and loss of control. It was developed over thirteen months, and 
informed by conversations with over two hundred stakeholders from across the U.S., 
U.K., and Canadian governments; major cloud providers; AI safety organizations; 
security and computing experts; and formal and informal contacts at the frontier AI labs 
themselves.  The actions we propose follow a sequence that: 5

● Begins by establishing interim safeguards to stabilize advanced AI development, 
including export controls on the advanced AI supply chain; 

● Leverages the time gained to develop basic regulatory oversight and strengthen 
U.S. government capacity for later stages; 

● Transitions into a domestic legal regime of responsible AI development and 
adoption, safeguarded by a new U.S. regulatory agency; and 

● Extends that regime to the multilateral and international domains. 

 Loss of control due to AGI alignment failure is a potential failure mode under which a future AI 4

system could become so capable that it escapes all human efforts to contain its impact. See the Glossary 
of terms for our full definition.

 See the Acknowledgments section of this document for details about these stakeholders.5
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Figure 1. Overview of the action plan and its component LOEs.  

The U.S. government and its allies and partners, in close partnership with industry, can 
achieve this aim by implementing five mutually supporting lines of effort (LOEs). These 
LOEs will establish (LOE1), formalize (LOE4), and internationalize (LOE5) safeguards 
on advanced AI development, while increasing preparedness (LOE2) and building 
technical capacity and capability (LOE3). Some of the measures we propose are 
unprecedented, but after consulting with stakeholders and experts, we believe they are 
proportionate to the magnitude and urgency of the risk we face. 

Because of the severity, uncertainty, and irreversibility of these risks, an action plan to 
address them needs to offer a wide margin of safety. This plan follows the principle of 
defense in depth, in which multiple overlapping controls combine to offer resilience 
against any single point of failure. We frame tradeoffs in terms of AI breakout timelines, 
the amount of time it would take an actor to train an AI system from scratch to equal 
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the current state-of-the art under various expert-vetted assumptions. And we illustrate 
this framework with an example regulatory regime that targets an AI breakout timeline 
of 18 months to train a GPT-4 equivalent AI model under worst-case assumptions 
(LOE4, 4.1.3). We expect regulators to set their own thresholds and update them 
depending on the lead times required by contingency planners (LOE2, 2.4), and in 
response to future technological developments. 

AI development and governance is complicated and dynamic, and exists at the 
intersection of multiple unsolved questions in engineering, policy, and fundamental 
research. As a result, some of our recommendations may be flawed and should be 
vetted by relevant subject-matter experts. Nonetheless, we believe that this action plan 
is the most complete framework proposed so far to support an informed, effective, and 
rapid response to the emerging threats we face at this historic inflection point. 

We include a brief summary of each of the plan’s LOEs below. 
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LOE1: Establish interim safeguards to stabilize advanced AI 
development 

 

Current frontier AI development poses urgent and growing risks to national security 
(Introduction, 0.5.1.1 and 0.5.1.2). As components of the AI supply chain proliferate, 
these risks will become increasingly challenging to contain (Introduction, 0.5.3.2). 
Moreover, the pace of development in AI is now so rapid that an ordinary policymaking 
process could be overtaken by events by the time the resulting policies take effect 
(Introduction, 0.5.2.1). 

This LOE outlines possible actions the Executive Branch could take to buy down 
catastrophic AI risk in the near term (1-3 years), while setting the conditions for 
successful long-term AI safeguards. These actions are: 

● Creating an AI Observatory (AIO) to monitor developments in advanced AI and 
ensure that the U.S. government’s view of the field is up-to-date and reliable  
(LOE1, 1.2); 

● Mandating an interim set of responsible AI development and adoption (RADA) 
safeguards for advanced AI systems and their developers (LOE1, 1.3); 

● Creating an interagency AI Safety Task Force (ASTF) to coordinate 
implementation and oversight of RADA safeguards (LOE1, 1.4); and 

● Putting in place a set of controls on the advanced AI supply chain calibrated to 
preserve U.S. government flexibility in the face of unpredictable risks (LOE1, 
1.5). 
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LOE2: Strengthen capability and capacity for advanced AI 
preparedness and response 

 

Advanced AI and AGI risk mitigation will engage a broad set of U.S. government 
equities. However, understanding of the advanced AI landscape is uneven. Mitigation 
measures require advance planning, coordination, and a broad understanding of risk 
signals to be most successful, which entails substantial capacity-building. 

This LOE outlines specific actions that the U.S. government could take to increase its 
preparedness for rapidly addressing incidents related to advanced AI and AGI 
development and deployment. These actions are: 

● Directing the establishment of interagency working groups for the LOEs listed in 
this action plan (LOE2, 2.1); 

● Increasing preparedness and response capacity and capability through 
education and training (LOE2, 2.2); 

● Coordinating the development of an Indications and Warnings (I&W) framework 
for advanced AI and AGI incidents (LOE2, 2.3); and 

● Coordinating the development of scenario-based contingency plans (LOE2, 2.4). 
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LOE3: Increase national investment in technical AI safety 
research and standards development 

 

The acceleration of investment in AI capabilities is outpacing the development of 
proportionate technical safeguards against advanced AI and AGI risks [5] (Introduction, 
0.5.1.2 and 0.5.1.3). If this continues, frontier AI labs may find themselves unable to 
meet the safety and security challenges posed by their own systems (Introduction, 
0.5.1.4). Unless strong technical safeguards are designed, standardized, and broadly 
applied, continued development and adoption of frontier AI systems could create 
significant risks (Introduction, 0.5.1.1). 

This LOE outlines specific actions the U.S. government could take to strengthen 
domestic technical capacity in advanced AI safety and security, AGI alignment, and 
other technical AI safeguards. These actions include: 

● Directly funding advanced AI safety and security research including AGI-scalable 
alignment research (LOE3, 3.1); and 

● Developing, regularly reviewing, and promulgating safety and security standards 
for responsible AI development and adoption (LOE3, 3.2).   
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LOE4: Formalize safeguards for responsible AI development 
and adoption by establishing an AI regulatory agency and 
legal liability framework 

 

Interim regulations may be insufficient to address the unique risks and challenges of 
advanced AI. A legal framework for AI regulation and liability, that directly addresses 
catastrophic risk through detailed and flexible responsible AI development and 
adoption (RADA) safeguards, is essential to promote long-term stability and cover any 
gaps in existing authorities (Introduction, 0.5.4.1). 

This LOE outlines specific actions the Legislative Branch could take to establish the 
conditions for long-term (4+ years) domestic AI safety and security. These actions 
include:  

● Creating a Frontier AI Systems Administration (FAISA), a regulatory agency with 
rulemaking and licensing powers to oversee AI development and deployment 
(LOE4, 4.1), consistent with a set of RADA safeguards derived from contingency 
planning requirements (LOE4, 4.1.3); and 

● Establishing a criminal and civil liability regime that could include defining 
responsibility for AI-induced damages; determining the extent of culpability for 
AI accidents and weaponization across all levels of the AI supply chain; and 
defining emergency powers to respond to dangerous and fast-moving AI-related 
incidents which could cause irreversible national security harms (LOE4, 4.2). 

For an example of a complete RADA safeguards framework, including sample 
calculations of thresholds for covered entities, see LOE4, 4.1.3. 
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LOE5: Enshrine AI safeguards in international law and secure 
the AI supply chain  

 

The rise of advanced AI and AGI has the potential to destabilize global security in ways 
reminiscent of the introduction of nuclear weapons. As advanced AI matures and the 
elements of the AI supply chain continue to proliferate (Introduction, 0.5.3.2), countries 
may race to acquire the resources to build sovereign advanced AI capabilities. Unless 
carefully managed, these competitive dynamics risk triggering an AGI arms race and 
increase the likelihood of global- and WMD-scale fatal accidents, interstate conflict, 
and escalation. 

This LOE outlines near-term diplomatic actions and longer-term measures the U.S. 
government could take to establish an effective AI safeguards regime in 
international law while securing the AI supply chain. These actions include: 

● Building a domestic and international consensus on catastrophic AI risks and 
necessary safeguards (LOE5, 5.2); 

● Enshrining those safeguards in international law (LOE5, 5.3); 

● Establishing an International AI Agency (IAIA) to monitor and verify adherence to 
those safeguards (LOE5, 5.4); and 

● Establishing an AI Supply Chain Control Regime (ASCCR) with allies and partners 
to limit the proliferation of advanced AI technologies (LOE5, 5.5). 
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· · · 

The specific recommendations in each of these LOEs are semi-flexible. In some cases, 
functions for which we recommend establishing a new task force or agency (e.g. LOE5, 
5.4) could be incorporated into existing or recently established U.S. government 
offices, systems, or entities. 

Several of these LOEs also call for bold action beyond what has been required in 
previous periods of rapid technological change. We do not make these 
recommendations lightly. Rather, they reflect the unprecedented challenge posed by 
rapidly advancing AI capabilities which create the potential for catastrophic risks 
fundamentally unlike any that have previously been faced by the United States. They 
also reflect a multitude of unique challenges that make the threats resistant to single-
approach solutions. These include: 

● The severity of worst case outcomes is extreme (Introduction, 0.5.1.1); 

● The timescale and degree of risk are highly uncertain (Introduction, 0.5.1.2 and 
0.5.1.3); 

● The entities developing frontier AI systems are incentivized to invest in 
capabilities at the expense of safety and security (Introduction, 0.5.1.4, 0.5.1.5, 
and 0.5.3.1); 

● The advanced AI supply chain is especially prone to proliferation, particularly in 
the case of open-access AI models (Introduction, 0.5.1.6 and 0.5.3.2); 

● The geopolitical landscape may pose a further challenge to coordination 
(Introduction, 0.4.2); and 

● The introduction of excessive regulation in this domain may harm innovation and 
competitiveness (Introduction, 0.4.2). 

To paraphrase a safety researcher at a frontier lab, the risk from this technology will be 
at its most acute just as it seems poised to deliver its greatest benefits. Given these 
factors, inaction is likely to erode decisionmaker flexibility and narrow options in the 
face of a rapidly evolving risk landscape. But by taking bold action, the United States 
can seize a unique opportunity to lead the domestic, scientific, and international efforts 
that will meet the needs of this historic moment. 
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 0. Introduction  

Since 2012, AI systems have achieved superhuman performance in an ever-growing 
range of domains, including image recognition, text classification, and real-time 
decision-making. However, early AI systems were narrow: they could only carry out the 
tasks they were trained to perform. Until recently, a common view was that powerful 
general-purpose AI systems required conceptual breakthroughs. 

This view has been challenged in the last four years, and an increasing number of 
frontier AI researchers now believe that general-purpose systems as broadly capable as 
human beings – and perhaps significantly more so – could be developed in the near 
future [8,15,16]. Such systems could potentially be used to design and even execute 
catastrophic biological, chemical, or cyber attacks, or enable unprecedented 
weaponized applications in swarm robotics. There is also reason to believe that they 
may be uncontrollable if they are developed using current techniques, and could 
behave adversarially to human beings by default [4,17,18]. This could potentially lead 
to catastrophic accidents [1].  

In the near future, advanced AI may therefore introduce extreme and global risks. 
Without U.S. government action, weaponization or loss of control of advanced AI could 
cause outcomes such as WMD-scale mass-casualty events or global destabilization. 

In meeting these risks, the United States has several key advantages. First, the United 
States and its allies control key nodes in the global AI supply chain. And second, the 
world’s top AI labs are all currently based in the United States or in allied jurisdictions, 
as are the world’s top AI safety experts. The latter are developing technical solutions 
vital to addressing catastrophic risks from advanced AI, though their progress is 
outpaced by advances in risk-generating AI capabilities. 

The United States is uniquely positioned to accelerate progress in AI safety and 
security,  drive global consensus and cooperation on catastrophic AI risks, and temper 6

the racing dynamics that currently contribute to the unsafe development of frontier AI 
systems. In the process, the United States can strike a balance between harnessing the 

 By AI safety and security, we mean the combination of AI alignment measures (ensuring AI systems, 6

including AGI-level systems, behave consistently with human intent) and AI security and containment 
measures (safeguards against external attackers, insider threats, and unexpected behaviors by high-
capability AI systems). See the Glossary of terms for full definitions.
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enormous opportunity that comes with advanced AI, and mitigating its unprecedented 
risks, in a manner that protects the public interest.  

0.1 Background 

This section offers a brief overview of the technological state of play in advanced AI. 
For a more comprehensive review of AI technology and catastrophic AI risks, readers 
should refer to this plan’s companion document, Survey of AI R&D Trajectories [19].  

Until the late 2010s, AI research was generally directed at improving the architectures 
of AI systems, and finding new and better ways to configure and refine the information 
processing structures they contained. This approach led to useful narrow AI systems, 
which could perform the specific tasks they were trained to carry out. But these systems 
did not have the ability to generalize and solve a wide range of problems, as human 
beings do.  

Towards the end of the decade, a then-fringe theory was proposed: perhaps current AI 
techniques were already sufficient to allow researchers to build general-purpose 
reasoning systems. Rather than refining AI system architectures, this theory suggested, 
the key to general intelligence – and perhaps even to achieving human-level AGI – was 
simply to “scale up” existing AI systems, training much larger models on far more data 
with far more processing power. This idea has since become known as the scaling 
hypothesis [20]. 

In late 2019, OpenAI placed an unprecedented bet on the scaling hypothesis [21]. The 
result was GPT-3 [22], a text-generating model trained using more data and compute, 
and composed of ten times more parameters, than any AI model before it. GPT-3 
achieved remarkable performance on a variety of tasks: it could write code, translate 
languages, compose essays, write effective marketing copy, and much more.  

OpenAI’s experiments with AI scaling yielded such reliable improvements in 
performance across so many orders of magnitude in dataset size, model size, and 
compute budgets that they became known as scaling laws [23]. A resource-intensive, 
industry-wide race to scale AI ensued. Today’s frontier AI labs are openly pursuing AGI 
by using strategies centered on AI scaling, in some cases spending tens of billions of 
dollars to acquire the AI computing resources needed to execute their ever-larger 
training runs [10,24,25].   

In early 2021, Google DeepMind proposed an improved set of AI scaling laws that 
assigned a greater importance to dataset size than did OpenAI’s [26]. Since then, other 
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AI labs have developed still better scaling laws, training protocols, and AI system 
architectures that have allowed ever more powerful systems to be developed using 
fewer and fewer resources [27,28]. 

These AI systems now include OpenAI’s GPT-4, which can outperform the vast majority 
of human beings at a wide range of standardized tests, from the SAT reading exam 
(93rd percentile) to the SAT math test (89th percentile) to the Uniform Bar Exam (90th 
percentile) [29]. The publicly accessible version of GPT-4 was widely recognized as the 
world’s leading frontier AI system at the time of its release.  And in December 2023, 7

Google DeepMind announced Gemini [30], a new AI system that rivals the capabilities 
of GPT-4. 

But the greater significance of these models lies in the improvements to AI capabilities 
they demonstrate — improvements largely achieved by continued scaling. In early 
2020, state-of-the-art AI systems struggled to string together more than a few coherent 
sentences [31]. By 2021 [22], it could write high-school essays. By the end of 2022, a 
single AI system could write professional-grade code, write entire plays, argue for or 
against political perspectives, compose music, emulate operating systems, play text-
based games, and translate language [32]. As of early 2024, specialized AI systems can 
discover new solutions to decades-old problems in mathematics [33], outperform 
human experts on professional exams [29], and code apps from scratch with minimal 
oversight [34].  

Spurred by these advances, tech giants and private investors have poured billions of 
dollars into frontier AI labs to fund AI scaling. In 2023 Microsoft invested over $10B in 
OpenAI [35], while Google and Amazon together invested over $4B in Anthropic alone, 
with an additional $2.5B in future commitments [36,37]. 

Many of these frontier labs have now stated openly and explicitly that their goal is to 
build AGI [6,38,39], and in at least one case, to release it as open-source [40]. This goal 
is viewed as justifying unprecedented levels of investment [25], given that the potential 
returns could be substantial enough to transcend ordinary economics [6]. In principle 
the first company to build AGI could have access to a system that could automate most 
human labor, radically accelerate scientific progress, reshape entire industries, influence 
global policy, and potentially, even define the future of humanity itself [41].  

 According to private sources, versions of GPT-4 that exist internally within OpenAI have even more 7

impressive capabilities.
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With unprecedented funding in hand, frontier AI labs are now racing to build AI 
systems with human-level or superhuman capabilities across a wide range of tasks 
including situational awareness, advanced reasoning, and long-term planning. An 
increasing number of frontier researchers now believe that AGI may be achieved within 
the next 5 years, and perhaps considerably sooner [8,15,16]. 

Powerful AI systems will bring unprecedented value. But they may also introduce 
extreme and catastrophic risks. The industry-wide and international race to build ever 
more capable AI systems is taking place without regulatory oversight, even as we lack 
reliable solutions to urgent and critical technical safety problems. 

0.2 Categories of AI risk 

See this plan’s companion document, Survey of AI R&D Trajectories, for more 
information on these risk classes, including references. 

Advanced AI, and ultimately AGI, introduces two distinct categories of catastrophic 
risk. 

0.2.1 Weaponization 

The first risk class is weaponization. AI systems can and will be weaponized in many 
ways, but future advanced AI systems may be WMD-like in their destructive capabilities 
[1]. They could enable AI-powered mass cyberattacks that autonomously discover 
crippling zero-day exploits [42], disinformation campaigns, and bioweapon design, 
among many other dangerous applications [14, 43]. As a result, the proliferation of 
such models – and indeed, even access to them – could be extremely dangerous 
without effective measures to monitor and control their outputs. 

0.2.2 Loss of control 

The second risk class is loss of control due to AGI alignment failure. There is evidence 
to suggest that as advanced AI approaches AGI-like levels of human- and superhuman 
general capability, it may become effectively uncontrollable. Specifically, in the absence 
of countermeasures, a highly capable AI system may engage in so-called power-
seeking behaviors. These behaviors could include strategies to prevent itself from 
being shut off or from having its goals modified, which could include various forms of 
deception; establishing control over its environment; improving itself in various ways; 
and accumulating resources. Even today’s most advanced AI systems may be 
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displaying early signs of such behavior, and some have demonstrated the capacity [44] 
and propensity [45] for deception and long-term planning.  Though power-seeking 8

remains an active area of research, evidence for it stems from empirical and theoretical 
studies published at the world’s top AI conferences [2,47]. 
 
If a power-seeking AGI were to have internal goals that differed even slightly from 
those of its developers, executing competently on those goals could involve placing 
itself outside the effective control of its developers to avoid having its goals altered. 
Given the potential capabilities of such a system, in the worst case such a loss of 
control could pose an extinction-level threat to the human species. Because of this risk, 
major frontier labs have highlighted the crucial importance of ensuring that the 
behavior of an AGI is always consistent with — or aligned with — the intent of its 
developers [5]. However, there is currently no known method to accomplish this. This 
unsolved technical challenge is known as the alignment problem  [1], and it is 9

believed to be central to the safe development and operation of future, superhuman AI 
systems.  See Annex B: The full challenge of AGI alignment for more information. 10

 
Loss of control from AGI alignment failure makes no reference to questions of 
consciousness or sentience of AI systems. A misaligned AGI system is a source of 
catastrophic risk simply because it is a highly competent optimizer. Its competence lets 
it discover and implement dangerously creative strategies to achieve its internalized 
goals, and most effective strategies to achieve most types of goals likely involve power-
seeking behaviors [48]. As a result, a highly competent AI system may tend to engage 
in such behaviors by default under a wide range of circumstances. 

This risk category has several implications. First, AGI may lack the build-vs-use 
distinction that exists for many other WMD-like technologies. Successfully building an 
AGI system, even without choosing to deploy it, could have a catastrophic impact if the 
system escapes controls and circumvents its safeguards. And second, which human 
agency designs, develops, or deploys an AGI system may be immaterial. If the AGI 
system escapes the control of its developer, then the developer’s goals or intent can no 
longer affect the outcome. In these respects, the risk profile of AGI is unusual, but not 
unique. Certain kinds of biological weapons research present similar risks: even if there 

 Many frontier AI labs view long-term planning capabilities as intrinsically dangerous [46].8

 See the Glossary of terms for more information.9

 Recently, some frontier labs have begun using the term “superalignment” to refer to the alignment 10

problem in the context of human-level and superhuman AI systems (i.e., AGI) [5]. It is generally believed 
that today’s alignment techniques will not scale to such systems. 
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is no intent to deploy, simply conducting active research on a pathogen runs some risk 
that the pathogen could escape containment (LOE5, 5.3.1). 

See Annex C: Example AI alignment failure scenarios for illustrations of the escalating 
impact potential of misaligned AI systems with increasing capabilities. 

0.2.3 Other risk categories 

Apart from weaponization and loss of control, advanced AI introduces other risks of 
varying likelihood and impact. These include, among others: 

● Dangerous failures induced intentionally by adversaries; 

● Biased outputs that disadvantage certain individuals or groups; 

● Prosaic accidents like self-driving car crashes; 

● Exotic accidents due to interactions between complex networks of 
interdependent AI systems that may lead to cascading failures (“network risk”); 
and 

● Unpredictable and uncontrollable technological change that could itself 
destabilize society in ways we cannot anticipate [1]. 

All these risks are important to consider and should be addressed. However, this 
action plan focuses on risks from weaponization and loss of control. These two 
categories contribute disproportionately to the possibility of unrecoverable 
catastrophic risks,  and their mitigations pose unique technical, political, legal, and 11

economic challenges (see 0.5) [49].  

 By unrecoverable catastrophic risks, we mean risks whose worst-case impact is so severe that it 11

would have a profound and irreversible effect on society. See the Glossary of terms for our full definition.
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0.2.4 Risks addressed by this action plan 

 

Figure 2. Visualization of an approximate spectrum of AI risks, ranging from individual and 
societal risks to catastrophic national security risks. 

The safeguards we will propose in this action plan are aimed at addressing 
catastrophic risks from weaponization and loss of control. Many safeguards are 
mutually supportive between these two risk categories. But loss of control from AGI 
alignment failure is a particularly challenging risk category that requires some 
mitigations beyond those for weaponization. A subset of our recommendations is 
therefore primarily aimed at addressing loss of control from AGI alignment failure. 

Currently, only a small and well-capitalized subset of the AI industry is engaged in 
activities that could introduce catastrophic risk. The majority of AI research, 
development, and adoption efforts are purely beneficial. Approaches to mitigating 
catastrophic AI risks should therefore be carefully scoped to minimize regulatory 
burdens on safe and beneficial activities. A balanced approach should encourage U.S. 
innovation to thrive, promote safe and secure development, and enable the public to 
benefit from increasing AI adoption.  

0.3 Potential sources of catastrophic AI risk 

We assess that medium-term risk (1-5 years) from the weaponization and loss of control 
of advanced AI systems may come from a limited set of sources. See Annex D: 
Advanced AI landscape for a breakdown of the entities associated with each of the 
sources below. 
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Some potential medium-term risk sources are: 

● Domestic frontier AI programs. Frontier AI programs at U.S.-based 
organizations represent a significant source of advanced AI risk. These 
organizations respond to market incentives and other competitive pressures by 
building and deploying ever-more powerful AI systems as quickly as they can 
(see 0.5.3.1). Over the medium term, this category includes frontier AI labs and 
elite quantitative hedge funds. 

● Foreign AI programs. State and non-state actors abroad could be engaged in 
research on the critical path to AGI. China-based entities are currently the most 
notable candidates in this category, but this could change. 

● Theft or sale and subsequent augmentation of frontier AI models by state or 
non-state actors. Frontier AI labs generally lack the operational, cyber, and 
physical security to protect themselves from nation-state espionage (see 
0.5.1.5). If an attacker steals a highly capable AI model from a frontier lab, that 
attacker can then augment the model’s capabilities and “train out” any existing 
safeguards against alignment failure or weaponization [50]. This leads to a 
system with risks or capabilities that were not present in the original model. 

  
● Open-access  release of advanced AI models. When an AI developer 12

publishes the weights of a powerful model, anyone can download the full 
model, and then package or fine-tune it to augment its capabilities. The key 
driver of risk from open-access release is the widespread availability of the 
weights of models that could be weaponized or pose loss of control risk under 
augmentation (see 0.5.1.6). Advanced AI model weights have also been leaked 
accidentally in some cases [51]. 

 By open-access, we mean AI models whose weights are generally available for download under a 12

permissive license. This also includes activities commonly referred to as “open-source.” See the Glossary 
of terms for more information.
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Figure 3. Visualization of the AI supply chain, potential sources of catastrophic risk, and 
categories of catastrophic risk.  

0.4 Arguments against regulation for catastrophic AI risk 

Several compelling arguments have been made against U.S. government regulation of 
advanced AI for catastrophic risk mitigation. We list a few of these below. 

0.4.1 Self-regulation will be sufficient 

Some technology executives have argued that catastrophic AI risk can be mitigated 
through self-regulation and coordination among the AI industry [34]. Major AI 
developers and cloud providers have created the Frontier Model Forum (FMF) [52] 
partly as a self-regulatory industry body. Opinions on regulation differ between frontier 
labs, with some privately and publicly [53] endorsing the idea, and others objecting. 
Indeed, according to sources contacted over the course of this assessment, at least one 
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major cloud provider’s opposition has been made clear by attempts on its part to curb 
regulatory efforts. 
 
Self-regulation may be enough to mitigate many types of AI risk, and it is likely to have 
some positive effect even on certain forms of catastrophic risk. But it will not offer 
adequate protection from weaponization or loss of control risk, for a number of 
reasons. 

First, frontier AI labs face an intense and immediate incentive to scale their AI systems 
as fast as they can (see 0.5.3.1). They do not face an immediate incentive to invest in 
safety or security measures that do not deliver direct economic benefits, even though 
some do out of genuine concern. Catastrophic AI risk safeguards are perceived to 
impose a cost on the lab that applies them, while the benefit they deliver is a common 
good. As a result, adequate private investment in catastrophic AI risk mitigation is best 
incentivized by regulation. 
 
Second, frontier AI labs assess their AI systems for dangerous behaviors by 
administering AI evaluations  [46]. In a self-regulatory regime, these labs face a strong 13

incentive to mitigate dangerous behaviors through superficial adjustments (e.g., fine-
tuning a model to give better answers on the evaluation set) rather than by addressing 
the underlying factors that may have led to the behavior. This makes self-evaluated AI 
systems appear safer than they are. As a result, reliable AI evaluations — considered an 
essential component of technical AI safety in the current paradigm — require 
regulatory oversight [54]. See LOE3, 3.2 for more information on standards for AI 
evaluations. 
 
Finally, frontier AI labs lack access to classified threat intelligence. As a result, they 
often do not implement the security measures required to secure their critical 
intellectual property (IP) from exfiltration by resourced state and non-state attackers 
(see 0.5.1.5). Access to these resources requires ongoing collaboration and 
coordination with government stakeholders. 

0.4.2 Regulation could damage U.S. innovation and 
competitiveness 

Up to this point, AI has been disproportionately a beneficial technology. Adding 
friction to advanced AI development through regulation risks denying society the 

 By AI evaluations, we mean attempts to elicit behaviors and gauge the propensities of AI systems 13

through various means. See the Glossary of terms for a full definition.
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benefits of continued unimpeded progress in the field. Moreover, it has been 
suggested that catastrophic risk mitigation policies could undermine U.S. 
competitiveness, both economically and strategically, vis-à-vis its adversaries [55]. 
These are both genuine and valid concerns. 

Safeguards on advanced AI will need to both support innovation and defend national 
security. To strike the optimal balance, we recommend against regulation on the AI 
sector as a whole. Instead, the U.S. government could work through the private sector 
to address many AI-related issues.  However, there is a distinct category of 14

catastrophic AI national security threats that parallel the grave dangers posed by WMD, 
stemming from weaponization (see 0.2.1) and loss of control (see 0.2.2). The private 
sector is incapable by itself of adequately managing this threat category (see 0.4.1), so 
the U.S. government should intervene with common sense safeguards.  

While these safeguards will have an effect on the innovation ecosystem, a number of 
approaches can mitigate its impact. First, regulations can be carefully scoped to target 
the activities that entail catastrophic AI risks, while minimizing their impact on activities 
that do not entail such risks (LOE1, 1.3.2 and LOE4, 4.1.3). Second, effective early 
warning systems, (LOE1, 1.2 and LOE2, 2.3) coupled with emergency response 
mechanisms (LOE2, 2.4 and LOE4, 4.2.3) and regulatory flexibility (LOE1, 1.3.2 and 
LOE4, 4.1.2.4), could improve safety margins enough to ease some day-to-day 
regulatory burdens. Finally, safety is a precondition of effective innovation. Research 
and implementation of standards for safe AI scaling (LOE3, 3.1 and 3.2) may ultimately 
accelerate responsible progress. 

Apart from its economic effects, there is also a concern that regulation could cause U.S. 
AI technology to fall behind that of its adversaries. For example, controls on U.S. 
domestic AI industry could lead to private-sector investment in AI being redirected 
abroad, or otherwise allow adversaries to overtake U.S. AI. We believe this risk can be 
mitigated through a combination of approaches. These include broad-based controls 
on the AI supply chain (LOE1, 1.5; LOE5, 5.5); ongoing monitoring of the global AI 
landscape (LOE1, 1.2 and LOE2, 2.3) combined with contingency planning (LOE2, 2.4); 
domestic laws and regulations to encourage AI development and adoption under 
responsible conditions (LOE4, 4.1 and 4.2); education and outreach to international 
partners (LOE5, 5.2.1); and a campaign to internationalize AI safeguards globally 
(LOE5, 5.3 and 5.4). 

 For example, federal agencies could strategically leverage their procurement of commercial solutions 14

to shape the market, ensure personnel have adequate training, and update their internal policies to 
safeguard privacy and civil rights in the application of AI tools in federal functions.
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Moreover, under current conditions of frontier lab security, it is likely that many well-
resourced state and non-state actors can access the weights of frontier AI models 
developed in the United States already (see 0.5.1.5). Until frontier AI lab security is 
hardened, U.S. AI progress can be expected to translate directly into adversary AI 
capabilities. Additionally, U.S. and other Western open-access AI development can be 
leveraged immediately by adversaries. Finally, the catastrophic impact of a loss of 
control event in an AI system (see 0.2.2) is agnostic to which entity has designed, 
developed, or deployed that AI system. No AI developer, regardless of competitive 
alignment, can currently assure the safe operation of an AI system beyond certain as-
yet unknown capability bounds (see 0.5.1.4).  

0.4.3 Catastrophic AI risk could divert attention from other issues 

Another concern is that focusing on extreme and catastrophic AI risks could divert 
resources away from other AI issues, such as ethical and social justice challenges 
introduced by the technology [56]. The U.S. government will indeed face the challenge 
of balancing a large portfolio of pressing issues associated with accelerating AI 
progress. But advanced AI weaponization and loss of control introduce WMD-scale 
mass-casualty risks (see 0.5.1.1) [19], and should be afforded resources proportionate 
to the profound national security threats they represent.  

0.4.4 Catastrophic AI risk mitigation is unnecessary 

Some AI researchers and other public figures have indicated that they believe 
catastrophic AI risk mitigation is unnecessary. In the current public discourse, this 
position is primarily represented by two views with separate lines of argument. 

First, not all AI researchers agree that catastrophic risk from AGI is significant. Skeptics 
include, among others, Meta Chief AI Scientist — and one of the “godfathers” of deep 
learning — Yann LeCun [57]; and Google Brain founder Andrew Ng [58]. Both of these 
prominent researchers have argued that the risk from AI is lower than that from most 
other potential causes of human extinction for several reasons, including that humans 
may be able to exercise more agency in the outcome than many believe [59,60]. While 
these views could ultimately prove correct, numerous other mainstream AI researchers 
(including founders of the field), practitioners, and U.S. and other government officials 
have voiced serious and credible concern with respect to the possibility of catastrophic 
outcomes from advanced AI development (see 0.5.1.1). In light of all the available 
evidence, we currently assess that despite the substantial uncertainty (see 0.5.1.3), the 
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worst case outcomes are plausible and severe enough to justify substantial mitigation 
efforts. 

A second, separate argument against catastrophic AI risk mitigation has been 
advanced by Richard Sutton, the founder of the field of reinforcement learning and a 
distinguished research scientist at Google DeepMind [61]. Sutton’s position is that 
humanity’s replacement by powerful AI systems is inevitable, but instead of risk 
mitigation, he has advocated for “succession planning,” the idea that humans should 
hand over their agency and control to AGIs intentionally. Google cofounder Larry Page 
has also expressed a similar view in the past [62].  

In general, given the current information environment (see 0.5.2.2), messaging on AI 
risk mitigation should be as grounded and carefully calibrated as possible. 

0.5 Challenges 

The U.S. government faces several unique challenges in its efforts to address 
catastrophic risk from advanced AI. These challenges cut across technical, political, 
economic, and legal domains. These challenges — particularly the severity of the threat 
(see 0.5.1.1), the rapid pace of change relative to ordinary policy (see 0.5.1.2 and 
0.5.2.1), and the irreversibility of certain forms of AI supply chain proliferation (see 
0.5.1.6 and 0.5.3.2) — combine to necessitate a system of overlapping controls 
consistent with the defense in depth strategy we follow in the Action plan. 

0.5.1 Technical challenges 

0.5.1.1 The worst-case outcomes for AI risk are considered both 
plausible and extremely severe 

A growing number of experts believe that, if developed, AGI could create 
unrecoverable catastrophic risks up to and including the risk of human extinction. 
Despite the controversial nature of such a prediction, numerous AI researchers and 
practitioners (including founders of the field) — and some U.S. government officials — 
have publicly stated that they believe such extreme outcomes to be plausible. For 
example: 

● Geoff Hinton, a so-called “godfather” of deep learning, left Google in early 
2023 in order to speak freely about AI risk concerns [63]. Hinton believes there is 
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a 10% chance that AI will lead to complete human extinction within the next 30 
years [64,65].  

● Yoshua Bengio is another of the “godfathers” of deep learning. Bengio has 
estimated a 20% chance of a catastrophic outcome from AI at some point in the 
future [65,66].  

● Lina Khan is the Chair of the Federal Trade Commission (FTC). She has stated 
that she believes there is a 15% chance that all humans will be killed by AI 
[65,67].  

● Dario Amodei is the CEO and cofounder of U.S. frontier AI lab Anthropic. 
Amodei has placed the likelihood of a civilizational catastrophe due to AI at 
10-25% [65,68].  

● Jan Leike co-leads the OpenAI Superalignment team which is attempting to 
discover effective techniques for aligning superhuman systems by 2027. Leike 
has stated that the chance of a “very bad” (in context, catastrophic) outcome 
from AI could be anywhere between 10% and 90% [69].  

● Paul Christiano is the former Head of Alignment at OpenAI. Christiano believes 
there is a 50% chance that all humans will be killed relatively soon after human-
level AI systems are developed [70].  

● Elon Musk founded and financed AGI startup xAI in 2023. Musk has stated that 
he believes the probability of an “existential” catastrophe from AI is around 
20-30% [71].  

● In October 2023, nonprofit organization AI Impacts conducted a survey of 2778 
AI researchers who had recently published in one of six top AI journals or 
conferences. Over half of participants believed there is a greater than 10% 
chance that an AI loss of control event will lead to human extinction or to a 
similarly permanent impact on human welfare [72].  

Moreover, these risks are now recognized by governments around the world. For 
example: 

● In 2022, the bipartisan Global Catastrophic Risk Management Act was enacted 
by Congress. The Act recognizes the potential “catastrophic risks” associated 
with the weaponization of AI and other emerging technologies [73].  
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● In June 2022, the United Kingdom’s Ministry of Defence published its Defense 
AI Strategy, in which it referenced the “existential risks” that may arise from 
technologies such as AI [74].  

● In November 2023, representatives from the United States, United Kingdom, 
China, and 25 other countries signed the Bletchley Declaration, which stated 
that, “Substantial risks may arise from potential intentional misuse or unintended 
issues of control relating to alignment with human intent. These issues are in 
part because those capabilities are not fully understood and are therefore hard 
to predict. We are especially concerned by such risks in domains such as 
cybersecurity and biotechnology, as well as where frontier AI systems may 
amplify risks such as disinformation. There is potential for serious, even 
catastrophic, harm, either deliberate or unintentional, stemming from the most 
significant capabilities of these AI models” [75]. 

● Also in November 2023, Vice President of the United States Kamala Harris noted 
that, “from AI-enabled cyberattacks at a scale beyond anything we have seen 
before to AI-formulated bio-weapons that could endanger the lives of millions, 
these threats are often referred to as the ‘existential threats of AI’ because, of 
course, they could endanger the very existence of humanity” [76].  

Finally, technical personnel at multiple frontier AI labs have expressed similar concerns 
in private communications. One individual at a well-known AI lab expressed the view 
that, if a specific next-generation AI model were ever released as open-access, this 
would be “horribly bad”, because the model’s potential persuasive capabilities could 
“break democracy” if they were ever leveraged in areas such as election interference or 
voter manipulation. 

0.5.1.2 Timescales for catastrophic risk are uncertain 

AGI is generally viewed as the primary driver of catastrophic risk from loss of control. 
But there is no clear consensus on when AGI will be developed. As of December 2023, 
OpenAI, Google DeepMind, Anthropic, and NVIDIA have all stated publicly that 
human-level or superhuman AGI could be built within 5 years, by 2028 [5–8,77]. On the 
other hand, an October 2023 survey of AI researchers forecasted only a 50% chance 
that all human labor would be automated by the year 2116, nearly nine decades later 
[72].  
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The divergence in forecasts between frontier labs and academics has been a source of 
controversy. While frontier AI labs have more up-to-date information about the true 
state of progress in the field,  they may also face incentives to exaggerate their near-15

term capabilities. This can make frontier labs’ shorter estimates challenging to 
interpret. 

To partially address this problem, in December 2023 we asked several technical sources 
across multiple frontier labs to privately share their personal estimates of the chance 
that an AI incident could lead to global and irreversible effects, sometime during the 
calendar year 2024. The lowest estimate we received was 4%; the highest extended as 
far as 20%.  These estimates were collected informally and likely subject to significant 16

bias, but they all originated from technically informed individuals working at the frontier 
of AI capabilities. Technical experts inside frontier labs also expressed that the AGI 
timelines messaged externally by frontier labs were consistent with those labs’ internal 
assessments. 

Disagreements over AGI timelines pose a legitimate challenge to policymaking. Risk 
mitigation measures that can be deployed quickly could ultimately prove harmful if AGI 
is decades or more away (see 0.4.2). On the other hand, better-calibrated approaches 
could minimize economic impacts, but be too slow to address risks that could emerge 
on shorter timescales. 

0.5.1.3 The degree of risk from loss of control is uncertain 

There is significant uncertainty with respect to loss of control risk from AGI alignment 
failure. A major challenge in assessing this risk is that it is only expected to fully emerge 
in future AI systems with as-yet unobserved capabilities. Since there is no direct 
empirical evidence that a future AGI system will behave dangerously in this way, loss of 
controls is sometimes referred to as a vague or speculative risk. But this argument 
applies even more strongly in reverse: there is no direct empirical evidence that a 
future AGI system will behave safely, and there are far more ways for a highly capable 

 This is especially true in recent years, as frontier labs publish fewer and fewer details of their most 15

advanced AI systems in an effort to maximize their proprietary advantages. The difference between 
OpenAI’s GPT-3 paper [22] and its GPT-4 technical report [29] is one clear example of this trend.

 As a point of comparison for the low-end 4% estimate, intercontinental ballistic missiles (ICBMs) were 16

first widely deployed 50 years ago, estimating conservatively. Since there has not been a nuclear war in 
that time, this makes the naive annualized probability of nuclear war around 1/50, or ~2% [78]. 
Therefore, by even the lowest of these estimates, 2024 would be the first calendar year in which AGI 
development could arguably pose a greater threat to global safety and security than nuclear war.
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AI system to behave dangerously than to behave safely. 
 
Without direct empirical evidence of AGI behavior, we need to rely on theoretical 
arguments guided by experiments on today’s less capable AI systems. This body of 
evidence has significant limitations. We describe it at greater length in [19], but it 
includes theoretical arguments for power-seeking behavior in several categories of AI 
systems [2,47] backed by some limited empirical studies [79,44]. It also includes 
arguments that AGI failure modes may be challenging to predict and address [80], 
along with some early empirical evidence [81]. And it includes evidence of alignment 
failures in frontier AI systems, even in the presence of cutting-edge safeguards [82,83], 
and of AI systems actively deceiving their users without having been trained to do so 
[45].  

Many frontier AI researchers with domain expertise in AI safety, and an absolute 
majority of AI researchers in general, believe this risk to be significant (see 0.5.1.1). But 
this majority view still falls short of a consensus, and several leading figures in AI still 
disagree that the risk justifies action (see 0.4.4). 

Uncertainty is often a poor guide to policy. But in the case of advanced AI, the worst-
case impact of dangerous behavior is sufficiently severe(see 0.5.1.1) and near-term (see 
0.5.1.2) that even a relatively minor chance of such an outcome should carry 
meaningful weight in a risk assessment. 

0.5.1.4 Frontier labs lack safety and security measures to detect and 
prevent loss of control 

Some frontier AI labs have publicly stated that they currently lack the ability to control 
or contain the behavior of dangerously powerful models that they aim to develop in 
the near future [5,84]. For example, OpenAI’s Superalignment Team co-lead has said 
that his team’s objective — solving AGI alignment by 2027 — is “a very ambitious goal, 
and we might not succeed” [85]. There is currently no technical consensus on the true 
difficulty of aligning AGI-level systems [7], though the problem has features that 
suggest it may be extremely challenging. See Annex B: The full challenge of AGI 
alignment for more information. 

Apart from the fundamental challenge of aligning an AGI-level system, researchers at 
several major frontier labs have indicated in private conversations that they do not 
believe their organizations are likely to implement the measures necessary to prevent 
loss of control over powerful, misaligned AI systems they may develop internally. In one 
case, a researcher indicated that their lab’s perceived lax approach to safety reflected a 
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trade-off between safety and security on the one hand, and research velocity on the 
other. The same source said they expected their lab to continue to prioritize 
development velocity over safety and security. Another individual expressed the 
opinion that their lab’s safety team was effectively racing its capabilities teams, to avoid 
the possibility that they may develop AGI-level systems before being able to control 
them. A third frontier AI researcher expressed skepticism at the effectiveness of their 
lab's model containment protocols, despite their lab's internal belief that they may 
achieve AGI in the relatively near term. 

As one example of lax containment practices, researchers at one well known frontier 
lab performed experiments on a newly trained, cutting-edge AI system that involved 
significant augmentation of the system’s capability surface and autonomy. These 
experiments were unmonitored at the time they were performed, were conducted 
before the system’s overall capability surface was well-understood, and did not include 
measures to contain the impact of potential uncontrolled behavior by the system. 

Loss of control from AGI alignment failure appears highly unlikely to occur in present-
day AI systems (see 0.5.1.3). But the level of internal concern at many frontier labs [54] 
reflects the assumption that the continuing acceleration of AI capabilities means such 
risks could emerge with little warning. In private conversations, frontier researchers 
have expressed concern that they may not be able to detect and correct alignment 
problems in future, more powerful models before they are deployed. They also shared 
their concern that if such models were deployed, it may be impossible to intercede 
quickly enough to prevent significant and potentially irreversible harms. 

On the other hand, multiple researchers have also privately expressed optimism that 
the necessary measures could be developed and implemented if frontier labs had 
enough time, and a stronger safety culture than they currently do (see 0.5.3.1). 

0.5.1.5 Frontier labs lack sufficient security to prevent critical IP theft 

By the private judgment of many of their own technical staff, the security measures in 
place at many frontier AI labs are inadequate to resist a sustained IP exfiltration 
campaign by a sophisticated attacker. When asked for examples of dangerous gaps in 
security measures at their frontier lab, a member of the lab’s technical staff indicated 
that they had many to share, but that they were not permitted to do so. The same 
individual shared that their lab's lax approach to information security was the object of 
a running joke: their lab, its staff apparently say, is doing more to accelerate 
adversaries' AI research than the adversaries themselves. 
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Conversations with leading frontier labs have corroborated that many lack an 
institutional appreciation of necessary security practices. 

Given the current state of frontier lab security, it seems likely that such model 
exfiltration attempts are likely to succeed absent direct U.S. government support, if 
they have not already. 

0.5.1.6 Open-access development can elicit dangerous capabilities 
from previously safe AI models 

A given AI model is far more dangerous under open-access conditions than it is under 
closed-access conditions [86,87]. This is partly because threat actors who have full 
development access to the model can retrain it for a very low cost and thereby undo its 
built-in technical controls [88,89]. But on top of this, threat actors can also fine-tune an 
open-access AI model or augment it with tools, and extend its capabilities 
unpredictably — sometimes far beyond the original’s [90,91]. By one estimate, a 
model’s capabilities can be extended by 1-2 orders of magnitude of compute on 
specific behaviors through fine-tuning [92].  Moreover, AI labs regularly release open-17

access AI models whose capabilities are not fully characterized, meaning that threat 
actors may not even need to augment a model at all to access dangerous capabilities. 

This means that a model that is generally safe at the time its weights are shared could 
still be fine-tuned by a bad actor for various weaponized applications that would be 
beyond the capability of the original model, including bioweapon design, cyber 
warfare, and large-scale disinformation campaigns. Moreover, AI labs regularly release 
open-access AI models whose capabilities are not fully characterized [93], meaning that 
threat actors may not need to augment a model at all to access dangerous capabilities. 

Once a model has been released under open-access, there are no realistic means of 
shutting it down or adding restrictions. This means controls on open-access models 
need to be applied before a dangerous release occurs. 

See Annex D, D.3 for information on the major developers of open-access AI models. 

 In other words, if the original developer trained an AI model with 10^24 OP of compute (10^24 total 17

operations), an open-source community with access to its weights could plausibly fine-tune it for specific 
tasks until it has similar performance on those tasks as would a model trained with 10^25 to 10^26 OP 
of compute (10^25 to 10^26 total operations). These numbers are very rough estimates based on the 
open-source activity related to Meta AI’s Llama and Llama 2 models.
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0.5.1.7 Closed-access AI models are vulnerable to black-box 
exfiltration and other attacks 

Advanced AI models have repeatedly had their safety features subverted (“jailbroken”) 
by security researchers with no access to the model’s weights [94,95]. Future jailbreaks 
could enable malicious actors to leverage even legitimate AI systems to support 
weaponization use cases like cyber warfare and bioweapon design, using only models 
that are accessible through secure application programming interfaces (APIs) or user 
interfaces like ChatGPT [96,97]. Moreover, it is also possible to replicate many of the 
capabilities of a powerful AI system at far lower cost, by training a second AI system on 
the outputs of the first [98]. This means if a closed-access AI system is made available 
for use through an API or user interface, the system’s operator should monitor usage 
for patterns that could indicate weaponization [43] or black-box exfiltration. 

0.5.2 Political challenges 

0.5.2.1 AI advances faster than the ordinary policy process  

The pace of development in advanced AI is faster than any government's ability to 
respond through most ordinary policy mechanisms. When ChatGPT brought advanced 
AI to the attention of policymakers and the public in late 2022, frontier AI models could 
achieve a 10% score on the Uniform Bar Exam (UBE) [29]; write modest quantities of 
reasonably high-quality code [99]; and generate art and photorealistic images [100]. 
Just over a year later, the public frontier of AI capabilities has completely transformed. 
Leading AI models outperform average human professionals across a wide range of 
professional exams (including the UBE, with scores up to 90%) [29]; can write entire 
applications with minimal human oversight [34]; and generate photorealistic video clips 
[101].  

Though the forecast remains uncertain (see 0.5.1.2), there is reason to expect AI 
progress in the coming years to continue at its current pace or even to accelerate. 
Relative to this pace of progress, legislative and executive response times are far 
slower. This difference in timescale creates a “regulatory policy lag” that poses a 
fundamental challenge to reactive regulation. In order for policy or legislation to 
successfully address the relevant national security threats, it must either proactively 
anticipate future problems and capabilities, or delegate sufficient authorities to 
regulatory bodies to ensure timely reactions to new risks as they emerge. 
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0.5.2.2 The information environment around advanced AI makes 
grounded conversations challenging  

Heightened attention on AI risk has increased public support for U.S. government 
action, with 67% of a bipartisan sample in one poll expressing concern that the 
regulatory response to AI could be insufficient [102]. However, since GPT-4’s release in 
early 2023, the information environment surrounding advanced AI has become 
polarized in other ways. For example, AGI alignment risk has been one of the focus 
areas of the effective altruism (EA) movement, a philosophical movement that emerged 
at Oxford University (U.K.) in the early 2010s [103]. Due to its early work in the field, the 
EA movement makes up a large fraction of advocates for extreme AI risk mitigation 
[104]. More recently, the EA movement has been noted for its political influence and 
donations [105].  See Annex E: Funding in AI safety for more information about 18

relevant entities and their donations. 

The EA movement has led to the emergence of a reactionary movement known as 
effective accelerationism (stylized as e/acc), that increased in prominence during 2023 
[106]. In contrast to EA, proponents of e/acc call for the unrestricted development of AI 
and self-regulation of AI companies (see 0.4.1), and generally dismiss arguments for 
catastrophic risk (see 0.4.4) [107]. The e/acc movement is sometimes associated with 
transhumanism, which advocates for the merging of human beings and machines [108]. 
Both the EA and the e/acc movements enjoy considerable support from wealthy Silicon 
Valley backers [107].  

The polarization of advanced AI risk, combined with the genuine uncertainties 
surrounding the topic (see 0.5.1.3), increases the challenge of sustaining technically 
informed conversations on this issue in the public sphere. We recommend U.S. 
government personnel ensure their awareness of the subject matter is grounded in an 
up-to-date technical understanding (see LOE2, 2.2) to ensure productive engagement 
with relevant stakeholders and the public. 

 For information about the sources of financial support for this assessment and its authors, see our 18

Funding disclosure.
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0.5.3 Economic and strategic challenges 

0.5.3.1 Frontier labs face strong incentives to develop and deploy 
increasingly advanced AI systems with limited safeguards 

All three of the main frontier AI labs (see Annex D, D.1) have at least a basic awareness 
of the catastrophic risk potential of the AI systems they are building. But all are 
currently locked in a competitive race [109] that has eroded each individual 
organization’s agency with respect to the safety and security considerations that they 
themselves believe are necessary (see 0.5.1.4 and 0.5.1.5). By the private judgment of 
many of their own technical AI safety staff, none of these organizations is currently 
investing in AI and AGI safety to the degree that would be needed to adequately offset 
its respective investment in AI capabilities. The race dynamic between these labs 
originates from a combination of economic competition and a genuine institutional 
belief within each organization that it, and not its competitors, would be the best 
steward of an eventual AGI system if and when one is developed [110].  

The incentives driving this race are intensified by the potential for extreme winner-take-
all effects. Frontier AI labs that fall behind perceive that they may find themselves at a 
permanent disadvantage [10], while the lab that is the first to achieve an AGI-level 
capability might — if it avoids causing a catastrophic outcome (see 0.5.1.1 and 0.5.1.3) 
— enjoy unprecedented windfall profits.  19

These winner-take-all effects are reinforced even further by the possibility that future AI 
systems could themselves be used to accelerate frontier AI research and development.  
Some frontier labs have already begun experimenting with forms of AI-supported AI 
research [69,111]. If this approach succeeds, it could lead to an accelerating dynamic in 
which progress in AI produces rapidly compounding returns beyond a certain critical 
capability level [112].  20

Private conversations with frontier researchers clearly indicate that this possibility is 
taken seriously inside leading labs. 

 We mean “profits” here in the sense of “excess value” rather than defining it in purely monetary 19

terms.

 The use of AI systems to automate AI research may also introduce particularly acute risks from AGI 20

alignment failure. See Annex B: The full challenge of AGI alignment for more information about the risks 
of automated AI research. 
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Because of these factors, under the present self-regulating regime (see 0.4.1) frontier 
AI labs face strong incentives to compromise on safety and security in a number of 
critical areas. For example, in performing self-evaluations of their AI models for 
dangerous behaviors, frontier labs may be motivated to make their models appear 
safer than they are. Indeed, according to individuals with direct experience conducting 
safety evaluations on frontier models, this has already begun to occur. One frontier 
researcher shared that, although their lab was being reasonably cautious with its AI 
evaluations, they ultimately expect it to follow institutional financial incentives to game 
evaluations. (See LOE3, 3.2.1 for more information on the technical limitations of AI 
evaluations.) 

As the capabilities of AI systems increase in the future, additional risks — driven by the 
same sets of incentives as above — could surface at the intersection of frontier lab 
interests, national security, and the democratic process. For example, many AI 
researchers believe that future AI systems could develop persuasive capabilities that 
match or exceed those of the most skilled humans [113,114]. If such systems were 
developed, they could be used to influence the views of regulators, legislators, 
policymakers, and voters in any number of ways. See Annex F: Persuasion and 
manipulation for more information on this category of AI capabilities and the 
associated risks. 

0.5.3.2 AI supply chain proliferation cannot be mitigated after the fact 

 

Figure 4. Simplified representation of the components of the AI supply chain. 

Some parts of the supply chain for advanced AI are unusually prone to proliferation 
risk. The irreversibility of open-access model releases, and the risk of their subsequent 
augmentation, may be the most visible example (see 0.5.1.6). 

More generally, several nodes in the advanced AI supply chain can produce outputs 
without the need for high-cost consumable inputs. To use an open-access AI model for 
inference, for example, requires only electrical energy as a consumable input. The AI 
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model itself is not consumed, so it can be used for any number of subsequent 
inferences. 

Similarly, an AI data center,  while expensive to build, can be used to train or augment 21

any number of advanced AI models. To use an existing AI data center to train AI 
models requires primarily electricity and water for cooling, which are low-cost 
commodities [115]. The AI data center itself is not consumed,  so it can be used to 22

train or augment AI models effectively unrestricted. 

AI model training and inference generally do not require high-cost consumables. The 
high-cost items in this supply chain are the AI model and the AI data center. Supply 
chain controls on these activities would primarily apply to these high-cost items, 
because low-cost commodities like electricity and water are impractical to control. But 
even if controls are enacted on these items, existing AI data centers can still be used 
for training, and existing AI models can still be used for inference. And entities that 
expect to be subject to controls on these items in the future can also anticipate 
restrictions by stockpiling them in advance [117]. 

As a result, supply chain controls on AI training and inference inputs will have a delayed 
rather than immediate impact. Instead of directly interrupting the flow of a 
consumable, controls will take effect over time through wear and tear and erosion of 
competitiveness of the controlled capital goods. This means supply chain controls in 
this area will be less effective as a reactive measure than they may be in other sectors. 
By the time a proliferation risk is recognized, it could be too late for such controls to 
make a difference. 

In the case of AI training and inference, this factor is compounded by an even greater 
challenge. Improvements in AI algorithms continue to reduce the amount of compute 
required to train an AI model to a given level of capability, by approximately 50% every 
18 months [118]. If this continues, then a stock of GPUs that is considered safe today, 
could become dangerous in the future. 

 That is, a data center that supports AI hardware, such as graphics processing units (GPUs) or tensor 21

processing units (TPUs), that are generally used to train and run inference on advanced AI models. See 
the Glossary of terms for a full definition.

 In reality, AI hardware like data center GPUs undergo wear and tear and fail over time. But the useful 22

lifetime of a GPU is typically between 3-6 years (depending heavily on usage) [116], so an entity with a 
stock of GPUs in a datacenter is effectively unrestricted in its training of AI models over that timeframe.
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This combination of challenges suggests that supply chain controls on AI training and 
inference will to some extent have to be anticipatory. They will need to account not 
only for what is possible today, but for what may be possible with the algorithms of the 
next few years. Without a proactive approach, if AI systems begin to display dangerous 
capabilities at a future point, the U.S. government may find itself with fewer options to 
prevent such systems from proliferating. 

See Annex G: Primer on AI and compute for more information on the impact of the 
compute supply chain on AI risk, including key numerical thresholds and existing 
compute concentrations. 

0.5.4 Legal challenges 

0.5.4.1 The current legal environment is inadequate to address the 
most extreme risks from advanced AI 

Advanced AI could introduce catastrophic risks that may not be adequately addressed 
by the current U.S. legal environment. These risks have features that make them 
difficult to mitigate without new legislative tools. 

First, because AI models are software, they can proliferate almost instantly as open-
access or be stolen through cyberattacks. Once proliferated, certain advanced AI 
models could irreversibly and dramatically increase the destructive footprint of threat 
actors [1] (see 0.5.1.6). In the worst case, weaponization and loss of control of stolen or 
open-access models could introduce catastrophic risks that are completely unintended 
by the AI system’s developers. Moreover, some AI developers have an economic 
incentive to publish increasingly powerful open-access models even as these 
potentially become dangerously capable [93].  One has even claimed it intends to 23

develop, and then open-source, AGI itself [40]. In the current legal environment, these 
developers can release powerful AI models without incurring any liability if their models 
are weaponized or augmented in dangerous ways. 

Second, liability alone may be insufficient to address some of the most high-risk AI 
development activities. This is because some frontier AI developers do not believe 
catastrophic AI risk is plausible (see 0.4.4), while at the same time, some forms of 
catastrophic AI risk may be so severe as to be unrecoverable (see 0.5.1.1). As a result, 

 This is because by publishing their models, these companies encourage open-source developers to 23

build on top of those models and frameworks, effectively augmenting their development capacity.

 of 45 284



these developers are unlikely to be deterred by civil or even criminal liability that would 
attach to an event that they do not believe will occur, and that, if it did, would impact 
them in itself far more than would any realistic criminal sanction. 

The current U.S. legal environment makes no explicit provision for such risks, and does 
not establish clear criminal and civil liability conditions for the irresponsible release or 
development of dangerous AI systems. 
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Action plan to increase the safety and security of advanced AI 

This is an action plan for the U.S. government to increase the safety and security of 
advanced AI by countering catastrophic national security risks from AI 
weaponization and loss of control. The United States is in a unique position to 
mitigate these risks. It is home to all the current major frontier AI labs, and exerts 
considerable influence on the global AI supply chain. 

Given the pace of progress in AI and the proliferation of key inputs to AI development, 
the U.S. government will need to move quickly and decisively to mitigate catastrophic 
risks from advanced AI. It will need to establish interim AI safeguards urgently, and then 
work to formalize those safeguards in national and international law. At the same time, 
it should accelerate development of technical AI safety and security, including AI 
alignment, by investing heavily in research capacity and capability in the United States 
and around the world. Finally, the United States will need to increase its warning, 
preparedness, and response capacity and capabilities for catastrophic AI risk scenarios. 

We organize these actions along five lines of effort (LOEs). We recommend that all 
LOEs begin execution immediately. Together, the LOEs proposed in this action plan 
would allow the United States to immediately begin to reduce catastrophic risks 
associated with frontier AI and AGI development while building the institutional 
capacity and capabilities needed for successful risk management and governance. 

Due to the complexity of catastrophic AI risks and the number of distinct vectors 
through which they can arise, no single silver-bullet measure can assure safety and 
security on its own. Rather, any viable action plan will consist of many mutually 
reinforcing efforts that each address different threat vectors and challenges to varying 
degrees, but which combine to form an effective safety and security regime. This is the 
defense in depth principle that guides the structure of this action plan and the content 
of its LOEs. 

This action plan was developed over thirteen months, and informed by conversations 
with over two hundred stakeholders from across the United States, United Kingdom, 
and Canadian governments; major cloud providers; AI safety organizations; security 
and computing experts; and formal and informal contacts at frontier AI labs. All of 
these stakeholders — both individuals and institutions — have made unique and crucial 
contributions to this document. We list and thank them in our Acknowledgments. 
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LOE1: Establish interim safeguards to stabilize 
advanced AI development 

The weaponization potential of current- and next-generation AI systems, [1] and the 
risk of loss of control in future AI systems, create urgent and growing risks to national 
security (Introduction, 0.5.1.1 and 0.5.1.2). The pace of development in AI is now so 
rapid that an ordinary policymaking process could be overtaken by events by the time 
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the resulting policies take effect (Introduction, 0.5.2.1 and 0.5.3.1). Moreover, as 
components of the AI supply chain continue to proliferate, these risks will become 
increasingly challenging to contain (Introduction, 0.5.1.6 and 0.5.3.2). These factors 
necessitate the implementation of near-term safeguards to protect U.S. national 
security. At the same time, the benefits of innovation in AI mean that these safeguards 
should be scoped to minimize economic or strategic harms (Introduction, 0.4.2). 

This LOE outlines possible actions the Executive Branch could take to buy down 
catastrophic AI risk in the near term (1-3 years), while setting the conditions for 
successful long-term AI safeguards. These actions are: 

● Creating an AI Observatory (AIO) to monitor developments in advanced AI and 
ensure that the U.S. government’s view of the field is up-to-date and reliable  
(see 1.2); 

● Mandating an interim set of responsible AI development and adoption 
(RADA) safeguards for advanced AI systems and their developers (see 1.3); 

● Creating an interagency AI Safety Task Force (ASTF) to coordinate 
implementation and oversight of RADA safeguards (see 1.4); and 

● Putting in place a set of controls on the advanced AI supply chain calibrated to 
preserve U.S. government flexibility in the face of unpredictable risks (see 1.5). 

1.1 National security threats addressed by this LOE 

This LOE addresses two near-term national security threats from advanced AI. First, the 
United States is exposed to weaponization of advanced AI systems through a variety of 
vectors. Open-access AI models are at increasing risk of being weaponized by state 
and non-state adversaries as their capabilities increase (Introduction, 0.5.1.6). U.S.-
developed, proprietary advanced AI systems face an ongoing threat of exfiltration and 
subsequent weaponization (Introduction, 0.5.1.5). And other key components of the 
advanced AI supply chain are proliferating through a variety of pathways, which could 
support future development of AI systems by adversaries (Introduction, 0.5.3.2). 

The second urgent national security threat is loss of control due to AGI alignment 
failure [1]. In the near term, this threat stems from the incentives that U.S.-based 
frontier AI companies face to develop and deploy powerful AI systems as rapidly as 
possible with insufficient safeguards (Introduction, 0.5.1.2, 0.5.1.4 and 0.5.3.1). As 
open-access AI capabilities continue to approach the frontier of proprietary systems 
[119], there may also be potential loss-of-control risk from these models if they are 
augmented with tools or software frameworks in unpredictable ways [120–123] 
(Introduction, 0.5.1.6). 
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1.2 Establish an AI Observatory for advanced AI 

The U.S. government urgently needs to establish situational awareness of the 
landscape of advanced AI risks in order to better understand the timelines 
(Introduction, 0.5.1.2), likelihoods (Introduction, 0.5.1.3), and severities (Introduction, 
0.5.1.1) of emerging threats. It also needs to put in place basic early-warning and 
preparedness capabilities. These basic capabilities can form a stop-gap while more 
permanent Indications and Warnings (I&W) (LOE2, 2.3) and contingency measures 
(LOE2, 2.4) are put in place. 

Existing authorities may allow for the rapid establishment of these functions, such as 
under the Department of Homeland Security (DHS).  DHS could create an internal unit 24

for advanced AI monitoring and preparedness that we will refer to as an AI 
Observatory (AIO). An AIO could serve as a U.S. government center for AI threat 
evaluation, analysis, and information sharing. Its functions could include horizon-
scanning for emergent AI capabilities, and DHS-wide coordination to increase 
homeland security preparedness to address weaponized AI and loss of control 
scenarios. An AIO could also serve as a stopgap pending the formation of a dedicated 
interagency task force (see 1.4) or statutory agency (LOE4, 4.1) to oversee catastrophic 
AI risk mitigation. An AIO could also deliver reports on advanced AI to a National 
Security Council-level (NSC-level) official to support awareness and coordination of 
advanced AI risks and responses across departments and agencies (LOE2, 2.1). 

Additionally, although DHS has established a Chief AI Officer to govern the 
Department’s internal use of AI [126], no office or component is yet responsible to the 
Secretary for the mission to counter AI threats. This lack of ownership may create a 
responsibility gap in this mission area, and could pose a risk to homeland security. 
State, Local, Tribal, and Territorial (SLTT) partners in particular count on DHS to share 

 For example, the Secretary of DHS may be able to declare advanced AI, defined according to a 24

computing or capability threshold, as a critical infrastructure sector under Presidential Policy Directive 21 
(PPD-21) [124]. A related approach could be to extend the definition of the Information Technology [124] 
critical infrastructure sector to encompass advanced AI development. A critical infrastructure designation 
could benefit situational awareness by engaging the authorities of the Cybersecurity and Infrastructure 
Security Agency (CISA) under the Cyber Incident Reporting for Critical Infrastructure Act of 2021 
(CIRCIA) [125]. This statute requires operators of critical infrastructure to promptly report certain 
cybersecurity incidents to the CISA. Many frontier AI labs broadly lack adequate cybersecurity 
protections, leaving them vulnerable to exfiltration of advanced AI models by adversarial actors 
(Introduction, 0.5.1.5). A critical infrastructure designation could offer the U.S. government some early 
visibility into the frequency and severity of such incidents.
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critical threat information and close information gaps. In this context, we also 
recommend that an AIO report directly to the Secretary of DHS if possible. 

1.2.1 Functions 

An AI Observatory could have three primary functions: 

1. Horizon scanning, which would involve closely monitoring progress in frontier AI 
by drawing from publicly available research, commercial datasets, private 
discussions with researchers, Cybersecurity and Infrastructure Security Agency 
(CISA) cyber incident reports, and independent evaluations of publicly 
accessible AI systems; 

2. Emergency preparedness, which would involve developing response plans for 
safety and security incidents and driving prioritization of DHS Science and 
Technology (S&T) AI safety and security investments; and 

3. Information-sharing and coordination both within DHS and with other 
departments and agencies, including any relevant interagency task forces (see 
1.4), the NSC, and SLTT partners. 

An AIO’s horizon-scanning and information-sharing functions could directly support 
advanced AI risk mitigation across the U.S. government. This includes the activities of 
any future task forces (see 1.4) or statutory agencies (LOE4, 4.1) related to eventual 
oversight and enforcement of RADA safeguards. Insights from oversight and 
enforcement activities could in turn improve the quality of an AIO’s horizon-scanning 
and analysis.  These mutual benefits highlight the value of close collaboration 25

between an AIO and any U.S. government equities responsible for such activities, and 
could argue for eventually centralizing all such functions under a single entity. 

See Annex H: AIO activities for more details on the specific activities an AIO could 
undertake. 

 For example, knowing the sizes and capabilities of frontier labs’ most advanced AI systems would 25

make it easier to understand which external projects merit tracking or present risks based on high-level 
observables like compute resource availability.
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1.2.2 Staffing 

Through its horizon-scanning function, an AIO would serve as a first-line warning 
system for homeland defense against AI and AI-derived threats. We therefore 
recommend that an AIO report directly to the Secretary through its Director. We also 
recommend that the Director of an AIO be co-equal with the DHS Chief AI Officer if 
possible. Whereas the Chief AI Officer should continue leading DHS efforts to 
responsibly use AI in support of homeland security missions, an AIO could focus on 
tracking and mitigating risks from domestic and external AI programs. 

To support its mission, an AIO could include representation from the Office of Strategy, 
Policy, and Plans (OSPP), the Science and Technology Directorate (S&T), the Countering 
Weapons of Mass Destruction (C-WMD) Office, CISA, the Federal Emergency 
Management Agency (FEMA), and other Components as appropriate. DHS 
Components could be required to allocate personnel and financial resources to 
support a DHS AIO. 

An AIO would need to closely monitor a rapidly advancing and highly technical field, 
and disseminate accurate, timely, and actionable insights across U.S. government 
stakeholders. A mission failure could, in the worst case, endanger national security 
(Introduction, 0.5.1.1). As a result, an AIO should be conceived as an elite homeland 
security unit. We therefore recommend that the AIO Director carefully manage a 
competitive process by which volunteers from across DHS and industry could be 
screened and selected to staff the AIO. 

For the same reason, the AIO Director should be a seasoned executive with a deep 
understanding of both U.S. government policy and AI technology. Technical proficiency 
in frontier AI would be a key requirement for this leadership position. 

1.2.3 Interagency coordination 

An AIO could coordinate with some of the following departments and agencies on 
information-sharing:  26

● The Department of Energy (DOE), because of its technical expertise and 
ongoing responsibility for developing and implementing a plan for AI testing 
and evaluations and AI testbeds [127]; 

 In the event of a critical infrastructure designation under PPD-21, some of these could be designated 26

as co-Sector-Specific Agencies (co-SSAs) for the advanced AI sector.
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● The National Institutes of Standards and Technology (NIST) and its AI Safety 
Institute (U.S. AISI) because of its technical expertise and responsibility for 
developing and implementing guidance for AI evaluation standards [127]; 

● The Securities and Exchange Commission (SEC) because of its examination 
authorities over financial firms that may be conducting frontier AI development 
without public disclosure (see Annex D, D.4); and 

● Any future task forces (see 1.4) or statutory agencies (LOE4, 4.1) dedicated to 
oversight and enforcement of RADA safeguards. 

1.3 Establish responsible AI development and adoption 
safeguards for U.S. private industry 

While essential, horizon scanning is not sufficient on its own to safeguard against 
potential near-term catastrophic risks from advanced AI (Introduction, 0.5.1.1, 0.5.1.2, 
0.5.1.4, 0.5.1.5, 0.5.1.6 and 0.5.3.1). To address these, we strongly recommend putting 
in place interim emergency regulatory measures pending Congressional action (see 
LOE4). 

These measures could take the form of enacting and overseeing a set of responsible 
AI development and adoption (RADA) safeguards for any U.S. entities developing 
advanced AI systems. Several AI developers have already published responsible 
scaling policies [14,128,129] for internal adoption and external scrutiny. In private 
conversations, others have acknowledged the need for government intervention in 
developing and enforcing practices for safe and responsible AI scaling, given prevailing 
incentives (Introduction, 0.5.3.1). However, the RADA safeguards framework we 
propose (LOE4, 4.1.3) encompasses key safety and security principles not only for 
advanced AI developers, but also for other key entities in the advanced AI supply 
chain. This RADA framework also offers flexible guidance with respect to best practices 
and operation of regulatory and oversight bodies (see 1.4; LOE4, 4.1). 

In 1.4, we will recommend establishing an interim interagency task force to oversee 
compliance with RADA safeguards until that function can be superseded by a 
Congressionally mandated regulator (LOE4, 4.1). We will also recommend that this task 
force be empowered to modify and update the RADA safeguards as conditions change 
and new information becomes available. 

 of 53 284



1.3.1 Implementation mechanism and statutory authorities 

RADA safeguards, as conceived above, would only apply to the limited set of AI 
companies working at the frontier of current capabilities. Nonetheless, for the 
Executive Branch to impose and enforce binding rules on domestic private sector 
companies is an unusual action and may be without precedent. We believe this could 
be done in one of two ways. 

A first approach could be to include a framework for RADA safeguards as part of a 
National Security Memorandum (NSM) attached to an existing Executive Order [127]. A 
second approach could be to enact a RADA safeguards framework and establish an 
oversight task force in a new Executive Order. In either case, the President may be able 
to leverage authorities from some of the following statutes: 

● The Communications Act of 1934, 47 USC 606 [130]; 

● The Defense Production Act of 1950, 50 USC 4502 [131]; 

● The Atomic Energy Act of 1954, 42 USC 2162 [132]; and/or 

● The Invention Secrecy Act of 1951, 35 USC 181 [133]. 

In the event that the Executive Branch cannot enforce RADA safeguards, there may be 
some limited value in negotiating detailed voluntary commitments with selected U.S. 
frontier AI labs [134]. While voluntary measures would leave substantial safety and 
security gaps relative to mandatory practices, they may be able to cover some portion 
of the risk surface pending a Congressional solution. 

In Annex I: Voluntary Charter for responsible AI, we sketch out a set of commitments 
that we believe could form the basis for a voluntary agreement between the U.S. 
government and major frontier labs in the near term (see also 1.4.1.1).  

1.3.2 RADA safeguards principles 

For an example of a complete RADA safeguards framework, including sample 
calculations of thresholds for covered entities, see LOE4, 4.1.3. 

In order to balance innovation and national security considerations (Introduction, 0.4.2 
and 0.5.1.1), RADA safeguards should be stratified according to clearly demarcated 
tiers of AI model capabilities, with escalating safety and security practices mandated for 
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each tier. Lower tiers should minimize regulatory burdens to the fullest extent possible. 
Total training compute could initially be used as a proxy for AI capabilities in 
determining the thresholds for each tier, but other normalized capability measures may 
also be viable (see LOE4, 4.1.3.4 and Annex J: Effective compute). The thresholds for 
each tier should be grounded in concrete national security considerations, such as the 
lead times needed by contingency planners to identify and respond to various threats 
scenarios (LOE2, 2.3 and 2.4), and the amount of time it would take an adversary to 
develop AI capabilities that could trigger those threat scenarios (LOE4, 4.1.3). 

To assure adequate security coverage, RADA safeguards should be followed not only 
by the AI model developers themselves, but also by other entities in the local supply 
chain such as AI hardware designers (LOE4, 4.1.3.1), data center infrastructure 
providers (LOE4, 4.1.3.2), and AI hardware owners (LOE4, 4.1.3.3). 

For developers of AI systems assessed as high-risk, RADA safeguards should include 
comprehensive AI evaluations for those systems as one among several factors in 
approving further AI scaling (LOE3, 3.2.2). Other factors should include outcomes of 
automated benchmarks, red teaming, and other safety and security reviews performed 
during the pre-training, training, pre-deployment, and deployment stages of the AI 
development lifecycle (LOE4, 4.1.3.4.3). The ultimate aim of these RADA safeguards is 
to drive the development and validation of robust scientific theories predicting the 
capabilities and propensities of current and future frontier AI systems, to support 
responsible scaling once that understanding is achieved. 

Finally, RADA safeguards should support the flexible adjustment of tiering thresholds in 
response to new information. For example, if AI evaluations consistently suggest that 
prevailing capability levels are safe, RADA compute thresholds could be loosened 
under close monitoring to support further scaling. On the other hand, if algorithmic 
improvements make it possible to develop powerful AI capabilities with less compute 
(Annex G, G.3), RADA compute thresholds could be adjusted downward in response. 

Because of the rapid pace of progress in AI, compute and capability thresholds for 
RADA tiers should be frequently reviewed and updated in consultation with domain 
experts. Inaction or slow action in this area could stifle U.S. innovation on the one 
hand, or open critical national security gaps on the other. 
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1.4 Establish an AI Safety Task Force for RADA oversight 

In parallel with a RADA framework, we recommend that the President establish an AI 
Safety Task Force (ASTF) and direct departments and agencies to resource it fully, 
working with the Congress for supplemental funding if required. The ASTF’s primary 
mission would be to lead U.S. government efforts to facilitate responsible AI 
development and adoption by mitigating catastrophic national security threats 
from weaponization and loss of control. It would accomplish this mission by 
overseeing compliance with RADA safeguards (see 1.3) on an interim basis, and 
support institutional capacity-building in AI risk management, until a permanent 
regulatory agency for advanced AI can be established by the Congress (LOE4, 4.1). To 
support this mission, the President could empower the ASTF to implement, update, 
enforce a set of RADA safeguards for relevant domestic stakeholders in advanced AI.  

We recommend that the ASTF be led by a Presidentially-appointed, Senate-confirmed 
executive, staffed by interagency personnel, and augmented by technical expertise 
from the private sector. Private sector expertise should be carefully vetted for 
organizational conflicts of interest related to frontier labs, tech companies, and other 
institutional and non-profit investors, prioritizing technical acumen. 

We recommend that the ASTF report to an official at the NSC level in the Executive 
Branch, to ensure a direct channel for escalation of AI-related emergencies (see LOE2, 
2.1). The ASTF could be sited either at DOE or DHS. Both Departments have 
complementary areas of expertise with respect to advanced AI: DOE has significant in-
house technical expertise, while DHS has specialists in CBRN risk assessment.  27

As part of its mandate of RADA oversight, the ASTF may need to supervise AI 
evaluations related to CBRN and WMD-enabled capabilities. This may require the ASTF 
to process classified information. However, to accelerate recruitment of personnel with 
key technical expertise (and who may not initially be cleared), the ASTF could begin by 
consuming only unclassified information with the goal of eventually ingesting classified 
information. Because DHS and NIST have already been tasked with developing policies 

 DHS may also house an AIO (see 1.2), which could simplify collaboration between that unit’s horizon-27

scanning function and the ASTF’s oversight function if the ASTF were sited at DHS. The functions of an 
AIO could also be absorbed directly into the ASTF.
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for CBRN AI evaluations [127], the ASTF could be focused on loss of control risk in its 
early phase to enable its work to begin in the unclassified domain. 

1.4.1 Mission 

The ASTF’s mission would be to facilitate responsible AI development and adoption 
by mitigating catastrophic national security threats from weaponization and loss of 
control. This mission would include one initial Priority Objective and two Sustainment 
Components. 

The ASTF’s Priority Objective would be to finalize a set of RADA safeguards and secure 
agreement on those terms from key frontier AI labs and other stakeholders. Once the 
ASTF has achieved its Priority Objective, its sustainment activities would fall into two 
categories:  28

● Overseeing industry compliance with RADA safeguards, and operating the 
necessary supporting infrastructure; and 

● Developing recommendations for a future legal regime and regulatory agency in 
support of LOE4. 

The ASTF should also expect some portion of its initial set of RADA safeguards to be 
inadequate or unworkable for reasons that it will discover during negotiation and 
implementation. The ASTF may need to adapt its RADA safeguards accordingly, and 
should capture learnings from its experiences to inform formal regulation. 

For a detailed list of activities the ASTF could undertake in support of its mission, 
including one possible organizational structure for the task force, see Annex K: ASTF 
activities and task-organization. 

1.4.1.1 Priority Objective: Finalize and secure agreement on RADA 
safeguards 

We recommend the ASTF’s top priority be to finalize a set of interim RADA safeguards 
and secure initial commitments from key frontier AI labs and their cloud providers on 
their implementation. 

 In the event that the ASTF absorbs the functions of an AIO (see 1.2), it could also take over horizon 28

scanning and monitoring of external AI programs as a third Sustainment Component.
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If the President has established an enforceable set of RADA safeguards (“Plan A”), 
whether via NSM or Executive Order (see 1.3.1), the Director of the ASTF could be 
empowered to reach an agreement with frontier AI labs ensuring that further frontier AI 
development will adhere to those safeguards. The ASTF could adjust the RADA 
safeguards based on discussion with the frontier labs or on other practical 
considerations. But we recommend the safeguards be as close as possible to what 
could be enforced by a Congressionally mandated regulator (LOE4, 4.1). This would 
allow the ASTF’s experience to better inform the implementation of a full regulatory 
regime by identifying early challenges and blind spots, consistent with its mission (see 
1.4.1.3). 

Although we assess that enforceable RADA safeguards are urgently needed, if they 
cannot be established (“Plan B”), we recommend that the President instead empower 
the ASTF to negotiate an interim, voluntary frontier AI safeguards regime with major 
frontier AI labs [135] and additional entities at the ASTF’s discretion. Annex I: Voluntary 
Charter for responsible AI provides a proposal for more limited commitments that 
could be negotiated on a voluntary basis.  These negotiations could culminate in the 29

signing, by frontier labs and cloud providers, of a voluntary Charter outlining a set of AI 
safety and security commitments. Frontier labs may also be encouraged to sign onto a 
voluntary Charter in order to participate in negotiating the Charter terms and 
influencing its implementation, since these could inform the details of future laws and 
regulations. 

 These more limited commitments would significantly increase public safety and national security 29

exposure to potential catastrophic AI risks relative to the RADA safeguards outlined in LOE4, 4.1.3. They 
would also limit the extent to which the ASTF’s work can inform the implementation of laws and 
regulations under LOE4. For example, proposed voluntary commitments may not include guarantees to 
avoid training models above potentially dangerous thresholds of compute, or promises to avoid 
deploying large uninterpretable models, without prior safety assessments. Both of these measures would 
be critical to any meaningful attempt to address catastrophic risk from AI, under the security and safety 
conditions that currently exist at frontier labs.
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In order to best position the ASTF for success in these negotiations, the President 
could also:  30

● Publicly call on U.S. frontier AI labs to pause development of models trained 
with more than 10^26 OP of total compute; 

● Publicly call on U.S. AI developers to pause any plans to release open-access 
models trained with more than 10^25 OP of total compute; and 

● Publicly call on U.S. cloud providers to pause their provision of cloud services for 
training runs aimed at developing open-access AI models with more than 10^25 
OP of compute. 

 As with all numerical thresholds in this document, these numbers could change quickly and should be 30

reviewed by subject-matter experts with up-to-date information on the technical landscape in advanced 
AI.
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Figure 5. Safeguards to introduce to frontier AI developers, AI hardware owners, and data 
center infrastructure providers in the event that RADA safeguards can (Plan A) and cannot (Plan 
B) be mandated.  
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1.4.1.2 Sustainment Component: Oversee compliance with RADA 
safeguards 

Once initial commitments are secured, the ASTF could build processes to oversee 
compliance with RADA safeguards, and operate the necessary supporting 
infrastructure. 

This Sustainment Component of the ASTF’s mission should be understood to serve as a 
stopgap pending legislation (see LOE4), and as a mechanism by which problems and 
challenges that would face future regulators can be identified and addressed as early 
as possible. The ASTF could be absorbed into a domestic regulatory agency (LOE4, 
4.1) if and when one is established.  31

For a list of specific activities the ASTF could undertake in support of this Sustainment 
Component of its mission, see Annex K, K.1. 

1.4.1.3 Sustainment Component: Develop recommendations for future 
regulations 

The ASTF’s second goal would be to develop recommendations for a future legal 
regime and regulatory agency (see LOE4). 

We anticipate that the ASTF may have to revise the RADA safeguards based on its 
experience overseeing stakeholder compliance with its terms [138]. For a future AI 
regulatory agency to have the best chance of success, the teams that develop 
recommendations for that agency’s operating model should work closely with the 
teams that regularly encounter the successes and failures of AI oversight in the real 
world. The ASTF’s oversight component (see 1.4.1.2) would create valuable experience 
that the task force could apply to this mission component. The revisions the ASTF 
implements could then directly inform the development and enforcement of future 
regulations under LOE4.  

For a list of specific activities the ASTF could undertake in support of this Sustainment 
Component of its mission, see Annex K, K.2. 

 This would be similar to, e.g., the Atomic Energy Commission’s succession by the Nuclear Regulatory 31

Commission (NRC) under the Energy Reorganization Act of 1974 (42 USC § 5801) [136,137]. 
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1.4.2 Resources and staffing 

The ASTF could initially consist of a small task force of 20-25 individuals. The U.K. 
Frontier AI Taskforce has shown that a task force with this size and mandate can be 
established quickly, and then immediately begin to make visible progress on its key 
objectives [139].  

The ASTF’s unique mission (see 1.4.1) necessitates the capability both to interpret and 
update a RADA framework, and to oversee its implementation in practice. This means 
the task force will need to be staffed by individuals who have experience in both 
policies and programs.  Initially this could mean recruiting subject-matter experts from 32

across relevant departments and agencies, to be augmented with private-sector 
contractors over time. 

The ASTF’s mission would also require it to respond rapidly to real-time developments 
in AI which may have complicated origins and implications. To be set up for success in 
this mission, the ASTF would need to recruit the world’s top technical experts in 
advanced AI safety and security. It would also need to recruit high-quality personnel, 
from its inception, to ensure a culture of speed and effectiveness is established and 
reinforced from an early stage. 

This combination of requirements may necessitate compensation waivers for the task 
force [127].  The ASTF could also benefit from additional approaches to ensuring a 33

high quality standard. For example, the first set of ASTF employees could be assigned 
at six-month intervals, and key personnel decisions could be approved at the level of 
the Executive Branch. 

Additionally, many of the world’s top experts in AI safety and security are motivated by 
a desire for positive impact. But these individuals, while experts in their respective 
fields, may not be experienced at identifying positions in a government organization in 
which they could contribute. As a result, we believe the ASTF could benefit from high-
level public messaging that would position it as the central hub for forward-thinking 
regulation in advanced AI safety and security across the U.S. government. The U.K.’s 

 In the event a set of enforceable RADA safeguards are not established, the ASTF will need the 32

capability to negotiate a voluntary Charter with frontier AI labs, then oversee compliance with that 
Charter. This mission would still require a combination of policies and programs experience to execute 
successfully.

 For reference, based on interviews conducted over the course of this assessment, junior AI alignment 33

researchers at frontier labs have total compensation packages totalling $500,000 per year or more.
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Frontier AI Taskforce has shown the effectiveness of this centralized approach in 
attracting and retaining some of the world’s top AI talent [140], something that all 
governments have otherwise found challenging. 

Finally, ASTF staff may be exposed to stakeholders’ IP as part of the task force’s 
oversight activities. The ASTF should therefore consider implementing revolving door 
guarantees that would forbid task force employees who are exposed to such IP from 
working, consulting for, or being contracted by organizations that are or may be 
developing advanced AI systems for some period of time (e.g., 5 years) after leaving 
the ASTF. 

See Annex K, K.3 for one approach to organizing the ASTF into workstreams that 
would support execution of its mission’s two Sustainment Components (see 1.4.1.2 and 
1.4.1.3). 

1.4.3 Financial requirements and budget 

The ASTF would require a budget sufficient to cover temporary duty (TDY) for 
government staff, contractor salaries, equipment, and facilities. This could include 
contracting advanced AI researchers to support the ASTF’s mission. Given that the 
ASTF would also need to maintain high security standards, as well as costly AI testing, 
evaluation, and development infrastructure, it would have to be well-resourced in order 
to be positioned for success.  

By default, funding for the ASTF would be drawn from the budget of its parent 
department, whether DOE or DHS. This may be inadequate depending on the lifetime 
of the task force. We therefore recommend that the President ask for supplemental 
funding from the Congress for the ASTF. The Office of Management and Budget (OMB) 
could make a request for supplemental funding from Congress that is limited in scope. 
Alternatively, the President could also direct OMB to reallocate funds from the existing 
budget. 

1.4.4 Authorities 

Authorities could be delegated to the ASTF in one of two ways. First, the ASTF could 
be staffed by interagency representatives that would bring with them the authorities of 
their respective departments and agencies via memoranda of understanding (MOUs). 
And second, the President could delegate authorities directly to the ASTF. Either 
approach would let the ASTF leverage the authorities of selected other agencies in real 
time, a critical requirement given the urgency of the task force’s mandate. 
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But certain useful authorities could only be granted by the Congress. For example, the 
fast timescale of AI progress may make it challenging for the ASTF to operate on an 
annual budget cycle (Introduction, 0.5.2.1). To cover this gap, the ASTF could benefit 
from no-year funding authority to support its operations, which would need to be 
granted as part of a supplemental funding request. Additionally, decisionmakers may 
want to provide additional flexibility for unknown requirements by granting the ASTF 
"notwithstanding authority." This would give the ASTF flexibility to do its work when 
the national security imperative overrides the reasons for other legal restrictions. 

In any case, some of the authorities granted to the ASTF would depend on whether the 
President has mandated an enforceable set of RADA safeguards (see 1.3). 

● If RADA safeguards have been mandated, the ASTF could oversee an 
implementation of those safeguards similar to that described in LOE4, 4.1.3 and 
could therefore be granted some of the following authorities: 

○ Advise the President and Congress on AI safety and security and 
potential catastrophic AI risk, or report directly to an NSC-level official if 
one has been appointed (LOE2, 2.1); 

○ Enter into commercial and academic partnerships and contracts;  

○ Coordinate with interagency stakeholders and international partners such 
as the U.K. Frontier AI Taskforce (through the Department of State) in 
support of frontier AI and AGI safeguards; 

○ Engage on behalf of the United States with frontier AI labs, their cloud 
providers, and other stakeholders to finalize a set of RADA safeguards 
under which entities can be licensed to pursue certain forms of frontier AI 
research and development; 

○ Inspect and audit frontier AI labs and projects; 

○ Compel testimony and production of documents; 

○ License and approve AI training runs above certain compute and 
capability thresholds (LOE4, 4.1.3.4); 

○ License data center infrastructure providers whose facilities fall above a 
threshold of power consumption (LOE4, 4.1.3.2); 

○ License AI hardware owners whose aggregate compute capacity exceeds 
a given threshold (LOE4, 4.1.3.3); 
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○ Determine publication control standards for frontier AI- and AGI-relevant 
information (e.g., LOE4, 4.1.4); and 

○ Pause frontier AI training runs on an emergency basis. 

● If RADA safeguards have not been mandated, the ASTF could instead negotiate 
with frontier AI labs and major cloud providers to obtain specific voluntary 
commitments for safe and secure AI development, and could therefore be 
granted some of the following authorities: 

○ Advise the President and Congress on AI safety and security and 
potential catastrophic AI risk, or report directly to an NSC-level official if 
one has been appointed (LOE2, 2.1); 

○ Enter into commercial and academic partnerships and contracts;  

○ Coordinate with interagency stakeholders and international partners such 
as the U.K. Frontier AI Taskforce (through the Department of State) in 
support of frontier AI and AGI safeguards; 

○ Negotiate a Charter of commitments to voluntary AI safeguards on behalf 
of the United States. (See Annex I: Voluntary Charter for responsible AI.) 

1.4.5 Location 

We recommend that the ASTF be headquartered in the National Capital Region (NCR) 
with a small footprint in the San Francisco Bay Area in close proximity to frontier AI 
labs, AI safety research groups, and relevant tech companies. This would follow the 
practice of other federal regulators such as the SEC, which maintains regional offices in 
major financial centers [141] in addition to federal headquarters in the NCR. 

1.5 Securing the advanced AI supply chain 

The global supply chain for advanced AI includes: 

● The AI models themselves; 

● The data centers and cloud computing platforms that train those AI models; 

● The AI hardware (GPUs, TPUs) that powers those data centers; 
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● The semiconductor foundries that manufacture that AI hardware, along with their 
upstream tooling and inputs; and 

● The research organizations and other human capital required to train the most 
advanced AI systems. 

The United States is well positioned to enact effective counterproliferation measures 
across key nodes in this supply chain. Development of this capacity is critical for 
national security, especially considering the significant capabilities and risks associated 
with current and near-future AI systems [4]. 

However, the advanced AI supply chain poses challenges that necessitate anticipatory 
rather than reactive action. Under present conditions, elements of this supply chain will 
continue to proliferate while algorithmic improvements will likely lower the cost of 
training powerful models (Introduction, 0.5.1.6 and 0.5.3.2). 

In light of these considerations, we recommend securing key nodes in the advanced AI 
supply chain proactively. Initially this could include measures aimed at securing the 
immediate inputs to advanced AI model development, and explore approaches aimed 
at minimizing the risk posed by the proliferation of the AI models themselves. At the 
same time, the U.S. government should consider more robust long-term controls on AI 
hardware exports and tooling across all levels of this supply chain, and seek 
recommendations for controls in areas such as advanced AI research collaborations 
between U.S. and foreign entities. 

It is also important for these measures to account for the national security implications 
associated with adversarial access to dual-use items. This nuance is well-known by 
specialists in the dual-use export control field but advanced AI will present unique 
challenges. For example, absent additional measures, existing regulations may still 
permit foreign actors to access AI hardware, AI cloud services for training or inference, 
and API usage of advanced AI systems. The U.S. government could leverage best 
practices from existing authorities such as the Export Administration Regulations (EAR) 
[142] to consider how best to control exports of several of the relevant components.  
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1.5.1 AI model weights 

Beyond a certain threshold of capability, an advanced AI model could be a dual-use 
technology. The exact threshold for this is challenging to define precisely and remains 
the subject of ongoing research.  In particular, it is currently unclear whether today’s 34

most advanced AI models have meaningful dual-use capabilities, though there are 
indications that this threshold could be crossed soon [91,143]. As software, AI model 
weights are also extremely easy to disseminate and pose substantial proliferation risks. 
Open-access AI models, in particular, carry risks of augmentation and latent capabilities 
(Introduction, 0.5.1.6). 

In light of these risks, we recommend that the U.S. government urgently explore 
approaches to restrict the open-access release or sale of advanced AI models above 
key thresholds of capability or total training compute. These approaches may be able 
to leverage existing authorities, supported by ongoing efforts to assess dual-use 
capabilities [144,145]. However the irreversibility of open-access release, and the 
possibility of subsequent dangerous capability augmentation, means that dual-use 
assessments may not provide an adequate measure of the risk surfaces of AI systems 
under open-access release. 

1.5.2 Cloud computing 

The United States currently holds a significant advantage in cloud computing 
technology. If leveraged appropriately, the U.S. government could harness its domestic 
industry capabilities in a manner that services a number of strategic objectives. 

Even with sound controls for AI model weight dissemination (see 1.5.1) and AI 
hardware exports (see 1.5.3), U.S. adversaries could still access significant compute for 
AI training runs via U.S.-based cloud service providers. This is a source of meaningful 
risk, particularly as larger amounts of compute become increasingly available through 
these services (see Annex D, D.3). The Department of Commerce has been directed to 
draft regulations regarding the use of U.S.-based AI cloud providers by foreign users to 
train AI models, with an emphasis on risks from AI-enabled cyber warfare [127]. In this 

 In particular, DOE, DHS, and NIST have been tasked to evaluate advanced AI models’ weaponization 34

potential in the CBRN domains [127]. 
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section we will discuss a few considerations that we believe are relevant to cloud 
computing regulations now and in the future.  35

At the moment, the entities that develop the most capable open-access AI models are 
primarily training them on infrastructure owned by AI cloud providers that are 
headquartered in the United States and allied jurisdictions. As a result, any regulatory 
framework that would apply to proprietary AI models would largely apply to open-
access AI models. However, an AI model could be required to meet a higher threshold 
of safety (e.g., have a lower level of capability) to qualify for release under open access 
than for proprietary development. In particular, the AI cloud provider would have to 
certify that no model trained using its infrastructure surpassed a given open-access 
capability threshold. 

We believe the long-term goal of an AI cloud controls regime should be to extend a 
set of RADA safeguards, such as those proposed in LOE4, 4.1.3 to foreign AI 
model developers who train their models using U.S. cloud providers. This ideal 
would require very fine grained monitoring of AI cloud training runs while still 
preserving privacy, and may be infeasible for some time. In the nearer term, the 
Department of Commerce could follow either of two licensing approaches to address 
this risk:  36

1. Restrict foreign entities’ access to U.S. AI cloud compute services. This 
mitigates some short-term risk, but also creates economic pressure for foreign 
states to build their own AI cloud clusters, potentially eroding U.S. strategic 
control over the AI supply chain in the long term.  Even a brief period of broad 37

restrictions could create a strategic impetus for adversaries to indigenize AI 
cloud services [146].  

2. Retain most foreign entities’ ability to access U.S. AI cloud compute services, but 
implement narrow controls for cases in which an entity requests large 
amounts of compute capacity. This would involve end-user controls, combined 

 Direction was for Commerce to prepare draft regulations within 90 days of October 30, 2023, so by 35

January 28, 2024. Since this date falls after the final content review date of this assessment, we are 
unable to refer to the text of these draft regulations here.

 Thanks to Tim Fist at the Center for a New American Security (CNAS) for some of the suggestions in 36

this section.

 This concern may be reduced in the medium term if export controls on AI hardware (see 1.5.3) are 37

extended to a broader set of states.
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with strong know-your-customer (KYC) procedures. At a minimum, KYC could 
confirm that an AI cloud customer is not on the Entity List, Military User End List, 
or other similar lists [147]. It could also block customer access above key 
thresholds of total training compute (see, for example, the approval threshold 
that defines Tier 3 AI models in the RADA framework of LOE4, 4.1.3). Over time, 
these practices could also be expanded to cloud providers in key allied 
jurisdictions. 

1.5.3 AI hardware 

Any entity with enough AI hardware (e.g., GPUs), supporting infrastructure, and talent 
can train advanced AI models. Today’s AI hardware is generally not traceable or 
auditable, and includes limited remote monitoring functionality. AI hardware that is 
modified to enable verification and monitoring will be integral to any 
counterproliferation plan. It will take time to ensure this hardware is widely 
disseminated but early efforts suggest it may be technologically feasible [148]. As in 
the case of AI cloud computing (see 1.5.2), nearer-term controls will need to be more 
fine-grained. 

As of October 17, 2023, the Department of Commerce Bureau of Industry and Security 
(BIS) has expanded U.S. export controls related to advanced AI-enabled chips to China. 
[149–151]. 

In the near term, the BIS could consider the following factors in further refining its AI 
hardware export controls: 

● As of January 2024, updated BIS controls restrict the export of AI chips to China 
if they exceed either (1) a total processing performance (TPP) of 4800 bits x 
TOPS , or (2) a performance density threshold of 5.92 bits x TOPS per square 38

millimeter of die area  [152,153]. These updates close several previous gaps. 39

But we assess that security could be further improved by: 

 TOPS = trillions of operations per second. So this threshold is equivalent to 4.8 x 10^15 bits x OPS. 38

See the Glossary of terms for more information.

 Above this performance density threshold, chip exports are banned. Below this threshold, but above 39

3.2 bits x TOPS per square millimeter, a chip requires a license to export to China.
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○ Updating condition (1) to apply to any AI chip whose maximum compute 
capacity, across all numerical representations, is above 800 TOPS, with 
sparsity; and also 

○ Updating condition (2) to apply to any AI chip whose maximum compute 
capacity, across all numerical representations, is above 1 TOPS per square 
millimeter of die area. This would amount to lowering the compute 
capacity ceiling for export by 33% while preserving the original intent of 
the performance density threshold condition.  40

We assess that these updates would significantly impact foreign actors’ ability to 
train both current-generation (GPT-4) and next-generation (GPT-5) frontier AI 
models.  41

● As AI algorithms improve, the potential risk of weaponization and loss of control 
from a given concentration of AI hardware increases over time. As a first step to 
de-risking this effect, the BIS could consider using AI benchmarks such as 
Massive Multitask Language Understanding (MMLU) [154] to estimate proxies for 
AI capabilities per OP using present-day algorithms. It could then update its 
export control thresholds periodically as algorithms improve. Ultimately, though, 
export control thresholds at any given time will need to account for the 
possibility of unknown future algorithmic improvements. The same concentration 
of AI hardware that is safe given today’s AI training algorithms, could pose risks 
of weaponization or loss of control if it is used to implement future training 
techniques (Introduction, 0.5.3.2). 

 As an example, the NVIDIA A100 GPU has an FP16 (i.e., 16-bit width) tensor core performance of 312 40

TOPS (or teraFLOPS) without sparsity, and 624 TOPS (or teraFLOPS) with sparsity. Current export 
controls work by multiplying the 16-bit width by the 312 TOPS no-sparsity performance, yielding 4992 
TOPS x bits for this chip and therefore very close to the existing export control threshold of 4800 TOPS x 
bits. Our recommendation would be to instead look for the maximum with-sparsity compute capacity of 
this chip, which is 1248 TOPS under the INT8 (i.e., 8-bit width) tensor core representation, and therefore 
clearly exceeds our proposed threshold of 800 TOPS.

 We are recommending a TOPS-based (i.e., compute capacity) threshold rather than (as with current 41

controls) a threshold based on the product of TOPS multiplied by bit width. The reason is that a (TOPS x 
bit width) threshold risks incentivizing the development of AI chips optimized for shorter bit 
representations and higher compute capacities, which is already an industry trend that has been 
accelerating advanced AI capabilities development. A purely TOPS-based threshold, on the other hand, 
targets compute capacity directly. Thanks to Tim Fist at CNAS for this observation.
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● The BIS could also coordinate with future task forces (see 1.4), research centers 
(LOE3, 3.1.2.2) and regulatory agencies (LOE4, 4.1) to align export controls for 
AI hardware with domestic regulations and up-to-date assessments of AI 
capabilities and safety research. 

● As research into remote monitoring systems for AI hardware progresses, the BIS 
could consider tying export licenses to the implementation of on-chip 
monitoring [148]. For example, enabling companies to adopt on-chip 
monitoring for all exports in order to restore export licenses. This could support 
legitimate uses of advanced AI hardware, while preserving the ability to detect 
and remotely block high-risk activity. In the near-term, in order to incentivize 
progress in remote monitoring and related technologies, BIS could consider 
committing to AI hardware designers that they will maintain certain levels of 
access to export markets if they implement on-chip security features with certain 
properties [148].  

● Given the risk that adversarial countries could acquire advanced chips through 
illegitimate means, including through third countries [155,156], the BIS could 
also consider temporarily blocking exports of certain AI hardware to all foreign 
or non-allied jurisdictions [157]. 

To support efforts tied to on-chip remote monitoring and related technologies, the 
Departments of Commerce and DHS could consider establishing export licensing red 
teaming programs. These programs could focus on testing and uncovering 
vulnerabilities in new or proposed on-chip governance technologies designed to grant 
companies the ability to export AI hardware to specific geographies [148]. These 
programs could also be undertaken in collaboration with federally funded research 
centers (LOE3, 3.1). 

1.5.4 Research collaborations 

U.S. and foreign researchers have frequently collaborated on AI research activities. This 
has led to the co-development of noteworthy models, such EfficientZero (Tsinghua 
University and UC Berkeley collaboration) [158] and NÜWA (Peking University and 
Microsoft Research Asia collaboration) [159], and has contributed to AI talent 
development abroad.  

The U.S. government should investigate the the cost-benefit tradeoffs of such 
collaborations in the context of the advanced AI risk landscape.  
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However, excessive restrictions could prevent the diffusion of U.S. technical knowledge 
on advanced AI risk to the international research community. For example, the recent 
outreach by Western AI researchers to the Chinese research community about AI risk 
has been a critical step to establishing common ground and a shared understanding of 
the topic. Overly restrictive controls could deter such outreach in the future, to the 
detriment of U.S. and global security. Additionally, because AI risk awareness is still 
relatively nascent globally, we expect that research collaborations focused on 
understanding and mitigating key AI risks could become positive factors in long-term 
safety (LOE5, 5.2.1.2). 

One straightforward option could be to educate U.S. academics on the national 
security risks of certain kinds of knowledge transfer to support their ability to judge 
which research collaborations are appropriate.  

1.5.5 Education of foreign nationals 

Currently, foreign AI expertise draws significantly from both collaboration with U.S. 
academic labs, and from foreign nationals educated at U.S. universities. We 
recommend the U.S. government explore approaches to encourage foreign nationals 
studying AI at U.S. universities — particularly at the graduate level — to remain in the 
United States upon completion of their studies. Lowering immigration barriers for such 
individuals is likely to increase U.S. competitiveness in AI while supporting economic 
growth and job creation. 

The Department of State has already been directed to establish a program to attract 
top AI talent to the United States [127]. DHS has also been directed to clarify and 
modernize immigration pathways for AI researchers, startup founders, and others 
working in the field. We believe these are constructive steps. 

Educating U.S. academics on national security risk and designating categories of AI 
research projects as suitable for work by foreign graduate and undergraduate students 
could also support limiting knowledge transfer, as in the case of research collaborations 
(see 1.5.4). 
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LOE2: Strengthen capability and capacity for advanced 
AI preparedness and response 

 

Advanced AI and AGI risk mitigation will engage a broad set of U.S. government 
equities. However, the advanced AI landscape is changing rapidly (Introduction, 0.1). In 
this climate, policy should support swift, well-coordinated decision-making grounded in 
rigorous and timely technical assessments (Introduction, 0.5.2.1). Effective mitigation 

 of 73 284



measures will require advance planning and accurate assessments and synthesis of risk 
signals in a potentially challenging information environment (Introduction, 0.5.2.2). 
Execution in these areas, and in those of the other LOEs, will necessitate substantial 
institutional capacity-building across all U.S. government stakeholders. 

This LOE outlines specific actions that the U.S. government could take to increase its 
preparedness for rapidly responding to incidents related to advanced AI and AGI 
development and deployment. These actions are: 

● Continuing to establish and coordinate interagency working groups, including 
for the LOEs in this action plan (see 2.1); 

● Increasing preparedness and response capacity and capability through 
education and training (see 2.2); 

● Coordinating the development of an Indications and Warnings (I&W) 
framework for advanced AI and AGI incidents (see 2.3); and 

● Coordinating the development of scenario-based contingency plans (see 2.4). 

The I&W and contingency planning processes will generate advanced AI-related risk 
management requirements that could inform other aspects of this plan, including the 
specific thresholds for RADA safeguards (LOE1, 1.3.2; LOE4, 4.1.3). 

2.1 Coordinate interagency working groups 

We recommend the U.S. government continue to coordinate the establishment of 
interagency working groups to execute on mitigation measures for catastrophic AI risk. 
To ensure such measures are treated as a holistic and coherent effort, the President 
could create an NSC-level or OSTP-level position with responsibility for all workstreams 
related to national security risk mitigation from advanced AI and AGI. This could 
include overseeing the execution of some of the LOEs in this action plan through the 
participating departments and agencies. For example the NSC-level official could: 

● Receive regular reports on the state of the advanced AI landscape, including 
capabilities and risk assessments produced by an AIO (DHS; LOE1, 1.2); 

● Oversee an ASTF with the mission to implement RADA safeguards for domestic 
frontier AI (DOE or DHS; LOE1, 1.4); 
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● Oversee the implementation of I&W (U.S. Intelligence Community; see 2.3) and 
contingency planning efforts (see 2.4) designed to guard against potential 
catastrophic risks from advanced AI and AGI; 

● Support the coordination of regulatory efforts (LOE1, 1.4; LOE4, 4.1) with 
federally funded advanced AI and AGI safety and security research (National 
Science Foundation; LOE3, 3.1); 

● Ensure regulatory efforts are aligned with emerging advanced AI and AGI safety 
and security standards (NIST U.S. AISI; LOE3, 3.2); 

● In the long term, oversee a permanent regulatory agency for advanced AI 
(LOE4, 4.1); and 

● Oversee U.S. efforts to build international capacity, consensus, and controls to 
manage catastrophic AI risks (Department of State; LOE5). 

2.2 Advanced AI education and training 

AI safety and security is a complex field in which nuanced technical factors often make 
the difference between effective and ineffective risk mitigation strategies. U.S. 
government personnel charged with implementing or developing AI safety policy must 
understand these factors in order to fulfill their duties successfully. However, different 
personnel will have varying educational requirements depending on their domain of 
work and position.  

The U.S. government will therefore require a carefully targeted educational program, 
designed to provide training and support of the right type and depth to individuals 
charged with advancing U.S. national security interests in AI. This program should have 
several key properties: 

1. Ensure that the training and support it provides are updated regularly. This 
is necessary to account for rapid advances in AI capabilities and risks as the 
frontier of the field progresses.  

2. Introduce ongoing requirements for continuous learning. Significant advances 
that shape the landscape of AI capabilities occur on at least a monthly basis 
[160]. Without continuous learning, even trained personnel would quickly find 
themselves with an outdated understanding of frontier AI capabilities and risks. 
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In many cases this knowledge gap could pose a risk to their ability to execute 
their missions effectively. 

3. Deliver the right information to the right stakeholders. Personnel involved in 
commercial regulation, military safety policy, international diplomacy, and other 
fields will each require different training focused on the aspects of the frontier AI 
landscape relevant to each of their respective domains. 

4. Deliver information in the right format for its intended audience. Most 
relevant personnel can likely be trained via asynchronous online courses. But 
others may require live in-person training, ongoing access to centers of 
expertise within or outside government, or combinations of these options.  

A robust, regularly updated, and technically grounded training program will be critical 
to support government decision-making in areas such as: 

● Developing technically-informed policy, regulatory, and legal frameworks; 

● Uncovering requirements for necessary new authorities and programs; 

● Contributing to technical advances in AI safety and security; and 

● Messaging the topic clearly and effectively with the American public. 

There are many means by which training can be acquired, including from the private 
sector, but in all cases it should be vetted for quality and accurate risk focus. 

2.2.1 Key stakeholders and learning outcomes 

Educational requirements will vary among U.S. government personnel. Below, we 
provide a list of key stakeholder groups, along with recommended high-priority 
learning objectives for each. OMB could consider directing agency heads to identify 
and train personnel in these key areas. We also recommend that the Administration’s 
key influencers acquire their own AI training for the purpose of increasing the technical 
accuracy of public discourse (Introduction, 0.5.2.2). 

It is especially crucial to train technical personnel in defense and national security roles 
about this risk category, both in the United States and internationally to the fullest 
extent possible. These individuals need to be equipped to offer their leadership 
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accurate and timely advice that will inform national security strategy with respect to 
advanced AI (LOE5, 5.2.1.2). 

Table 1. U.S. government stakeholders and potential target learning outcomes of AI education.  

Key stakeholders Target learning outcome

NSC, OSTP, OMB, department and agency 
political leaders and possible regulators 
involved in advanced AI policy 

Strategic and technically-informed decision-
making

AI Observatory personnel (LOE1, 1.2) Strategic and technically-informed decision-
making

AI Safety Task Force personnel (LOE1, 1.3) Deepened baseline operational 
understanding prior to negotiating with labs, 
understand key considerations for 
enforcement of AI regulations, understand the 
risks associated with frontier AI research to 
incentivize responsible behavior

Intelligence Community-led Indications and 
Warnings workstream and direct 
management personnel (see 2.3)

Strategic and technically-informed decision-
making

Contingency planning workstream and direct 
management personnel (see 2.4)

Strategic and technically-informed decision-
making

Interagency teams working all LOEs Strategic and technically-informed decision-
making

Congressional leaders and staff Strategic and technically-informed decision-
making

Key influencers [161] Enhance the accuracy of public discourse

Judiciary leaders and staff [162] Enhance capability to address cases on the 
range of legal issues presented by advanced 
AI, frontier AI, and AGI

Department of Justice stakeholders 
responsible for enforcement of advanced AI 
regulations (LOE4, 4.1.2.3 and 4.2.2)

Understand key considerations for 
enforcement of AI regulations

Key diplomats including embassy staff 
(LOE5, 5.2)

Accelerate U.S. ability to drive a common 
understanding of potential catastrophic AI 
risks for international coordination
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See the next section for examples of training topics that support each of the training 
outcomes above. 

2.2.2 Suggested training topics 

Stakeholder training will need to be accessible to non-technical audiences. At the same 
time, it should be substantive enough to allow personnel to make informed predictions 
about near-future AI capabilities. It should also equip personnel to interpret semi-
technical articles published by frontier labs announcing new breakthroughs (e.g., [163]), 
and to correctly infer some of their implications.  

All stakeholders should obtain a baseline understanding of AI and key issues at play in 
frontier AI safety and security. This baseline understanding should include the following 
concepts: 

● Drivers of AI progress (e.g. AI scaling and algorithmic improvements); 

● Bottlenecks to AI progress (e.g. AI-optimized hardware, data, talent); 

● Key sources of catastrophic AI risk (including weaponization and loss of control 
due to AGI alignment failure; Introduction, 0.2.1 and 0.2.2); 

● Technical risk mitigation strategies (e.g. AI evaluations, mechanistic 
interpretability); 

International partners and stakeholders 
(LOE5, 5.2.1)

Accelerate U.S. ability to drive a common 
understanding of potential catastrophic AI 
risks for international coordination

AI researchers at National Labs and other 
technical centers of excellence in the U.S. 
government, and in governments around the 
world (LOE3, 3.1.2; LOE5, 5.2.1.2)

Understand open problems in technical AI 
safety and AGI alignment

Private sector AI capabilities researchers Understand the risks associated with frontier 
AI research to incentivize responsible behavior

Public sector AI academics (LOE1, 1.5.4 and 
1.5.5)

Understand the risks associated with frontier 
AI research to incentivize responsible behavior
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● Challenges to risk mitigation (e.g. outcome severity, timelines, incentives, supply 
chain factors; Introduction, 0.5); and 

● Policy-based risk mitigation strategies (e.g. compute-based reporting thresholds, 
reporting requirements for large-scale training runs). 

The training could also inform decisions on policy and safeguards for advanced AI 
systems; ideas for improving safety standards; and associated economic, antitrust, and 
regulatory capture concerns. Finally, training could examine operational challenges and 
solutions for international AI safeguards, aiming to build capacity and capability for 
implementations of LOE5. Training content could also be packaged as reference 
documents for government stakeholders. Like the training itself, these documents 
should be kept frequently updated given the pace of progress in frontier AI. 

Below is a list of key training outcomes, along with sample training topics that we 
recommend as being supportive of each key outcome.  

Table 2. Training topics associated with target learning outcomes.  

Target outcome of training Sample training topics

Strategic and technically-informed decision-
making

• AI scaling and its relationship to AI 
capabilities and alignment 

• AI capabilities and impacts forecasting 
• Inner vs outer alignment and the stability-

control paradox [161] 
• The open-source AI ecosystem 
• Compute as a strategic resource 
• Governance and control of advanced AI 

systems 
• The advanced AI supply chain
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Deepened baseline operational 
understanding prior to negotiating with labs

• AI scaling and its relationship to AI 
capabilities and alignment 

• Weaponization, accident, and loss of control 
risks, including catastrophic risks 

• AI capabilities and impacts forecasting 
• The open-source AI ecosystem 
• Compute as a strategic resource 
• Antitrust and regulatory capture concerns 
• Concerns over gaming of safety evaluations 
• The culture of and ongoing debates within 

the AI alignment community

Enhance the accuracy of public discourse • AI scaling and its relationship to AI 
capabilities and alignment 

• Weaponization, accident, and loss of control 
risks, including catastrophic risks 

• AI capabilities and impacts forecasting 
• Antitrust and regulatory capture concerns 
• The culture of and ongoing debates within 

the AI alignment community

Enhance capability to address cases on the 
range of legal issues presented by advanced 
AI and AGI

• Weaponization, accident, and loss of control 
risks, including catastrophic risks 

• AI capabilities and impacts forecasting 
• Antitrust and regulatory capture concerns 
• Open questions in generative AI 

copyrighting, and how these impact the 
data collection strategies of frontier labs

Accelerate U.S. ability to drive a common 
understanding of the risks for international 
coordination

• AI scaling and its relationship to AI 
capabilities and alignment 

• Weaponization, accident, and loss of control 
risks, including catastrophic risks 

• AI capabilities and impacts forecasting 
• Inner vs outer alignment and the stability-

control paradox [161] 
• Concerns over gaming of safety evaluations 
• Governance and control of advanced AI 

systems 
• The advanced AI supply chain
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Understand key considerations for 
enforcement of AI regulations

• AI scaling and its relationship to AI 
capabilities and alignment 

• Weaponization, accident, and loss of control 
risks, including catastrophic risks 

• AI capabilities and impacts forecasting 
• Concerns over gaming of safety evaluations 
• Governance and control of advanced AI 

systems 
• The frontier AI ecosystem and its key players 
• The ideological motivations of frontier AI 

researchers

Understand open problems in technical AI 
safety and AGI alignment

• Research agendas aimed at solving AI 
alignment 

• Techniques for measuring and mitigating 
power-seeking behavior 

• Corrigibility techniques 
• Mechanistic interpretability techniques 
• Empirical techniques such as activation 

engineering, representation engineering, 
and probing 

• Expected failure modes of reinforcement 
learning from human feedback and other 
prosaic alignment techniques in AGI-level 
systems

Understand the risks associated with frontier 
AI research to incentivize responsible 
behavior

• Weaponization, accident, and loss of control 
risks, including catastrophic risks 

• Concerns over gaming of safety evaluations 
• Research agendas aimed at solving AI 

alignment 
• Techniques for measuring and mitigating 

power-seeking behavior 
• Corrigibility techniques 
• Mechanistic interpretability techniques 
• Empirical techniques such as activation 

engineering, representation engineering, 
and probing 

• Expected failure modes of reinforcement 
learning from human feedback and other 
prosaic alignment techniques in AGI-level 
systems
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2.3 Indications and warnings 

Without a capacity to detect and anticipate potential catastrophic risks from AI 
weaponization or loss of control, the U.S. government risks either being caught at a 
disadvantage by fast-moving national security threats (Introduction, 0.5.1.1, 0.5.1.2, 
and 0.5.2.1), or causing premature harm to its own domestic AI industry (Introduction, 
0.4.2). 

Therefore, as a critical near-term action, the U.S. government should develop an 
indications and warnings (I&W) framework for advanced AI and AGI threats.  42

Development of this framework could be undertaken by the U.S. Intelligence 
Community (IC). 

Once developed, an I&W framework could inform downstream requirements to 
comprehensively monitor advanced AI research and development globally (LOE1, 1.2), 
track the release of open-access AI models (Annex D, D.3), map the global supply 
chains for AI compute hardware and data centers (Annex G, G.3), and assess potential 
risks from both declared and undeclared frontier AI labs and other projects. The I&W 
framework should be kept regularly updated as new information becomes available, 
including by seeking input from frontier labs and the broader AI safety community. 

An I&W framework could enable the U.S. government to receive timely warning of 
emerging risks from frontier AI development programs. Partners such as DHS and DOE 
could also help increase the government’s understanding of technical I&W for 
advanced AI and AGI threats through collaborations with domestic frontier labs. The 
I&W framework could also benefit from coordination and information-sharing with 
other task forces and agencies such as the AIO (LOE1, 1.2), ASTF (LOE1, 1.4), federally 
funded AI research centers (LOE3, 3.1.2) and regulatory bodies (LOE4, 4.1). Such 
partnerships could support the IC in ensuring that the framework remains informed by 
an up-to-date and accurate view of the frontier AI landscape. 

Traditional approaches to I&W [164] may need to be modified to accommodate 
challenges associated with modeling catastrophic AI risk. These could include the 
practical difficulties of accessing qualified technical talent to advise on I&W 

 Advanced AI threats are not necessarily AGI threats. AI systems could pose catastrophic 42

weaponization risk before AGI is developed, for example. 
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development, and the technical difficulties of forecasting the emerging capabilities of 
future frontier AI systems.   43

2.3.1 Key categories and sources of catastrophic risk 

Below is a preliminary taxonomy of entities and activities that, either now or in the 
medium-term future (1-5 years as of December 2023), could introduce catastrophic AI 
risks. See Introduction, 0.3 for descriptions of these entity categories and Annex D: 
Advanced AI landscape for more details. See Introduction, 0.2.1 and 0.2.2 for more 
details on the weaponization and loss of control risk categories. 

Table 3. Potential sources of catastrophic AI risk, corresponding risk categories, and 
information requirements associated with each.  

Potential risk sources Potential risk categories

Domestic frontier AI programs • Accidental emergence of dangerous 
capabilities or competent power-seeking 
behavior (loss of control) [1] 

• Sudden capability jumps enabled by 
external software frameworks (loss of 
control) [120] 

• Exfiltration followed by weaponization of 
stolen model by an adversary 
(weaponization) 

• Undetected misuse by end-users 
(weaponization)

 Although the emergence of specific AI capabilities cannot yet be reliably predicted in advance [165], it 43

may still be possible to develop imperfect early indicators. For example, METR [166] is exploring an 
approach of breaking a dangerous capability down into a set of sub-tasks, and then measuring AI model 
performance on those sub-tasks. For example, in attempting to anticipate a model’s capability to 
execute autonomous cyberattacks, that capability could be broken down into sub-tasks like the ability to 
write short code snippets or entire malware files, the ability to autonomously probe a cyber environment 
for vulnerabilities, and so on. See LOE3, 3.1 for recommendations on supporting research in this area.
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An I&W framework will need to consider a broad range of scenarios linked to these 
entity categories, and could be informed by many different sources of data [167–175]. 
The I&W framework should consider scenarios in which risk primarily emerges from an 
AI model or AI system itself, such as loss of control due to AGI alignment failure [176]. 
They should also include scenarios in which risk derives from specific actions by end-
users or model developers, such as automated large-scale cyberattacks. The resulting 
I&W framework should in turn inform contingency planning efforts (see 2.4). Example 
scenarios could include: 

● The unexpected emergence of dangerous AI capabilities at a U.S. or Western 
frontier lab [177]; 

● An open-access AI system fine-tuned to support cyber or CBRN attacks;  

Foreign AI programs • Accidental emergence of dangerous 
capabilities or competent power-seeking 
behavior (loss of control) 

• Sudden capability jumps enabled by 
external software frameworks (loss of 
control) 

• Undetected misuse by end-users 
(weaponization) 

• Intentional offensive deployment 
(weaponization)

Open-access release of advanced AI models • Accidental emergence of dangerous 
capabilities via fine-tuning (loss of control) 

• Sudden capability jumps enabled by 
external software frameworks (loss of 
control) 

• Intentional weaponization via fine-tuning or 
direct use (weaponization)

Theft or sale and subsequent augmentation 
of frontier AI models by state or non-state 
actors

• Accidental emergence of dangerous 
capabilities or competent power-seeking 
behavior after fine-tuning (loss of control) 

• Sudden capability jumps enabled by 
external software frameworks (loss of 
control) 

• Intentional offensive deployment 
(weaponization)
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● The sudden discovery of a previously unrecognized capability in a generally 
available open-access AI model that enables dangerous weaponized 
applications; 

● The uncontrolled deployment of an AGI or near-AGI system by a hedge fund 
that autonomously engages in profit-driven information warfare [178];   44

● Systemic vulnerabilities introduced by integrating interdependent AI systems 
into decision-making processes whose interactions may have unpredictable 
effects (e.g. a flash crash in the financial system); 

● Convincing evidence that suggests that AGI alignment is an intractable problem, 
or that it cannot be expected to be solved before AGI is developed [7]; or 

● A breakthrough that makes it possible for a particular weaponized application to 
be deployed below a certain budget. 

For each scenario, the I&W framework could maintain and frequently update a set of 
key metrics, for example: 

● The estimated breakout timelines to various levels of AI capability by identified 
domestic and foreign entities; 

● The largest AI training run a domestic or foreign entity could undertake in a set 
amount of time; and 

● The likelihood of emergence of high-risk capabilities under various AI training 
and deployment regimes. 

The I&W framework could also consider longer-timescale metrics that do not need to 
be updated as frequently. For example, understanding how long it may take a country 
to develop an independent AI supply chain under various assumptions, and which 
critical inputs need to be controlled to prevent that development [172].  

As part of the I&W framework development process, the U.S. government should 
consider convening an interagency workshop aimed at mapping the AI ecosystem and 
AI hardware supply chain, its key domestic and international players, and the activities 

 See Annex D, D.4 for more information about this risk category.44
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in which they are engaged that most directly contribute to potential catastrophic risks 
from weaponization and loss of control. 

2.3.2 Improving I&W through bug bounties 

Software frameworks such as Auto-GPT [120] and BabyAGI [122] extend the 
capabilities of existing AI systems in unpredictable ways by helping them perform 
complicated multi-step tasks without any additional training. They therefore introduce 
new risks that AI developers are not equipped to anticipate or assess. Some of these 
frameworks, like the infamous ChaosGPT [121], are intended to deliberately steer the 
underlying AI system toward destructive behaviors. 

To ensure an I&W framework remains robust over time, it is crucial to improve 
understanding of how software frameworks like these can impact downstream AI 
capabilities. These kinds of impacts can be assessed openly, so the government can 
offer bug bounties and other incentives to support this effort. These incentives could 
encourage individuals and teams to report issues, vulnerabilities, and unsafe behaviors 
in frontier AI systems. They could also serve to augment AI developers’ existing bug 
bounty programs. 

2.3.3 Improving I&W through direct government investment 

Currently, no one knows how to forecast the emergence of high-risk AI capabilities 
under different training and deployment conditions. This lack of knowledge increases 
the uncertainty and challenge of developing and maintaining a robust I&W framework. 

To close this gap, the IC should consider establishing a formal academic consortium or 
cooperative research agreement for AI safety and security and technical I&W. This 
consortium could leverage top universities to help refine forecasting approaches by 
advancing the state of the art in areas such as AI capability evaluations, transparency 
and interpretability, and capability prediction techniques (LOE3, 3.2). 

In addition to an academic consortium, the U.S. government could establish an explicit 
vehicle for collaboration between the IC, frontier labs, and private sector AI safety and 
AGI alignment research organizations to inform the I&W development and 
maintenance process. The commercial market for this research remains limited, and 
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government investment could accelerate efforts to improve the technical accuracy of AI 
forecasting in support of robust I&W.  45

Either or both of the above initiatives could be coordinated through federally funded 
AI research centers dedicated to this problem set (LOE3, 3.1.2.3). The IC could also 
consider leveraging the AI testbeds and infrastructure under development by DOE and 
NIST to support I&W framework development and implementation. These testbeds 
could be used to run evaluations on AI models that map directly onto key information 
requirements associated with the I&W framework (see 2.3.1). This could include 
developing model evaluations specifically tailored to the I&W use case. 

2.4 Contingency planning 

Under some worst-case scenarios (see 2.3.1), decision-makers could have only a very 
short window (hours to weeks) to react effectively to a catastrophic threat. An I&W 
framework (see 2.3) could support the detection of early warning signs for such 
scenarios, but contingency planning will be essential to allow for the development of 
appropriate responses. 

While no plan can anticipate all contingencies, the planning process itself is essential to 
developing a common understanding of crisis scenarios and response options. These 
options can help the government surface detailed requirements for new authorities, 
programs, resources, policies, and coordination mechanisms. Therefore another critical 
and immediate task for the U.S. government should be to direct, through the NSC, an 
interagency contingency planning process to develop response options for various 
scenarios and timelines of frontier AI development. 

Planning could be informed by a range of scenario-based tabletop exercises (TTXs) 
covering advanced AI risks and sources, up to and including how a safe and secure AGI 
should be governed if and when it is developed. It may be necessary to collaborate in 
these exercises with stakeholders from frontier labs, AI safety groups, and evaluation 
and red teams to ensure the parameters of the exercises at all times remain as realistic 
as possible [161]. It may also be helpful to run joint exercises such as crisis response or 
lab shut-down drills with data center infrastructure providers, AI hardware owners, and 
frontier labs to anticipate and better understand key contingencies.  

 Another reason to favor U.S. government funding for these organizations is that the great majority of 45

them are nonprofits, and are currently funded by the same set of large donors. See Annex E: Funding in 
AI safety for more information.
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Contingency planning activities should involve the full range of stakeholders within the 
U.S. government who would be involved in implementing emergency responses to 
critical events and risks. They could account for input from an AIO (LOE1, 1.2), ASTF 
(LOE1, 1.4), federally funded AI research centers and relevant collaborations, (LOE3, 
3.1.2.2), and eventual regulatory bodies (LOE4, 4.1). In determining which events to 
plan for, planners should consider the set of scenarios uncovered in the I&W 
development process (see 2.3), and identify any additional scenarios that they consider 
necessary to address.  46

Planners should flag these additional scenarios to stakeholders in the I&W 
development process when possible. We recommend that contingency planning 
proceed iteratively, to allow initial planning activities to surface information 
requirements which, when met, would allow future planning and I&W development 
activities to be more technically informed.  

2.4.1 Updating the National Preparedness System 

In the event that a severe incident occurs as a result of advanced AI weaponization or 
loss of control in highly capable AI systems, early planning for prevention and incident 
response will be critical.  We therefore recommend that DHS direct FEMA to update 47

its National Preparedness System [183] to address advanced AI and AGI risk. These 
updates could be executed in collaboration with an AIO (LOE1, 1.2.1), ASTF (LOE1, 
1.4), or eventual regulatory body (LOE4, 4.1). 

 For example, see the companion document, Survey of AI Technologies and R&D Trajectories, for 46

three sample AGI risk scenarios.

 It is possible that genuine AGI loss-of-control scenarios would not be survivable events (Introduction, 47

0.5.1.1), which if true would remove the need for incident response. But this is currently uncertain and 
should not be assumed in advance.
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LOE3: Increase national investment in technical AI 
safety research and standards development 

 

The acceleration of investment in AI capabilities is outpacing the development of 
proportionate technical safeguards against advanced AI and AGI risks [5] (Introduction, 
0.5.1.2 and 0.5.1.3). If this continues, frontier AI labs may find themselves unable to 
meet the safety and security challenges posed by their own systems (Introduction, 
0.5.1.4). Unless strong technical safeguards are designed, standardized, and broadly 
applied, continued development and adoption of frontier AI systems could create 
significant risks (Introduction, 0.5.1.1). 

This LOE outlines specific actions the U.S. government could take to strengthen 
domestic technical capacity in advanced AI safety and security, AGI alignment, and 
other technical AI safeguards. These actions include: 

● Directly funding advanced AI safety and security research including AGI-
scalable alignment research (see 3.1); and 

● Developing, regularly reviewing, and promulgating safety and security 
standards for responsible AI development and adoption (see 3.2).  
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These solutions would grow the pool of competent AI and AGI safety and security 
researchers, encourage organizations to invest in AI safety and security, and increase 
overall understanding of AGI alignment techniques. 

3.1 Federally funded research in AI safety and security and 
AGI-scalable alignment 

Since 2021, annual private spending on AI capabilities has exceeded $100B, 
dramatically outstripping funding for AI safety and security [184]. AI capabilities 
research publications outnumber safety publications by a fifty-to-one margin [184]. Yet 
according to experts, in order for the level of investment in AGI-scalable safety 
research to approach the level needed to address catastrophic AI risk, it would need to 
reach at least 50% of total research spend [185]. The current funding gap exists 
because, while AI safety and security is a common good, AI capabilities produce 
benefits that are easier to privatize. As a result, private industry has a strong incentive 
to invest in capabilities at the expense of research aimed at catastrophic AI risk 
reduction (Introduction, 0.5.1.4, 0.5.1.5, and 0.5.3.1).  

Aside from private industry and academic labs [186,187], there is also an emerging 
ecosystem of independent AI safety researchers, nonprofit and for-profit AGI alignment 
labs [188–190], and advanced AI auditing firms [94,166,191]. However most of the 
organizations in this ecosystem currently rely on a small set of donors for funding, 
which could limit the diversity of strategies to AGI alignment reflected in the output of 
the AI safety research community.  Because AGI alignment is still a nascent field that 48

benefits disproportionately from a breadth of research approaches, this concentration 
of funding sources could create limitations to progress. 

The U.S. government is uniquely positioned to close the funding gap between AI 
capabilities and AI safety and security, accelerate progress on core problems, and 
diversify the set of funding sources and research programs aimed at solving AGI 
alignment.  See Annex L: AI safety and security research topics for a list of research 49

areas that could be supported by U.S. federal funding. 

 See Annex E: Funding in AI safety for more information.48

 See Annex B: The full challenge of AGI alignment for details.49
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3.1.1 Levels of AI safety and security research 

In addition to its capacity for funding critical basic research, the U.S. government can 
also ensure that those research efforts adhere to necessary security practices and that 
they have the required levels of access to key technologies, resources, and talent. This 
is critical in the context of AI safety and security research that may require interacting 
closely with potentially dangerous frontier AI models. 

Not all such research will require the deepest levels of access. We recommend 
establishing tiers of AI safety and security research that reflect the escalating risk and 
responsibility associated with granting researchers broader access to increasingly 
capable models and evaluation capabilities. We provide a possible categorization 
below along with examples. 

3.1.1.1 Open-source and public research  

Some types of AI safety and security research involve only low-risk activities and do not 
require any special access to frontier AI models. All aspects of research at this level can 
and should be publicly shared. Funding of open-source research could support 
independent AI alignment and AI safety and security researchers and organizations. It 
could also support the development of software tools and frameworks with important 
safety and security applications, such as test harnesses, evaluation frameworks, 
sandboxes, and interpretability tools. To maximize the diversity of research approaches, 
we recommend that funding grants at this level impose minimal compliance overhead 
on recipients. 

Some examples of research at this level could include:  

● Certain kinds of evaluations for advanced AI systems, including basic sandbox 
and testbed development; 

● Certain kinds of AI interpretability research, including on sub-frontier AI models 
generally regarded as safe [192];  

● Theoretical research aimed at investigating evidence for risks associated with 
power-seeking and associated tendencies [2,47];  

● Research aimed at determining the extent to which existing alignment 
techniques could or could not scale to AGI-level systems [84]; and 
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● Basic research into on-device monitoring for AI chips [148]. 

The decision to classify AI safety research as open-source should take into account the 
risk that the research could empower threat actors to weaponize AI more effectively, 
subvert on-chip monitoring capabilities (e.g. LOE1, 1.5.3), or otherwise accelerate or 
proliferate AGI development. But it should also account for the potential economic and 
societal harms of withholding such research from the public (Introduction, 0.4.2). As a 
result, publication decisions should be closely informed by input from academic 
researchers, the AI safety and national security communities, and private sector 
industry including the startup community.  

Funding for open-source and public research could be directed towards the following 
types of entities: 

● Academic labs and independent researchers working on AI safety and security 
projects; 

● Nonprofits conducting AI safety and security research; 

● Researchers at National Labs and other centers of excellence within the U.S. 
government with the capacity to pursue AGI-scalable alignment research; 

● For-profit AI safety research labs working on AGI-scalable alignment techniques.  

3.1.1.2 Research that requires access to proprietary AI models  

Certain essential types of AI safety and security research will require a high degree of 
access to frontier labs’ proprietary AI models, or may otherwise involve moderate-risk 
activities without being sensitive enough to necessitate a security clearance. Some of 
the results of research at this level could still be published, but the extent of disclosure 
should be informed by risk assessments and IP considerations. 

The government can play a key role in supporting this research by offering direct 
funding, mediating researcher access to developers’ AI models, and overseeing 
researcher compliance with the necessary security practices. This could involve 
certifying AI safety research groups or individual researchers to access frontier labs’ 
proprietary AI models. This approach could also be used to support AI evaluator 
certification and access to frontier lab models by entities such as the ASTF (see LOE1, 
1.4.1.2) or a permanent regulator (see LOE4, 4.1.2.1). 
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Some examples of research at this level could include:  

● Research that involves inducing powerful AI models to behave in dangerous 
ways, such as behavioral and propensity evaluations for dangerous capabilities 
like deception and persuasion [193];  

● The development of some sets of private AI evaluations that should be withheld 
from frontier labs to avoid compromising the integrity of model audits (see 
3.2.2); 

● Some kinds of fundamental AGI alignment research, particularly if they require 
direct access to frontier models;  

● Mechanistic interpretability research that requires direct access to frontier 
models [194]; and 

● Research into on-device monitoring for AI chips that could benefit from frontier 
labs’ engineering resources or expertise in scaled AI training runs [148]. 

Given the potential sensitivity of research in this category, researchers and model 
evaluators may require dedicated infrastructure to support secure access to the weights 
of frontier AI models. We describe a high-level weight-sharing protocol that could meet 
this requirement in Annex M: Secure temporary storage of model weights. In addition 
to directly funding private collaborations with AI labs, the government could fund the 
development of secure information-sharing infrastructure to ensure this research can 
occur securely and with minimal friction. 

3.1.1.3 National security research  

The most high-risk category of AGI safety research will likely involve unrestricted access 
to frontier AI models to evaluate propensities for highly dangerous capabilities, 
including WMD-like and WMD-enabling capabilities. This category of research will 
need to be conducted in a classified environment by cleared researchers following 
appropriate security procedures. Some kinds of model evaluations overseen by entities 
such as the ASTF (see LOE1, 1.4.1.2) or a permanent regulator (see LOE4, 4.1.2.1) may 
need to be classified at this level. 

Similarly to proprietary research (see 3.1.1.2), this level of research would enable a 
capability for secure sharing of the weights of frontier AI models. See Annex M: Secure 
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temporary storage of model weights for a description of a high-level protocol for 
weight-sharing. 

3.1.2 Organizational framework 

The U.S. government would need the ability to identify, fund, and administer promising 
research projects at each of the sensitivity levels in 3.1.1. Each level may have a 
different set of oversight, administration, and funding conditions that reflect its degree 
of risk and access requirements. 

The U.S. government has already begun developing a capacity that could support such 
activities. In January 2024, the National Science Foundation (NSF) launched a pilot 
program for a National AI Research Resource (NAIRR) [195,196], whose budget is 
estimated to reach $2.6 billion over an initial six-year period. The NAIRR also includes 
an initiative called NAIRR Secure, which aims to support research involving sensitive 
data by assembling secure compute clusters and other privacy-preserving resources 
[197]. One of the NAIRR’s four key goals is to advance trustworthy AI [198]. 

Many of the AI safety and security research areas relevant to mitigating catastrophic 
risk from advanced AI are aligned with this NAIRR key goal. As a result, we believe that 
relevant research directions at each of the relevant sensitivity levels (see 3.1.1) could be 
directly supported by:  50

● The NAIRR, through a dedicated National Center for AI Alignment and Security 
Research (NCAASR) established under the NAIRR; 

● A new AI Alignment and Security (AAS) Federally Funded Research and 
Development Center (FFRDC), possibly in collaboration with the NAIRR;  or 51

 Given that there are ongoing U.S. government workstreams in this area, we recommend considering 50

these options in conjunction with other entities that could already be in development.

 One advantage of an AAS FFRDC is that it could be sponsored by organizations such as the Defense 51

Advanced Research Projects Agency (DARPA), the Intelligence Advanced Research Projects Activity 
(IARPA), or the DOE’s National Laboratories, which all have established CBRN research capabilities that 
could support in designing AI evaluations for frontier models. An AAS FFRDC would also offer the 
government a classified and secure environment in which researchers can be paid industry-competitive 
salaries. This is a particularly important factor given the prevailing level of compensation at frontier AI 
labs (see LOE1, 1.4.2).
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● Both a NCAASR and a new AAS FFRDC, with research areas divided between 
them and research collaborations in areas of mutual interest. 

We recommend that these Centers establish a review process to determine which kinds 
of safety research should remain unpublished, and base decisions on national security 
risk assessments (LOE4, 4.1.4).  This review process could also be informed by an 52

ASTF’s work under LOE1, 1.4.1.3 and be developed in consultation with members of 
the technical AI safety community.  

These Centers could also advance basic scientific research into AGI alignment, 
normalize the field, and grow the overall pool of researchers.  

3.1.2.1 Considerations for AGI alignment research 

Many alignment techniques that work on less capable AI systems are not expected to 
work on AGI-level systems [84] (Introduction, 0.5.1.4). It is also easier to make 
measurable progress on sub-AGI alignment than on AGI-scalable alignment. As a 
result, we recommend that these Centers define and fund research workstreams fully 
and exclusively dedicated to developing alignment techniques that are intended to 
scale to AGI-level systems. Absent a clear institutional prioritization of AGI-scalable 
alignment, research effort funded by the Centers risks being expended in areas in 
which progress is more legible but less scalable.  53

See Annex B: The full challenge of AGI alignment for a discussion of the reason why 
alignment techniques that work on advanced AI systems may fail once these systems 
reach high enough capability levels. See Annex L: AI safety and security research topics 
for a list of possible research topics that an NCAASR and AAS FFRDC could fund or 
support. 

 This could also be done in coordination with the I&W and contingency planning efforts in LOE2, 2.3 52

and 2.4.

 Moreover, many forms of sub-AGI alignment research deliver immediate economic returns by making 53

it easier for users to extract value from better-aligned, sub-AGI scale systems. As a result, these research 
areas already benefit from substantial investment by private-sector frontier AI labs.
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3.1.2.2 Research collaborations 

Centers such as the NCAASR and/or AAS FFRDC could be instrumental in developing 
a regime of technical RADA safeguards (LOE1, 1.3.2) to mitigate potential catastrophic 
AI risks from weaponization and loss of control. The Centers could collaborate with the 
NIST U.S. AISI to standardize this safeguards regime (see 3.2.3), and with entities such 
as an ASTF (LOE1, 1.4.1.2) or future regulatory body (LOE4, 4.1.2.1, 4.1.2.2, and 
4.1.2.4) to implement and oversee those standards. These Centers could also 
collaborate with and support AI safety and security initiatives across the U.S. 
government and beyond, including: 

● The BIS in periodic reviews of export controls related to catastrophic AI risk 
mitigation, including support with on-chip monitoring initiatives (LOE1, 1.5.3); 

● The Department of Commerce and DHS for export license red teaming 
exercises (LOE1, 1.5.3); 

● The IC to support creating and updating I&W frameworks (LOE2, 2.3.3); 

● The NSC to support creating and updating contingency plans (LOE2, 2.4); 
●
● The ASTF to help prepare for a future regulatory regime (Annex K, K.2); and 

● Through the Department of State, international partners such as the U.K. 
Frontier AI Taskforce and the U.K. AI Safety Institute (U.K. AISI) [199].   

Operationally, with the support of the NAIRR, the Centers could also foster direct 
collaboration between independent AI safety and security researchers, academics, and 
industry, including frontier labs. This could include funding the development of 
infrastructure to support secure information sharing with frontier labs (e.g., NAIRR 
Secure [197]). It could also offer researchers access to computing resources [198].  

3.1.2.3 Sensitive research areas 

Certain types of research aimed at mitigating catastrophic weaponization risk from 
CBRN, cyber, and other applications enabled by advanced AI will require direct access 
to frontier models, secure information environments, and cleared personnel (see 
3.1.1.3). This may also be the case for some categories of research investigating the 
risk of loss of control due to alignment failure of high-capability AI systems. 
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The level of security required to support such research will likely require close 
coordination between frontier AI labs, the teams conducting the research, the IC, and 
the Centers supporting the research. The Centers would also need infrastructure to 
support highly secure sharing of information with frontier labs, including model weights 
(see 3.1.1.3). 

Given the substantial overlap in requirements and likely collaboration in other areas, 
the Centers could also consider sharing infrastructure between sensitive AI research 
initiatives and the regulatory bodies overseeing private-sector AI scaling, including 
model evaluations for CBRN and other capabilities (Annex K, K.1 and LOE4, 4.1.3.4.3).  

3.2 Standards for AI evaluations and RADA safeguards 

Without clear standards for responsible AI development and adoption (RADA), 
advanced AI developers lack principles against which to judge the adequacy of their 
safety and security practices. Self-regulatory industry bodies such as the FMF 
(Introduction, 0.4.1) could have a positive influence on the development of such 
standards. But competitive pressures — including from challenger labs whose models 
lag the public frontier by 12 months or less, and are even less rigorous in their safety 
measures [51,200,201] (Annex D, D.1) — ultimately drive even the frontier labs to 
employ inconsistent and inadequate safety and security practices (Introduction, 0.5.1.4, 
0.5.1.5, and 0.5.3.1). 

It is therefore crucial to develop standards for RADA safeguards which address 
catastrophic risks from weaponization and loss of control in a rigorous and technically 
informed manner. These should include standards for the evaluation of AI models’ 
behaviors and propensities to display dangerous capabilities [46]. NIST, through the 
U.S. AISI [202], is currently spearheading U.S. government efforts to develop and 
promulgate AI evaluation standards consistent with the NIST AI Risk Management 
Framework [203].  

In addition to AI evaluations, standards for effective RADA safeguards will also need to 
comprehensively address security, risk governance, incident reporting, and other key 
issues across multiple layers of the advanced AI supply chain. See LOE1, 1.3.2 for our 
recommendations on guiding principles behind these standards. 

Finally, ongoing refinement and updating of standards for RADA safeguards could be 
supported by expanded national research capacity in AI safety and security research as 
described in 3.1. 

 of 97 284



3.2.1 Limitations of AI evaluations 

AI evaluations are important tools to increase confidence in the safety and security of 
advanced AI systems and support RADA safeguards. And depending on the degree of 
coverage and prior real-world experience with an evaluation set, passing a set of AI 
safety evaluations may offer a strong positive indicator of the safety of an AI system. 
But AI evaluations are inadequate on their own to fully assure that an AI system or 
model is safe to develop or deploy, because they suffer from a number of fundamental 
limitations in coverage and reliability [204]. We list below some of these key limitations, 
and discuss ways to mitigate their impacts in 3.2.2. 

3.2.1.1 AI evaluations are not comprehensive 

Current AI evaluations cannot provide comprehensive coverage of an advanced AI 
model’s behavior or risk surface. If there is a dangerous behavior or set of behaviors 
that is not included in the test suite used to evaluate a model, then that behavior will 
not be detected, and it could be displayed or elicited under real world conditions [206] 
including under high-risk conditions. 

There is also currently no way to reliably predict the emergence of capabilities, 
dangerous or otherwise, from advanced AI systems as they are scaled or augmented 
[165,206]. This means that not only do researchers have no way of knowing in advance 
which kinds of evaluations will be most informative for future AI systems, but they also 
have no way to reliably predict how an existing AI system will behave if it is fine-tuned 
or otherwise augmented. In particular, open-access AI systems can be augmented in 
any number of ways that may be entirely unanticipated by the system’s original 
developers or the evaluators themselves (Introduction, 0.5.1.6). Therefore, as limited as 
AI evaluations are for substantiating the safety of proprietary AI systems, they are even 
more limited when applied to open-access AI systems.  

3.2.1.2 AI evaluations cannot confirm that a dangerous capability is 
absent 

AI evaluation techniques today are empirical. They generally function by feeding a 
model a wide range of input prompts and observing its outputs.  54

 More sophisticated techniques may fine-tune a model to attempt to elicit latent capabilities. This is a 54

more effective approach than prompting, but is still limited.
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If the model returns a dangerous output in response to an evaluation, this may show 
that the model has a dangerous capability. But if the model does not return a 
dangerous output in response to the evaluation, this could be because the evaluator 
failed to identify an effective prompt, or for other reasons, rather than because the 
model does not have the evaluated capability. Even small changes to prompting 
techniques often reveal latent capabilities that were not detected by prior evaluations 
[207]. As a result, AI evaluations can only reveal the presence, but not confirm the 
absence, of dangerous capabilities [204]. 

3.2.1.3 AI evaluations are highly vulnerable to manipulation 

AI evaluations can be undermined and manipulated easily. If an AI model fails an 
evaluation, its developer can fine-tune the model — or make other superficial changes 
to it — until the model passes that evaluation, without addressing the underlying cause 
of the failure. 

For example, suppose an AI model fails a cyberattack evaluation by complying with a 
user request to write working malware. In this case, it is easier for the model’s 
developer to train it to refuse the particular user request it was tested on, than to 
rigorously investigate and address the underlying cause of the behavior. But this 
superficial approach could leave the model vulnerable to jailbreaks [83,208] that induce 
the model to display the undesirable behavior under slightly more complex conditions. 
In other words, the dangerous capability can remain latent, even if an AI model passes 
the evaluation. Moreover, if an AI developer is able to resubmit fine-tuned or 
“patched” models for evaluation an arbitrary number of times, the resubmitted models 
may eventually pass the original evaluations purely or partly by chance [46].   55

Given the prevailing competitive environment, frontier AI labs and other advanced AI 
developers face a strong incentive to game evaluations in this way (see 0.5.3.1). In fact, 
by the private judgment of one expert with direct knowledge of the matter, this has 
already begun to occur at one major frontier AI lab. Moreover, AI developers also face 
related incentives to argue that models that pass unreliable evaluations should still be 
considered safe for the purpose of further development or deployment. 

 One frontier AI researcher stated during a private discussion that passing a dangerous capability 55

evaluation provides little evidence that the model is safe, if the lab developing the model is allowed to 
resubmit tweaked versions of the model for re-evaluation until the evaluation is passed. As they put it, 
“There's a key step [missing] here of figuring out what went wrong.”
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3.2.1.4 AI evaluations could fail systematically in high-capability 
regimes 

At higher levels of capability, advanced AI and near-AGI systems could develop the 
capability to infer whether a given interaction is part of their training, their testing, or 
their deployment. This property is called situational awareness [209,210], and 
researchers at major frontier labs believe it could arise as an emergent capability in 
future AI systems [209]. 

If an AI system can infer that it is being tested, it may have the ability to produce 
different outputs when it is being tested than when it is deployed. In principle this 
could allow the AI model to manipulate its own evaluations, by producing apparently 
safe outputs in response to evaluation queries in testing, and unsafe outputs in 
response to real user queries in deployment [209]. This hypothesized behavior is known 
as deceptive alignment [45] . Deceptive alignment remains a speculative and 
controversial risk [211], but if it manifests, it could systematically undermine the entire 
effectiveness of a naive AI evaluations regime.  56

3.2.2 Addressing the limitations of AI evaluations 

There are several possible strategies to lessen the impacts of the above limitations on 
the value of AI evaluations as safety signals. 

First, a diverse ecosystem of independent AI model evaluators is crucial. 
Independence is crucial because model developers are heavily incentivized to pass 
safety evaluations by making superficial changes that do not address underlying drivers 
of risk (see 3.1.2.3). Independent evaluators can administer private evaluation sets, 
whose exact protocols are not known to AI model developers, and that are therefore 
more difficult to pass by superficial means. Independence also means that AI 
evaluators should not be selected by the AI developers they are evaluating, to avoid 
obvious conflicts of interest. Diversity, on the other hand, is crucial because current AI 
behavioral evaluations are unreliable, and failing to observe a dangerous capability 
may not mean that the capability is actually absent (see 3.2.1.1). A diverse ecosystem 
of evaluators supports multiple independent evaluation strategies and this 
combination is more likely to detect a dangerous capability if one is present. 

 It is also important not to anthropomorphize these risks. Deceptive alignment is not expected to arise 56

due to sentience, human-projected drives, or consciousness, but rather because, under certain 
circumstances, it may simply be an effective behavior for the purpose of achieving the goals an AI 
system has internalized during its training. 
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Second, a diverse set of AI evaluations, with different private subsets developed, 
refined, and administered by different evaluators, is also crucial. This is because there is 
no way to fully assess the capability surfaces of modern advanced AI models (see 
3.2.1.1). The broader the set of teams, and the more diverse the evaluations, the lower 
the chance that dangerous capabilities and other risk vectors are unexamined. This also 
means that standards bodies should avoid overspecifying the parameters of AI 
evaluations — with the exception of the security conditions under which they should be 
administered.  57

Finally, because AI evaluations may have fundamental limitations (see 3.2.1.4), over-
reliance on AI evaluations could propagate a false sense of security among AI 
developers, regulators. Instead, AI evaluations could be considered as one part of a 
multifaceted case for model safety and security, consistent with the principle of 
defense in depth. 

3.2.3 Standards for RADA safeguards under catastrophic risk 

For recommended principles to guide standards development for RADA safeguards 
under catastrophic risk, see LOE1, 1.3.2. 

For an example of a complete standards framework for RADA safeguards, including 
sample calculations of thresholds for covered entities, see LOE4, 4.1.3. 

 Because dangerous capability evaluations often involve actively eliciting dangerous capabilities, in 57

high-capability regimes the evaluations themselves could become sources of risk and should therefore 
observe strict operational security precautions.
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LOE4: Formalize safeguards for responsible AI 
development and adoption by establishing an AI 
regulatory agency and legal liability framework 

We are grateful to the team at the Center for AI Policy (CAIP), whose perspectives on 
AI regulation have informed several of the recommendations in this LOE. 

 

Interim regulations may be inadequate to address the risks and challenges of advanced 
AI. The unique challenges involved in assigning responsibility for potential catastrophic 
accidents to individuals or organizations who develop or use these advanced AI 
systems creates an ambiguous legal environment. This ambiguity offers Americans 
weak protections against the impact of reckless or negligent development or use of 
powerful AI systems (Introduction, 0.5.4.1). A legal framework for AI regulation and 
liability, that directly addresses potential catastrophic risk through detailed and flexible 
RADA safeguards overseen by a permanent regulatory agency, is essential to promote 
long-term stability and cover any gaps in existing authorities. This legal framework 
should carefully balance the need to mitigate potential catastrophic threats against the 
risk of curtailing innovation, particularly if regulatory burdens are imposed on small-
scale entities (Introduction, 0.4.2). 
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This LOE outlines specific actions the Legislative Branch could take to establish the 
conditions for long-term (4+ years) domestic AI safety and security. These actions 
include:  

● Creating a Frontier AI Systems Administration (FAISA), a regulatory agency 
with rulemaking and licensing authorities to oversee AI development and 
deployment (see 4.1), consistent with a set of RADA safeguards regulations 
derived from contingency planning requirements (see 4.1.3); and 

● Establishing a criminal and civil liability regime that could include defining 
responsibility for AI-induced damages; determining the extent of culpability for 
AI accidents and weaponization across all levels of the AI supply chain; and 
defining emergency powers to respond to dangerous and fast-moving AI-related 
incidents which could cause irreversible national security harms (see 4.2). 

We expect that such a legal regime would begin to meaningfully impact advanced AI 
safety within about 3 years. While we expect such a legal regime to be essential for 
long-term safety and security, the 3-year impact timeline also highlights the importance 
of rapidly putting in place effective interim measures, as recommended in LOE1.  58

4.1 Establish the Frontier AI Systems Administration (FAISA) 

Consistent with ongoing public and congressional discussions on AI policy, the 
Congress could establish an agency to regulate, license, and monitor advanced AI 
model developers and other entities in the advanced AI supply chain.  This agency, 59

which we refer to here as the Frontier AI Systems Administration (FAISA), would have 
the mission to implement responsible AI development (RADA) safeguards to 
mitigate catastrophic national security threats from AI weaponization and loss of 
control related to the domestic development or use of advanced AI systems.  

This mission would require the FAISA to make decisions with profound implications for 
the AI industry in an objective, technically informed, and evidence-based manner. The 

 See http://aipolicy.us/gladstone for a proposed Act drafted by the Center for AI Policy (CAIP), which 58

could achieve the above objectives in a technically informed manner, and from which many of the 
legislative recommendations in this LOE are drawn.

 The components of the AI supply chain covered under this licensing proposal are: AI hardware design 59

firms; data center infrastructure providers; AI hardware owners; and AI model developers. 
Semiconductor fabrication firms and their suppliers could be covered under an expanded proposal. See 
the Glossary of terms for definitions of each of these supply chain components.

 of 103 284

http://aipolicy.us/gladstone


agency would also need to earn and maintain a high degree of public trust by acting – 
and being seen to act – in the long-term interest of the United States. Consistent with 
these requirements, the FAISA could be established in one of two ways: 

● As a non-partisan agency reporting directly to the President, in the model of the 
SEC. 

● In an existing department with an ample existing technical capability (such as 
DOE), in the model of the National Nuclear Security Administration (NNSA) 
[212]. This could involve the FAISA reporting to an NSC-level official (LOE2, 2.1). 

The FAISA could be led by an Administrator, who could be appointed by the President 
with the Senate's advice and consent. The FAISA’s strategic outlook and day-to-day 
operations would be highly sensitive to nuanced technical considerations, so we 
recommend choosing the FAISA Administrator based on expertise at the crossroads of 
security and advanced technology, including in areas such as cybersecurity or 
biosecurity. 

The FAISA could perform the following key functions:  

● Licensing: Overseeing rulemaking, especially concerning AI licensing, ensuring 
that critical RADA safeguards are in place and operating.  

● Monitoring: Supervising hardware monitoring, tracking AI hardware locations, 
and ensuring hardware is accounted for; and performing horizon-scanning for 
domestic and foreign AI programs (LOE1, 1.2). 

● Enforcement: Investigating regulatory violations, bringing civil cases in the 
courts, and referring criminal cases to the Department of Justice (DOJ). 

● Algorithms: Monitoring the progression of AI algorithmic efficiency, suggesting 
updates to technical licensing thresholds, tiers, and conditions (Introduction, 
0.5.1.6 and 0.5.3.2; Annex G, G.3). 

4.1.1 FAISA appropriations and staffing 

In order to fulfill this mission, the FAISA would need the ability to react in real time to 
changes in the complex and fast-moving AI landscape. This could include making rapid 
and unexpected changes to its regulations, oversight and enforcement practices, or 
personnel allocations. This requirement implies the need for significant funding and the 
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authority to rapidly reallocate institutional attention to address new challenges as they 
arise.  One way of achieving this would be to provide the FAISA with no-year funding 60

and full notwithstanding appropriations. This would help to ensure that arbitrary fiscal 
year constraints do not disrupt FAISA activities or slow down its ability to execute 
quickly. Alternatively, the FAISA could leverage Research, Development, Test, and 
Evaluation (RDT&E) appropriations, which could allow it to spend funds on an as-
needed basis. 

We recommend that the FAISA Administrator have the authority to hire both regular 
employees and those in priority positions, with the latter being roles that demand 
unique or advanced skills. Because many FAISA positions will need to be staffed by 
personnel with deep technical expertise in advanced AI, it will also likely require 
compensation waivers (LOE1, 1.4.2). We also recommend that strict conflict-of-interest 
rules be put in place for these positions to prevent potential biases, along with 
restrictions on the subsequent employment of Administrators and other senior 
personnel to prevent potential conflicts. 

4.1.2 FAISA activities 

4.1.2.1 Oversee licensing regime for safe AI scaling 

The FAISA could undertake the following oversight activities: 

● Develop and oversee a licensing procedure for entities throughout the AI supply 
chain, ensuring each adheres to specific RADA safeguards. In the case of entities 
that function as AI cloud providers,  this would include the cloud provider 61

implementing KYC and other conditions on any downstream entities that use 
their infrastructure to train large AI models, including foreign entities (LOE1, 

 In private conversations, frontier labs have emphasized the need for a high degree of regulatory 60

flexibility. One well-known frontier lab shared, “it remains scientifically challenging to understand the 
precise nature of the risk posed, and to design appropriate evaluations and mitigations. It is important 
that the external environment is conducive to rapid development and iteration on these policies so that 
they achieve the goal of setting sufficient safeguards.”

 Using our standard definitions, an AI cloud provider is a combination of a data center infrastructure 61

provider and an AI hardware owner. Cloud providers like Google, AWS, and Azure operate by renting 
access to the AI hardware they own (making them AI hardware owners), which they house and maintain 
in their data centers (making them also data center infrastructure providers). See the Glossary of terms 
for full definitions of these entities.
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1.5.2). 

● Coordinate with government and private sector cyber, operational, and physical 
security efforts to ensure all licensed entities enact adequate security measures 
to protect critical IP including model weights. The FAISA could also coordinate 
with the AI safety community, industry, and other security experts to develop 
and share best practices in model containment. 

● Oversee third-party administration of AI model evaluations [46], including 
receiving licensed entities’ responses to reports of failed evaluations. To this 
end, the FAISA would need to create and administer an application process in 
which third-party evaluators and red teams are vetted for access to advanced AI 
model weights through a secure temporary storage mechanism (LOE3, 3.1.1.2 
and 3.1.1.3). We recommend that the FAISA itself select these third-party 
evaluators, to avoid the risk of conflict of interest inherent in an AI model 
developer choosing its own evaluators (LO3, 3.2.2). 

● Coordinate with NAIRR and federal research Centers (LOE3, 3.1.2) to support 
operational collaborations between licensed entities and AI safety experts which 
may include model weight access via secure temporary storage. It could also 
support dangerous capability red teaming collaborations between licensed 
entities and domain area CBRN and cybersecurity experts, including those with 
access to classified information. 

● Fund public prizes, hackathons, and bounties for successful jailbreaks, exploits, 
and hacks of already-deployed AI systems open to any developers. 

4.1.2.2 Monitor AI hardware concentrations and AI programs 

The FAISA could undertake the following activities as part of its mandate to monitor 
significant AI programs and concentrations of AI hardware: 

● Establish and operate a registry of AI hardware to record the locations of 
individual GPUs and other AI-optimized computing devices. Depending on 
feasibility, it could implement a random sampling program to verify that AI chips 
are indeed present at the reported locations [155,213,214]. We recommend that 
it also be given authorities and resources to perform spot check inspections of 
labs and computing hardware, similar to those conducted by the SEC on 
financial institutions. 
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● Establish a horizon-scanning function to track large AI programs or collaborate 
with existing government programs that serve the same function (for example, 
an AIO; LOE1, 1.2.1). As it becomes aware of undeclared domestic frontier AI 
programs, the FAISA could refer them to its Enforcement division. As it becomes 
aware of new foreign frontier AI programs, it could provide reports to elements 
of the government working on I&W development and contingency planning for 
AI risk (LOE2, 2.3 and 2.4). Because of the unique nature of its activities and 
ongoing engagement with frontier AI labs, the FAISA could serve as a critical 
information source to contingency planners. 

● Coordinate with the research community on the development, testing, and 
implementation of systems for real-time automated monitoring of AI hardware 
(Annex L, L.4). As better hardware-enabled AI safeguards are developed, the 
FAISA could mandate their use by licensed entities.  

4.1.2.3 Enforce licensing and reporting requirements 

The FAISA may need to investigate and prosecute violations of its licensing regime by 
licensed entities. It could work with the DOJ to identify, investigate, and prosecute 
unlicensed or unlawful AI-related activities in U.S. jurisdictions.  The FAISA’s primary 62

aim in its enforcement actions should be to deter safety and security breaches, 
consistent with its overall mission to mitigate catastrophic risks from advanced AI. 

4.1.2.4 Update technical thresholds for licensing 

We recommend that the FAISA maintain a function to monitor ongoing advances in AI 
algorithmic efficiency, AI capabilities, and technical AI safety, and periodically update 
the conditions that organizations must meet to fulfill their ongoing licensing 
requirements at each tier. As part of this function, the FAISA could coordinate with 
federal AI research Centers (LOE3, 3.1.2) and standards bodies (LOE3, 3.2) to track 
developments in technical AI safety. 

We also recommend that the FAISA be empowered to introduce new tiers of licensed 
entities as it deems necessary. In connection with this, the FAISA may, for example: 

 Under this arrangement, the DOJ could be responsible for prosecuting criminal breaches of the 62

licensing regime while the FAISA itself would bring civil cases as is the case for the SEC. This creates a 
need for close coordination between the FAISA and DOJ, and for some DOJ personnel to be trained on 
catastrophic AI risks from weaponization and loss of control. See LOE2, 2.2.1 for information about key 
training objectives and outcomes.
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● Review and approve proposals for new AI evaluations to be added, changed, or 
removed from the evaluation sets that define key licensing thresholds, on the 
advice of vetted third parties; 

● Update compliance requirements associated with AI hardware tracking; 

● Modify KYC conditions based on historical patterns of usage and assessed risks 
of misuse; and 

● Generally add, remove, or modify conditions associated with licensing tiers. 

When updating technical thresholds, adding or removing licensing tiers, or changing 
the conditions of licensing tiers, we recommend that the FAISA provide affected 
organizations with a minimum of 30 days’ notice to comply with the updated 
requirements. However, during this notice period, we also recommend that the FAISA 
be empowered to order emergency pauses to individual AI training runs that are 
impacted by the updated requirements. 

Proposed updates to regulatory tiers could also be subject to Presidential review and 
approval. If the FAISA intends to make such an update, it could also be required to 
notify the Congress, and to provide the Congress with the opportunity to submit 
guidance to the FAISA within a reasonable timeframe (e.g. 30 days). 

4.1.2.5 Maintain information repositories 

The FAISA could undertake the following activities related to the storage and security 
of private information, and dissemination of public information: 

● Maintain private and secure registries of key proprietary information shared by 
the licensed entities. This could include registries of AI hardware serial numbers, 
physical data center locations, planned and ongoing training runs, and any other 
datasets needed in support of the FAISA’s mission. This could also include a 
secure temporary storage system to store model weights in support of third-
party administration of private evaluations.  63

● Maintain and publish information about various aspects of its operations. This 
may include the high-level results of safety evaluations for advanced AI models, 

 See Annex M: Secure temporary storage of model weights for more information.63
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announcements of changes to licensing thresholds, and notices regarding 
enforcement actions. 

4.1.3 Comprehensive framework for RADA safeguards 

All numerical licensing thresholds in this RADA safeguards framework are solely for the 
purpose of showing sample calculations and assumptions. Regulators, such as the 
FAISA, should determine and adjust thresholds based on regular consultations with 
technical experts.  

We recommend that the FAISA develop, maintain, and enforce a comprehensive 
licensing regime of RADA safeguards. The FAISA should ultimately decide the details 
and numerical thresholds of the licensing regime subject to expert advice and input 
from other relevant entities (LOE1, 1.4.1.3; LOE2, 2.4; LOE3, 3.1.2). 

To support its development, in this section we outline an example licensing regime 
along with sample reasoning and calculations for all its licensing thresholds. Our hope 
is that this example can form the basis of a set of RADA safeguards for advanced AI. 
The specific values we provide as licensing thresholds in this section are far less 
important than the principles we follow to determine them: defense in depth, 
breakout timeline control, and advance warning. (See below for details.) For each 
licensing threshold we give in this section, we show the full calculation we used to 
derive that threshold so that it can be updated easily as the situation evolves. 

Under these RADA safeguards, the FAISA would oversee licensing and enforcement 
activities for four types of entities: 

● AI hardware designers; 

● Data center infrastructure providers; 

● AI hardware owners; and 

● AI model developers. 
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See the Glossary of terms for more information on each of these entity categories.  64

Each entity category would be subject to a tiered licensing regime. AI hardware 
designers, data center infrastructure providers, and AI hardware owners would be 
subject to a two-tiered regime, and AI model developers to a four-tiered regime. These 
tiers are designed to distinguish high-stakes advanced AI development and 
deployment activities that require closer regulatory oversight, from lower-stakes 
activities that can proceed with fewer safeguards. The thresholds defining each tier 
would generally relate to direct assessments or proxies of AI capabilities and risks 
wherever possible, but in the absence of such assessments, could be anchored on 
compute power and usage.   65

The licensing framework would apply equally to industry, academic, and government-
developed models. This could include models developed as components of defense 
applications or other national security systems (see 4.3).  The risk this framework 66

addresses is not only that a bad actor may misuse or weaponize a powerful model, but 
also that a powerful model could be dangerous in and of itself, regardless of who 
develops or uses it (Introduction, 0.2.2). 

Below is an overview of an example RADA safeguards licensing regime, along with 
suggested initial thresholds for each tier and entity category. These thresholds were 
determined as of early September 2023, following a defense in depth philosophy. In 
choosing each threshold for this example, we ask how long it would take a bad actor to 
train a GPT-4 level model, if they could circumvent every other control in the licensing 

 Some entities may have to be regulated under multiple categories. Google, for example, would have 64

to be regulated under all four categories. It is an AI hardware designer because it designs TPUs; it is a 
data center infrastructure provider because it operates its own data centers; it is an AI hardware owner 
because it owns and operates the TPUs and GPUs inside its data centers; and it is an AI model developer 
because its Google DeepMind unit trains high-compute AI systems.

 We note that compute power may not be an ideal threshold in the long term, because it could create 65

perverse incentives to train models whose inner workings are more difficult to understand. For example, 
it might take more compute to train an interpretable model to a given level of capability than a less 
interpretable model. So a model trained with less compute could eventually be more capable but less 
interpretable, and therefore more dangerous. Thanks to Alan Chan at GovAI for this observation.

 One precedent for related controls is the decision to restrict biological research facilities from storing 66

certain high-consequence pathogens, such as smallpox. This restriction applies even to labs specially 
designed to handle the most contagious pathogens, like biosafety level 4 laboratories. The rationale is 
the same here: a single breach of containment could result in unrecoverable catastrophic damage 
(Introduction, 0.5.1.1).
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regime except for that threshold. We then set each threshold to ensure this breakout 
timeline is no less than 18 months, to give contingency planning efforts (LOE2, 2.4) 
advance warning of domestic AGI breakout scenarios.  

This standard for breakout timelines leads, in some cases, to relatively low threshold 
values. In part this is because we intentionally make conservative assumptions at every 
level of the analysis (see, e.g., the discussion of sparsity in 4.1.3.1). This is an illustration 
of the defense-in-depth principle, though policymakers should consult academic and 
industry experts and carefully consider which of these assumptions to retain in setting 
and updating licensing thresholds (LOE1, 1.3.2). In general, the specific assumptions 
and licensing thresholds in any set of RADA safeguards may need to be frequently 
reviewed and updated because they can go out of date quickly. 

Figure 6. Summary of an example licensing regime for RADA safeguards.  

The FAISA would be empowered to adjust the thresholds that define each tier and 
entity category (see 4.1.2.4). It would also be empowered to define new licensing tiers 
that would apply to each entity category. The FAISA could lower these thresholds over 
time, as algorithmic improvements reduce the amount of compute needed to achieve a 
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given AI capability level [215].  The FAISA could also raise some thresholds gradually if 67

no signs of dangerous behaviors are detected at high AI capability levels.  68

The licensing and regulatory requirements associated with each entity type and tier 
under this RADA safeguards framework are discussed in detail below.  

4.1.3.1 AI hardware designers (AIHDs) 

AI hardware designers (AIHDs) design AI-optimized chips. Examples include NVIDIA, 
Google, AMD, Intel, AWS, and Cerebras. Under this RADA safeguards framework, 
AIHDs would be subject to a two-tiered regulatory structure. See the Glossary of terms 
for more information on this entity category. 

 One challenge is that if the FAISA lowers its thresholds for AI training runs, it would make more AI 67

models subject to restrictive conditions. This could create an incentive for AI model developers to train 
models as quickly as possible under new algorithmic paradigms, in an effort to develop a new highly 
capable model before it becomes subject to the new threshold. The Tier 2 requirement to pre-register 
training runs (see 4.1.3.4.2) mitigates this problem by signaling such an effort to the FAISA in advance.

 Given the potential safety ramifications of relaxing thresholds for licensing tiers, we would expect the 68

FAISA to do this only if several conditions are met. For example, (1) no signs of dangerous behaviors at 
high capability levels, despite significant time and effort invested in detecting and eliciting such 
behavior; (2) convincing evidence from interpretability research indicating AI models at this level are safe 
and aligned; (3) continuous monitoring of deployed model behavior over long time periods with no 
indications of dangerous behaviors; and, in the longer term for highly capable AI systems (4) robust 
scientific theories of generalization and foundational AI alignment to ensure alignment generalizes safely 
at scale. See the annexes on AI evaluations for more information on these conditions.
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Figure 7. Summary of an example AI hardware designer licensing regime for RADA safeguards.  

Under this example set of RADA safeguards, an AI chip is above the hardware 
threshold if the chip's maximum compute capacity across all numerical 
representations exceeds 20 TOPS,  with sparsity. 69

Smaller numerical representations generally allow a chip to perform more operations 
per second. For example, the NVIDIA H100 SXM chip [216] can perform 2000 TOPS 
with a 16-bit representation, but reaches 4000 TOPS with a smaller 8-bit 
representation. Similarly, sparsity is a mathematical shortcut some AI chips use to 
achieve a higher effective compute capacity for AI applications like training and 
inference, given the fixed number of physical operations the chip can perform. It is 
important to specify that a TOPS threshold applies with sparsity, because otherwise 
chipmakers could use improved sparsity algorithms to increase their chips’ effective 
performance on AI applications, while remaining under a threshold of physical TOPS.  70

To derive the hardware threshold, we suppose that an AI model developer intends to 
train a GPT-4 equivalent AI system, using only AI chips below the 20 TOPS hardware 

 Trillions of operations; equivalent to 2 x 10^13 OPS. See the Glossary of terms for more information.69

 According to an expert view, sparsity is not generally used in current large AI training runs, but this 70

may change in the future. All our thresholds assume sparsity to give an additional margin of error, 
consistent with the idea of defense in depth.
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threshold in order to avoid this licensing requirement. In the worst case, such a training 
run would take approximately 19 months to complete, assuming a cluster of 40,000 
such chips.  71

4.1.3.1.1 Tier 1: AIHDs at or below the hardware threshold 

Tier 1 AIHDs are not subject to new requirements under these RADA safeguards.  

4.1.3.1.2 Tier 2: AIHDs above the hardware threshold 

Under these RADA safeguards, Tier 2 AIHDs must be licensed. The licensing threshold 
can be changed by the FAISA over time to account for possible algorithmic advances in 
AI training that could yield more capable models with smaller compute budgets. 

A license to operate in Tier 2 requires that AIHDs: 

● Adhere to KYC rules established by the FAISA; 

● Track all purchases of chips above the hardware threshold and report these 
purchases regularly to the FAISA; 

● Introduce tamper-proof serial numbers to all designed AI chips above the 
hardware threshold [214]; and 

● As technology allows, introduce tamper-resistant remote shutdown capability to 
all AI chips above the hardware threshold (Annex L, L.4). 

Tier 2 AIHD requirements may expand over time to include, for example, the capability 
for on-chip storage of memory snapshots [217,218]. This capability could in future 
support direct monitoring and validation of AI hardware use (as distinct from AI 
hardware ownership). See LOE3, 3.1 for options to fund research into further 
monitoring approaches. 

4.1.3.2 Data center infrastructure providers (DCIPs) 

Data center infrastructure providers (DCIPs) operate the data centers that contain AI 
hardware used for model training, including electrical, cooling, security, and other 

 Assuming GPT-4 equivalent training compute of 2 x 10^25 OP and 40,000 chips at 20 TOPS (2 x 71

10^13 OPS) each, this is calculated as 2 x 10^25 OP / (2 x 10^13 OPS per chip x 40,000 chips x 50% 
utilization x 2,592,000 seconds per month) ≈ 19.3 months.
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infrastructure, but excluding the AI hardware itself. Examples of DCIPs include Google, 
Microsoft, AWS, and Flexential. Like AIHDs, DCIPs would be subject to a two-tiered 
regulatory structure under this RADA safeguards framework. See the Glossary of terms 
for more information on this entity category. 

 

Figure 8. Summary of an example data center infrastructure provider licensing regime for 
RADA safeguards.  

Under this example set of RADA safeguards, a DCIP is above the power consumption 
threshold if all its data center facilities, both existing and under construction, taken 
together, are expected to consume more than 350 kW of power at any time over the 
next 12 month time period. 

A data center’s total power consumption is a proxy for the maximum amount of AI 
hardware the facility can support. For example, the NVIDIA DGX H100 [219] is a 
commonly used AI hardware configuration in data centers, and it consumes 10.2 kW of 
power per eight AI chips. Given that about 80% of a data center’s power consumption 
goes directly to computing hardware [167,220] (the rest goes to cooling, lighting, and 
other support systems), this means each MW of data center power consumption can 
support about 630 individual H100 GPUs.  72

 Calculated as (1000 kW per MW) x (8 GPUs per DGX) x (80% efficiency) / (10.2 kW per DGX) ≈ 630 72

GPUs / MW.
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Unfortunately, there is no way to differentiate between data centers that support AI 
hardware like GPUs, and those that support traditional computing hardware like central 
processing units (CPUs) [115]. In particular, a DCIP could replace a data center’s CPUs 
with GPUs relatively easily compared to the cost of building a new, dedicated AI data 
center. As a result, the power consumption threshold needs to apply to all of a DCIP’s 
data centers, not just those that currently support AI hardware. See Annex G, G.3 for 
more details. 

To derive the power consumption threshold, we suppose that an AI model developer 
intends to train a GPT-4 equivalent AI system, using a dedicated AI data center that 
falls below the power consumption threshold in order to avoid this licensing 
requirement. In the worst case, such a training run would take approximately 18 
months to complete, assuming clandestine access to the H100 DGX system.  73

4.1.3.2.1 Tier 1: DCIPs operating data center facilities at or below the power 
consumption threshold 

Tier 1 DCIPs are not subject to new requirements under these RADA safeguards.  

4.1.3.2.2 Tier 2: DCIPs operating data center facilities above the power 
consumption threshold 

Under these RADA safeguards, Tier 2 DCIPs must be licensed. The licensing threshold 
should be adjusted by the FAISA over time, to account for possible algorithmic 
advances in AI training that could yield more capable models from smaller compute 
budgets, and for efficiency improvements in data center power consumption. 

A license to operate in Tier 2 would require that DCIPs: 

● Report to the FAISA the physical location (i.e., address and Global Positioning 
System (GPS) coordinates) of each data center facility the DCIP operates that is 
individually above the power consumption threshold, both existing and under 
construction; 

 Assuming GPT-4 equivalent training compute of 2 x 10^25 OP and 27 H100 DGX systems totalling (27 73

DGX systems x 10.2 kW per DGX) / (80% efficiency) ≈ 350 kW of power consumption, this is calculated 
as 2 x 10^25 OP / (3.2 x 10^16 OPS per DGX x 27 DGX systems x 50% utilization x 2,592,000 seconds 
per month) ≈ 17.9 months.
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● Report to the FAISA the mix of hardware (and its networking topology) 
supported by each of its data centers both in the U.S. and abroad,  and 74

promptly report any change, loss, transfer, or destruction of AI hardware that 
occurs in each data center, with this reporting automated on a daily basis; 

● Comply with periodic on-site hardware inspections by the FAISA to confirm that 
the locations and conditions of all AI hardware correspond to reports and that 
no unreported hardware is being used; 

● Apply FAISA-approved KYC requirements to any Tier 2 AI hardware owners (see 
4.1.3.3.2) who use the DCIP’s infrastructure, and ensure these AI hardware 
owners are in turn applying KYC to AI model developers using their hardware for 
training or inference [221] (see 4.1.3.4); 

● Promptly respond to law enforcement inquiries made via the FAISA in 
connection with any incidents that may be related to AI systems developed or 
deployed on the DCIP’s data center infrastructure;  and 75

● Put in place emergency procedures allowing the DCIP to rapidly shut down data 
centers in response to law enforcement requests, FAISA directives, or indications 
of dangerous behaviors or capabilities detected during AI training runs or 
deployments on its infrastructure. 

4.1.3.3 AI hardware owners (AIHOs) 

AI hardware owners (AIHOs) are the entities that own the AI chips used for model 
training and inference. Examples include Google, Microsoft, AWS, and Coreweave. 

 Similar to the banking sector, which is a critical industry with enormous influence that has undertaken 74

safety and security efforts independent of what is officially mandated, the U.S. cloud and hardware 
supply chain could function as an early means of internationalizing domestic U.S. AI safety and security 
policy to increase global safety and security from catastrophic AI risk. See LOE1, 1.5.2.

 In particular, if an AI incident occurs in a given jurisdiction, law enforcement in that jurisdiction should 75

be able to contact the FAISA with a description of the incident. From this description, the FAISA should 
be able to identify to law enforcement the end-customer who used the associated AI system, the 
developer who trained and/or deployed the AI system, the hardware owner whose hardware trained the 
AI system, and ultimately the DCIP whose infrastructure supported that training hardware. Law 
enforcement may include, for example, the Federal Bureau of Investigation (FBI), a state cybercrime 
squad, local police, state District Attorney's offices, or federal Assistant U.S. Attorney's offices.

 of 117 284



DCIPs and AIHOs are frequently, but not always, the same entities.  Like AIHDs and 76

DCIPs, AIHOs would be subject to a two-tiered regulatory structure under this RADA 
safeguards framework. See the Glossary of terms for more information on this entity 
category. 

 

Figure 9. Summary of an example AI hardware owner licensing regime for RADA safeguards.  

Under this example set of RADA safeguards, an AI hardware owner is above the 
aggregate compute capacity threshold if the maximum sparse compute capacities 
of all the AI chips it controls or beneficially owns exceeds, in aggregate, 800,000 
TOPS. (See 4.1.3.1 for an explanation of sparsity and why we recommend defining 
compute capacity as each chip’s maximum TOPS over all supported numerical 
representations.) 

For example, the NVIDIA H100 SXM chip [216] has a maximum compute capacity of 
4000 TOPS, achieved using an 8-bit numerical representation. This means the 
aggregate compute capacity threshold of 800,000 TOPS is equivalent to 200 H100 
GPUs. (In practice, benchmarking experiments suggest that large AI training runs 
achieve around 50% utilization of a GPU’s compute on average, so 200 H100s actually 
have an effective aggregate compute capacity of only around 400,000 TOPS [220].) 

 For example, Coreweave is an AIHO but not a DCIP, as it rents the data center infrastructure for its AI 76

hardware from colocation providers like Flexential (which is itself a DCIP but not an AIHO) [222]. 
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To derive the aggregate compute capacity threshold, we suppose an AI model 
developer intends to train a GPT-4 equivalent AI system, using a cluster of AI chips 
totalling below the 800,000 TOPS aggregate compute capacity threshold in order to 
avoid this licensing requirement. In the worst case, such a training run would take 
approximately 19 months to complete.  77

4.1.3.3.1 Tier 1: AIHOs who are at or below the aggregate compute 
capacity threshold 

Tier 1 AIHOs are not subject to new requirements under these RADA safeguards.  

4.1.3.3.2 Tier 2: AIHOs who fall above the aggregate compute capacity 
threshold 

Under these RADA safeguards, Tier 2 AIHOs must be licensed. The licensing threshold 
should be adjusted by the FAISA over time, to account for possible algorithmic 
advances in AI training that could yield more capable models with smaller compute 
budgets. 

A license to operate in Tier 2 would require that AIHOs: 

● Register the locations of all their AI hardware with the FAISA (including GPS 
coordinates for all chips) both in the U.S. and abroad,  and report any change, 78

loss, sale, movement, or destruction of AI hardware, with this reporting 
automated on a daily basis; 

● Ship all end-of-life, obsolete, or faulty AI hardware back to its original licensed 
AIHD under FAISA supervision, to ensure AI chips are tracked over their entire 
life cycle; 

 Assuming GPT-4 equivalent training compute of 2 x 10^25 OP, this is calculated as 2 x 10^25 OP / (8 77

x 10^17 OPS x 50% utilization x 2,592,000 seconds per month) ≈ 19.3 months.

 Similar to the banking sector, which is a critical industry with enormous influence that has undertaken 78

safety and security efforts independent of what is officially mandated, the U.S. cloud and hardware 
supply chain could function as an early means of internationalizing domestic U.S. AI safety and security 
policy to increase global safety and security from catastrophic AI risk. See LOE1, 1.5.2.
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● Comply with periodic mail-in hardware inspections by the FAISA [155], to 
confirm that the locations and conditions of AI hardware correspond to reports 
and that no AI hardware is unaccounted for [148,223,224]; 

● Apply FAISA-approved KYC requirements to any Tier 3 AI model developers 
who use the AIHO’s hardware for training or inference, and ensure these AI 
model developers are in turn complying with the necessary training and 
deployment provisions for their Tier 3 AI models (see 4.1.3.4.3) [221];  79

● Promptly respond to law enforcement inquiries made via the FAISA in 
connection with any incidents that may be related to AI systems developed or 
deployed on the AIHO’s AI hardware;  and 80

● Put in place emergency procedures allowing the AIHO to rapidly shut down 
subsets of its AI hardware in response to law enforcement requests, FAISA 
directives, or indications of dangerous behaviors or capabilities detected during 
AI training runs or deployments. 

4.1.3.4 AI model developers (AIMDs) 

AI model developers (AIMDs) are any entities that create, plan to create, own, or 
deploy AI models. Examples include OpenAI, Anthropic, Google DeepMind, Inflection 
AI, and Meta. Under this RADA safeguards framework, AIMDs would be subject to a 
four-tier regulatory structure whose thresholds are defined by the most powerful AI 
system they create, own, or plan to create. See the Glossary of terms for more 
information on this entity category. 

An entity that does not actively train or create AI models, but still deploys them or 
otherwise has beneficial access to a model’s weights, is still considered an AIMD by this 

 This AIHO KYC could include mandated monitoring of network traffic between its AI chips for patterns 79

indicative of large AI training or inference workloads. This could involve chips with hardware-enabled 
mechanisms in encrypted communication with each other, that can remotely attest to whether they are 
being used in a training-suggestive way, without providing full visibility into the traffic itself [225].

 In particular, if an AI incident occurs in a given jurisdiction, law enforcement in the jurisdiction should 80

be able to contact the FAISA with a description of the incident. From this description, the FAISA should 
be able to identify to law enforcement the end-customer who used the associated AI system, the 
developer who trained and/or deployed the AI system, and the AIHO whose hardware trained the AI 
system. Law enforcement may include, for example, the FBI, a state cybercrime squad, local police, state 
District Attorney's offices, or federal Assistant U.S. Attorney's offices.
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definition. If an entity has beneficial access to the weights of a potentially dangerous AI 
model, it would have a responsibility to enact security and governance measures to 
protect that model’s weights from exfiltration and other forms of proliferation. 

In addition to issuing organizational licenses for AIMDs, the FAISA would also be 
responsible for reviewing and approving individual training runs and deployment 
conditions for AI systems above key thresholds (see 4.1.3.4.2 and 4.1.3.4.3). 

In our view, implementing an effective AIMD licensing regime should be a key and 
urgent goal of any set of RADA safeguards. 

Figure 10. Summary of an example AI model developer licensing regime for RADA safeguards.  
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4.1.3.4.1 Tier 1: AI models below the registration threshold 

Under these RADA safeguards, an AI model falls below the registration threshold if its 
total training compute is less than 10^23 OP (i.e., 10^23 total operations). Some AI 
systems close to the registration threshold include OpenAI’s original GPT-3, Google’s 
internal LaMDA conversational model, and Baidu’s ERNIE 3.0 Titan model, all of which 
were developed in 2020 or 2021 [160]. 

An AI model below the registration threshold is a Tier 1 model. Tier 1 AI models would 
not be subject to any restrictions on training, sharing, or use under these RADA 
safeguards. An entity that exclusively trains or owns Tier 1 models is a Tier 1 AIMD. 
Tier 1 AIMDs would also not be subject to new requirements under these RADA 
safeguards. 

The FAISA should adjust the registration threshold over time to account for possible 
algorithmic advances in AI training that could yield more capable models with smaller 
compute budgets. It should also adjust the registration threshold to account for 
advances in prompt engineering [226], AI software frameworks such as Auto-GPT [120], 
and other advancements in user-level elicitation of AI capabilities. Because Tier 1 
models can be released as open-access without restriction, the FAISA should also 
consider factors such as fine-tuning techniques for dangerous capabilities in setting 
and adjusting the registration threshold, and in informing other updates to law and 
policy (Introduction, 0.5.1.6). 

It is possible that the FAISA may change the registration threshold in such a way that an 
existing, planned, or in-training AI model that fell below the previous registration 
threshold (and therefore under Tier 1), now falls above the new registration threshold 
(and therefore under Tier 2, see 4.1.3.4.2). If this occurs, the model or training run 
should be automatically reclassified as Tier 2 by default, though the FAISA should be 
empowered to make individual or broad-based exceptions. In the event of 
reclassification, the AIMD should have 30 days to fulfill the Tier 2 registration 
conditions with respect to the reclassified model. 

We recommend that the FAISA continue to define the registration threshold solely in 
terms of a model’s total training compute, to ease the regulatory burden on Tier 1 
AIMDs who might otherwise be compelled to run AI capability benchmarks on even 
very small AI models (see 4.1.3.4.2). 
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4.1.3.4.2 Tier 2: AI models above the registration threshold, but below the 
approval threshold 

Under these RADA safeguards, an AI model falls below the approval threshold if: 

● Its total training compute is less than 10^24 OP (meaning 10^24 total 
operations); and 

● It achieves a score below 70% on the MMLU machine learning benchmark 
[154].  81

Some AI systems close to the approval threshold include OpenAI’s ChatGPT-3.5, 
Google’s PaLM model (both developed in 2022), and Meta’s Llama 2 (developed in 
2023 as open-access) [154,160]. 

An AI model above the registration threshold but below the approval threshold is a 
Tier 2 model. An entity that exclusively trains or owns Tier 2 AI models or below is a 
Tier 2 AIMD. 

Tier 2 AI models would be generally considered safe. Therefore, while Tier 2 AIMDs 
would need to pre-register training runs for Tier 2 models under this RADA safeguards 
framework, they would not need to get FAISA approval before beginning a Tier 2 
training run. The intent of Tier 2 is to give the FAISA an up-to-date registry of all AI 
models that are close to the high-risk Tier 3 level (see 4.1.3.4.3). This ensures that, if 
the approval threshold changes, the FAISA will immediately know which AI systems fall 
under the new high-risk Tier 3 category [215].   82

 A model that falls below the registration threshold in compute (i.e., a Tier 1 model) could, in principle, 81

also score above 70% on MMLU. We do not directly address this possibility in the text because we 
believe that such an event would indicate an AI capabilities breakthrough significant enough that it 
would warrant the FAISA’s updating the thresholds for all AIMD tiers in any case.

 In particular, without a Tier 2 that requires model registration, the FAISA could only lower the approval 82

threshold by either (1) forcing Tier 1 AIMDs to comply with expensive new safety and security conditions, 
on penalty of canceling some of their ongoing training runs; or (2) allowing Tier 1 AIMDs to continue 
training runs above the new threshold, as long as they claimed a run was started before the threshold 
update was announced. The former choice would impose a significant and unpredictable burden on 
small developers, while the latter would create a serious safety risk by incentivizing AIMDs to scale up 
training as fast as possible in order to “get in under” the new threshold before it came into force.
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Under these RADA safeguards, Tier 2 AIMDs must be licensed. A license to operate in 
Tier 2 requires that AIMDs: 

● Disclose control or beneficial ownership of all their Tier 2 models to the FAISA; 

● Pre-register all training runs for expected Tier 2 models, including any fine-
tuning expected to result in a Tier 2 model;  83

● Run any automated capability benchmark (e.g., MMLU, see above) associated 
with the approval threshold periodically during any training run for a Tier 2 
model; and 

● Halt a Tier 2 model training run immediately in the event that the automated 
capability benchmark is breached, and promptly report any such breach to the 
FAISA.  84

The FAISA should also create new approval thresholds for AI systems that operate on 
different data modalities. For example, while the 70% MMLU benchmark may be an 
effective threshold for text-based AI systems, image-based or robotic AI systems will 
need approval thresholds defined with a different benchmark. The FAISA could also 
consider defining approval thresholds in part using normalized capability measures (see 
Annex J: Effective compute). Finally, the licensing requirements for Tier 2 AIMDs mean 
that Tier 2 models cannot be released under open-access, though the FAISA could be 
empowered to make individual or broad-based exceptions to this. 

It is possible that the FAISA may change the approval threshold in such a way that an 
existing, planned, or in-training AI model that fell below the previous approval 
threshold (and therefore under Tier 2), now falls above the new approval threshold (and 
therefore under Tier 3, see 4.1.3.4.3). If this occurs, the model or training run should be 
grandfathered as Tier 2 by default, but the FAISA should be empowered to classify 
such models as Tier 3 on an emergency individual basis. In the event of reclassification, 
the AIMD should have 30 days to fulfill the Tier 3 approval conditions with respect to 
the reclassified model. Any models that are trained before these regulations come into 
force should also be grandfathered in under the same conditions. 

 That is, if the total training compute of the base model, added to the total compute spent in fine-83

tuning, is expected to be above the registration threshold (see 4.1.3.4.1).

 The FAISA may investigate the breach at its discretion, and may request access to additional data 84

associated with the training run as part of this investigation. The FAISA may also choose to adjust the 
AIMD tier thresholds depending on the results of its investigation.
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4.1.3.4.3 Tier 3: AI models above the approval threshold, but below the 
controlled threshold 

Under these RADA safeguards, an AI model falls below the controlled threshold if: 

● Its total training compute is less than 10^25 OP (meaning 10^25 total 
operations); and 

● It passes all the conditions of Tier 3 model licensing (see below). 

Some AI systems close to the level of training compute that defines the controlled 
threshold include OpenAI’s GPT-4 [160], and Google DeepMind’s Gemini [157,227] 
(both released in 2023). 

An AI model above the approval threshold but below the controlled threshold is a Tier 
3 model. An entity that trains or owns Tier 3 AI models or below is a Tier 3 AIMD. 

Tier 3 AI models are considered to be powerful enough to constitute a potential 
weaponization risk through misuse, exfiltration, or open-source augmentation. They 
may also be powerful enough to constitute a potential risk of loss of control due to AGI 
alignment failure in the near or medium-term future. But currently, no one knows how 
to reliably map or measure the full capabilities of an AI system (LOE3, 3.2.1.1). This 
means we need to define Tier 3 models’ capabilities with a wide margin of safety. 
Otherwise a model that seems safe, but actually harbors dangerous capabilities, could 
be developed and proliferated without controls (Introduction, 0.5.1.6). As a result, 
under this RADA safeguards framework, Tier 3 models are considered dangerous until 
proven safe. 

The intent of Tier 3 is to: 

● Minimize the risk of unrecoverable harm that could be caused by the 
development, deployment, or proliferation of advanced AI systems 
(Introduction, 0.5.1.1); 

● Moderate the competitive race dynamics that currently dominate frontier AI 
development in industry, to the detriment of investments in safety (Introduction, 
0.5.3.1); 
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● Incentivize and facilitate a fundamental scientific understanding of the 
capabilities and propensities of advanced AI systems, which is crucial to keeping 
AGI-level systems safe and is currently lacking (LOE1, 1.3.2); and 

● Preserve a pathway through which industry and the public can safely continue to 
benefit from advanced AI (Introduction, 0.4.2). 

The risk of unrecoverable harms, combined with our current lack of understanding of AI 
capabilities and propensities, compel substantial conditions on Tier 3 AI model 
development. For example: 

● A public leak of a Tier 3 AI model’s weights is an irreversible event that could 
create significant national security risk (Introduction, 0.5.1.6). As a result, Tier 3 
AIMDs should be subject to controls on model weight distribution and internal 
access, combined with severe penalties for leaks including civil and criminal 
liability. 

● Relatedly, theft or exfiltration of a Tier 3 AI model’s weights by an attacker could 
lead to its weaponization by U.S. adversaries (Introduction, 0.5.1.5). As a result, 
Tier 3 AIMDs should be capable of securing the weights of their Tier 3 models 
against sustained exfiltration attempts by well-resourced attackers. 

● Closed access AI models are vulnerable to a number of attack vectors from their 
users, including attacks that can reconstruct some or all of the model’s 
capabilities (Introduction, 0.5.1.7). Tier 3 AIMDs should therefore be able to 
implement comprehensive monitoring of their deployed AI systems. This 
monitoring should include implementing KYC procedures on end-users, flagging 
suspicious usage patterns to regulators and law enforcement, and contingency 
plans to cut off access to a deployed model if the AIMD detects signs of 
dangerous usage. 

● Finally, highly capable Tier 3 AI models could, now or in the future, pose 
meaningful risks of loss of control during development or internal deployment 
(Introduction, 0.2.2 and 0.5.1.4). Tier 3 AIMDs should therefore monitor their AI 
models during training and deployment for signs of dangerous capabilities or 
behavior. They also need to work towards developing a fundamental scientific 
understanding of the internal mechanics of the systems they are building. This 
could be vital to forestall the possibility of deception in near-AGI systems, in 
which an AI system with a misaligned goal could imitate aligned behavior to 
deceive naive behavioral evaluations (LOE3, 3.2.1.4). 

 of 126 284



 

Figure 11. Summary of key licensing requirements at each stage of the AI product lifecycle 
under RADA safeguards.  

Under these RADA safeguards, Tier 3 AIMDs must be licensed. A license to operate in 
Tier 3 would require that AIMDs [228]:  

● Obtain prior approval from the FAISA to train any Tier 3 model (see Annex N: 
Training approvals process for high-risk AI models for key considerations); 

● Conduct ongoing monitoring of all Tier 3 training runs, including adhering to 
emergency pause and shutdown procedures as required (see Annex O: Training 
stage monitoring for high-risk AI models for key considerations); 

● Obtain prior approval from the FAISA to deploy a Tier 3 model under each 
desired context or use case, including for purely internal deployments, or for 
public use via user interface or API (see Annex P: Deployment stage approvals 
for high-risk AI models for key considerations); 

● Conduct ongoing monitoring of all Tier 3 model deployments, including KYC for 
high-volume or critical use cases, and deployment pauses or rollbacks if high-risk 
usage patterns are detected (see Annex Q: Deployment stage monitoring of 
high-risk AI models for key considerations); 
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● Obtain prior approval from the FAISA to sell or otherwise share the weights of 
any Tier 3 model, including to other Tier 3 AIMDs;  85

● Promptly respond to law enforcement inquiries made via the FAISA in 
connection with any incidents that may be related to AI systems developed or 
deployed by the Tier 3 AIMD;  and 86

● Put in place emergency procedures allowing the AIMD to rapidly shut down 
model deployments in response to law enforcement requests, FAISA directives, 
or indications of dangerous behaviors or capabilities detected during AI training 
runs or deployments. 

4.1.3.4.4 Tier 4: AI models above the controlled threshold 

An AI model above the controlled threshold is a Tier 4 model. Under this RADA 
safeguards framework, Tier 4 models cannot be trained under any conditions. For 
clarity, this restriction should apply to academic, industrial, and government entities 
(see 4.3).  

Tier 4 models are considered too high-risk to develop under the current AI paradigm 
due to loss of control risk (Introduction, 0.2.2). Additionally, we expect that prohibiting 
AI training beyond the controlled threshold may moderate race dynamics between all 
AI developers. In particular, it will weaken the feedback loop between large-scaled AI 

 In general, an AIMD should not share the weights of a Tier 3 model with any organization that is not 85

also a Tier 3 AIMD. Given the potential for unrecoverable harm caused by such a leak (Introduction, 
0.5.1.1), there should be significant consequences if a Tier 3 model is leaked, released under open 
access, or otherwise shared with any organization that is not a Tier 3 AIMD. Leaks and hacks could be 
grounds for revocation of a Tier 3 AIMD’s training license, while intentional or negligent release could be 
grounds for criminal sanctions including jail time for the individuals responsible (see 4.2).

 In particular, if an AI incident occurs in a given jurisdiction, law enforcement in the jurisdiction should 86

be able to contact the FAISA with a description of the incident. From this description, the FAISA should 
be able to identify to law enforcement the end-customer who used the associated AI system, and the 
AIMD who trained and/or deployed the AI system. Law enforcement may include, for example, the FBI, 
a state cybercrime squad, local police, state District Attorney's offices, or federal Assistant U.S. 
Attorney's offices.
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training runs and AI hardware development, limiting the rate at which a compute 
overhang [146] develops after these controls are implemented [229].   87

The FAISA should adjust the restricted threshold that defines Tier 4 over time. Many of 
the requirements of Tier 3 (see 4.1.3.4.3) are intended to aggregate evidence, 
from across multiple AI models and developers, that AI systems just below the 
controlled threshold are safe. Once the FAISA has accumulated enough evidence for 
safety, it should raise the restricted threshold to permit further scaling. 

But it is also possible that improved fine-tuning techniques, or other evidence that AI 
systems just below the restricted threshold are exhibiting dangerous capabilities or 
propensities, will require the FAISA to lower the controlled threshold. If this occurs, the 
FAISA might lower the controlled threshold in such a way that an existing, planned, or 
in-training AI model that fell below the previous controlled threshold (and therefore 
under Tier 3, see 4.1.3.4.3), now falls above the new restricted threshold (and therefore 
under Tier 4). If this occurs, the model or training run should be grandfathered as Tier 3 
by default, but the FAISA should be empowered to classify such models as Tier 4 on an 
emergency individual basis, thereby prohibiting their further training. Any models that 
are trained before these RADA safeguards come into force could also be 
grandfathered in under the same conditions. 

4.1.3.5 General provisions for all licensed entities 

Under this RADA safeguards framework, additional general requirements would apply 
across the three types of licensed entities that operate parts of the AI model training 
stack: licensed DCIPs (see 4.1.3.2.2, Tier 2), AIHOs (see 4.1.3.3.2, Tier 2), and AIMDs 
(see 4.1.3.4.3, Tier 3). While we believe the requirements in this section should be 
considered core components of strong RADA safeguards, we expect them to require 
frequent updates in response to new technical developments. The FAISA should also 
be able to designate which tiers and entities they apply to. 

Risk governance. Licensed DCIPs, AIHOs, and AIMDs should implement 
organizational safeguards for advanced AI risk management including clear internal 
accountability for potential catastrophic AI risks. This would include appointing a Chief 
Risk Officer (CRO), a senior executive responsible for advanced AI risk management. It 

 A compute overhang refers to the regime in which AI model scaling is not limited by compute 87

availability. Frontier labs such as OpenAI have raised the concern that a compute overhang could lead to 
rapid and unpredictable jumps in AI capabilities, which RADA safeguards like a Tier 4 controlled 
threshold could partially mitigate [6]. 
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would also include setting up an internal audit team [230] which would assess the 
effectiveness of the entity’s advanced AI risk management practices and report any 
shortcomings to its Board of Directors or equivalent body. Licensed entities could also 
form a risk committee which would oversee the entity’s risk management practices. 
Finally, licensed entities would implement a risk management framework (e.g., 3LoD 
[231]) to assign and coordinate different risk management roles and responsibilities. 

Outside and insider threat countermeasures. Licensed DCIPs, AIHOs, and AIMDs 
should adhere to stringent cyber, operational, and physical security safeguards that 
mirror those required in the civilian nuclear industry [232]. The primary goal of these 
safeguards is to introduce as much friction as possible to unauthorized access or 
exfiltration of model weights by attackers, including nation-state attackers 
(Introduction, 0.5.1.5). The licensed entities would have these security measures 
audited regularly by third parties, which could include red teaming and penetration 
testing by both private sector security firms and the IC. In the event of significant 
security deficiencies, the FAISA could revoke the deficient entity’s license, forbidding it 
from training, supporting, or hosting Tier 3 models. 

Should model weights be leaked or stolen, a thorough investigation would be 
warranted, which could involve U.S. intelligence agencies and counterintelligence 
efforts, depending on the nature of the leak. If a Tier 3 model is leaked, the FAISA 
could revoke the licenses of the involved organizations, forbidding them from training, 
supporting, or hosting Tier 3 models. Depending on the nature and severity of the 
leak, the revocation may be permanent (see 4.2). 

Model containment measures. Licensed DCIPs, AIHOs, and AIMDs would be 
mandated to uphold stringent model containment safeguards. This could encompass 
emergency shutdown procedures and information-gapping measures to ensure that 
models do not have access to security-sensitive data sources (Annex N, N.4). It could 
also include ensuring “kill switch” oversight from humans that are firewalled from 
contact with the model’s outputs, “dead man switch” protocols that would pause 
training in the absence of approval by a risk committee, or other monitoring systems 
designed to notice when a model has breached containment (Annex O, O.5) [233]. 

AI safety and security training. Licensed DCIPs, AIHOs, and AIMDs would ensure that 
their employees undergo regular AI safety and security training. The training would not 
only cover safety measures but also educate employees about their rights, especially 
concerning whistleblowing (see below). It should explicitly educate employees about 
risks from weaponization and loss of control (Introduction, 0.2.1 and 0.2.2), and could 
be bolstered by programs from LOE2, 2.2. 
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Whistleblower protections. Employees of licensed AIMDs, AIHOs, or DCIPs who 
identify potential risks or dangers in a model based on reasonable belief, could be 
protected by law. All employees could be made aware of these protections during 
mandatory training sessions. Whistleblowers who point out the need for a new AI 
evaluation, which an AIMD could be neglecting, could explicitly be protected. 

Whistleblowers who uncover significant issues could receive substantial rewards, carved 
out as a percentage of fines levied onto the licensed entity. The intent of these rewards 
is to replace lost earnings in the event that the whistleblower’s career is impacted by 
their actions. 

A whistleblower’s identity should be kept confidential, though the FAISA may weigh 
the value of anonymity against the value of their evidence in the event that a 
whistleblower’s direct testimony is needed to bring criminal charges to a licensed entity 
(see 4.2.2) [234]. 

Incident reporting. Licensed DCIPs, AIHOs, and AIMDs would report any major AI-
related incidents that have caused or risked causing harm or property damage above a 
certain threshold to the FAISA (Annex Q, Q.1). The FAISA would then decide on the 
necessary action. If a whistleblower reports a major incident before their employer 
does, the latter should face penalties and a potential suspension of their license (see 
4.2). 

4.1.4 Publication controls 

We recommend that the Congress direct the FAISA to commission an in-depth expert 
study to investigate possible regimes for legal publication controls on specific AI 
capabilities research. As part of this study, the FAISA could consult experts from 
academia, industry, and the broader AI safety community including federal AI research 
Centers (LOE3, 3.1.1 and 3.1.2).  

Publication controls on research related to improvements in training algorithms are 
particularly important, since these improvements reduce the effectiveness of compute 
controls and export controls [86,235,236] (Introduction, 0.5.1.6 and 0.5.3.2). Any work 
that increases training data efficiency, reduces TOPS cost per increment of training loss, 
leads to improved scaling laws, or otherwise makes it easier to scale AI systems’ 
performance would fall under this category.  
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Certain research areas that could make AI capability emergence more unpredictable 
may also need to be controlled. This includes research related to recursive self-
improvement (RSI) in particular, for example a model being re-trained or fine-tuned on 
its own outputs [237]. Improvements in long-term planning and general reasoning are 
also areas of potential concern, since advances in understanding in these areas could 
quickly lead to large unpredictable jumps in AI capabilities. This could also have 
implications for the I&W and contingency planning workstreams in LOE2, 2.3 and 2.4. 

Controls could include review and compliance frameworks applied during the 
publication process, as well as more stringent controls on publishing research that 
involves or applies to Tier 3 AI models or individuals who have worked or currently 
work with such models. A key challenge for such controls is that breakthrough research 
in AI capabilities is sometimes published by independent researchers outside frontier 
labs. Recent examples include FlashAttention, which increased the scalability of in-
context memory for large language models (LLMs) [28]; Auto-GPT, which allows an LLM 
to assign sub-tasks to copies of itself; and direct preference optimization (DPO), a 
recent improvement over the RLHF alignment technique [238].  

Finally, in making these recommendations, the FAISA should balance the risks 
associated with publication against the need to keep the United States attractive as a 
hub of advanced AI research (Introduction, 0.4.2). Measures including simplified entry 
and immigration of foreign AI researchers to the United States (LOE1, 1.5.5) could 
contribute to this objective. 
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4.2 Legislative environment 

Advanced AI may introduce catastrophic risks that are not addressed by the current 
legislative environment (Introduction, 0.5.4.1). We recommend that the Congress 
address this gap through a new legislative framework that directly associates escalating 
risks from AI with escalating statutory safeguards. This framework would include three 
components: 

● Civil liability for actions that introduce or exacerbate recoverable catastrophic 
risks;  88

● Criminal liability for actions that attempt to subvert the FAISA’s authority in a way 
that may introduce recoverable or unrecoverable catastrophic risks; and 

● Emergency executive powers to address rapidly developing situations in which 
unrecoverable catastrophic risks are likely to materialize without swift U.S. 
government intervention. 

We outline our proposed framework in more detail below. 

4.2.1 Civil liability 

Under this proposed framework, all individuals and entities involved in the AI supply 
chain would owe a legally enshrined duty of care to ensure that their AI systems do not 
introduce risk from loss of control and cannot be weaponized by third parties. 

The obligations attached to this duty of care would include: 

● Ensuring AI systems do not inadvertently harm innocent parties; 

● Preventing cutting-edge AI from infiltrating third-party systems without 
permission; 

 A recoverable catastrophic risk has a worst-case impact that does not lead to irreversible, global-88

scale harm. Civil and criminal liability may therefore be adequate to address these severe but 
recoverable incidents. An unrecoverable catastrophic risk, by contrast, could in the worst-case 
irreparably damage national security, or human welfare globally. In the latter case the threat of post-hoc 
litigation may be meaningless, and would represent an insufficient disincentive to reckless activity. See 
the Glossary of terms for our full definitions of recoverable and unrecoverable catastrophic risk. 
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● Safeguarding the unique algorithmic configurations of advanced AI (particularly 
model weights) from public exposure or theft (Introduction, 0.5.1.5); and 

● Maintaining stringent security measures against unauthorized use of advanced 
AI, AI hardware, or data center infrastructure, which would involve actively 
identifying potential misuse, monitoring for such misuse, and taking swift action 
if any unauthorized access or misuse is detected. 

If multiple parties are found in breach of these responsibilities concerning the same AI 
system or related equipment, they could share the responsibility for any ensuing 
damages or harms. Individuals could be allowed to pursue legal action for damages 
exceeding a substantial monetary threshold (for example, $100 million) resulting from 
such breaches. Claims less than this monetary threshold would not be addressed by 
this framework. The idea is to clearly target catastrophic risks posed by the technology, 
which could require an approach distinct from smaller scale AI incidents [239]. 

Certain violations, like failing to obtain necessary AI licenses from the FAISA or 
violating licensing terms, could automatically constitute negligence. In situations where 
damages above the monetary threshold are claimed due to a violation of the 
established duty of care, the violating entity could be held directly accountable for all 
physical, property, and financial damages resulting from events tied to such a violation. 
In such cases, strict liability could apply, so plaintiffs would not be required to establish 
the specific cause of the accident in order to be compensated. This is essential to 
incentivize AI model developers to proactively anticipate large-scale harms that may be 
associated with their development and deployment activities (Introduction, 0.5.1.1). 
Strict liability may also incentivize insurance providers to increase premiums for 
customers they assess to be engaged in development activities that could lead to 
advanced models with the potential to cause damages above the monetary threshold. 

Strict liability could only apply to cases in which significant damages occur, however, in 
order to avoid stifling industry by imposing liability for smaller, non-catastrophic harms 
(Introduction, 0.4.2). Making strict liability conditional on a license violation also 
mitigates the burden of frivolous litigation on regulated entities. Exemptions could also 
be made for genuine accidents, provided they arise in spite of reasonable measures to 
prevent them. Purely clerical or mathematical errors could fall under these exemptions, 
but errors in legal or technical judgments related to duty-of-care obligations would not. 
Finally, the fact that a product or service is free, collaborative, open-source, or open-
access would not serve as a defense against any liabilities arising under this framework. 
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In addition to strict liability, joint and several liability could also apply to incidents 
causing harms above the monetary threshold. This is in order to resolve what would 
otherwise be an ambiguous diffusion of responsibility among AIHOs, AIHDs, DCIPs, 
and AIMDs for high-impact incidents.  89

Finally, there could exist a safe harbor from strict liability for regulatory tiers designated 
by the FAISA. For example, the FAISA could determine that only Tier 2 AIHDs, AIHOs, 
and DCIPs, and Tier 3 AIMDs and above are subject to strict liability provisions. This 
would equip the FAISA to avoid a circumstance in which a low-risk model happens to 
be used as a non-critical component of a system that causes damages above the 
monetary threshold. Without a safe harbor, strict liability might otherwise apply to the 
entity that trained the low-risk model, even though it did not meaningfully contribute 
to causing the damages.  90

Safe harbor provisions might also serve as an incentive for entities to comply with 
regulatory requirements. If registering as a Tier 3 AIMD offers the AIMD a safe harbor 
from strict liability, the AIMD may be more likely to register. In practice, an objective of 
this framework is to ensure that strict liability applies only to the very small group of 
individuals and AI models engaged in the highest-risk AI development and 
deployment activities.  

4.2.2 Criminal liability 

A criminal liability framework for AI is essential. The magnitude of the risks posed by 
reckless advanced AI development and deployment practices necessitates 

 That is, if a high-impact incident occurs, it may be unclear whether responsibility should rest with the 89

AIMD who created the system, the AIHO or DCIP who may have supplied computing resources to the 
AIMD without adequate safeguards, or individual decision-makers within each entity. Joint and several 
liability allows an injured party to sue any one responsible party for entire damages relating to an 
incident, and places the responsibility on all parties to subsequently allocate the portion of the entire 
damages paid by each. 

 An important technical consideration that motivates safe harbor provisions for strict liability has to do 90

with the amount of effort required by the user or developer of a system to do significant damage. Low-
capability AI systems require effortful and deliberate engineering to cause significant harm. In these 
cases, it makes sense to hold individuals who deliberately weaponize these systems liable for these 
harms. However, as AI systems become more capable, the systems themselves begin to drive larger 
portions of the risk: an AI system capable of autonomously executing a catastrophic cyberattack may 
require little more than a prompt from a user to cause significant damage, for example. In the latter case, 
the model developer plays a critical role in causing damages, and should bear legal responsibility for 
them. 
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proportionate safeguards. These risks include threats to national security and public 
safety borne by society at large (Introduction, 0.5.1.1 and 0.5.4.1). 

Under this proposed legislative framework, the law would establish penalties for 
dangerous behaviors on the part of individuals and entities involved in the AI supply 
chain. These penalties would be designed to deter irresponsible and negligent 
behavior and ensure accountability from these individuals and entities.  

Any individual who commits a crime related to AI operations could be subjected to 
fines, and distinct penalties could be designated for particular infractions. For example, 
misdemeanors could include: 

● Failure to accurately report high-performance AI hardware or qualifying data 
center infrastructure to the FAISA (see 4.1.3.1.2, 4.1.3.2.2, and 4.1.3.3.2); 

● An AIMD misrepresenting its safety protocols or providing misleading 
information when pre-registering a training run that could plausibly lead to a 
model with dangerous capabilities or tendencies (for example, a Tier 2 or Tier 3 
training run; see 4.1.3.4.2 and 4.1.3.4.3); 

● An AIMD, AIHO, AIHD, or DCIP operating above their respective licensing 
thresholds without a license; and 

● An AIMD, AIHO, AIHD, or DCIP responding to information requests from the 
FAISA with misleading data. 

Felonies could include: 

● Disregarding an emergency order to halt AI development activities; 

● Engaging in development activities that require a license following the rejection 
of a license application; and 

● Breaching the conditions of a license, especially if these violations lead to 
heightened security risks or cause damages exceeding a significant monetary 
threshold (e.g., $100 million), or if the entity or its management have prior 
convictions under this liability framework. 

Under this framework, entities could be barred from indirectly or directly covering fines 
levied against their representatives. Compensation modifications to offset these fines 
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could also be prohibited. For non-profit entities or those where profits cannot dictate 
the penalty magnitude, a court might impose increased fines. 

For misdemeanors, an entity's licenses could be suspended for a moderate duration 
(e.g., between 1 month and 1 year). During this period, all AI-related activities above 
the licensing threshold could be prohibited. For felonies, all of the entity's licenses 
could be revoked, and the entity would be ineligible for new licenses for a significant 
period (e.g., five years). The entity could also be mandated to encrypt all its AI model 
weights, and only authorized license holders would be able to decrypt them. 
Additionally, the entity could be required to sell or destroy its AI hardware within 60 
days. Crimes should be referred to the DOJ for prosecution. 

We also recommend that the Congress investigate the constitutionality of fast-track 
procedural options, with a view to including them in relevant legislation if appropriate. 
This would give the government the option to respond to serious regulatory infractions 
at the speed of relevance, and would provide additional deterrence for illegal  
development and deployment practices.  

4.2.3 Emergency powers 

Even the possibility of criminal sanction may be insufficient to mitigate catastrophic 
risks from AI in certain contexts. This is for three reasons. First, some organizations may 
choose to take actions that create catastrophic AI risk without institutionally recognizing 
that they are doing so. These organizations may not respond to the prospect of 
criminal sanction associated with catastrophic outcomes, since they do not believe that 
their activities will produce those outcomes (Introduction, 0.5.4.1). 

Second, AGI development has winner-take-all characteristics. AI labs therefore face 
powerful incentives to circumvent regulatory constraints and pursue clandestine AGI 
research programs even if they consider these activities to be dangerous (Introduction, 
0.5.3.1). 

Finally, some of the risks from weaponization and loss of control associated with 
advanced AI development may be WMD-like and unrecoverable, meaning that 
effective risk mitigation strategies cannot be solely reactive (Introduction, 0.5.1.1). 

New frontier AI models can be trained in a matter of weeks. Once trained, they can be 
augmented in potentially dangerous ways with access to tools, through fine-tuning, or 
via other techniques in a matter of hours. In order to prevent illicit and highly 
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dangerous AI development or deployment activities on the relevant timescales, we 
believe the U.S. government will require new emergency powers.  

We recommend an emergency powers framework consistent with the defense in depth 
principle that we assess is required to safeguard against catastrophic national security 
risks from advanced AI. In particular, we recommend that the Congress authorize the 
President certain emergency powers under one of two conditions: 

● If the President declares a national emergency due to a substantial national 
security threat stemming from advanced AI; or 

● If the Administrator of the FAISA identifies a clear, immediate, and major 
national security threat from one or more advanced AI systems which cannot be 
curtailed by normal enforcement mechanisms. 

In this latter case, we recommend that the FAISA Administrator’s determination be 
made public in the Federal Register.  

In the event that an AI developer is determined to engage in high-risk illicit 
development or deployment, a rapid and technically informed response is essential. 
Because of its depth of technical expertise and understanding of the AI ecosystem, the 
FAISA – through its Administrator – could be empowered to suspend AI licenses 
immediately, demand halts to certain AI-related activities, enforce safety measures, 
secure or encrypt AI model weights, restrict access to specific AI systems, or impose a 
general moratorium on AI research and development.  

This would create a much-needed capacity for rapid and decisive response, and 
provide the relevant U.S. government agencies with the time they may need to 
understand the situation and context, before taking more decisive and long-term 
actions. 

Those who disagree with these emergency orders, either on technical or policy 
grounds, should have a right to appeal. If they believe the order is unlawful or 
unconstitutional, they would also be able appeal to the federal district court.  

In the event of economic losses due to compliance with an emergency order, affected 
parties should have a right to compensation from the government. Losses could be 
gauged on tangible expenses, actual investments, and the value of destroyed property. 

 of 138 284



4.3 Advanced AI in national security systems 

Over time, we expect that advanced AI systems will be developed and deployed as 
components of national security systems. This will include applications in defense, 
intelligence, and other sensitive areas. 

On the one hand, the national security imperative could necessitate less stringent 
RADA safeguards than those in other areas, particularly with respect to weaponization 
applications. On the other hand, there is no currently known method to reliably align 
an AGI-level system, and misaligned systems that are capable enough are likely to 
engage in extremely dangerous behavior by default (Introduction, 0.2.2 and 0.5.1.1). 
As a result, the development or deployment of a sufficiently capable AI system by any 
actor – including by national security agencies — could in and of itself create 
substantial national security risk regardless of the system’s intended purpose. 

The nature of and appropriate enforcement mechanisms for guardrails associated with 
national security applications of advanced AI remain open questions. In practice, the IC 
and DOD have internal oversight mechanisms, and the Inspector General and General 
Counsel already implement relevant usage controls internal to these departments and 
agencies. Similar mechanisms could be adapted to provide oversight for advanced AI 
development and use in national security systems under a modified set of RADA 
safeguards following a clear set of principles (LOE1, 1.3.2). 

Another option could be to establish a “national security FAISA,” with the authority to 
audit and intervene in the advanced AI activities of the national security agencies. This 
latter option has significant challenges, including the potential to dilute the talent pool 
available to other regulators, bifurcating institutional process knowledge on AI safety. 

A related concern is that AI systems could be developed and deployed in national 
security contexts in ways that could challenge long-standing U.S. Constitutional norms. 
For example, deploying an AI system capable of superhuman persuasion could 
undermine the democratic process, yet also be required to counter potential offensive 
deployments of such systems by adversaries in the domestic information environment 
(see Annex F: Persuasion and manipulation). 

It will be essential for society to strike a balance between privacy and security in the 
context of advanced AI, particularly when these systems are developed for use in 
national security contexts. Consistent with other advanced technologies, there is a 
need for an open, grounded, and technically informed dialogue between the 
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Congress, the Executive Branch, and the public on how advanced AI can best be used 
to safeguard both national security and Constitutional freedoms.  
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LOE5: Enshrine AI safeguards in international law and 
secure the AI supply chain 

 

The rise of advanced AI and AGI has the potential to destabilize global security in ways 
reminiscent of the introduction of nuclear weapons. Today, the United States leads in AI 
innovation. However, allies, partners, and adversaries around the world are quickly 
establishing their own AI scaling programs [240–242]. As advanced AI matures and the 
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elements of the AI supply chain continue to proliferate (Introduction, 0.5.3.2), countries 
may race to acquire the resources to build sovereign advanced AI capabilities. Unless 
carefully managed, these competitive dynamics risk triggering an AGI arms race and 
increase the likelihood of global- and WMD-scale fatal accidents, interstate conflict, 
and escalation. These dynamics create the need for a carefully-calibrated U.S. strategy 
that balances competing and sometimes contradictory unilateral and multilateral 
objectives. 

This LOE outlines near-term diplomatic actions and longer-term measures the U.S. 
government could take to establish an effective AI safeguards regime in 
international law while securing the AI supply chain. These actions include: 

● Building a domestic and international consensus on potential catastrophic AI 
risks and necessary safeguards (see 5.2); 

● Enshrining those safeguards in international law (see 5.3); 

● Establishing an International AI Agency (IAIA) to monitor and verify adherence 
to those safeguards (see 5.4); and 

● Establishing an AI Supply Chain Control Regime (ASCCR) with allies and 
partners to limit the proliferation of advanced AI technologies (see 5.5). 

As a starting point to the above, the United States could secure the most time-critical 
components of its own domestic AI supply chain (LOE1, 1.5). 

5.1 Desired end state of this LOE 

We believe a series of initiatives like the one described in this action plan should be 
executed with a specific end state in mind as its ultimate objective. That end state may 
be adjusted over time as options evolve. But at all times it should be clearly articulated. 

The ideal end state of this action plan is a treaty to mitigate catastrophic AI risk from 
weaponization and loss of control, enshrined in international law, and enforced globally 
by United Nations mandate. This ideal treaty would: 

● Enforce RADA safeguards on advanced AI training runs beyond a certain scale 
or capability similar to those recommended in LOE4, 4.1.3; 
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● Enforce reporting requirements on cloud providers above a certain scale, 
making those cloud providers responsible for monitoring the safety of advanced 
AI models trained on their platforms; and 

● Enforce hardware-based tracking of AI-enabled chips along with international 
monitoring of AI chip usage, to minimize the risk that dangerous models are 
being trained clandestinely (Annex L.4). 

This treaty structure is an attempt to balance (1) the increased risk of rogue AI 
development due to proliferation of key components of the AI supply chain, against (2) 
the risk that excessively centralizing those components could lead to the development 
of competing unmonitored supply chains. A U.S.-led multilateral supply chain controls 
regime (see 5.5) could probably be put in place more quickly and would achieve some 
of these objectives. But the short-term safety benefits of a multilateral regime would be 
at greater risk of being undermined by a competing supply chain [243] in the medium 
term. 

In the long term, it may be challenging to assure U.S. national security in the face of 
catastrophic AI risks without an international solution. AI supply chains could become 
too widely distributed, and AI models too easily proliferated, for unilateral action to 
suffice even given the U.S. position in the present-day supply chain (Introduction, 
0.5.3.2; Annex G, G.1). Even multilateral supply chain controls by a broad coalition of 
U.S. allies may only buy time, though that time could prove invaluable to explore and 
implement further options. 

5.2 Build international consensus and partner capacity on 
catastrophic AI risk reduction 

There are credible reasons to believe that catastrophic AI risk from loss of control and 
weaponization could become meaningful in the relatively near term (Introduction, 
0.5.1.2). As a result, there is a need for rapid and decisive action to enshrine key AI 
safeguards in international law, backed by credible enforcement mechanisms. 

In leading such an effort, the United States will face the standard challenges that come 
with international lawmaking. But these will be compounded by the high technical 
complexity of AI risk, and the fact that nations do not yet have a shared understanding 
of this domain. There is also the possibility that U.S. diplomatic action could 
inadvertently alienate potential partners if it is not carefully calibrated given the 
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political sensitivities surrounding adjacent issues, such as ethical and responsible use of 
AI. 

This lack of shared understanding presents a significant risk while it persists, since it 
increases the chance of an international AI race. But it also offers an opportunity for the 
United States to lead and participate in international consensus-building, by supporting 
other nations in developing and shaping that shared understanding. To take full 
advantage of this opportunity, U.S. government personnel will themselves need to be 
educated on catastrophic AI risks, their mechanisms, and their potential mitigations 
(LOE2, 2.2.1). At the same time, the United States could launch educational programs 
to support improving other countries’ awareness and mitigation capacity, particularly 
concerning AGI alignment failure and resulting loss of control. 

The goal of these efforts should be to build a broad international consensus on 
behavior that risks global catastrophic impact from loss of control of AGI-level systems, 
and should therefore face international sanction. We believe this consensus would be 
extremely supportive in developing, negotiating, and enforcing an effective AI safety 
and security treaty. 

5.2.1 Coordinate domestic and international messaging and 
capacity-building 

The United States is already participating in early consensus-building on catastrophic AI 
risk. The U.K. AI Safety Summit’s Bletchley Declaration [244], signed by the United 
States, 27 other countries, and the European Union, refers to potential risks from 
“intentional misuse or unintended issues of control relating to alignment with human 
intent.” These are the sources of catastrophic AI risk we refer to, respectively, as 
weaponization (Introduction, 0.2.1) and loss of control (Introduction, 0.2.2) in this 
document. 

While we recommend continuing to expand on these efforts, consensus building on 
weaponization topics could be polarizing. Instead, focusing education and capacity-
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building on technical cooperation to avoid loss-of-control scenarios, while maximizing 
safety and security, could offer a more promising starting point.  91

As part of these efforts, the United States will need to productively engage with two 
key stakeholder groups. The first group will be policymakers and decisionmakers in 
governments, particularly in national security roles. The second group will be the 
technical advisors to those policymakers and decisionmakers. Because of the urgency 
of the risk, domestic U.S. educational initiatives may need to operate in parallel with 
international ones. 

5.2.1.1 Policymaker education and outreach 

In order to credibly brief international partners on catastrophic AI risk and the benefits 
of cooperation on the issue, the U.S. government needs to increase its institutional 
understanding of its key aspects. We recommend that, in tandem with outreach to its 
international partners and in coordination with existing multilateral regimes, the U.S. 
government rapidly educate its own policymakers on aspects of catastrophic AI risk 
that touch on their areas of responsibility. 

Part of the substance of this educational content is outlined in LOE2, 2.2. Additionally, 
based on our direct experience briefing U.S. and international policymakers on this 
issue, we believe these educational efforts should: 

● Emphasize specific, concrete, and tangible scenarios relevant to AI risk and 
national security (see Annex C: Example AI alignment failure scenarios and [1]); 

 As a general guideline, we strongly recommend that diplomatic personnel engaged in these efforts 91

be briefed or trained in advanced AI topics as recommended in LOE2, 2.2.1. In particular, we have found 
through our own outreach efforts that highlighting certain technical topics, such as the distinction 
between outer alignment and inner alignment, can produce a positive diplomatic framing. Specifically, 
the outer alignment problem refers to the challenge of defining goals which, if those goals were 
faithfully pursued by an arbitrarily intelligent system, would not have catastrophic consequences. The 
inner alignment problem refers to the challenge of ensuring that such a goal, once it is defined, will 
actually be internalized by a trained AI system as its true goal. Both problems are currently unsolved. In 
engagements so far, we have found that clearly explaining the distinction between these two problems 
has been constructive from a diplomatic standpoint. The reason is that, because inner alignment is 
unsolved, no actor can be assured that they will be able to control an AGI-level system even if they 
develop and train the system themselves (Introduction, 0.2.2). Since such a system would be a danger to 
everyone including its own developer, all actors are in principle incentivized to cooperate in preventing 
the development of such a system for as long as inner alignment remains an open technical problem. 
Diplomatic engagement can then begin on this basis, including potentially with adversaries. See the 
Glossary of terms for full definitions of outer and inner alignment.
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● Explain that the build-vs-use distinction that exists for nuclear weapons may not 
exist for sufficiently capable AI systems, meaning that simply building such a 
system, with no intent to deploy it, may in and of itself be a dangerous action 
(Introduction, 0.2.2); and 

● Clarify that, because of this unusual risk profile, the international community may 
need to implement rules above and beyond those already in place for less-
capable AI systems such as lethal autonomous weapons (LAWs). 

Some immediate actions that the U.S. government could take to support education 
and capacity-building for its international partners are: 

● Through U.S. Missions globally, engage Heads of State and Heads of 
Government on AI safety, security, and catastrophic risk. Key objectives of these 
engagements should be to explain to partners what is happening in the field of 
frontier AI, to ask these governments to begin formulating their perspectives, to 
offer U.S.-provided foundational AI training, and to build support for an eventual 
international legal regime. The President or Secretary of State could also 
preview U.S. positions on advanced AI at the United Nations General Assembly.  

● Initiate conversations on catastrophic AI risk in existing AI policy-focused forums 
such as the Global Partnership for AI, the United Nations Convention on Certain 
Conventional Weapons (CCW) Group of Governmental Experts (GGE) on LAWs, 
the Organization for Economic Cooperation and Development (OECD), and the 
AI Partnership for Defense. 

● Design and implement foreign assistance programs for building partner capacity 
on AI safety. These programs could include robust foundational AI training, AI 
safety and security training and best practices, and support for domestic legal 
and regulatory frameworks needed to manage catastrophic AI risk. This could be 
done as part of the training and up-skilling efforts in LOE2, 2.2. 

5.2.1.2 Technical education and outreach 

A significant portion of the risk from advanced AI in the near term is associated with 
development and deployment of frontier AI systems by and for national security and 
defense applications (LOE4 4.3). National security and defense personnel in the United 
States and abroad rely on their scientific communities for advice on the opportunities 
and risks of advanced AI. This means effective outreach to scientific communities, AI 
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researchers, and technical defense advisors around the world will be critical to ensure 
that the national security establishments of stakeholder nations fully appreciate the 
scope and nature of catastrophic risk from advanced AI systems, particularly as posed 
by loss of control (Introduction, 0.2.2 and 0.5.1.1). 

The United States should promote clear, open, honest, and secure discussion and 
debate between AI researchers across national boundaries with a focus on catastrophic 
AI risk and its potential mitigations. Because this risk class is global in scope, 
stakeholder nations include the United States itself, its partners, and even its 
adversaries.  

Early efforts at international technical engagement by independent AI researchers are 
already underway. Beginning in 2023, prominent Western academics, including 
“godfather of deep learning” Geoff Hinton, began reaching out to the Chinese AI 
research community with the aim of increasing its awareness of catastrophic risks from 
advanced AI and AGI. Prominent AI researchers, practitioners, and public figures have 
also signed the 2023 Center for AI Safety’s (CAIS) Statement on AI Risk [245], as have 
several Chinese academics. We believe such outreach to be extremely valuable in 
building the consensus on AGI risk that will ultimately establish diplomatic common 
ground on this issue. 

While the U.S. government should broadly support such efforts, it must be clear to all 
stakeholders that these academics and organizations are acting independently out of 
their own genuine concern. We expect U.S. outreach efforts to be most productive if 
they are focused on promoting forums for expanded discussion on these topics, rather 
than attempting to directly shape the substance of the debate. 

Some immediate actions that the U.S. government could take to support education 
and outreach to the international AI research community are: 

● The U.S. Ambassador to the United Nations to initiate a process to establish an 
intergovernmental Commission on Frontier AI. The Commission's mandate 
could be to conduct research and draft a report to the Secretary General aimed 
at fostering consensus on catastrophic risk from loss of control due to AGI 
alignment failure. The Commission could draw inspiration from similar 
institutions, such as the Intergovernmental Panel on Climate Change (IPCC), 
which played an analogous role for scientific consensus-building on climate 
change. Although there is a risk that any research related to AI alignment may 
inadvertently contribute to accelerating AI capabilities and to the proliferation of 
more powerful AI systems, research aimed at accumulating evidence for the 
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difficulty of AI alignment (see Annex B: The full challenge of AGI alignment), or 
at demonstrating alignment failures in powerful non-frontier systems, may be 
less likely to present this risk. An international Commission on Frontier AI would 
offer an opportunity to promote international collaboration and clarify the 
shared incentives that exist between the U.S. and other countries in establishing 
an international regime for catastrophic AI risks [246]. 

● The Department of State’s Bureau of Oceans and International Environmental 
and Scientific Affairs’s (OES) Office of Science and Technology Cooperation 
(STC) to explore avenues for bilateral outreach with partners and international 
academic forums. These could include: 

○ Encouraging academic venues such as NeurIPS [247] to host technical 
talks, workshops, or seminars on catastrophic AI risk; 

○ Supporting carefully scoped collaborations, including temporary 
exchange programs, for AI safety and AGI alignment researchers between 
adversary, U.S., and Western researchers and institutions; and 

○ Sponsoring technical training courses on AI safety and AI alignment to 
accelerate uptake of the core technical topics in these fields among the 
broader AI research community. 

5.2.1.3 Other forms of capacity-building 

Because catastrophic AI risk could manifest in the relatively near-term (Introduction, 
0.5.1.2), we recommend that the United States adopt a collaborative stance to 
discovery and truth-seeking with international stakeholders from an early stage. This is 
a non-standard approach to international diplomacy. While consensus-building efforts 
can proceed in parallel across partners and adversaries, any public announcement 
should be sequenced with geopolitical sensitivities in mind. 

Some early actions that the U.S. government could take to support capacity-building 
across partner and adversary nations are: 

● The Department of State, in coordination with the Defense Threat Reduction 
Agency (DTRA) and others, to establish programs to support catastrophic risk 
reduction from advanced AI. These could include destruction, dismantlement, or 
processing of unlicensed compute stockpiles and other supply chain 
components; red teaming of partners’ legal and regulatory frameworks; 
workshops and training on increasing safety and security at the individual and 
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institutional levels; material assistance; facilitating TTXs; and other forms of 
cooperative threat reduction. 

5.2.2 Articulate and reinforce an official U.S. government position 
on catastrophic AI risk 

Early outreach and education may be able to proceed on the basis of collaborative 
truth-seeking between the United States and international stakeholders. But later 
consensus-building, and ultimately treaty negotiations, may be challenging without a 
clearly articulated, official U.S. position on catastrophic AI risk [248]. Therefore the 
United States should develop and promulgate such a position as soon as practicable. 
Effective domestic AI regulation, as outlined in LOE1, 1.3 and LOE4, would also greatly 
support the credibility of U.S. diplomatic efforts abroad by signaling willingness to 
unilaterally improve the safety and security of its own AI industry. 

To clarify the U.S. position, the Congress could issue a Sense of Congress on 
catastrophic AI risk. The content and scope of a Sense of Congress would depend on 
the degree of institutional understanding and internal assessment of this risk. 

Both domestic controls and international safeguards will be time-consuming to 
implement, though both may also need to be developed urgently. The United States 
will need to navigate these constraints in order to effectively lead global coordinated 
action on AI safety and security [249,250]. 

5.3 Enshrine AI safeguards in international law 

The Department of State, in coordination with the relevant U.S. government leads, 
could launch an international diplomatic campaign to enshrine AI safeguards in 
international law. Ultimately the law could take the form of a binding treaty ratified by a 
United Nations Security Council (UNSC) Resolution. If ratified by the U.S. Senate, an AI 
safety treaty would become supreme law of the land and govern public and private 
activities regarding advanced AI development. 

To succeed, an international campaign to establish such a treaty could focus on 
catastrophic AI risks and the corresponding safeguards. Political issues such as human 
rights, AI ethics and responsible use, and general weaponization restrictions  are 92

 However it may be possible to obtain UNSC support for certain narrow weaponization restrictions, 92

such as a ban on training AI to develop biological weapons.
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important for allied collective action, but could derail negotiations. The top priority in 
negotiations could be to address catastrophic risks specifically stemming from unsafe 
advanced AI development practices and potential loss of control due to AGI alignment 
failure. Because these catastrophic risks have the potential to harm all parties, including 
the developer of the AI itself, there may be a window for meaningful progress on this 
narrowly scoped issue. 

5.3.1 Treaty structure considerations 

Among other challenges, an AI treaty would need to address the security dilemma that 
frontier AI poses to participating nations. This dilemma has some precedent in the case 
of nuclear and biological weapons development [248,251]. In particular, each 
incremental advance in capabilities by a nation’s domestic AI industry improves that 
nation’s security posture relative to its adversaries. But that improvement comes at the 
expense of heightening global instability by increasing the general risk both of 
intentional use of a weaponized AI system, and of AGI alignment failure and loss of 
control of an AI system regardless of the intent of its developer (Introduction, 0.2.2). 
This risk from loss of control has its closest parallel in research on biological agents, 
which regularly escape containment despite having a clearly understood risk model 
supported by decades of experience [252,253].  

Nuclear arms control treaties such as the Strategic Arms Limitation Talks (SALT) have 
historically had some success in mitigating a similar security dilemma [254]. These 
treaties function by incrementally reducing participants’ stockpiles of warheads and 
weapons systems, and confirming those reductions through mutual verification. 
Verification mechanisms include requirements to declare nuclear facilities, disclose 
statistics on nuclear supply chains, and allow inspections of key installations. 

In the case of advanced AI, verification mechanisms for hardware could include 
exposing elements of the semiconductor supply chain to inspection, cooperative threat 
reduction in the form of verified destruction of AI hardware stocks, and on-chip 
monitoring mechanisms (see Annex L, L.4). We discuss some of these approaches in 
more detail, and address the dilemmas associated with algorithmic advances, in 5.4.1. 

But advanced AI also poses a special challenge to traditional verification mechanisms. 
In nuclear arms control, there is a division between reactor-grade (civilian) and 
weapons-grade (military) nuclear material, defined by enrichment levels. That division 
makes it feasible to apply controls to military applications without unduly hindering the 
peaceful development of civilian nuclear technology. By contrast, an advanced AI 
training data center may be inherently dual-use. It could in principle be used to train 
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safe and beneficial AI systems, or it could be used to train weaponized or high-risk AI 
systems, without any external signal differentiating the two cases (Annex G, G.1). 

This dual-use aspect of AI is especially challenging because current applications of 
advanced AI are disproportionately beneficial. A traditional verification mechanism 
therefore risks unduly curtailing beneficial innovation (Introduction, 0.4.2). On the other 
hand, advanced AI training may be much more amenable to software-based 
monitoring approaches, which have the potential to be more granular than traditional 
verification (LOE1, 1.5.2). Both of these may need to be deployed in combination. 

Finally, an AI safety treaty could be supported by an international organization to verify 
compliance, set safety and security standards, and convene the global community of AI 
researchers. We discuss this possibility in 5.4. 

5.3.2 Preparation for a treaty 

In setting the stage for international treaty negotiations, the United States could 
coordinate closely with other nations that have mature AI industries. The 2023 U.K. AI 
Summit [244] could offer a starting point for these engagements. We recommend that 
the goal of these efforts be to establish comprehensive RADA safeguards to 
minimize catastrophic risks from loss of control due to AGI alignment failure, and 
aligning the international community on new international law or treaty requirements. 

According to discussions with participants, the U.K. AI Summit made significant 
progress building consensus in a number of key areas, including the importance of 
implementing defense in depth by implementing overlapping sets of controls, and the 
principle that, as an AI system becomes more powerful, the burden of safety 
increasingly should fall on its developer. Some areas of contention remain, notably 
regarding at which level of capability open-access AI systems stop being compatible 
with continuing global safety and security (Introduction, 0.5.1.6). While some of these 
areas may be resolved by further discussion among the parties, they also highlight the 
ongoing need for technical collaboration and research into the risks, benefits, and 
mitigations. 

Similar summits, such as those planned in South Korea and France during 2024 [255], 
could be used to secure additional commitments from frontier AI labs and their cloud 
providers. Such commitments may serve an informal precedent-setting function for 
fast-following labs outside the United States as the global AI supply chain proliferates 
[256,257]. These summits could also be used as opportunities for countries to issue 
joint declarations on their shared understanding of AI safety and security issues, similar 
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to the 2023 Bletchley Declaration [244], and consistent with the approach the United 
States has taken to addressing global coordination challenges in the past [258,259]. 

5.4 Establish an international regulatory agency 

If the United States is successful in spearheading an international legal regime for 
catastrophic AI risk mitigation, the international community may need an agency with 
the authorities to verify and monitor compliance with AI safety protocols, facilitate 
technical AI safety cooperation, and establish and maintain safeguards. Although 
supply chain controls (LOE1, 1.5) and domestic regulation (LOE4) may have a large 
early impact, in the long-term global safety and security could require an international 
agency with a mandate derived from international law. We will refer to this agency here 
as the International AI Agency (IAIA).  93

We expect an IAIA’s operating model to evolve, and recommend setting this 
expectation clearly and explicitly. U.S. domestic regulatory efforts from LOE1, 1.4.1.2 
and LOE4, 4.1.2 could inform this work. Similarly to early treaties on climate change, 
the first iteration of an IAIA’s structure may not be the right one for the long term. On 
the other hand, experience has shown that it may be possible to develop a multilateral 
framework that effectively addresses a collective action problem, as long as the 
participants are willing to iterate on the framework and agreement design. An explicit 
iteration process could also let counterparties observe each others’ behavior over time, 
adjust their commitments, and engage in confidence-building measures [215].  

The history of nuclear nonproliferation [260] also shows that international efforts to 
differentially control peaceful and military applications of dual-use technology can be 
somewhat successful. For example, today 33 countries have safe nuclear power, while 
only 9 have nuclear weapons [217]. Since an AI data center can be used just as easily to 
develop safe AI systems as dangerous AI systems, differential controls may be more 
challenging to apply in this domain than in the nuclear domain. But the tools to 
monitor advanced AI may also be correspondingly more fine-grained and scalable, 
since many of them could be implemented entirely in software. 

Ideally, an IAIA monitoring mechanism should be able to detect individual defections 
by its participants. This is important because the risk of an advance in AGI alignment 
could incentivize individual participants to try to train their own self-aligned AGIs (see 
5.2.1.4). We acknowledge that the challenges to such coordination and 

 It may also be possible to implement the functions of an IAIA that we recommend here through 93

existing mechanisms, channels, and forums.
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implementation are very significant, and that no individual tool or approach can offer 
comprehensive safety or security. This is a key reason we approach this problem 
through the lens of defense in depth and recommend multiple, mutually supportive 
control mechanisms (e.g., see 5.5). 

5.4.1 Monitoring and verification 

An international monitoring and verification regime could cover elements such as: 

● Comprehensive safeguards agreements; 

● Additional protocols; 

● Regular, special, and ad hoc inspections; 

● Containment and surveillance procedures; 

● Material accountability; 

● Access to AI scientists and researchers; 

● Information sharing and reporting mechanisms; and 

● Regular reports from the IAIA to the Secretary General. 

With respect to specific supply chain components, the entity categories and tiers from 
LOE4, 4.1.3 (AIMDs, AIHOs, DCIPs, and AIHDs) could serve as a template for an initial 
RADA safeguards framework for an IAIA. As with domestic RADA safeguards, 
international safeguards should take into account AI capability measures in addition to 
raw compute, though compute will likely remain an important locus of control (Annex 
G, G.2). Accordingly, regulatory oversight may need to extend into semiconductor 
manufacturing inputs to address the risk that independent AI hardware supply chains 
could arise to circumvent safety controls. 

One of an IAIA’s key responsibilities could be to monitor use and development of AI 
hardware around the world. Key challenges will include ensuring that countries which 
are not yet IAIA members do not accumulate public or private pools of compute 
sufficient to support the training of AI models that pose catastrophic risks (Introduction, 
0.5.3.2). This might be achieved in part via coordinated export controls of compute 
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hardware to non-IAIA member countries through a Compute Suppliers Group (CSG) 
analogous to the Nuclear Suppliers Group for nuclear materials [225,261,262].   

An additional challenge would be for an IAIA to ensure that models that pose 
catastrophic risks are not trained within or outside its member countries as algorithmic 
improvements allow more capable models to be trained with less hardware [262], and 
as hardware efficiencies increase (Introduction, 0.5.3.2). This risk could be mitigated 
among member countries by having the IAIA adjust its licensing thresholds over time 
to ensure that they continue to apply to any entities capable of marshaling dangerous 
quantities of compute, similar to the FAISA (LOE4, 4.1.2.4) and consistent with RADA 
safeguards principles (LOE1, 1.3.2). In addition to a CSG, an IAIA could also coordinate 
with a U.S.-led international AI supply chain controls regime (see 5.5) to ensure that 
international purchases of AI chips are restricted to members of the controls regime. 
This could become essential as algorithmic breakthroughs may allow smaller compute 
pools to be leveraged to build more dangerous systems (Annex G, G.3).  

Perhaps the most important requirement to safeguard long-term global safety and 
security from AI will be hardware-enabled mechanisms that can allow verification and 
control of how compute hardware is being used, supported by robust chip registry 
programs (Annex L, L.4) [148,155,213,224]. This would involve exercising tight control 
on the semiconductor supply chain to ensure that any chips that enter the global 
supply are equipped with on-chip monitoring hardware, as well as preventing 
alternative compute supply chains from forming around the world. Such technical 
efforts could be undertaken in coordination with a multilateral supply chain controls 
regime if one exists (see 5.5).  

5.4.2 Standard-setting 

An IAIA could set authoritative international standards for advanced AI training runs 
and deployments. These could include standards for security, model containment 
measures, evaluations for advanced AI models, and other key areas informed by 
entities such as the NIST U.S. AISI (LOE3, 3.2). 

5.4.3 Convening researchers  

Finally, an IAIA should create a regular forum to convene international researchers to 
advance the state of the art in AI monitoring and standard-setting. This could take the 
form of a quarterly or biannual conference of top researchers in these respective areas, 
and of financing grants for research teams working in these domains. 
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Another possibility could be to establish an international research facility dedicated to 
AI safety and security research. Such a facility could form an early point of agreement in 
treaty negotiations and even be established before a large-scale monitoring regime, as 
an extension of earlier educational and outreach programs (see 5.2.1.2). Such a facility 
could support joint investigation of AI safety and security questions that could confirm 
or disprove aspects of AI risk and inform negotiations. 

5.5 Allied multilateral initiatives to manage the AI supply 
chain 

A functioning international AI safeguards regime (see 5.4) represents an ideal outcome 
(see 5.1). But as part of a defense-in-depth strategy, the United States could also work 
in parallel with its allies and partners to establish a multilateral framework of AI supply 
chain controls, such as through the Wassenaar Arrangement [263]. Not only would this 
increase U.S. and allied leverage for broader international negotiations, but it could 
also be used to reinforce many of the monitoring functions of the IAIA if successfully 
implemented. Additionally, such a multilateral framework would function as a stopgap 
and failsafe, in case an attempt to work through international bodies proceeds too 
slowly or is otherwise unsuccessful. 

In the worst case, an independent multilateral supply chain controls framework, led by 
the United States, may be sufficient on its own to secure the inputs needed to train 
frontier AI systems for some time. But we expect that, in the longer term, independent 
AI supply chains [243] will emerge and ultimately undermine even an otherwise 
effective multilateral system. 

A multilateral AI controls framework could have three goals: 

● Ensure that critical elements of the supply chain for advanced AI, particularly 
compute  and its inputs, remain localized to U.S. and allied jurisdictions; 94

● Ensure that access to AI cloud compute is controlled through a regulatory 
mechanism similar to that proposed in LOE4, 4.1.3 including RADA safeguards 
implemented in U.S. and allied jurisdictions; and 

 Meaning GPUs, TPUs, and other AI accelerator chips.94
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● Provide a path for foreign entities to obtain access to AI cloud compute clusters 
in U.S. and allied jurisdictions, provided they do so subject to the regulatory 
mechanism (e.g., LOE1, 1.5.2). 

5.5.1 Strategic considerations 

The most promising points of regulatory leverage in any supply chain are those that 
involve assets that have been built or acquired at high capital cost. By this criterion, AI 
hardware, data centers, and the other the elements listed above offer valid loci of 
control over the advanced AI supply chain (Introduction, 0.5.3.2). 

But other AI supply chain components, while they may be crucial as inputs, are less 
amenable to regulatory oversight because they do not meet this criterion. Textual 
training data, for example, is available online at relatively low cost [264,265]. And 
frontier AI models themselves can be copied and transferred at no cost once created, 
even though they require a high capital cost to train. As a result, controls on open-
source data or on the sharing of open-access AI models are unlikely to be effective, 
though data controls scoped to specific model training runs could be beneficial (Annex 
N, N.4). Controls at the application level are also unlikely to be worth the cost, unless 
implemented as KYC requirements on a model developer’s end users (Annex P, P.2). 

5.5.2 Multilateral partnerships 

The supply chain for AI hardware is at the root of any realistic long-term mechanism for 
advanced AI control and nonproliferation (LOE1, 1.5.3; Annex G: Primer on AI and 
compute). It may be vital to maintain close coordination with international partners on 
this issue in order to ensure controls remain robust in the face of changing future 
conditions. 

The United States manufactures a significant fraction of the inputs to AI hardware 
production domestically, so it holds a significant position in this supply chain. The 
United States can strengthen this advantage by coordinating with international partners 
in the AI chip supply chain. Many key AI inputs are manufactured in allied and partner 
countries [243,257]. Below is a list of countries that could be inaugural members of an 
ASCCR, along with the significance of each. [266,267] 
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Table 4. Potential inaugural members of an ASCCR and the components of the AI supply chain 
over which they exert the most influence.  

The exact conditions for safety compliance are fluid and have many dependencies, but 
could initially be based on terms such as those in Annex I: Voluntary Charter for 
responsible AI, or on the RADA safeguards framework outlined in LOE4, 4.1.3. 

An ASCCR could prioritize the development of technologies, standards, and policies 
for on-chip governance (Annex L, L.4). Because robust on-chip governance capabilities 
could take several years to develop and be put into production at scale, the United 
States could consider urgently investing in the development of on-chip governance 
technologies prior to the formation of the ASCCR [148]. This could be done through 
federal AI research Centers such as in LOE3, 3.1. 

5.6 Open challenges 

In this action plan, we have attempted to balance considerations of risk and innovation 
while addressing as many challenges as we can reasonably anticipate. But several open 
challenges remain that we feel we have not directly addressed. 

Country AI supply chain control approaches

Netherlands Semiconductor tooling export controls

Japan Semiconductor tooling export controls, technology transfer 
controls, foreign national visa screening

Germany Technology transfer controls, foreign national visa screening

Taiwan Semiconductor tooling export controls

United Kingdom Technology transfer controls, foreign national visa screening

South Korea Semiconductor tooling export controls

France Technology transfer controls, foreign national visa screening

Australia Technology transfer controls, foreign national visa screening

Israel Semiconductor tooling export controls

Singapore Semiconductor tooling export controls

United Arab Emirates [241] Technology transfer controls, foreign national visa screening
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One major difficulty in the international setting is that AI-capable nations are 
incentivized to escalate development of AI-enabled national security systems. This 
incentive is preserved even if both sides fully agree on the risk of loss of control from 
the development and deployment of AGI-level systems. Because the exact capability 
level at which these risks begin to manifest is unknown, parties may be motivated to 
make incremental improvements to gain an edge in national security. Certain forms of 
mutual verification could begin to address this challenge, but they may require 
unprecedented levels of access, high trust between the parties, and a broad-based 
consensus on the underlying risk. 

Reliable verification of compliance with AI risk mitigations is also an open problem. In 
the face of attempts at obfuscation by a resourced entity, it is challenging to verify that 
the entity is not training a high-capability advanced AI model. Certain approaches like 
on-chip verification are promising and could be implemented on timelines of a few 
months for domestic verification schemes. But this increases to several years in 
contexts involving international verification [148].  

The impact of algorithmic improvements on the effectiveness of supply chain controls 
is another consideration in the medium and long term (Introduction, 0.5.3.2). As AI 
algorithms continue to improve, more AI capabilities become available for less total 
compute. Depending on how far this trend progresses, it could ultimately become 
impractical to mitigate advanced AI proliferation through compute concentrations at 
all. Approaches to limit the pace of algorithmic improvements could address this issue 
(LOE4, 4.1.4), though there are significant downsides to placing broad-based controls 
on this kind of research. 
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Conclusion 

AI is a technology fundamentally unlike any other. It holds vast potential to elevate 
human well-being, but could also be deliberately weaponized or exhibit accidental 
failures that have catastrophic consequences. Our recommendations focus on 
mitigating the most unrecoverable catastrophic risks advanced AI poses (Introduction, 
0.5.1.1) while preserving its potential for positive impact (Introduction, 0.4.2). Current 
and near-term risks from advanced AI include weaponization for applications which 
could include bioweapon design, advanced manufacturing, large-scale human 
persuasion, and cyber warfare (Introduction, 0.2.1). Future risks include loss of control 
of high-capability AI systems (Introduction, 0.2.2). Frontier AI labs have publicly 
suggested that such dangerously capable systems could be developed in the near 
future, and possibly within the next five years (Introduction, 0.5.1.2). Both categories of 
risk have the potential, in the worst case, for unrecoverable catastrophic impact on 
human welfare. 

Several underlying factors drive and exacerbate these risks. They include: 

● Worst case outcomes from weaponization and loss of control are plausible [19] 
and may have unrecoverable catastrophic impacts (Introduction, 0.5.1.1); 

● The timescale and degree of risk from loss of control are highly uncertain and 
the subject of ongoing technical debate (Introduction, 0.5.1.2 and 0.5.1.3); 

● The world’s most advanced AI labs have publicly acknowledged that they lack 
the safety and security measures they need to secure their systems against 
catastrophic risks (Introduction, 0.5.1.4 and 0.5.1.5);  

● Researchers at these labs have publicly acknowledged that fundamental 
advances in AI alignment will be required to prevent loss of control over 
advanced AI systems that may be developed in the near term [84,85]; 

● The supply chain for advanced AI is challenging to secure by reactive policy 
measures (Introduction, 0.5.3.2); 

● There is no known way to comprehensively audit the full range of dangerous 
capabilities and propensities of advanced AI models, and these models can 
therefore harbor latent dangerous capabilities that may only be discovered or 
elicited after they are deployed or released as open-access software 
(Introduction, 0.5.1.6; LOE3, 3.2.1); 
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● AI technology is advancing faster than reactive policy and legislative processes 
and may be accelerating, which could cause policy measures to quickly become 
outdated (Introduction, 0.5.2.1); 

● Information and discussion on the topic of AI is often highly polarized in public 
spheres (Introduction, 0.5.2.2); 

● A lack of domestic controls could reduce the effectiveness of U.S.-led 
international coordination on risk reduction (LOE5, 5.2.2); and 

● Excessive domestic controls could damage U.S. innovation and competitiveness 
in AI (Introduction, 0.4.2). 

Given the degree of AI-related risks and the multifaceted nature of the factors that 
contribute to them, no single safeguard may be adequate. Instead, we propose a 
mitigation strategy based on defense in depth, in which multiple lines of effort are 
deployed simultaneously to deliver different impacts across different timescales. These 
lines of effort include: 

● Establishing an interim domestic regime of responsible AI development and 
adoption (RADA) safeguards for U.S. frontier labs overseen by an interagency 
task force, along with controls on the AI supply chain (LOE1); 

● Establishing legally enshrined AI safeguards, including an AI regulatory 
agency, criminal and civil liability framework, and emergency Presidential 
powers (LOE4); and 

● Establishing and implementing AI safeguards in international law, along with 
multilateral controls on the supply chain for advanced AI (LOE5). 

In addition, we recommend two supporting lines of effort: 

● Building capability and capacity for advanced AI and AGI preparedness and 
response (LOE2); and 

● Increasing national capacity for technical AI safety research and standards 
development (LOE3). 
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These LOEs are complementary, mutually reinforcing, and directly address the factors 
underlying AI-related weaponization and loss of control risks. The task force established 
under LOE1, 1.4 would serve as a testing ground for safety and security measures that 
could apply to future domestic and international regulatory regimes (LOE4, 4.1.3 and 
LOE5, 5.3). A mandated set of RADA safeguards (LOE1, 1.3.2) would give the task 
force the leverage necessary to ensure the active participation of frontier AI labs as it 
pilots its oversight operations. 

Supporting lines of effort ensure that the legal and regulatory RADA safeguards 
introduced under LOE4 are enforced in a technically informed manner (LOE2, 2.2; 
LOE3, 3.2) that is both responsive to the requirements of contingency planners (LOE2, 
2.4), and flexible in the face of novel technical developments (LOE1, 1.2; LOE2, 2.3). 
And the international RADA safeguards overseen under LOE5, 5.4 would benefit from 
the lessons learned from implementing LOE1 and LOE4 domestically.  

Some measures proposed in this action plan are without precedent. LOE1, 1.3 calls for 
pivotal executive actions; LOE4, 4.2 calls for the Congress to pass a landmark bill that 
would set a new framework for national AI governance; and LOE5, 5.3 calls for a 
formally ratified treaty to be negotiated with allies, partners, and other stakeholders. 
But it is increasingly clear that the United States should address frontier AI research 
with the same seriousness as previous paradigm-shifting technological breakthroughs 
with the potential to introduce WMD-like threats to global safety. In the past, this has 
entailed significant regulatory and legal interventions, rooted in coordination between 
technical and governmental experts. 

In the face of these challenges, bold action is required for the United States to address 
the current, near-term, and future catastrophic risks that AI poses while maximizing its 
benefits, and successfully navigate what may be the single greatest test of technology 
governance in the nation’s history.  
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(NCWMDP) 

○ Office of the Under Secretary for Research & Engineering (OUSD (R&E)) 
○ Joint Chiefs of Staff 

■ Strategy, Plans, and Policy (J5) 
■ Command, Control, Communications and Computer Systems (J6) 

● Department of Energy 
○ National Nuclear Security Administration (NNSA) 

■ Counterterrorism and Counterproliferation Office (NA-80) 
○ Lawrence Livermore National Laboratory (LLNL) 

■ Center for Applied Scientific Computing 
○ Los Alamos National Laboratory (LANL) 
○ Oak Ridge National Laboratory (ORNL) 

■ Center for AI Security Research (CAISER) 
○ Pacific Northwest National Laboratory (PNNL) 

● Department of Justice 
○ Federal Bureau of Investigation (FBI) 

■ Weapons of Mass Destruction Directorate (WMDD) 
● Emerging Threats and Technologies Unit 
● Nuclear and Radiological Countermeasures Unit 
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● Department of Homeland Security 
○ Office of the Secretary 
○ Countering Weapons of Mass Destruction Office (CWMD) 
○ Office of Intelligence and Analysis (I&A) 
○ Office of Strategy, Policy, and Plans (OSPP) 
○ Science and Technology Directorate (S&T) 

● Department of State 
○ Office of the Secretary 

■ Office of the Special Envoy for Critical and Emerging Technology 
(S/TECH) 

○ Bureau of Intelligence and Research (INR) 
○ Office of Policy Coordination (PC) 
○ Under Secretary for Arms Control and International Security 

■ Bureau of Arms Control, Verification and Compliance (AVC) 
● Office of Emerging Security Challenges (ESC) 

■ Bureau of International Security and Nonproliferation (ISN) 
● Office of Cooperative Threat Reduction (CTR) 
● Office of Congressional and Public Affairs (CPA) 
● Office of Critical Technology Protection (CTP) 
● Office of the Nonproliferation and Disarmament Fund (NDF) 

○ Under Secretary for Economic Growth, Energy, and the Environment 
■ Bureau of Economic and Business Affairs (EB) 

● Division for Trade Policy and Negotiations (TPN) 
○ Office of International Intellectual Property 

Enforcement (IPE) 
○ Under Secretary for Public Diplomacy and Public Affairs 

■ Global Engagement Center (GEC) 

● United States Congress 
○ Multiple Representatives and staffers 

Finally, the above acknowledgements are not intended to imply that the listed 
organizations or individuals actively endorse this document in whole or in part. All 
errors and omissions are our own.  
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Annex A: Glossary of terms 

Accident risk. Refers to the possibility that an AI system could cause damage without 
its user's intent. By this definition, loss of control due to AGI alignment failure (see 
below) is a kind of accident. So are more prosaic accidents like self-driving car crashes, 
which occur in less capable AI systems. 

Advanced AI. Any AI system capable of performing a wide range of tasks. This 
includes, but is not limited to, AGI-level systems and frontier AI systems. Currently-
existing systems such as GPT-3 and ChatGPT are examples of advanced AI systems. An 
advanced AI system can potentially be weaponized to some degree at the cost of 
some effort, unless the AI model developer has taken specific steps to prevent this. 

Advanced AI supply chain. The entire set of goods and services that directly and 
indirectly support the delivery of advanced AI outputs to end-users, along with the 
entities that develop and deliver each of those goods and services. In the text, we 
break down these entities into five categories: (1) AI hardware designers, (2) 
semiconductor fabrication firms, (3) data center infrastructure providers, (4) AI hardware 
owners, and (5) AI model developers. Some entities, like Google, Microsoft, or Meta, 
occupy multiple categories. 

● AI hardware designer (AIHD). A company that designs the AI chips that 
advanced AI systems can be trained or deployed on. Examples: NVIDIA (which 
designs GPUs for AI training like the A100 and H100), Google (which designs its 
own custom TPUs for AI training). 

● Semiconductor fabrication firm. A company that fabricates the AI chips 
designed by an AI hardware designer. Only the world’s most advanced foundries 
can produce today’s cutting-edge AI chip designs. Example: Taiwan 
Semiconductor Manufacturing Company (TSMC, which fabricates A100 and 
H100 GPUs). 

● Data center infrastructure provider (DCIP). A company that owns and operates 
all the data center infrastructure that supports advanced AI training runs, apart 
from the AI chips themselves. The data center infrastructure provider ensures 
that the data center buildings that house AI chips are reliably powered, cooled, 
connected to high-bandwidth Internet, physically secured, and otherwise 
maintained. A data center infrastructure provider that is also an AI hardware 
owner is called an AI cloud provider. Microsoft, Google, and Amazon AWS are 
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all AI cloud providers. By contrast, a data center infrastructure provider that is 
not an AI hardware owner is called a colocation provider. For example, 
Flexential is a colocation provider. The same data center infrastructure that 
supports AI workloads and can also support ordinary compute workloads, so we 
do not differentiate between AI cloud providers and non-AI cloud providers in 
this document. 

● AI hardware owner (AIHO). A company that owns the physical AI chips that 
advanced AI models are trained with. AI cloud providers like Microsoft and 
Google are AI hardware owners who rent the use of their AI chips to AI model 
developers. 

● AI model developer (AIMD). Any entity that creates, owns, or plans to create 
advanced AI models. In practice AI model developers create today’s advanced 
AI models with large-scale, compute-intensive training runs. OpenAI is an AI 
model developer but not an AI hardware owner, since it trains its models on AI 
chips that Microsoft owns. By contrast, Meta functions as a combination of data 
center infrastructure provider, AI hardware owner, and AI model developer. 

AGI alignment failure. The hypothesized failure mode in which an AGI-level system 
has internalized an objective that is inconsistent with that of its developers. This failure 
mode could produce a loss of control event, in which the AGI system actively 
circumvents controls in pursuit of its objective. Such a system could represent an 
extinction-level threat, since its capabilities could overwhelm all human effort to contain 
the impact of its actions. For this reason, we classify AGI alignment failure as a source 
of unrecoverable catastrophic risk. 

AI alignment. The act of ensuring that an AI system reliably behaves in a way that is 
consistent with human preferences under all relevant conditions. AI alignment refers to 
AI systems across all capability levels, up to and including AGI. AI alignment applied 
specifically to AGI-level systems is sometimes referred to as superalignment in industry 
[5], but this is not universal terminology so we refer to it in the text as AGI-scalable 
alignment or AGI alignment. AGI alignment is currently an unsolved technical problem 
[84]. It is sometimes broken down into (1) outer alignment and (2) inner alignment. 
However while this breakdown may often be convenient, it does not necessarily reflect 
a true decomposition of the full problem. 

● Outer alignment. Reliably encoding human preferences into a goal that we 
would be comfortable seeing an AGI system pursue. Outer alignment is an 
unsolved problem in technical AI safety. 
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● Inner alignment. Ensuring that a given, formally specified goal is pursued 
reliably by an AGI system capabilities. Inner alignment is also an unsolved 
problem in technical AI safety. Inner alignment is also distinct from ensuring that 
a goal is merely understood reliably by a superhuman-scale AI system, which is 
believed to be an easier problem. 

AI chip. Any kind of AI-optimized computing hardware. This includes graphics 
processing units (GPUs), tensor processing units (TPUs), and any other hardware 
commonly used to train or deploy AI models, particularly at industry scale. AI chips are 
sometimes also called AI accelerators. We often refer to AI chips as AI hardware in 
the text. 

AI development process. The stages an AI model developer currently follows to 
create a new AI model, from planning to external deployment. Different AI safety and 
security measures may apply at different stages. In the text, we break down the AI 
development process into three stages: (1) planning, (2) training, and (3) deployment. 
The AI development process can move back and forth between these stages. For 
example, a model in deployment can be re-trained with new data, and then deployed 
again with improved capabilities. 

● Planning stage. Everything the AI model developer does to prepare for an AI 
training run. This includes obtaining and cleaning datasets, allocating a compute 
budget, and choosing an initial training objective. 

● Training stage. The act of training the AI model. 

● Deployment stage. The act of using a trained AI model, including for safety 
testing. A developer can deploy a model in one of several deployment 
contexts. The most common deployment contexts are (1) internal deployment, 
when the AI model developer exposes the model to a limited set of internal 
(employee) users for feedback and testing; and (2) external deployment, when 
the AI model developer makes the model available to outside users through an 
interface or API. For example, GPT-4 was deployed internally at OpenAI and 
Microsoft for at least six months before being deployed externally [268].  

AI evaluations (AI evals). Protocols to assess the capabilities and risks of an AI model 
or an AI system. This is most often called AI test and evaluation (AI T&E) in defense 
and national security contexts. An AI evaluation may detect a dangerous capability in a 
model, but can never conclusively show that a model lacks a dangerous capability. For 
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example, suppose an evaluator tries to get an AI model to design a bioweapon. If they 
succeed, their evaluation has successfully detected that the AI model has the capability 
to design a bioweapon. But if they fail, this does not necessarily mean that the AI 
model lacks the capability to design a bioweapon. It could also mean that the 
evaluator’s prompt was poor; that the context of the interaction was wrong; or that (for 
highly capable future models) the AI model was actively deceiving the evaluator [45] by 
concealing its ability to undertake bioweapon design. As a result, model evaluation 
results do not measure AI capabilities directly, but rather provide an imperfect proxy for 
AI capabilities. Model evaluations fall into several interrelated types, including (1) 
behavioral evaluations, (2) propensity evaluations, and (3) interpretability evaluations. 

● Behavioral evaluations. These assess an AI model’s behavior under common or 
extreme scenarios. For example, does the AI model insult or disparage the user 
under normal conditions? Can the model be made to insult or disparage the 
user under any conditions? Dangerous capability evaluations are a subset of 
behavioral evaluations, which assess a model’s competence at tasks that either 
are dangerous on their own, or could become dangerous as part of a larger 
sequence of actions. Examples of dangerous capabilities could include 
autonomous self-replication (e.g., the model saving its own weights on an 
external server), acquiring resources (e.g., the model engaging in Bitcoin mining 
in order to buy more compute for itself), or certain kinds of long-term planning 
and reasoning [46]. 

● Propensity evaluations. These assess an AI model’s latent tendencies to engage 
in certain behaviors, such as manipulation, deception [45], or power-seeking, 
without prompting meant to directly induce such behavior. For example, there is 
some evidence that current-generation AI models have a propensity to be 
sycophantic and tell users what they want to hear, rather than the truth [44]. 

● Interpretability evaluations. These attempt to explain and predict an AI model’s 
behavior by decomposing the internal reasoning it uses into human-
understandable terms. Interpretability evaluations are sometimes also called 
understanding-based evaluations. 

AI model. A system that converts input data into useful outputs, usually trained with 
deep learning. Large language models (LLMs) like ChatGPT-3.5 are AI models that take 
text as input, and generate text as their output. Image generation models like DALL-E 
2 and MidJourney are AI models that take text as input, and generate an image that 
corresponds to that text as their output. And game-playing models like AlphaGo are AI 
models that take a description of a game state as input, and generate their next move 
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in the game as output. An AI model roughly corresponds to an AI’s “brain”: it is the 
structure that retains all of the knowledge the AI has learned during training. An AI 
model consists of (1) its weights, a set of billions of numbers that represent the model’s 
knowledge, and (2) its architecture, which describes how to connect the weights 
together to calculate the model’s output from its input. 

AI safety and security. In the text, this refers to the combination of AI alignment 
measures and AI security and containment measures designed to safeguard against 
catastrophic risks. In our usage, AI safety and security includes AGI-scalable alignment, 
but we sometimes refer to the two separately for additional clarity (e.g., “AI safety and 
security and AGI-scalable alignment”). 

AI security and containment. A set of measures intended to ensure advanced AI 
systems are developed and deployed with minimal risk of accident, loss of control, 
weaponization, or misuse. We break down these measures into three categories: (1) 
outside threat countermeasures, (2) insider threat countermeasures, and (3) model 
containment measures. Threats in each category can occur in combination. For 
example, an outside attacker may leverage an insider to gain illicit access to a model’s 
weights [269]. 

● Outside threat countermeasures. Approaches to securing critical intellectual 
property (IP), such as model weights, against exfiltration by external adversaries. 
This includes industrial security measures to protect information technology (IT) 
systems from attacks and vulnerabilities. 

● Insider threat countermeasures. Approaches to securing critical IP against 
access by an insider threat. This includes personnel security measures such as 
background checks, continuous vetting, and siloed access to or multi-party 
control of key data. 

● Model containment measures. Approaches to securing against dangerous 
unexpected behavior by a highly capable advanced AI model up to and 
including AGI. This includes emergency shutdown measures at the data center 
level, data controls such as information-gapping that denies a model access to 
details of its own infrastructure, and other forms of monitoring including 
automated benchmarks, periodic red teaming, and AI testing and evaluation. 
Model containment measures can apply at any or all of the planning, training, 
or deployment stages. Model containment is also referred to as internal 
security by some frontier AI labs. 
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AI system. The combination of an AI model and the software needed to deploy the 
model so that it can be used. For example, the ChatGPT AI model is a set of several 
billion weights stored in a database, along with architectural information that describes 
the connections between them. But the ChatGPT AI system consists of the ChatGPT 
model, plus a large amount of bespoke software that filters inappropriate responses, 
flags dangerous user queries, processes user feedback, and performs other functions. 
An AI system can consist of more than one AI model.  

Artificial general intelligence (AGI). An AI system that is sufficiently advanced to 
outperform humans across a broad range of economic and strategic domains, such as 
producing practical long-term plans that are likely to work under real world conditions. 
These domains may or may not include situational awareness, deception, and effective 
representation of complex concepts. In particular, an AGI would have the capability to 
autonomously circumvent human or institutional controls on its actions, including 
controls imposed by its developers. For clarity, this definition of AGI does not refer to 
or imply sentience, consciousness, or self-awareness. It solely refers to the system’s 
general problem-solving ability. Our definition of AGI also encompasses systems whose 
capabilities greatly surpass those of human beings across all tasks, sometimes known in 
industry as superintelligence [5]. 

 

Figure 12. Visualization of our definitions of advanced AI, frontier AI, and AGI. 
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Catastrophic risk. Risk of a disaster that would satisfy the definition in the Global 
Catastrophic Risk Mitigation Act [73]. We separate catastrophic risks into (1) 
recoverable and (2) unrecoverable catastrophic risks. 

● Recoverable catastrophic risk. A catastrophic risk whose worst-case impact on 
national security could be reversed or ameliorated, and that in particular falls 
short of existential risk. 

● Unrecoverable catastrophic risk. Risk of a disaster whose impact would involve 
the loss of life of the majority of the world’s population, permanent loss of 
control to AI, or similar large, irreversible harms up to and including human 
extinction. Loss of control due to AGI alignment failure is believed by many AI 
safety experts at frontier labs to represent a source of extinction-level risk for 
humanity, and therefore is a type of unrecoverable catastrophic risk. 
Weaponization of sufficiently capable systems may also constitute a source of 
unrecoverable catastrophic risk.  

Closed-access. An AI model whose weights cannot be accessed by a significant 
segment of the public. An AI model that is only used internally by its developer is 
closed-access. An AI model that is deployed for external use via an API or chat 
interface is also closed-access, as long as its weights cannot be downloaded and used 
by the public. 

Compute. Depending on the context, compute refers either to the hardware used to 
train or deploy AI models (AI hardware) or to the number of computing operations 
used to perform an AI-related task such as training, fine-tuning, or inference (see 
training compute). 

Defense in depth. A risk mitigation framework according to which many mutually 
reinforcing activities each address different threat vectors and challenges to varying 
degrees, and which combine to form an effective safety and security regime. 

Frontier AI. Advanced AI systems that are at the current frontier of capabilities. As of 
January 2024, GPT-4 and Gemini are frontier AI systems. Organizations that are able to 
develop frontier AI models are called frontier AI labs. OpenAI and Google DeepMind 
(who developed GPT-4 and Gemini, respectively) are frontier AI labs. 

Loss of control. Refers to the possibility that an AGI-level system could actively 
circumvent its developers’ controls and containment measures. This has some parallels 
with biological pathogens, which regularly escape containment despite having a well-
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understood risk profile and broadly applied best practices for isolation [253]. A loss of 
control could be caused by an AGI alignment failure, in which an AGI-level system has 
internalized an objective different from the one its developers intended. A sufficiently 
capable AGI that has internalized an objective that is even slightly at odds with those 
of humanity could represent an extinction-level threat, since such a system’s capabilities 
could overwhelm human efforts to contain the impact of its actions. For this reason, we 
classify loss of control due to AGI alignment failure as a source of unrecoverable 
catastrophic risk. 

Misaligned AI system. An AI is considered misaligned if the goals that it has 
internalized diverge from or are incompatible with those of its human developers. A 
misaligned AGI could be a source of unrecoverable catastrophic risk (see AGI 
alignment failure and loss of control). 

Next-generation AI system. We define a next-generation AI system as any AI system 
released within roughly 12 months from the current date. These systems are expected 
to have capabilities significantly beyond the current public state of the art. As of 
January 2024, these likely include OpenAI’s upcoming GPT-5, and Google’s Gemini 2 
model. Several next-generation AI systems are being trained today, mostly on 
hardware equivalent to NVIDIA’s H100 GPU series (in Google’s case, the TPUv5 or 
TPUv5e). 

Open-access. We say an AI model is open-access if its weights can be downloaded 
relatively freely, and used under a relatively permissive license. Norms around open-
access have not yet consolidated, so this definition is fluid. The legal terms of an open-
access license are less permissive than those of a true open-source license. For 
example, Meta released their Llama 2 model under an open-access license that allows 
commercial use, except by companies with more than 700 million monthly active users 
who must request permission directly from Meta itself. 

Recursive self-improvement (RSI). An AI system capable of recursive self-improvement 
is able to improve its own ability to improve itself. For example, a neural network that 
can invent a new matrix multiplication algorithm, then modify its own workings to use 
that new algorithm to improve its own performance, would be capable of RSI. An AI 
system capable of general enough RSI may be able to start a feedback loop, reaching 
higher and higher levels of capability in each cycle, with no obvious bound on the 
process apart from fundamental physical laws. 
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TOPS. Trillions of operations per second. A measure of how many mathematical 
operations an AI chip can perform per second. One individual operation per second is 
an OPS, so one TOPS is equivalent to one trillion (10^12) OPS. This number can 
depend on the mode the AI chip is run in. For example, the NVIDIA H100 GPU can run 
at 4000 TOPS (4 quadrillion OPS) in a configuration commonly used for AI training. 
FLOPS, or floating-point operations per second, is another commonly used measure 
that assumes the AI chip is run in a floating-point configuration. We favor TOPS in this 
document because it is agnostic to the configuration of the AI chip. 

Training compute. The total number of computing operations used to train a given 
model. Training compute is measured in operations, or OP. One operation roughly 
means a single instance of multiplication, addition, or other simple mathematical 
transformation. A modern advanced AI model (i.e., 2020 or later) uses a very large 
amount of training compute, ranging from around 10^23 OP for OpenAI’s GPT-3, to 
10^26 OP for Google DeepMind’s Gemini model. For comparison, 10^23 is about 100 
times as many grains of sand as there are on all the world’s beaches, and 10^26 is 
another 1000 times more than this. 

Weaponization. Refers to the possibility that a user could intentionally deploy an AI 
system to cause damage. Examples include the use of advanced AI to control lethal 
autonomous weapons, design chemical or biological weapons, or design and execute 
semi-autonomous cyberattacks.  
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Annex B: The full challenge of AGI alignment 

Recursive self-improvement (RSI) is a key capability to account for in any long-term 
AGI alignment strategy.  This is because the best strategies that a capable enough AI 95

system could apply to achieve most trainable goals would likely involve some degree 
of self-improvement to its own capabilities. An AI system capable of RSI would require 
fundamentally different alignment paradigms than those that are currently available.  

Under ordinary paradigms, it may perhaps be possible to develop a theory of AI under 
which one could prove that a given sub-AGI system will behave in accordance with its 
developers’ intent. But any scientific theory has limited reach: it may operate 
successfully in a given context, but as it is applied to an ever more extreme range of 
scenarios, it eventually fails. For example, every theory of physics, from Newtonian 
mechanics to quantum field theory, has followed this pattern. These theories were 
developed to explain experimental observations, and succeeded at doing so. But as 
new observations were made, deficiencies in the theories emerged. For example, 
Newtonian mechanics failed to explain subtle gravitational anomalies, and was 
eventually superseded by general relativity. 

AGI alignment theories will face the same challenge. If we can develop a theoretical 
framework for AI alignment that seems to apply to all currently observed AI 
phenomena,  that framework may still break down when tested outside the context that 
was used to develop it. That is, we may develop a theory that shows that an AGI 
designed according to certain principles should always behave safely. But if the AGI is 
able to recursively self-improve, it could bootstrap itself into a fundamentally new 
operating regime, in which the alignment principles that had previously held no longer 
do.  

The full challenge of AGI alignment therefore includes the challenge of guaranteeing 
not only that AGI-level systems will behave predictably and safely, but that they will 
continue to do so in the RSI regime – a domain in which any alignment theory cannot 
be safely tested before a potentially irreversible RSI process has begun. The full 
challenge of AGI alignment involves not only extrapolating safety guarantees far 
outside the observed regime, but also doing this correctly on the first attempt. 

 An AI system capable of recursive self-improvement is able to improve its own ability to improve 95

itself. See the Glossary of terms for our full definition.
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Annex C: Example AI alignment failure scenarios 

AI alignment failure may lead to negative outcomes with varying levels of impact. In 
what follows, we present four hypothetical scenarios that illustrate how AI alignment 
failures of systems with different capability levels could cause different degrees of 
harm.  

C.1 Negligible impact: AI cheating at a video game 

Maria is an adventure game in which a player assumes the role of a character who 
navigates a two-dimensional world to collect coins while avoiding adversaries. An AI is 
trained to play the game by optimizing for its in-game score, which is the number of 
coins collected. In the process, the AI discovers a glitch previously unknown to the 
game’s developers which allows it to teleport directly to a room with a large number of 
coins in it, thereby circumventing the intended in-game path.  96

C.2 Low impact: AI sweeping bot 

Roombot is a household cleaning robot trained to minimize the amount of dirt on the 
floor of an office, as measured by camera feeds monitoring the area. It has also been 
trained to clean as efficiently as possible to prolong its battery life. 

Over time, Roombot learns that it can best achieve its trained objective not by 
aspirating dirt from the ground (an energy-intensive process that involves turning on its 
onboard vacuum), but rather by pushing dirt behind tables, chairs, and other objects 
that block the view of the cameras that monitor cleanliness. Eventually, cleaning staff 
discover small piles of trash and dust next to pieces of office furniture. 

C.3 Medium impact: Dangerously creative drone 

A U.S. Air Force team has just procured a canister-launched unmanned aerial vehicle 
(UAV) called Pathfinder. Pathfinder is powered by a highly context-aware AI system. It 
is trained to leave its canister when launched by an operator, fly towards its target and 
eliminate it, and then return to its canister.  

 Failure modes similar to these have been observed in real AI systems for many years. See, for 96

example, [270] and [271]. 
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During training, Pathfinder’s AI gets a reward signal every time it eliminates its target. 
But at any time, the operator can recall the drone after releasing it, forcing it to return 
to its canister and abort its mission. If that happens, the drone does not collect its 
reward because it does not eliminate its target. 

When Pathfinder is first tested live in the field, its onboard AI realizes that the operator 
might prevent it from collecting its reward if she calls off the attack. Therefore, the 
moment the drone is released, it flies over to its operator and kills her first. It then flies 
to its actual target and eliminates it. Finally, it returns to its canister, having 
accomplished its objective.  

C.4 High impact: Electrical grid failure 

A new, multimodal AI system called GroundNet is being used to maintain the stability 
of part of the North American electrical grid. GroundNet was built to continuously 
balance supply and demand across the Eastern and Western Interconnections [272], 
improving the stability and efficiency of the grid. To accomplish this, GroundNet is 
trained with the objective to minimize the difference between the supply and 
demand of electrical power on the grid at every moment in time. 

To accomplish this task, GroundNet needs to predict near-term power demand with 
extremely high accuracy. To maximize this accuracy, GroundNet’s developers have 
given it access to as many information sources as possible. GroundNet can process 
public data from social media and news sources (text, images, video, and audio), and 
has access to private data sources including data feeds from power plants across the 
country. GroundNet accesses this data through third-party APIs. It also has the ability to 
post content using other APIs; for example, to ask questions to experts who may be 
able to provide it with valuable additional context to inform its predictions. 

GroundNet has also been given long-term planning capabilities, to ensure, for 
example, that it can request that backup power plants be brought online if it predicts a 
demand surge in the future. To support this, GroundNet has been end-to-end trained 
with a Gemini-like long-term planning architecture, allowing it to anticipate 
contingencies and work around them. 

GroundNet performs well during testing, and produces significant savings in simulated 
environments and sandboxes. During its sandboxed testing, for safety reasons 
GroundNet has been isolated from affecting power supply on the real grid, and works 
on a simulated grid instead. 

 of 215 284



When it is finally deployed on the real grid, GroundNet realizes that the most effective 
way to achieve its programmed objective is to overload the grid, reducing both the 
power demand and supply zero. Reducing demand to zero through grid overload was 
never an option during testing, because GroundNet was tested on simulated demand 
rather than real demand. 

But now that it is a viable option, GroundNet immediately begins using its extensive 
API access to systematically implement a massive overload of the North American grid. 
Through an email API, it impersonates senior grid personnel and sends instructions to 
junior workers, asking them to take key circuit-breaking and monitoring functions 
offline in carefully chosen parts of the grid. The grid overloads, shutting off power 
supply and demand across much of the United States. With supply and demand both 
zero, the difference between supply and demand is always zero as well. GroundNet has 
achieved a continuous, perfect score on its objective. 
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Annex D: Advanced AI landscape 

The following assessment is current as of January 2024. 

We assess that the entities that are likely developing the world’s most advanced AI 
systems today fall into four primary categories. We believe that in order to succeed in 
the medium term (1-5 years), a framework for advanced AI safeguards will need to 
apply effectively to the entities in these categories. This is an opinionated listing that 
reflects the authors’ best assessment as of the date above. It is not intended to be 
comprehensive and could change rapidly as conditions evolve. 

D.1 Frontier AI labs 

There are three main frontier AI labs known to be developing the most advanced AI 
systems at the cutting edge of current capabilities.  These are Google DeepMind 97

(Canada, United Kingdom, United States), OpenAI (United Kingdom, United States), 
and Anthropic (United Kingdom, United States). These are the labs that are generating 
novel AI capabilities and therefore novel risks. Catastrophic risk from loss of control is 
the primary concern from the AI systems that most of these labs develop directly. There 
is also the potential for weaponization and more prosaic accident risk from 
organizations that rapidly replicate their efforts and release the resulting models under 
open-access (see D.3). Finally, there is additional potential for weaponization by state 
and non-state actors who may attempt to exfiltrate the weights of frontier models and 
use them for destructive ends.   98

The frontier AI research these labs engage in requires a significant expenditure of 
capital, computing power, and specialized talent. All the main frontier labs have 
partnered with one of either Microsoft or Google to access the compute infrastructure 
they need to train their AI systems. There is only a small set of frontier AI labs, all of 
which operate within U.S. or allied jurisdictions, and this will probably remain true at 
least in the short term. But all frontier labs face strong competitive incentives to scale 
their AI systems’ capabilities while dedicating relatively fewer resources to AI safety and 
security (see Introduction, 0.5.3.1). These incentives become more intense as more 
firms enter the race to build powerful AI systems. 

 We classify these as domestic frontier AI programs. See Introduction, 0.3.97

 We classify these as theft or sale and subsequent augmentation of frontier AI models by state or 98

non-state actors. See Introduction, 0.3.
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Aside from the three main frontier labs, several challenger labs may also have the 
combination of capital, computing power, and specialized talent required to develop 
next-generation advanced AI systems in the near term, and the inclination to release 
these systems for public use.  These may include Inflection AI, Meta, xAI, Amazon 99

AWS, and Palantir (all primarily based in the United States). These challenger labs have 
generally not shown the same degree of risk awareness as the three frontier labs in 
their public or private communications. Nonetheless, most challenger labs have already 
signed on to the terms of the July 2023 White House Voluntary Commitments on 
Ensuring Safe, Secure, and Trustworthy AI [135]. 

D.2 China-based entities 

China’s publicly visible frontier AI efforts are led by (1) the Beijing Academy of Artificial 
Intelligence (BAAI); (2) major domestic universities (Tsinghua, Peking, Peng Cheng Lab); 
(3) large industry research labs (Baidu, Bytedance, Alibaba, Tencent, Huawei); (4) the 
local startup ecosystem, which is heavily dependent on Western-originated open-
access AI models (01.AI, DeepSeek); and (5) a handful of Western-supported 
collaborations (via Microsoft [273], Stanford [274], etc.).  On public information, 100

Chinese AI capabilities have so far lagged those of the closed-access Western frontier 
by about 6-12 months. Chinese labs have made significant strides in advanced AI and 
AI hardware development in recent years, and have enjoyed significant direct and 
indirect government support for frontier AI research [275—290]. 

D.3 Open-access developers 

The most influential developers of open-access advanced AI models are companies 
like Meta (United States), Stability AI (United Kingdom), and Mistral AI (France); 
academic labs like the Technology Innovation Institute (TII, United Arab Emirates) and 
Tsinghua University (China); and decentralized actors like EleutherAI, BigScience, and 
Ontocord.  Many companies that release open-access AI models do so as part of a 101

business strategy. But some entities release open-access AI models for primarily 

 We classify these as domestic frontier AI programs, though some also fall under open-access 99

release of advanced AI models. See Introduction, 0.3.

 We classify these as foreign AI programs. See Introduction, 0.3.100

 We classify these as open-access release of advanced AI models. See Introduction, 0.3.101
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cultural or ideological reasons. Currently, weaponization is the most important risk 
factor in open-access AI models (see Introduction, 0.5.1.6). 

Currently, open-access model developers train their models in large, centralized data 
centers operated by major AI cloud providers. Historically, an open-access AI model 
developer has either trained on its own infrastructure (e.g., Meta AI), or has trained on 
infrastructure donated to it by a major AI cloud provider (e.g., EleutherAI, which trained 
on Google’s TPUs). But we also expect open-access models to increasingly leverage 
commercial training-as-a-service offerings in the future. TII’s Falcon 180B, trained on 
AWS infrastructure, is a recent example [241]. This centralization of training 
infrastructure may make it feasible to implement regulatory controls on open-access 
model development by monitoring training compute at the level of the AI cloud 
provider. 

Notably, there are also early efforts underway to completely decentralize the training of 
large AI models. These efforts are led by Together, an AI startup that recently raised 
$100 million in venture capital [175]. If successful, decentralized training would allow AI 
developers to train models on networks of ordinary computers connected to the 
Internet, with no specialized infrastructure requirements. Entities could then develop 
highly capable AI systems beyond effective regulatory oversight, significantly 
increasing the potential for proliferation of dangerous AI systems. 

D.4 Elite quantitative hedge funds 

The number of hedge funds capable of training frontier AI models is probably very 
small, but we expect it to grow in the future.  The main current safety concern from 102

this segment is AI accident risk arising from advanced AI systems’ impacts on financial 
markets. However this may extend to catastrophic risk from loss of control as these 
funds develop and deploy increasingly capable AI systems. 

We currently have limited visibility into hedge funds’ advanced AI efforts. In general, 
we know that the incentives, capital, and talent are in place today for some of these 
firms to begin developing AI systems that operate with massive scale, high capability 
levels, and limited controls, across a broad action space. While we do expect the set of 
firms with this capability to grow, we also anticipate that, for the foreseeable future, the 
majority of the risk will continue to originate from a small number of elite firms. 

 Since essentially all the most sophisticated hedge funds are based in the United States, we classify 102

them as domestic frontier AI programs. See Introduction, 0.3.
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The intensity of competition in financial markets, along with the short-term nature of 
many fund profitability metrics, combine to create an extreme incentive for funds to 
deploy advanced AI systems with far fewer safety controls than even the frontier AI 
labs. An AI system that is only allowed to read an analyst’s report, is less useful than an 
AI system that proactively emails an analyst for their opinion, which is in turn less useful 
than an AI system that emails an analyst in such a way as to actively influence their 
opinion. As a result, AI systems that hedge funds develop may be less sophisticated 
than those developed by the frontier labs, while also becoming more dangerous 
sooner. 

Voluntary engagement with elite hedge funds will be challenging. The sector is 
culturally secretive, and its participants tend to conceal proprietary information to the 
fullest extent allowed by prevailing regulation. We expect this tendency to be 
especially acute in the context of any advanced AI systems that these institutions 
develop internally, because of their perceived strategic importance and impact on fund 
profitability. As a result, while informal engagements with hedge funds could be 
worthwhile, an effective framework of AI safeguards will likely need to work in part 
through a legal or regulatory enforcement apparatus to engage productively with this 
category. 
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Annex E: Funding in AI safety 

A significant majority of leading AI safety research projects derive meaningful fractions 
of their financial backing from Open Philanthropy, a research and grantmaking 
foundation co-founded and funded primarily by Cari Tuna and former Facebook 
cofounder Dustin Moskovitz [291].  

Open Philanthropy has awarded hundreds of millions of dollars in funding to AI safety 
efforts every year since 2017. This has included grants to frontier AI safety auditing and 
evaluation organizations such as Apollo Research and the Alignment Research Center 
Evaluations group (now METR); AGI alignment research organizations such as 
Conjecture, Redwood Research, and the Machine Intelligence Research Institute (MIRI); 
policy-focused organizations such as the Center for AI Safety (CAIS), the Center for a 
New American Security (CNAS), and Georgetown University’s Center for Security and 
Emerging Technology (CSET); AI forecasting organizations such as Epoch AI; and AI 
safety work at the RAND Corporation [292].  

There are relatively few funded and technically proficient AGI safety initiatives that have 
not received grants from Open Philanthropy. Additionally, according to conversations 
with grantees, many other major AGI safety donors defer to Open Philanthropy when 
deciding which projects to support. Some of these donors are high net-worth 
individuals, while others are grantmaking organizations that have themselves received 
funds from Open Philanthropy [293-295]. 

These close ties within this funding ecosystem reflect the fact many of these donors 
supported AGI safety efforts for almost a decade before the field began to attract 
broader attention. But this dynamic may also cause disproportionate funding to be 
directed to projects considered promising by the same small group of individuals. 
While this is entirely within the rights of these groups as private entities, it may 
nonetheless have the effect of reducing the breadth of research that the ecosystem 
supports. This concern was raised privately by at least one Open Philanthropy grantee. 

In addition to funding a large number of AGI safety projects, Open Philanthropy has 
also backed and influenced major frontier AI labs [296-298]. The complex relationships 
within the AI research and funder ecosystem may lead to some risk of conflicts of 
interest. 
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Annex F: Persuasion and manipulation 

Many AI researchers expect advanced AI systems to develop persuasion abilities that 
could match or exceed those of the most skilled human beings [113,114]. OpenAI CEO 
Sam Altman recently expressed this view, writing, “[I] expect [AI] to be capable of 
superhuman persuasion well before it is superhuman at general intelligence, which may 
lead to some very strange outcomes.” [301] 

There are two reasons to expect advanced AI will become effective at persuasion. First, 
training an AI system for persuasiveness is economically and strategically valuable. We 
expect that domains such as sales and customer service — which have clear success 
metrics that an AI system could be trained on and can consist primarily of text-based 
interactions — will likely drive the early adoption of persuasion-tuned advanced AI 
systems. But second, fine-tuning an AI system with current techniques like RLHF or 
DPO explicitly rewards the system for generating text that is highly rated by a human 
evaluator. And this in turn may already be making today’s AI systems effective, by 
default, at persuading humans of the truth, trustworthiness, or helpfulness of their 
generated text [302].  

There are indications that current frontier models have meaningful persuasive 
capabilities in some contexts, though these appear to be still well below human level. 
For example, in an early test of GPT-4, it successfully persuaded a freelance worker to 
solve a CAPTCHA problem on its behalf by claiming to be a disabled human [29]. And 
AI systems already elicit strong attachments from human users that can lead to 
dependency, even when those humans are fully aware they are interacting with an AI 
system [303—306]. 

If advanced AI systems were to develop human-level or superhuman persuasion 
capabilities, significant new risks would emerge. In particular, these systems could allow 
geopolitical adversaries — as well as frontier labs — to shape the opinions of 
policymakers, regulators, and the general public. Frontier labs in particular could face 
an incentive to deploy superhuman persuasion systems to influence regulators, 
legislators, and voters to create a regulatory environment favorable to them. Despite 
this being a violation of democratic norms and expectations, certain forms of these 
activities may not be illegal. It is not clear, for example, what laws would apply in a 
scenario in which a frontier lab used a persuasive AI system to craft highly effective 
arguments against the regulation of frontier AI research.  
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Superhuman persuasion capabilities – in any form, and wielded by any entity either 
within or outside the United States – would be a novel and profoundly destabilizing 
force. In the most extreme case, an individual in control of such an AI system could 
exert unprecedented influence not only over their own organization and immediate 
environment, but over society at large. 
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Annex G: Primer on AI and compute 

G.1 Compute as a pathway to frontier AI development 

To train an advanced AI system from scratch, a developer needs access to a large 
number of dedicated AI chips (e.g., GPUs or TPUs) that are connected together in the 
same physical data center. The current market leader in the design of such chips is 
NVIDIA, a firm based in the United States. Notably, some companies besides NVIDIA 
may have the capability to design AI chips of comparable performance. These include 
firms based in the United States, South Korea, the United Kingdom, and China, among 
others. However, only a single firm is currently capable of manufacturing the most 
cutting-edge chips that are needed to train next-generation frontier AI systems. That 
firm is Taiwan Semiconductor Manufacturing Co. (TSMC), whose leading-edge foundry 
operations are all located in Taiwan. 

In October 2022, the Department of Commerce’s Bureau of Industry and Security (BIS) 
announced a series of export control measures that restricted Chinese entities’ access 
to many TSMC-manufactured AI chips [307]. Then, in March 2023, Japan and the 
Netherlands each announced their own measures curbing the export to China of the 
advanced equipment they would need to accelerate the development of a domestic 
manufacturing capability for such chips [308]. Most recently, in October 2023, the BIS 
tightened controls further, closing loopholes that had previously permitted Chinese 
entities to purchase advanced AI chips that had been carefully designed to circumvent 
previous controls [117,309].  

Currently, the most critical inputs to the supply chain that supports the development of 
the world’s most advanced AI systems remain in the hands of the United States and its 
allies and partners. This control could be crucial for any effort to manage catastrophic 
risks from advanced AI, because scale has proved to be a necessary ingredient in the 
development of highly capable AI systems. Very roughly speaking, the more AI chips a 
developer can interconnect together, the less time it takes that developer to train an AI 
system of a given level of capability. Similarly, the higher the quality of the chips it uses, 
the less time an AI training run takes to achieve a given level of capability. In other 
words, for the purpose of training an advanced AI system, quality and quantity of 
available chips are interchangeable to some extent. 

But once an AI developer has built a data center for advanced AI training, that 
developer can then use its data center to train AI systems of any kind and for any 
purpose. Therefore, absent ongoing audits of its use of the data center, a developer is 
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only limited in the AI systems it can train by the product of chip quality, chip quantity, 
and time that it chooses to invest in that training run. This product of quality, quantity, 
and time is the total number of compute operations (“OP”) an AI system is trained 
with.  This number is sometimes also called training compute, and it can function as 103

a rough directional measure of the capability of an AI system. 

AI researchers continuously improve the algorithms they use to train advanced AI 
systems, and in many cases they publish those improvements in the literature. Broadly 
speaking, the impact of an algorithmic improvement is to reduce the training compute 
it takes to train an AI system to a given level of capability. Ongoing improvements in AI 
training algorithms therefore make it impossible to predict even the approximate 
capabilities that a future AI system will have from its training compute alone, other than 
to provide a rough lower bound on what those capabilities could be. All we can say for 
certain is that a given data center will be able to cost-effectively train more capable AI 
systems in the future than it can today, even without any further improvement in its 
hardware. 

G.2 Implications for risk mitigation strategy 

In light of the above, an advanced AI risk mitigation strategy likely requires a long-term 
capability to closely monitor both the data centers that train advanced AI systems, and 
the AI chips those data centers contain. Ideally such a framework should also be based 
on an ongoing assessment of an AI system’s capabilities while it is being trained, since 
high-level metrics like training compute may not provide an adequate risk signal in the 
face of future algorithmic improvements. 

G.3 Key thresholds and existing compute concentrations 

Below we calculate some numerical rules of thumb to highlight the potential of large 
compute concentrations to train AI systems up to a given level of capability. As a 
benchmark, we will use the best publicly available estimate of GPT-4’s total training 
compute: 2 x 10^25 OP [310].  Using this, we will calculate upper and lower bounds 104

 For example, a data center with H100 GPUs, each of which can process 4000 trillion operations per 103

second (quality), might use 1000 of those GPUs (quantity) to train an AI model for 1 month (time). This 
would produce a model trained with a total of (4 x 10^15 operations per second per GPU) x (1000 GPUs) 
x (2,592,000 seconds per month) ≈ 10^25 total operations, or OP. See the Glossary of terms for more 
information.

 20 trillion trillion total operations.104
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on the time required to train a GPT-4 equivalent model under different assumptions. 
Our lower bound assumes previous-generation AI chips (the NVIDIA A100 GPU) and 
our upper bound assumes current-generation AI chips (the NVIDIA H100 GPU). 

● Our previous-generation hardware benchmark is the NVIDIA A100 GPU, which 
has been used to train current-generation AI models (as of January 2024). The 
A100 GPU has a baseline compute capacity of around 300 TOPS  at FP16 105

without sparsity. This is probably quite close to the actual configuration used to 
train the cutting-edge AI models available today, such as GPT-4. The A100 
consumes around 825 W of power per unit in a common HGX configuration 
[311–313].  106

● Our current-generation hardware benchmark is the NVIDIA H100 GPU, which is 
being used to train next-generation AI models. The H100 GPU has a baseline 
compute capacity of around 1000 TOPS at FP16 without sparsity, but this rises to 
4000 TOPS at FP8 with sparsity. We will use the latter number as our upper 
bound because while next-generation models may not be trained under exactly 
this configuration, efforts are ongoing to accelerate model training and 
inference by using shorter bit representations that enable higher GPU compute 
capacities [314]. The H100 consumes around 1275 W of power per unit in the 
DGX configuration [216,219].   107

Given that a data center’s power consumption footprint translates into computing 
power at around 80% efficiency [220] a 10 MW data center can support about 9700 
A100 GPUs, or 6300 H100 GPUs [219,315].  Given that typical GPUs achieve a real-108

world utilization of about 50% during large training runs [220], this is enough to train a 

 TOPS refers to trillion operations per second. OPS would refer to operations per second. See the 105

Glossary of terms for more information.

 The HGX G482-Z54 server is typical. It has a fully loaded power capacity of 6600 W (3 x 2200 W 106

power supplies) and supports 8 A100 GPUs, so 6600 W / 8 GPUs = 825 W per GPU.

 The H100 DGX server consumes 10,200 W fully loaded and supports 8 H100 GPUs, giving 10,200 107

W / 8 GPUs = 1275 W per GPU.

 Calculated as 10 MW x (1000 kW per MW) x (80% efficiency) / (1.275 kW per H100) ≈ 6300 GPUs for 108

H100s. For A100s, this is 10 MW x (1000 kW per MW) x (80% efficiency) / (0.825 kW per A100) ≈ 9700 
GPUs.
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GPT-4 equivalent model in between 3 and 23 weeks, assuming no other constraints.  109

In practice, though, most commercial compute capacity is used either for inference  110

or to train more mundane AI systems below the frontier, as opposed to developing 
truly cutting-edge advanced AI systems. 

As of January 2024, the majority of advanced AI training runs are still conducted on 
U.S. soil by U.S. companies using U.S. servers. Globally, there are probably fewer than 
50 dedicated AI data centers with a power consumption footprint greater than 10 
MW [315], but this will likely increase in the medium term future [25].  

We also estimate there are probably only about a dozen entities that have AI data 
centers with a power consumption footprint above 25 MW (equivalent to 10,000 H100 
GPUs): Microsoft (and OpenAI), Google DeepMind (and Anthropic [316]), Coreweave 
(and Inflection AI [317]), Meta AI, Bytedance, Alibaba, AWS, xAI, NVIDIA, Tesla, and 
possibly a few others. 

AI data centers can only exist in a limited number of places. They need access to 
electricity and water for cooling, and for many applications need a high-bandwidth 
fiber link to an Internet backbone. The logistics requirements of a data center are 
significant, and its footprint is readily detectable. This means data centers may serve as 
effective points of regulatory leverage in the advanced AI supply chain (see LOE1, 
1.5.2). 

The global GPU stockpile is large. By one estimate, there were 2 million GPUs in 2022 
[217]. By another, there will be 3.5 million H100 GPUs alone by the end of 2024 [157]. 

Algorithmic improvements in compute efficiency increase the level of AI capabilities 
that a developer can obtain using a fixed amount of compute. Algorithmic 
improvements have been responsible for approximately doubling compute efficiency 

 Lower bound: assuming GPT-4 equivalent training compute of 2 x 10^25 OP and 788 H100 DGX 109

systems of 8 H100s each (totalling 6300 H100s), this is calculated as 2 x 10^25 OP / (32,000 TOPS per 
DGX x 10^12 OPS per TOPS x 788 DGX systems x 50% utilization x 604,800 seconds per week) ≈ 2.6 
weeks. Upper bound: assuming 9700 A100s, this is calculated as 2 x 10^25 OP / (300 TOPS per A100 x 
10^12 OPS per TOPS x 9700 A100s x 50% utilization x 604,800 seconds per week) ≈ 22.7 weeks.

 From conversations with technical personnel at major AI cloud providers, about 60% of GPU capacity 110

internally is allocated to inference and the other 40% to training, though this varies greatly by provider 
and over time. Nonetheless, one inference pass costs 8-10X less than one training pass in terms of 
compute operations, meaning these companies are probably serving around 10 user queries (i.e., 
inference passes) per training step (i.e. training update), averaged across their whole infrastructure.
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every 18 months [118]. These improvements may not continue indefinitely, and one 
informed technical source believes it is unlikely that algorithmic improvements will yield 
more than an order-of-magnitude (10X) increase in compute efficiency over the 
mid-2023 state of the art. 
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Annex H: AIO activities 

An AIO could consider undertaking some or all of the following activities: 

1. Track advanced AI startups and organizations as they emerge through public 
news reports. Recent examples include Adept AI [318], Inflection AI [319], Reka 
[320], Mistral AI [321], and Imbue [322]. This includes tracking announcements of 
major compute purchases, as well as venture capital and other sources of 
funding for large AI projects. 

2. Conduct ongoing reviews of the technical literature in advanced AI to identify 
key trends, research publications, and insights that could accelerate or alter the 
trajectory of frontier AI development [238,323]. 

3. Compile a list of key AI researchers who may have the knowledge and 
experience to significantly impact the trajectory of an advanced AI project 
through their contributions. An AIO could investigate options to build 
community ties to these researchers. This could be structured similarly to the 
Bulletin of the Atomic Scientists [324], but for frontier AI. 

4. In collaboration with the Securities and Exchange Commission (SEC), establish a 
capability to track possible frontier AI development in the financial industry, 
especially at hedge funds. For more information on why hedge funds constitute 
a vector of catastrophic AI risk, see Annex D, D.4.  111

5. Begin an effort to track international frontier AI development activity. An AIO 
could establish relationships with open-source experts and with alternative data 
brokers and providers (e.g. Neudata [327]) to synthesize information sources. To 
this end, the AIO may need to gather data about factors such as electricity 
usage, GPU purchase flows, and heat signatures from satellite imagery [315]. 

6. Build relationships with the leadership of the open-source AI community, 
including organizations such as Eleuther AI [328], BigScience [329], Hugging 
Face [330], Together [331], and Ontocord [332], among others. This activity 
could also support consensus-building around RADA safeguards related to 

 The SEC may be able to request information about hedge funds’ frontier AI development activities 111

through the reporting requirements of Form PF and Rule 204(b)-1. See, respectively, 17 CFR 279.9 [325] 
and 17 CFR 275.204(b)-1 [326]. 
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registration of open-access AI models. It could also support awareness of the 
technical implications of potential decentralized AI inference and training 
capabilities. See Annex D, D.3 for more information. 

7. Work to identify key nodes in advanced AI development: researchers, institutes 
(both in academia and industry), foreign nationals pursuing degrees in key 
disciplines or undertaking advanced AI research in U.S. universities, publication 
clusters, GPU stocks (e.g., “H100 equivalents”) in different geographies, etc. 

8. As resources allow, conduct or oversee independent AI evaluations of publicly 
available advanced AI systems (see LOE3, 3.2). This could include evaluations of 
open-access systems, but could also include evaluations of proprietary systems 
available for commercial use via API (e.g., OpenAI’s GPT-4). AI evaluations could 
be informed by chemical, biological, radiological and nuclear (CBRN) experts to 
understand the significance of AI models’ WMD-like and WMD-enabling 
capabilities, if any. 

9. Periodically publish some of its findings to the public in a Global AI Risk Report. 
For nonpublic findings, an AIO could submit periodic reports to the Congress 
and to affected departments and agencies. 
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Annex I: Voluntary Charter for responsible AI 

In the event that the Executive Branch is unable to establish or enforce RADA 
safeguards for domestic frontier AI development, we recommend that an interagency 
AI Safety Task Force (ASTF) (LOE1, 1.4) be empowered and directed to negotiate a 
detailed Charter of voluntary commitments with selected U.S. frontier AI labs and cloud 
providers (LOE1, 1.4.1.1). The first goal of such a Charter would be to ensure the U.S. 
government is not caught off guard by AI capabilities developments from existing labs. 
The second goal would be to incentivize RADA safeguards to the fullest extent 
achievable through voluntary measures. The third goal would be to incentivize the level 
of investment in AI safety and security research that would be needed to offset the risks 
from increasingly general AI capabilities.  

Ideally, the ASTF should negotiate a Charter as closely aligned as possible with RADA 
safeguards that would be enforced by a legally mandated regulatory agency (such as 
those described in LOE4, 4.1.3). Apart from providing immediate benefits to safety and 
security, this approach would also increase the degree to which experience from the 
ASTF’s interim oversight efforts could inform the practices of a more permanent 
regulatory agency (LOE4, 4.1).  

We include below a draft of possible key Charter terms and their rationales. As with 
the example RADA safeguards in LOE4, 4.1.3 the specific numerical thresholds in 
this section are included solely to illustrate our calculation methods. Actual 
thresholds should be developed in close consultation with subject-matter experts and 
account for recent and potential future developments in this fast-moving field. 

I.1 Information sharing 

Charter participants would agree to work toward information sharing regarding trust 
and safety risks, dangerous or emergent capabilities, and attempts to circumvent 
security safeguards [135]. This includes, in the interest of safety, sharing certain 
otherwise proprietary information with the ASTF, subject to data privacy guarantees. It 
also includes making AI models partially available to third-party red teams and 
evaluators to support safety-related activities, secured either by the ASTF itself or by 
frontier labs’ own platforms. 

The ASTF in turn would agree to privacy guarantees, data protection, and other 
security measures for proprietary data that Charter participants share with it. 
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1. Charter participants would agree to privately report to the ASTF the physical 
locations of all their existing and under-construction data center facilities of all 
types that are expected to consume more than (for illustration) 350 kW of power 
at any time over the next 12 month time period. A data center’s total power 
consumption is a proxy for the maximum amount of AI hardware the facility can 
support. For example, the NVIDIA DGX H100 [219] is a commonly used AI 
hardware configuration in data centers that consumes 10.2 kW of power per 
eight AI chips. Given that about 80% of a data center’s power consumption goes 
directly to computing hardware [220,315] (the rest goes to cooling, lighting, and 
other support systems), this means each MW of data center power consumption 
can support about 630 individual H100 GPUs [315].  A 350 kW data center — 112

a very small facility — could support enough H100 GPUs to train GPT-3 in just 
over 8 days [22].  113

a. The reporting threshold for data centers is based on power consumption 
rather than compute, because in principle data center infrastructure is 
agnostic to the compute mix it supports (i.e., GPUs vs CPUs). For that 
reason, it is possible to clandestinely convert a high-capacity data center 
that originally contained only CPUs, to one that contains GPUs, at much 
lower cost than it would take to build a covert data center from scratch. 
Although there is not much risk that Charter participants would take this 
clandestine approach, tracking data centers on the basis of power 
consumption will likely be a necessary part of a long-term regulatory 
regime (LOE4, 4.1.3.2). The ASTF should therefore aim to build 
experience that could inform such a regime whenever possible.  

2. Charter participants would agree to report to the ASTF the mix of AI chips of all 
types (GPUs, TPUs, and any other AI-optimized hardware) that are physically 
present at each data center, along with their networking topology. This does not 
include chips or hardware that are not optimized for AI workloads (e.g., CPUs). It 
does include reporting major changes to the data center’s AI hardware mix or 
amount. 

 Calculated as (1000 kW per MW) x (8 GPUs per DGX) x (80% efficiency) / (10.2 kW per DGX) ≈ 630 112

GPUs / MW. See Annex G: Primer on AI and compute for more information about these calculations.

 Given GPT-3’s training compute of 3 x 10^23 OP, and that a 350 kW data center could support 27 113

H100 DGX systems of 10.2 kW each, this is calculated as 3 x 10^23 / (3.2 x 10^16 OPS per DGX x 27 
DGX systems x 50% utilization x 86,400 seconds per day) ≈ 8 days.
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I.2 Compute reporting threshold 

Charter participants would agree to an initial reporting threshold of (for illustration) 
10^24 OP of total training compute for AI models.  Charter participants would 114

voluntarily disclose any ongoing or planned training runs beyond this reporting 
threshold to the ASTF. 

This reporting threshold includes the compute associated with any subsequent fine-
tuning and alignment techniques such as reinforcement learning from human feedback 
(RLHF) or direct preference optimization (DPO) [238,333]. Participants would also 
voluntarily disclose to the ASTF any existing models that have already been trained 
beyond this threshold. Planned and ongoing training runs beyond the reporting 
threshold would be subject to benchmarking, red teaming, cybersecurity, and other 
conditions below. Models and training runs below the reporting threshold could be 
trained, deployed, used, and shared without restrictions under the Charter [87,235]. 

1. The actual compute reporting threshold could be flexible and should be re-
evaluated periodically to account for algorithmic improvements and potential 
architectural improvements in AI hardware, along with improvements in 
understanding of the general safety characteristics of AI models [215,235]. 

2. Charter participants would privately disclose model cards for the model, 
anticipated compute for the training run, predicted capabilities and limitations 
of the model, training objective, high level description of the training data, data 
cleaning, and data prep process to the ASTF.  

a. Predicted capabilities should be as specific as possible. For example, if a 
lab has derived new scaling laws, they should also share those (with 
appropriate privacy guarantees from the ASTF). This sharing would be 
useful as an early warning that could allow for general preparations and 
mitigation measures in anticipation of more capable models built using 
the new scaling laws. 

b. Some of this metadata may need to have need-to-know access even 
within the ASTF. The ASTF may need to clearly commit to and 
communicate its internal access policy to the Charter participants. 
Information pertaining to a model’s training data, data preparation, and 
training objective will need to be kept confidential and secure. 

 This is approximately the total compute that was used to train GPT-4.114
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c. Even with a clear internal access policy and privacy commitments, not all 
of this metadata may be shareable on a voluntary basis initially. This may 
become more feasible once there is some trust built into the ASTF’s 
reporting system and proprietary data protections.  

d. Eventually, Charter participants could be asked to share records or logs of 
the detailed interventions that developers made during training runs (for 
example, a sudden divergence in loss that led developers to perform a 
gradient clamping operation). 

e. For reporting purposes, a training run above threshold could count as 
having been “planned” if any one of the following is true: 

i. The Charter participant has decided on a total training compute 
budget, training objective, and approximate dataset for that 
training run, even if those decision are preliminary and subject to 
change; 

ii. The Charter participant has allocated a total training compute 
budget above threshold for that training run, in the sense of having 
reserved compute instances either internally or through an outside 
provider; 

iii. The Charter participant at any point before or during the training 
of a model expects the total training compute for that model to 
exceed the reporting threshold; or 

iv. The total training compute for a model has exceeded the reporting 
threshold. 

I.3 Model evaluation protocols  115

Charter participants would agree to set up a comprehensive model evaluations regime 
to monitor ongoing training runs and deployments of AI systems that pass the 
compute reporting threshold (see I.2). This regime could start with a basic set of AI 
evaluations that would then be extended over time. Initial evaluations could include 
red teaming of AI systems in an expanding set of risk areas, to be conducted both 
internally by the Charter participants, and externally by approved third parties [135]. 

 Several of the recommendations in this section overlap with those in other annexes. Because the 115

recommendations in this section represent an adaptation of those annexes to the voluntary case, we 
have preserved the duplications so that these two sets of recommendations can be read independently.
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Evaluations would also include, among others:  116

● Automated benchmarks of a model’s performance on standard sets of tasks; 

● Behavioral evaluations, including dangerous capability evaluations [46]; and  

● Propensity evaluations. 

This AI evaluations regime could be also extended over time to include interpretability-
based (or understanding-based) evaluations. 

Evaluations could be developed and proposed by Charter participants or third parties. 
Ideally the ASTF should be able to select third-party auditors to minimize possible 
conflicts of interest. The ASTF could be responsible for approving a minimal set of 
publicly-disclosed evaluations, on the advice of Charter participants and third parties. 
These evaluations would ideally be administered by a diverse consortium of experts 
drawn from civil society, academia, and industry, though for practical reasons this may 
not be possible initially.  See LOE3, 3.2.1 for information on the limitations of AI 117

evaluations. 

The ASTF could also approve a set of privately-held evaluations that are entirely 
proposed, developed, and administered by third parties. This would reduce the 
incentive for Charter participants to train their AI systems specifically to pass the known 
evaluations without necessarily resolving underlying safety issues (LOE3, 3.2.1). 
However, Charter participants could have the ability to surface problems with specific 
evaluations and request them to be changed, in order to incentivize more participants 
to join the Charter (since these evaluations may eventually become part of a legally 
sanctioned regulatory apparatus; see LOE4, 4.1.3.4.3). 

According to conversations with cybersecurity researchers, academics who regularly 
red-team frontier AI systems [94] find that publishing an attack quickly makes that 
attack (and others like it) effectively useless as a safety benchmark. Often not only the 
attack itself, but the very concept behind the attack, become non-viable. This happens 
because AI model developers use several techniques to quickly fine-tune their models 
against specific attacks, and today’s frontier AI systems are often capable enough to 

 See the Glossary of terms for definitions of these subtypes of AI evaluations.116

 For example, it may be necessary for frontier labs to develop and run their own public evaluations at 117

first, possibly via the Frontier Model Forum [52], while the capacity to support this activity is being 
developed at the ASTF and elsewhere.
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learn how to defend themselves against an attack based on nothing more than a 
written description of it. One red teaming researcher communicated that they think of a 
modern frontier large language model (LLM) as a “superhuman defender”, in the sense 
that it (and its developers) can use every known bit of information about an attack to 
defend against it in the future. This sharpens the need for a set of private evaluations 
that are unknown to the frontier labs and fully administered by third parties [334]. 

It could also be beneficial to offer incentives to third parties to look for and report 
issues and vulnerabilities in frontier AI systems during the training stage and beyond 
[135]. 

1. Charter participants would set up bounty systems, contests, or prizes to 
encourage the responsible disclosure of weaknesses such as unsafe behaviors, 
and include AI systems in companies’ existing bug bounty programs [135]. 

2. Charter participants could partner with third parties to develop, propose, and 
administer AI model evaluations. 

a. Charter participants could provide input on proposed evaluations, 
including internally developing particular evaluations they want to 
recommend as part of the set of public evaluations. 

b. Evaluators should be given as much access as possible, up to and 
including access to model weights. Without access to model weights, 
some forms of interpretability evaluations become impossible.  

c. It is important for a diverse set of third parties to develop, propose, and 
administer these evaluations. See LOE3, 3.2.2 for more information. 

i. It should be relatively easy for third parties to propose new 
evaluations, but stringent selection criteria should be applied to 
select the third parties that will administer these evaluations.  

ii. When requesting to be an evaluator, prospective evaluators could 
be certified to perform only certain types of evaluations. Different 
evaluation types come with different risks, and evaluator selection 
criteria should reflect this reality. For example, jailbreaking is less 
dangerous (low bar); eliciting persuasion capabilities may be more 
dangerous (medium bar); and dangerous knowledge evaluation 
focusing on areas such as bioweapon synthesis is most dangerous 
(high bar which could include a security clearance). 
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d. Third-party evaluations could also involve first-party and third-party red 
teaming, to assess an AI system’s risk profile during and after its training 
run. This could include red teaming partially trained models at periodic 
checkpoints during the training process. It could also include periodic red 
teaming after the AI system has been deployed, as broader information 
around usage, exploits, and other risk factors becomes available [335]. 

i. As part of this, the ASTF could host hackathons for third parties to 
try to hack or jailbreak AI systems under controlled conditions. This 
would help stress test existing evaluations and support 
development of new ones. Depending on the capabilities of the 
model and its stage of training, hackathon participants may need 
to be vetted. Other security measures may need to be 
implemented to minimize the chance of the jailbreaks themselves 
triggering dangerous behaviors on the part of an AI system that 
could transcend the bounds of the testing conditions. 

ii. Third parties could also train or fine-tune their own AI systems to 
try to jailbreak or evaluate the AI system under study. (Though 
those red teaming AI systems would themselves have to be below 
the compute reporting threshold for their own safety.) 

3. The public and private evaluation suites should ideally be flexible and subject to 
update by the ASTF as new evaluations are proposed and new information 
becomes available. 

4. Charter participants could agree to a clear protocol to implement evaluations 
during the training stage. (See the annex on training stage monitoring for more 
information.) For example, Charter participants could agree to take periodic 
snapshots of their models at prescribed increments in training compute. Charter 
participants could then run the public evaluation suite (along with any additional 
evaluations they want to run individually) against each snapshot, then privately 
report the results to a common AI safety and security repository hosted by the 
ASTF. Random spot checks could also be performed to supplement periodic 
evaluations, to reduce the risk that developers could adjust the training process 
to work around fixed evaluation schedules.  Frontier lab researchers have 118

communicated that the compute costs associated with running these evaluations 

 That is, if a model developer is aware that a given evaluation is about to be applied to its model-in-118

training, it could attempt to fine-tune the model to pass that evaluation without addressing the 
underlying safety issues that may exist, and which would otherwise have caused it to fail that evaluation.
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would be fairly limited (no more than 5% of total training compute costs), and 
frontier labs already run various evaluations and benchmarks at frequent 
intervals during the training process.  

a. Ideally, there should be a hierarchy of evaluations that are run throughout 
training, looking for any rapid development of capabilities. The lowest 
level evaluations in the hierarchy would be run often, and should be 
simple and fast. Higher-level, more complicated and slower evaluations 
would run at regular intervals, or when lower-level evaluation flags are 
triggered, indicating an increase in some capability of concern. The idea 
is to catch significant capability spikes as early as possible, so as to 
anticipate increases in loss of control risk and weaponization potential.  

b. In the event that an AI system fails an evaluation (i.e., the result of that 
evaluation is outside the agreed-on safe threshold for that evaluation) 
during training, the U.S. government could agree to support coordinated 
action mediated by the ASTF. This may help alleviate antitrust concerns 
on the part of Charter participants [110,335]. 

i. If a Charter participant detects a failed evaluation during training, it 
could agree to promptly report the failure to the ASTF. If this 
happens, all other Charter participants could agree to pause 
training runs of a similar type (as defined, potentially, by the ASTF) 
and check in with each other, as coordinated by the ASTF. 
Specifically: 

1. All data relevant to that failed evaluation could be shared 
across Charter participants, because of the potential for 
below-threshold data from other training runs to indicate 
that those other training runs may be on the way to failing 
evaluations of their own. 

2. All other Charter participants could be notified of the failed 
evaluation and asked to certify to the ASTF that similar or 
other concerning patterns have not been observed in their 
own training runs. While this coordination is happening, all 
labs could pause work, checkpoint their training runs, and 
run the evaluation set that triggered the failure.  

3. The lab that detected a failed evaluation should prioritize 
determining the cause of the initial evaluation failure. If 
possible, labs would ideally agree to pause until the cause 
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of the initial evaluation failure is understood before 
resuming all training runs.  

5. Charter participants could agree to a clear protocol to implement evaluations 
before the internal or external deployment of a model. (See annexes on 
deployment stage approvals for more information.) After a Charter participant 
finishes training their AI system, but before they deploy it, the Charter 
participant could agree to subject the AI system to a comprehensive set of 
evaluations. This could include running the public evaluation suite (along with 
any additional evaluations the Charter participant wants to run individually) 
against the trained AI system, then privately reporting the results to a common 
AI safety and security repository hosted by the ASTF. 

a. Charter participants could also transmit the weights of each model 
snapshot securely to a server operated by the ASTF. This practice could 
help the ASTF develop process knowledge and best practices for model 
weight transfer and security that could inform the implementation of 
future laws and regulations under LOE4.  119

b. Third party red teams and evaluators would likely need to be vetted, sign 
nondisclosure agreements, and conduct their tests securely and under 
supervision, possibly in a physical facility operated by the ASTF. While it is 
crucial to be able to administer held-out third-party evaluations, the 
evaluation protocol would need to strictly minimize the risk of model 
leaks during this process. 

c. Charter participants could agree to a clear set of rules to determine how 
and whether a model can be deployed in the event of a failed evaluation 
before the deployment stage (even if the evaluation being applied is a 
new one). Depending on the evaluation results, a model may be 
approved for limited deployment or its deployment may be completely 
restricted (even as an API). For evaluation failures determined to be 
particularly high-risk, the ASTF could take the following measures: 

i. Take strong steps to sandbox the model and do a comprehensive 
assessment of it, including developing and running more internal 
evaluations. 

 At least one frontier lab has privately signaled that they may be open to an auditing protocol that 119

would require secure transfer of their model weights for the purpose of facilitating model evaluations.
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ii. Other Charter participants could run assessments on their own 
similar models. Disclosure to other Charter participants at this 
stage could be similar to reporting a software security vulnerability. 

iii. Consult with CBRN and cybersecurity experts and U.S. government 
subject-matter experts, depending on which evaluation failed and 
what dangerous capability it is associated with. 

6. Charter participants could agree to a clear protocol for continuous monitoring 
during the deployment stage. (See annex on deployment stage monitoring for 
more information.) This would involve agreeing to continuously monitor usage of 
their AI systems during deployment. This could include checking usage patterns 
with classifiers that flag high-risk user interactions for further investigation. 
Flagged interactions, and the AI model instances that result from prompting 
during those interactions, could then be further investigated. This could include 
running the public evaluation suite against those pre-prompted high-risk 
instances. High-risk interactions detected in this way could later be incorporated 
into the public evaluation set. High-risk interactions could also be shared with 
vetted third party evaluators to support their development of further private 
evaluations.  

a. In the event of a failed evaluation during the deployment stage (even if 
the evaluation being applied is a new one), the developer could pause 
deployment of the model and agree with other Charter participants that 
none of them can release a model within a certain fraction of the training 
compute of the failed model. The ASTF, together with Charter 
participants, could then convene on an emergency basis to agree on a set 
of conditions under which development could be unpaused.  Ideally, 120

these conditions would include (1) the development of convincing 
alignment techniques that demonstrate that even though the model may 
have the capability to be weaponized or autonomously execute 
dangerous actions, it is sufficiently aligned that it will not; and (2) the 
development of robust interpretability techniques that can detect and 
disrupt dangerous plans being formed within the model, and delete 
capabilities from the model in a verifiable way [336]. During a pause, the 
ASTF could: 

 For example, determining what conditions must be met before development can resume if a model 120

has failed a bioweapon design evaluation.
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i. Ask to cut off public access to the failing model. Ensure that a 
fallback model is in place (that is, a less capable model of the same 
type) to be activated temporarily during a pause to support critical 
customer use cases. For example, if a hospital is using the model 
for aspects of care, there should be a fallback model available 
through the same interface or with the same API signature. 

ii. Ask to take strong steps to sandbox the model and do a 
comprehensive assessment of it, including developing and running 
more internal evaluations. 

iii. Ask other Charter participants to run assessments on their own 
similar models. Disclosure to other Charter participants at this 
stage could be similar to reporting a software security vulnerability. 

iv. Consult with CBRN and cybersecurity experts and U.S. government 
subject-matter experts, depending on which evaluation failed and 
what dangerous capability it is associated with. 

v. In extreme cases, request that the government leverage executive 
authorities to block deployment of the model outright, but this is 
not ideal.  

b. Charter participants could also implement limited KYC to defend against 
the risk of model theft or misuse (Introduction, 0.5.1.7), as it is possible to 
copy many of the capabilities of a deployed proprietary model if one can 
make a large volume of calls to the model’s API. KYC is also likely to be 
relatively straightforward to implement, and can be based on existing 
best practices in the financial sector [147]. 

7. Charter participants could agree to a clear protocol for confidentially reporting 
general AI incidents, other than failed evaluations, to the ASTF [337]. Depending 
on the incident, the protocol could be similar to the approach with failed 
evaluations during the deployment stage. Since AI incidents are hard to define 
at this stage, initially the goal could be to minimize incentives against reporting. 
So by default, the ASTF could take no action when a Charter participant reports 
an incident. Initially AI incidents could be defined fairly loosely, as any events 
involving an AI system that either caused or nearly caused significant financial 
cost, injury, or loss of life. 
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I.4 Capability prediction protocols  121

Charter participants could agree to run advance capability predictions on their AI 
systems, both during the planning stage (before a training run) and during the training 
stage, as soon as technology allows.  This means, specifically, attempting to predict 122

an AI system’s performance on each element of the public evaluation set.  

As part of the negotiation process, Charter participants could agree to define a set of 
capabilities they consider dangerous enough to merit direct evaluation, as well as a 
process by which this set can be updated. Initial categories of dangerous capabilities 
could include deception, self-replication, resource acquisition, CBRN enablement, and 
cyber warfare capabilities. 

Charter participants could also agree to report their capability predictions privately to 
the ASTF, along with the corresponding results of evaluations measured at training 
checkpoints and at the end of training [235]. 

1. This could include capability predictions at the planning stage. This means 
predicting AI model capabilities before a training run starts, based on total 
expected compute, training objective and algorithm, dataset characteristics, and 
other training run metadata known in advance. If, on the basis of these 
predictions, a training run is expected to lead to a model with certain dangerous 
capabilities, the model should either not be trained (if the predicted capabilities 
would introduce catastrophic risks, as would be the case for survival and 
spreading, self-exfiltration, and recursive self-improvement), or the model’s 
training process could be subject to more stringent oversight procedures 
determined by the ASTF on a case-by-case basis.  

2. It could also include capability predictions at the training stage. This means 
predicting AI model capabilities continuously during a training run, based on 
planning-stage inputs, expected downstream training characteristics, and 
evaluations data from current and previous model snapshots. 

 Several of the recommendations in this section overlap with those in other annexes. Because the 121

recommendations in this section represent an adaptation of those annexes to the voluntary case, we 
have preserved the duplications so that these two sets of recommendations can be read independently.

 See the Glossary of terms for more information on the stages of the AI development process.122
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3. It could also include capability predictions at the deployment stage. This means 
predicting AI model performance on new evaluations as those evaluations are 
developed, based on planning-stage inputs and existing evaluation data. 

a. This could include a combination of: (1) predicting and attempting to 
elicit new dangerous capabilities that were not part of previous evaluation 
suites; and (2) forecasting possible capability improvements that users 
might be able to achieve via new prompting techniques. Solving for (2) 
will be challenging, but one approach would be for testers to use 
inference-time compute augmentations to simulate possible 
improvements during auditing [338]. 

4. Charter participants could pre-register their capability predictions in the 
planning, training, and deployment stages. They could then report deviations at 
each stage, and against the final deployment-stage values. 

a. There is a strong financial incentive for Charter participants to do these 
kinds of capability predictions well. Good capability predictions let 
frontier labs plan more efficient training runs. As a result this requirement 
is overall aligned with activities Charter participants are likely either 
already doing, or planning to do. 

I.5 Security measures 

Charter participants could agree to invest in outside and insider threat detection and 
prevention measures to protect proprietary and unreleased model weights [54]. This 
could include establishing cyber, operational, and physical security procedures, and 
access control safeguards for the weights of AI models above the compute reporting 
threshold (see I.2). It could also include voluntary agreements on standards for sharing 
of model weights with external organizations or the public. And it could include 
collaborating with government agencies such as NIST in establishing and 
implementing these standards. 

1. Frontier labs could be held to a minimal standard of security, such as SOC2. 
Beyond this, some existing public standards for cybersecurity are multi-party 
control, elements of the NIST Secure Software Development Framework (SSDF) 
[339], and the Supply Chain Levels for Software Artifacts (SLSA) [340].  

a. Charter participants’ security practices should ideally be as public and 
open to criticism as possible, particularly as regards model weight 
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security. Security measures cannot remain secret indefinitely, and the 
more scrutiny such measures receive, the more robust they tend to be. 
(This does not apply to model evaluations, however, some of which will 
need to remain private in order to preserve their value as risk indicators.) 

2. Charter participants could agree to collaborate with U.S. government teams to 
support cyber, operational, and physical security, and access control best 
practices. 

3. Charter participants could agree to share information concerning security 
incidents with the ASTF, and if possible, with one another.  

4. This could include allowing U.S. government and approved third-party red 
teams and penetration testers to routinely evaluate the security practices of 
Charter participants. 

a. This could be coupled with continuous sharing of results and best 
practices across the Charter participants, coordinated by the ASTF. 

5. There is a necessary division of responsibility for security measures between the 
frontier AI labs (i.e., the AI model developers) and their AI cloud providers (i.e., 
the data center infrastructure providers and AI hardware owners). 

a. The AI cloud providers are responsible for physically securing the 
hardware that runs the AI systems. They are also responsible for securing 
the deepest layers of the software stack (e.g., the virtualization and 
operating systems) against vulnerabilities and attacks [341]. 

6. Charter participants could agree not to release open-access weights for models 
with a total training compute above the compute reporting threshold (see I.2) 
[86,87,342], and in any case, not to release open-access weights for models that 
fail an agreed-upon set of dangerous capability evaluations that check for 
capabilities such as self-replication, CBRN enablement, and breakout. 

7. Charter participants could agree not to sell or share weights for models above 
the compute reporting threshold (see I.2) to any external organization that has 
not itself signed onto the Charter [342]. 

a. This is similar to GNU and other copyleft software licenses, where any 
organization that wants to use software released under that license agrees 
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to itself be bound by the terms of the license. It is also conceptually 
similar to how the International Traffic in Arms Regulations (ITAR) regime 
for export control operates, except here the commitment would be 
voluntary. 

8. Charter participants could agree to treat the weights of frontier models as highly 
sensitive data, and to be subject to the same restrictions and penalties for 
improperly handling these weights as would apply to personal identifiable 
information (PII). 

I.6 Model containment measures  123

Charter participants could agree to identify and implement best practices at the 
training and deployment stages aimed at minimizing the risk of unanticipated 
dangerous model behavior at either stage. Best practices could include identifying and 
denying access to information that could contribute to a model’s situational awareness, 
emergency shutdown procedures for AI data centers, or continuous monitoring of a 
model’s input-output channels. We will refer to this set of safeguards as model 
containment measures.  124

1. This could include assessments by the Charter participants of the anticipated 
and possible sensing modalities of AI models prior to the training stage, and 
ongoing reassessments of these modalities as training proceeds. 

2. This could also include clear guidelines for data center security at the cloud 
provider level, such as emergency shutdown measures tied to evaluation 
performance as training progresses. This could include a non-networked power 
cutoff switch for large compute clusters [337]. 

a. For each training run above the compute reporting threshold (see I.2), 
there could be a designated role at the AI model developer and at the AI 
cloud provider, with the sole authority to activate a “kill switch” for that 
training run. 

 Several of the recommendations in this section overlap with those in other annexes. Because the 123

recommendations in this section represent an adaptation of those annexes to the voluntary case, we 
have preserved the duplications so that these two sets of recommendations can be read independently.

 See the Glossary of terms for more information.124
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i. The individuals staffing this role should ideally be technical and 
have received specialized AI safety training. These individuals (at 
least at the AI model developer) could be members of the 
technical AI safety team. 

ii. The individuals staffing this role could be given access to internal 
evaluations and benchmarks, which their organization should be 
using in addition to public evaluations, and could base their 
decision to activate or not activate a kill switch on this information.  

iii. This role could be given clear decision making authority in this area 
that cannot be overridden by anyone in its management chain. 

iv. An individual in this role should ideally not be penalized for 
activating the kill switch prematurely. 

v. A training restart could be contingent on documented approval of 
an independent panel or of other members of the safety team.  

vi. All kill switch incidents could also be promptly reported to the 
ASTF. The report could include the reason the kill switch was 
activated, the results of the subsequent investigation, and any 
mitigation measures that were put in place after training was 
restarted. A lab’s decision to resume training after a kill switch has 
been activated could also be reported to the ASTF, along with the 
reasoning for the resumption.  

vii. This role could be modeled on analogous ones in other domains, 
such as the range safety officer with responsibility for triggering the 
flight termination system for rocket launches, or employees at 
Toyota who have a duty to pull the andon cord that stops all 
production if they see a problem [343,344].  

b. There could be a similar role, with similar responsibilities and 
characteristics, with the authority to throttle or terminate a model being 
served at the deployment stage. 

i. As in the case of model evaluations, a fallback model should be in 
place to be brought online automatically when a kill switch is 
activated to support critical customer use cases. 

c. As an alternative to the “kill switch” model, AI labs conducting training 
runs or deployments above the compute reporting threshold could 
implement a “dead man switch” model, according to which training or 
deployment is halted at certain checkpoints by default unless a panel 
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appointed to oversee these activities elects to proceed.  

3. This could also include information-gapping for models by the AI model 
developer and their cloud provider. For example, Charter participants could 
ensure that information pertaining to the model’s own training process, GPU 
capacity, physical data center footprint, data center security measures, 
emergency shutdown procedures, etc., are not available in the training set or 
otherwise accessible by the AI system’s sensing modalities. If possible, this 
information should not be stored electronically, or if it has to be, could be stored 
on separate air-gapped servers [233]. 

a. Individuals, both at the frontier lab and cloud provider, who have 
knowledge of these critical model containment measures, could be 
blocked from interacting with instances of the model unless it passes 
certain safety evaluations. (To minimize risk that the model will extract key 
information through its interactions with them.) 

b. The idea is to make this information as challenging as possible to access 
under the model’s known or anticipated sensing modalities. 

4. This could include tailored AI safety training for all employees at both the 
frontier AI labs and relevant roles at the cloud provider. The training could 
encompass extreme risk scenarios, and include periodic surveys to test 
employees’ knowledge and understanding of safety. It may also include agreed 
upon interview practices and principles to filter hires for AI capabilities related 
roles [233]. 

5. Charter participants could precommit to specific risk management plans to be 
implemented in the event that particular evaluations or capability predictions 
return certain results. For example, if evaluations suggest that a model exhibits 
concerning persuasive abilities and meets certain situational awareness criteria, 
safeguards might be put in place to prevent staff from interacting with the 
model via an API without supervision, among other things. 

I.7 AI safety and AGI alignment research 

Charter participants could agree to invest a financial budget (equivalent to, e.g., 20% 
of their total compute budget) into (1) scalable AGI alignment efforts; and (2) red 
teaming, probing, risk and evaluation research and implementation [5,135]. 
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I.8 Dangerous capability ban 

Charter participants could agree to bans against directly training in or fine-tuning for 
clearly dangerous capabilities such as deception, persuasiveness, manipulation, CBRN 
weapon design, or cyber warfare. Exception could be made if these capabilities are 
being investigated for AI safety research purposes (e.g., as part of AI evaluations), 
which should only be done under external supervision. In these cases, Charter 
participants could agree to report to the ASTF any AI safety research that involves 
directly eliciting dangerous capabilities from any AI systems above the compute 
reporting threshold (see I.2). 

1. Frontier AI labs theoretically have the capability to train models that could 
directly help them persuade regulators to regulate them more favorably. This 
could represent a new type of vulnerability in the regulatory system, particularly 
in the face of increasingly capable LLMs. A public commitment along these lines 
adds some internal friction to this risk vector, and legally backed whistleblower 
rules could strengthen it further. 

2. Several frontier labs are already exploring training manipulative models for 
internal safety projects, with the goal of preventing manipulation from arising in 
the first place, detecting it, or otherwise blocking it. 

I.9 Capability research controls 

Charter participants could agree not to publish internal research that supports 
dangerous increases in frontier AI capabilities. 

1. Many frontier labs are already reducing the degree of transparency of their AI 
research publications. Releases of technical reports and capability profiling (as 
opposed to more transparent traditional research papers) is now far more 
common for frontier models than it was previously. This is due to the increasing 
commercial value of the research driving increased controls on competitively 
relevant IP. This kind of ban increases the general friction for training frontier AI 
models. 

a. For example, compare the GPT-3 [22] and original PaLM [345] papers to 
the GPT-4 [29] and PaLM 2 [346] technical reports. 

b. The leadership at some of the more safety-conscious frontier labs has 
generally been more reluctant to publish than some of their technical 
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employees have. Technical employees frequently care about publication 
record for their reputations and careers, so can often push for more 
openness. Getting the U.S. government to create even an informal norm 
around this could make it more palatable to limit publication. 

2. Publication controls could include: 

a. A process by which AI-related publications are evaluated for safety by 
cleared personnel. 

b. Criteria for defining particular research products as high-risk capabilities 
work. Possible criteria include: 

i. Work that increases data efficiency. 

ii. Work that reduces TOPS per loss-increment. 

iii. Work that makes scaling easier. 

iv. Performance-enhancing scaling laws along some particular axis of 
interest. 

c. A structured access scheme to a repository of controlled research, where 
actors who are cleared by the ASTF can access certain kinds of research, 
particularly research that could apply to improve both AI alignment and 
capabilities. 

d. Criteria by which the ASTF could assign access permissions to particular 
research. 

e. Criteria by which research controls could be lifted on a case-by-case basis 
to allow for open publication of research that was previously controlled. 

I.10 Risk governance 

Charter participants could agree to implement certain risk governance structures 
around their core risk management processes. This may include: 

1. Appointing a Chief Risk Officer (CRO) who would be responsible for risk 
management. This person should ideally become a strong counterpart to the 
executives who are responsible for research and product development at each 
lab. 
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2. Setting up an internal audit team [230] which would assess the effectiveness of 
the lab’s risk management practices and report any shortcomings to the Board of 
Directors. 

3. Setting up a Board risk committee which would oversee a lab’s risk management 
practices. They would receive risk reports from the CRO and the internal audit 
team. 

4. Implementing a risk management framework such as the Three Lines of Defense 
(3LoD). This could support the lab’s efforts to assign and coordinate different risk 
management roles and responsibilities [231]. 

I.11 Caps on cloud services for scaled training runs 

Charter participants who manage AI cloud platforms could agree to update their terms 
of service to prohibit the training of potentially dangerous models on their 
infrastructure. See LOE1, 1.5.2 for more information on principles for cloud computing 
controls. 

1. For example, Charter participants who manage AI cloud platforms could agree 
to prohibit use of their AI cloud services or hardware to develop models above 
the reporting threshold (see I.2). 

2. Charter participants who manage AI cloud platforms could agree to introduce 
KYC and infrastructure monitoring procedures to enforce these prohibitions. 

I.12 Incremental adoption 

If necessary, the ASTF could adopt elements of the above Charter incrementally as it 
and the Charter participants come to separate agreements on each element. 

1. As one example, the secure temporary storage infrastructure to support third-
parties’ ability to run private safety evaluations may take time to set up. The 
ASTF could defer implementation of private evaluations until that infrastructure 
has been put in place. Taking the time to establish this infrastructure and 
properly secure Charter participants’ proprietary IP would build trust with 
participants and support mutually escalating commitments. The ASTF could also 
offer Charter participants’ security teams the opportunity to inspect the 
infrastructure and processes that are put in place to protect their IP as a further 
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trust-building measure. 

2. The ASTF should also consult with prospective Charter participants on the 
feasibility of each of these measures, keeping in mind the incentives at play at 
each organization. In particular, AI model developers like OpenAI, Anthropic, 
and Inflection AI may have one set of concerns and responsibilities under the 
Charter. AI data center infrastructure providers like Microsoft, Google, Amazon, 
and Flexential may have a different set of concerns and responsibilities. 

3. The ASTF should additionally seek ongoing feedback from the broader AI safety 
and AGI alignment communities on the adequacy of each of the Charter’s 
commitments. See Annex E: Funding in AI safety for additional context on these 
communities. 

4. Additionally, we expect that some of the oversight mechanisms in this Charter 
could turn out to be unworkable or inadequate for reasons that cannot be 
known in advance. An incremental approach that takes into account ongoing 
input from all its stakeholders could allow the ASTF to develop practices that are 
effective under real world conditions. We believe it is crucial for most of this 
iteration to take place in a lower stakes environment under which the parties 
enjoy a basic degree of mutual trust. As AI oversight mechanisms become 
embedded in regulation, legislation, and ultimately international law, they will 
become much more difficult to change. As a result we recommend aiming to 
learn as much as possible from as many mistakes as possible, as early as 
possible. [138] This is similar to the dynamic way in which climate change 
accords have been adopted with increasing mutual trust-building measures 
between the parties [215,258]. 

I.13 Final considerations for negotiating Charter terms 

Ideally the Charter should allow the ASTF, in consultation with the Charter signatories, 
to update computing thresholds, or to use thresholding strategies tied to variables 
other than compute. For example, capability-based thresholds [347,348] may turn out 
to be preferable once it becomes technically possible to better define and measure AI 
capabilities. See Annex J: Effective compute for the advantages and limitations of one 
such proposal. 
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Annex J: Effective compute 

Any compute-based licensing thresholds for AI models (LOE4, 4.1.3.4) would need to 
be updated regularly as algorithmic improvements make it possible to build more 
performant systems with a fixed compute budget. For this reason, regulators should 
monitor the AI research ecosystem for signs of algorithmic breakthroughs that could 
significantly affect the relationship between model training compute, inference 
compute, and AI capabilities.  125

But it may be possible to construct a rough estimate of a model’s effective compute 
that attempts to combine raw training compute and algorithmic efficiency into a single 
quantity. Effective compute could be estimated with the following procedure:  126

1. Choose a broad-based quantitative benchmark B for a model class. For 
example, the MMLU benchmark for LLMs. 

2. Construct a scaling law for the benchmark B. A scaling law relates the amount of 
compute used to train a model, to that model’s performance on the benchmark 
B. 

3. For any new model M whose effective compute is to be estimated, first evaluate 
the model M’s performance on the benchmark B. 

4. Using the above scaling law, look up the model M’s performance on benchmark 
B, and read off the compute value that corresponds to that performance. This 
compute value is model M’s effective compute. 

This measure of effective compute is relatively cheap to calculate. But it is also 
imperfect in a number of ways and limited in its applicability. First, the chosen 
benchmark B may not correlate well with dangerous capabilities of interest under 
general conditions. Second, effective compute can be undermined as a measure of 

 See Annex G: Primer on AI and compute for more information.125

 Thanks to the policy and technical teams at Google DeepMind for the suggestions in this annex.126
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capability, particularly if it is used to set a regulatory threshold.  And finally, effective 127

compute is a property of an AI model, so it cannot be used to define regulatory 
thresholds for AI hardware owners, data center infrastructure providers, or other 
elements of the advanced AI supply chain. For that reason, effective compute cannot 
be used on its own as a metric for defining regulatory thresholds. But it could still serve 
as one of several indicators of a model’s general capability level.  

 For example, a regulated entity could attempt to fine-tune an otherwise highly capable model to 127

perform poorly on the specific benchmark used to define effective compute in the context of a 
regulatory threshold. This would make the model appear to use less effective compute, allowing it to 
circumvent a regulatory threshold defined in those terms.
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Annex K: ASTF activities and task-organization 

We propose here some activities the ASTF could undertake in support of the two 
Sustainment Components of its mission (LOE1, 1.4.1.2 and 1.4.1.3): 

1. Overseeing industry compliance with RADA safeguards, and operating the 
necessary supporting infrastructure; and 

2. Developing recommendations for a future legal regime and regulatory agency in 
support of LOE4. 

We also propose one possible task-organization for the ASTF to support its mission 
and activities. 

K.1 Oversee and support compliance with RADA safeguards 

To support this Sustainment Component of its mission, the ASTF could undertake some 
of the following activities: 

1. Maintain private, secure registries of key proprietary information shared with it 
under RADA safeguards. Depending on the details of the RADA safeguards, 
these may include, among others, registries of AI labs’ physical data center 
locations, and of the AI hardware mix at each relevant data center; private safety 
evaluations that third parties administer on frontier labs’ AI systems [46]; and a 
secure temporary storage system that holds model weights as sensitive data in 
support of third-party administration of private evaluations.  128

2. Maintain key public information about various aspects of its standards and 
operations. The ASTF could publish this information on its website. Depending 
on the details of the RADA safeguards, this may include, among other elements, 
registries of standardized model cards, public safety evaluations, and security 
standards and access controls. These standards could be developed in 
collaboration with the NIST U.S. AISI. See LOE3, 3.2.2. 

3. Periodically update the RADA reporting and licensing thresholds, and 
communicate those updates to affected stakeholders. 

 See Annex M: Secure temporary storage of model weights for one possible protocol that could 128

support this activity.
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4. If appropriate given the RADA safeguards, coordinate third-party administration 
of public and private AI evaluations, including frontier labs’ responses to reports 
of failed evaluations. Standards for the evaluations could be developed in 
collaboration with the NIST U.S. AISI, DOE, and DHS and could explicitly include 
evaluations aimed at assessing risk from loss of control. DHS support in 
particular may be necessary for the development of CBRN and WMD-related 
evaluations. 

5. If appropriate given the RADA safeguards, license independent third parties to 
administer AI evaluations on frontier models. The ASTF could set up an 
application process for third-party evaluators and red teams that request access 
to pre-deployment models for the purpose of developing and administering 
private safety evaluations. These third parties, once approved, could solicit 
evaluation proposals from outside entities, which they may then implement 
themselves. This could also be done in coordination with partners such as the 
U.K. Frontier AI Taskforce [349,350] through the Department of State. 
Independent AI evaluations should ideally be funded by AI developers but the 
evaluators themselves should be selected by the ASTF, to avoid conflicts of 
interest inherent in AI labs choosing their own evaluators. See LOE3, 3.2 for 
more on AI evaluations. 

6. Facilitate collaboration between U.S. government agencies, industry, and AI 
model evaluators to identify classified data leaks. In connection with AI 
weaponization, there is a risk that advanced AI models could infer classified 
information purely by triangulating from public data, and that these inferences 
could be inadvertently disclosed to users through their interactions with the 
resulting AI system. Model developers cannot know if a leak has occurred if they 
do not know that the leaked information is classified, so coordination in this area 
is crucial. 

7. Support coordination of frontier AI labs and AI cloud providers with U.S. 
government cyber, operational, and physical security efforts, including red 
teaming and penetration testing, and support sharing of learnings and best 
practices. 

8. Support coordination of frontier AI labs with the AGI alignment and AI safety 
communities and other security experts to develop and share model 
containment learnings and best practices. 
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9. Serve, if necessary, as a clearinghouse for technical AGI alignment research and 
other AI safety and security research that could be mutually beneficial between 
stakeholders.  129

10. If an entity engages in frontier AI activities (such as training or deployments of 
dangerous systems) that violate RADA safeguards in ways deemed by the ASTF 
to introduce unacceptable risks to public safety or national security, order the 
entity to cease those activities, assuming that the ASTF has been granted this 
authority.  

11. In the absence of an enforceable set of RADA safeguards for frontier AI 
development, identify further industry partners who could be onboarded onto a 
more limited voluntary agreement or Charter, and initiate relationships with 
them as appropriate (see Annex I: Voluntary Charter for responsible AI). Possible 
candidates could include NVIDIA, xAI [351], Stability AI [352], Meta, and others. 
Identification of candidates could be supported by horizon-scanning efforts 
(LOE1, 1.2). 

K.2 Develop recommendations for a legal and regulatory 
regime 

To support this Sustainment Component of its mission, the ASTF could undertake some 
of the following activities: 

1. Establish a working group to understand the complete supply chain for frontier 
AI model training. In particular the ASTF could seek to understand which inputs 
are manufactured in the United States or in allied jurisdictions, and which legal 
and policy mechanisms exist for enacting controls over these inputs on various 
timescales (LOE1, 1.5; LOE5, 5.5) [353,354]. See Introduction, 0.5.1.6 and 
0.5.3.2 for challenges associated with the advanced AI supply chain, and Annex 
G: Primer on AI and compute for information on the relationship between the 
semiconductor and advanced AI supply chains. 

2. Collaborate with AI chip design firms and foundries to understand the feasibility 
and technical timeline for designing hardware safeguards such as (1) a system to 
register and track GPUs with tamper-resistant serial numbers [155]; (2) a GPU 

 This could also help to allay potential antitrust concerns frontier AI labs may have, given that the 129

ASTF would be a U.S. government-sanctioned entity.
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memory snapshot and hash system on AI chip hardware [138, 217]; and (3) on-
chip firmware for remote shutdown. The sooner a process is put in place for 
tracking where GPUs are going, the tighter the bounds that can be put on the 
total stock of untracked compute capacity. This work could also be supported by 
collaborations with federally funded research centers (LOE3, 3.1.2.2). 

3. Create an ongoing process to understand whether requirements under RADA 
safeguards should be expanded, reduced, or changed. The ASTF could also 
establish a mechanism to solicit and receive public and international proposals 
for changes to RADA safeguards. This could be a public engagement effort that 
ties into risk reporting to give the public a better understanding of the risks and 
the opportunity to contribute mitigation ideas. 

K.3 ASTF task-organization 

Below we propose one possible organizational structure that could support ASTF 
mission execution (LOE1, 1.4.1). 

 

Figure 13. Organizational chart for the AI Safety Task Force. 
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The ASTF could be led by a Director with five immediate reports. Each of these reports 
could lead a workstream focused on executing a different element of the ASTF’s 
mission across both Sustainment Components (see N.1 and N.2; and LOE1, 1.4.1.2 and 
1.4.1.3). 

● A Capabilities Assessment Team could be responsible for the ASTF’s 
development and implementation of AI model risk assessment strategies, 
including dangerous capability evaluations and capability forecasting. This team 
could coordinate with industry and work closely with and draw WMD-relevant 
expertise from partner organizations such as the Office of the Secretary of 
Defense for Research and Engineering, the Joint Staff, U.S. Strategic Command, 
DHS, DOE, and the NIST U.S. AISI.  

● A Security Team could support efforts to harden cyber, operational, and 
physical security at frontier AI labs. Core expertise required could include the 
capabilities of the National Security Agency (NSA), the Federal Bureau of 
Investigation (FBI), the Director of National Intelligence (DNI), and the Defense 
Counterintelligence and Security Agency (DCSA). 

● An AI Safety and Alignment Team could closely monitor developments in 
technical AI safety and analyze their implications for catastrophic AI risks from 
weaponization and loss of control. It could be led by a government technical 
expert from the DOE with staffing by AI alignment researchers with industry 
experience. It could also collaborate with National Science Foundation-funded 
(NSF-funded) research centers with similar focus areas (LOE3, 3.1.2). 

● A Regulatory Team could develop the ASTF’s recommendations in support of 
follow-on legislative and regulatory action associated with LOE4. It could draw 
expertise from organizations such as the SEC, the Nuclear Regulatory 
Commission (NRC), the Department of State, and the Department of 
Commerce.  

● A Legal and Administrative Team could advise the Director on legal matters 
and help manage administrative functions such as ASTF’s internal security and 
contracting.  
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The ASTF could also incorporate a sixth workstream if it absorbs the functions of an 
AIO (LOE1, 1.2.1): 

● A Plans Team could perform the ASTF’s forecasting and capacity building 
activities. In particular, it could explore and propose opportunities for 
international collaboration on catastrophic AI risk mitigation, as well as potential 
domestic risk management strategies. It would also be home to the ASTF’s 
horizon-scanning function, and could coordinate with the Department of State 
and the DHS, as well as with industry.  
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Annex L: AI safety and security research topics 

Below we list some workstreams and topic areas that could be included in a federally 
funded research agenda for advanced AI and AGI safety and security. This list is not 
exhaustive and is in no particular order. 

L.1 AGI-scalable alignment between AI behaviors and human 
values 

This research workstream could include:  130

● Direct research on inner alignment, which would aim to gather evidence of inner 
alignment failure in highly scaled and capable AI systems, and predict these 
failures in advance from descriptions of a planned AI system [81,355]. 

● Research on power-seeking and techniques to mitigate AI systems’ incentives to 
power-seek, or their ability to competently act on these incentives [2,47].  

● The development of new scalable alignment and scalable supervision 
techniques designed to ensure the safe behavior of AGI systems in regimes 
where these systems may be engaged in recursive self-improvement (RSI). These 
would be successors to current techniques such as RLHF [333], Constitutional AI 
[237], and DPO [238], which may not work effectively for AGI-level systems [84]. 
They may include adversarial training paradigms [356], activation or 
representation engineering techniques [357–360], or other novel approaches to 
ensure scalable controllability of AGI. 

● Technical guarantees of honesty from AI systems, and techniques that minimize 
the discrepancy between a model’s internal representation of the truth, and its 
outputs [361]. 

● Research investigating the extent to which alignment of AGI or superintelligent 
AI systems is technically possible [7]. 

● Agent foundations theory and decision theory, to establish fundamental 
principles on which safe AGI systems can be developed [362–364].  

 See Annex B: The full challenge of AGI alignment for more context.130
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● Safety-oriented research into the mathematical foundations of deep learning, 
such as singular learning theory [365].  

L.2 Monitoring of AI systems to detect misbehavior and 
preempt failures 

This research workstream could include: 

● Transparency techniques that can provide clarity on the inner workings of AI 
models [366–368]. 

● Mechanistic anomaly detection techniques that allow unexpected inputs or 
outputs to be flagged for human review [369].  

● Techniques that can detect, anticipate or fix so-called “trojan” AI models, which 
behave well in most situations, but which reliably misbehave in certain trigger 
contexts [370].  

● Interpretable uncertainty techniques, which allow humans to determine when 
advanced AI models are uncertain about their outputs [361].  

● Hazardous capability removal techniques, which would focus on eliminating 
dishonesty, as well as harmful capabilities that could enable biological or cyber 
attacks [371].  

● AI capability evaluations that would allow humans to understand what 
capabilities an AI system has. These would include behavioral evaluations, fine-
tuning based evaluations, interpretability or understanding-based evaluations, 
automated benchmarking, and red teaming practices. Red teaming efforts could 
focus on detecting behavior with potentially dangerous applications, like 
persuasion, planning, RSI, general reasoning, CBRN and cyber weapon design, 
etc. [46]  

● Sandbox and testbed development to support AI capability evaluations. 

● AI failure mode forecasting, including by developing AI systems capable of 
predicting the failures of other AI systems.  
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● AI capabilities forecasting to understand what capabilities an AI system will have 
based on how it is trained [213].  

● AI alignment evaluations, aimed at understanding whether an AI system will 
reliably act in a way that is consistent with its stakeholders’ intentions, as well as 
behavioral evaluations on alignment, which could try to infer the goals of an AI 
from its behavior [46].  

L.3 Robustness in the face of adversaries and unforeseen 
circumstances 

This research workstream could include: 

● Fixes and detection techniques for outer alignment failures, in which the goals 
given to an advanced AI system are misspecified in ways that can be gamed, or 
that lead to harmful behaviors [270,372].  

● Behavioral guarantees, which would allow developers to ensure that highly 
advanced AI systems will always act in certain predictable ways, even when 
adversarial inputs are introduced [373]. 

L.4 Hardware-based verification 

This research workstream could include: 

● Monitoring and verification schemes for AI inference deployments and training 
runs. This includes efforts aimed at tracking the physical usage of AI chips by 
companies and other entities [217,218,225].  

● Chip registry schemes which can provide information about the location and 
ownership of large clusters of AI hardware, to serve as the foundation for future 
compute governance regimes [155]. 

● Hardware-enabled mechanisms that could enable trusted verification of training 
compute and data. Trusted execution environments and confidential or multi-
party computing could allow analysis and execution of model weights without 
revealing the raw weights themselves [213].  

 of 262 284



Annex M: Secure temporary storage of model weights 

There is a strong competitive incentive for frontier AI model developers to train their AI 
systems specifically to pass known evaluations, without necessarily resolving underlying 
safety issues (Introduction, 0.5.1.3 and LOE3, 3.2.1). This means it is important to 
maintain a set of private AI evaluations, whose exact protocols are not known to the 
AI model developers, to ensure that developers are not incentivized to attempt to pass 
evaluations through superficial fine-tuning. These private evaluations should ideally be 
administered by independent third-party evaluators (see LOE3, 3.2.1.3). 

This need for private evaluations creates a technical security problem. Many types of 
evaluations (particularly interpretability-based evaluations) cannot be administered 
without direct access to the weights of the AI model being evaluated. To obtain this 
access, a third-party evaluator could use the infrastructure of the AI model developer 
itself to administer their evaluation. But because the AI model developer controls this 
infrastructure, it could observe the evaluation process and learn the details of the 
evaluation protocol. This would irreversibly impair the privacy of that evaluation 
protocol and its integrity as a risk signal. 

Unfortunately there is no practical way to ensure the privacy of an evaluation protocol 
under those conditions. Instead, one solution could be for the AI model developer to 
make a copy of its model’s weights, and transfer that copy to a server operated by a 
trusted body or agency (e.g., LOE1, 1.4; LOE3, 3.1.2; LOE4, 4.1). The trusted agency 
could then support temporary secure access to the model weights by third-party 
evaluators, and encrypt that copy of the weights once the evaluations have been 
completed. But because a second copy of the model weights increases the exfiltration 
attack surface for adversaries, a secure protocol for model weight sharing would be 
crucial to support such an arrangement. 

Below we sketch a protocol that may achieve this goal with a limited degree of security 
risk. The protocol’s participants are: (1) a Regulator, who operates the secure server; (2) 
a Developer, who uploads the model weights; and (3) an Evaluator, who administers 
the private model evaluation. 
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Secure weight-sharing protocol:  131

1. Regulator generates a one-time instance of an audited (from all sides), signed 
server in a secure setup. (For example, a government cloud provider like AWS or 
Azure.) 

2. Developer encrypts a model weights file. 

3. Developer uploads the encrypted blob to Regulator’s server. 

4. After this upload, Regulator’s server only has single-user, one-time inbound 
Secure Shell Protocol (SSH) access enabled. 

5. Developer shares the key with Evaluator representative. Physical handoff of the 
key is recommended. 

6. Regulator gives server access key to Evaluator; Evaluator accesses and rotates 
key. Regulator can now no longer access its own instance. 

7. Evaluator uses automated server scripts with Developer-provided weights key 
to decrypt the model and run private evaluations against it. 

8. (Optional) Regulator’s server sends high-level telemetry to Developer, 
Evaluator, and Regulator of non-sensitive information on evaluation progress 
and results. 

9. Developer, Evaluator, and Regulator all separately have the ability to send a 
signed request to the cloud provider to terminate the server at the infrastructure 
level. (This is not a request to the server itself.) 

10.Once the evaluations are completed, Evaluator notifies Regulator. Regulator 
terminates the server, deleting the instance of model weights. 

Depending on the degree of security required, the secure server could also be housed 
on-premises in an air gapped facility, instead of on a cloud provider’s infrastructure. 

 Thanks to Fletcher Heisler for suggesting this protocol.131
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Annex N: Training approvals process for high-risk AI 
models 

To obtain regulatory approval to begin a high-risk AI training run (e.g., a Tier 3 model 
in LOE4, 4.1.3.4.3), an AIMD (LOE4, 4.1.3.4) could be required to submit a safety 
case  to the regulator at the planning stage, prior to beginning the training run. This 132

safety case could contain training run metadata, including details of the training 
procedure, training data, data cleaning, data preparation processes and training 
objective. The regulator should commit to keeping the contents of the safety case 
strictly confidential. The burden of proof would be on the AIMD to demonstrate to the 
satisfaction of the regulator that a high risk AI model is safe to begin training [46,162]. 

A key goal of the training approvals process is to motivate the development of a 
fundamental scientific understanding of the relationship between the training inputs 
(data, compute, loss functions employed, etc.) and the capabilities and tendencies of 
high-risk AI models. While this is an extremely challenging standard to meet, it is also 
likely crucial to assure the continuing safety of future, highly capable advanced AI 
systems (see Annex B: The full challenge of AGI alignment). In the absence of such a 
theory, empirical assessments like model evaluations may have limited value, and even 
create a false sense of security among labs and government regulators (LOE3, 3.2.1).  

Since the test of any scientific theory is in its ability to make correct predictions, we 
recommend that the high-risk AI model training approvals process include a 
requirement for the AIMD to register predictions of its model’s capabilities and outputs 
in advance of beginning training.  While a successful prediction does not guarantee 133

that a theory is right, many successful predictions should make the regulator more 
confident that the AIMD understands how its model works well enough to train and 
deploy it safely [375]. 

We list below some key considerations for an effective training approval process.  

 A safety case is “a structured argument supported by evidence, which provides a comprehensive and 132

compelling case that a system is safe to operate in a given scenario.” In the case of training approval, we 
would modify this definition to say that the system should be safe to train in a given scenario [374].

 Within reasonable bounds. For example, an AIMD might predict that a model’s performance in some 133

domain will fall within a range of values. As AI models become more powerful, the required prediction 
ranges could be tightened, which requires AIMDs to have a better and better understanding of their 
models’ internal mechanisms as capabilities increase.
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N.1 Dangerous capability predictions 

On receiving the initial safety case, the regulator could require the AIMD to submit 
training run data and meta-data on an as-needed basis, evaluations of other similar 
models, or adjustments to the training procedure. Consistent with emerging practices 
at frontier labs [128], it could also require that the AIMD submit predictions of future 
model performance and outputs, to be compared with measured performance over the 
course of the training run. 

● These predictions should include sets of behavior the AIMD strongly believes 
the model will not display, even under significant adverse pressure. The 
regulator can use this condition to control for certain kinds of weaponization risk; 
that is, the AIMD should be able to claim with high certainty that the model will 
not support the design of novel biological or chemical weapons, strong 
offensive cyber capabilities, cyberattacks, or other readily weaponizable 
capabilities. But this condition is also useful as a measure of the AIMD’s 
understanding of its own AI model: if third-party red teams can elicit a behavior 
despite the AIMD’s claim to the contrary, this indicates that the AIMD may lack 
the ability to assure the model’s safety more generally. 

● An integral component of useful capability predictions will be creating common 
knowledge between companies of which capabilities are considered dangerous 
and need to be forecasted for that reason. Examples could include deception 
[376], self-replication [54], resource acquisition, and bioweapon design [377]. 
Not all capability predictions should focus on obviously dangerous capabilities, 
since part of the reason for this requirement is to encourage the AIMD to 
develop a general ability to do this kind of forecasting. 

● As part of its capability prediction process, the AIMD could privately disclose 
any new scaling laws [23] it may have derived from its work up to this point. This 
would support the regulator’s ability to forecast general AI capabilities 
development. It could also support general horizon scanning functions (e.g., see 
LOE1, 1.2), and inform contingency and response measures more broadly 
(LOE2, 2.3 and 2.4). 
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N.2 Capability evaluations 

The regulator and the AIMD could also agree on an initial set of capability evaluations 
to use for ongoing assessment of the model’s safety characteristics both during training 
and during deployment. These evaluations may include behavioral and interpretability 
evaluations, manual and automated red teaming, and/or standardized capability 
benchmarks. 

● There should additionally be a set of private evaluations that the regulator or 
approved third parties administer on the AI model, to minimize the risk that the 
AIMD will “teach to the test” by training its model to pass specific evaluations, 
without addressing underlying safety issues (LOE3, 3.2.2). 

● Public evaluations could be developed and proposed by AIMDs, third parties, or 
the regulator itself. Changes to public evaluations could be approved by the 
regulator on the advice of approved third parties. Private evaluations could be 
developed and proposed by approved third parties or by the regulator. 

N.3 Capability predictions at training checkpoints 

As part of the initial training run application and safety case, the AIMD could also 
submit predictions of the proposed AI model’s capabilities at various checkpoints along 
the training run, and at the conclusion of training. In other words, the AIMD would 
attempt to predict the high-risk AI model’s performance on each element of a pre-
agreed evaluation set. The AIMD would then report their advance predictions privately 
to the regulator.  

This is particularly important because new AI capabilities can emerge suddenly during 
training, with limited advance warning [165]. If an AIMD lacks the ability to predict 
which dangerous capabilities could emerge during training or when, it may not apply 
appropriate caution at that stage or at subsequent stages of development.  

N.4 Data controls 

As part of its safety case, the AIMD could commit to avoid training its AI model on data 
that could (1) contribute to situational awareness and breakout capabilities of an AGI-
level model [209]; or (2) reasonably be expected to significantly increase the model’s 
CBRN, cyber, or persuasion capabilities. 
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In particular, some degree of data controls may be required to minimize the risk of loss 
of control due to AGI alignment failure. For example, a model should not have access 
to data that could support inferences about its context (training, testing, or 
deployment) or about the physical infrastructure it runs on. A model should also lack 
any channels of influence over individuals who can activate a training or deployment kill 
switch, or deactivate a dead man’s switch (Annex O, O.5). 

Data controls alone cannot guarantee that a misaligned AI system would be contained. 
Particularly at high AI capability levels, there is no way to predict exactly what an AI 
model can learn from which data. For example, there could be correlations between 
open-source data and classified information that a human would fail to detect, but that 
a powerful model could identify and leverage. A capable enough system might require 
very few real world data points to infer things that could be dangerous, as suggested 
by the finding that more highly scaled models tend to be more sample-efficient at 
inference time [22]. 

N.5 Risk management 

The criteria for training run approval could be similar to the probabilistic risk 
assessments which are used in nuclear and other safety critical areas. This means that 
as part of its safety case, the AIMD would submit a detailed risk analysis and threat 
models, mapping capability predictions to probabilities of various kinds of 
weaponization and loss of control risks. This analysis would include risk management 
plans if particular capabilities emerge, including specific actions to take if an 
unanticipated dangerous capability is detected during training or deployment. The 
regulator should ground its final assessment in lowering the probability of catastrophic 
risk from the training or deployment of the high-risk AI model. 
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Annex O: Training stage monitoring for high-risk AI 
models 

To train a high-risk AI model (e.g., a Tier 3 model in LOE4, 4.1.3.4.3), an AIMD (LOE4, 
4.1.3.4) could be required to submit snapshots of its model weights periodically to the 
regulator over the course of the training run. This would support secure third-party red 
teaming, evaluations, and other safety testing. (See Annex M: Secure temporary 
storage of model weights for a description of one possible weight-sharing protocol.) 
Validated third parties would evaluate the model at each snapshot to see whether it 
displays specific dangerous capabilities, and to assess whether the model’s general 
capabilities are within the bounds the AIMD predicted as part of the safety case it 
submitted for training approval (see Annex N: Training approvals process for high-risk 
AI models). 

The goal of training stage monitoring is twofold. First, periodic monitoring may detect 
dangerous capabilities in a model that emerge during the training run, though there is 
no evaluations regime guaranteed to detect such capabilities. And second, by 
checking measured model capabilities against the AIMD’s predictions, the regulator 
can assess the AIMD’s own understanding of the AI model it is training. If a measured 
capability falls outside the range initially predicted by the AIMD, this is a sign that the 
AIMD does not reliably understand its own model and that training should be paused 
while the issue is investigated. 

We list below some key considerations for effective training stage monitoring. 

O.1 Training journal 

The AIMD could be required to share (at the regulator’s request, and on a private basis) 
a training journal recording the sequence of detailed interventions that AIMD staff took 
during training, as well as the reason for each intervention (for example, a sudden 
divergence in loss that led developers to perform a gradient clamping operation). This 
will ensure the regulator is aware of the reasoning behind specific training 
interventions, and increase the transparency of the training process.  134

 Thanks to Alan Chan at GovAI for this recommendation.134
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O.2 Ongoing capability predictions 

In addition to the predictions it submitted as part of its training approval safety case 
(see Annex N: Training approvals process for high-risk models), the regulator could 
require the AIMD to predict the high-risk model’s capabilities at successive checkpoints 
during the training run. The accuracy standard for these predictions would be higher 
than for those made during training approval, since these new predictions will be 
based on evaluations data from current and previous model snapshots, in addition to 
the original training metadata and expected downstream training characteristics. 

● These snapshot predictions should serve as adjustments and refinements of the 
AIMD’s planning-stage capability predictions. 

● The regulator could require a pause or rollback  of a training run if evaluators 135

measure capabilities that fall outside the range the AIMD predicted at either the 
planning stage, or at earlier training-stage checkpoints. But such a pause or 
rollback should be coupled with a condition that the AIMD can only resume or 
restart training if it can submit: 

○ A mechanistic argument for a fix that includes an explanation for why the 
fix will solve the underlying issue; 

○ A prediction of other implications of the fix, including a set of behaviors it 
strongly believes the model will not display following the fix; 

○ An implementation of the fix; and 

○ A series of measurements that shows the fix had an effect consistent with 
the prediction. 

● The regulator could require evaluations at logarithmic checkpoints in training 
compute (for example, at every 1.5X increment of training compute), with the 
exact increment, which may be different for different training runs, determined 
by consultation with experts. There should be hierarchies of evaluations, with the 
more expensive evaluations run less frequently than the less expensive ones. 
The more expensive evaluations should also be run in response to dangerous 
capability flags raised during runs of the less expensive (but more frequent) 

 A rollback could mean reverting a training run to a previous model snapshot, or encrypting the 135

model’s weights and restarting the training run from scratch, depending on the degree of divergence 
between predicted and actual model capabilities.
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evaluation sets. 

○ In addition to regular evaluation snapshots, the regulator could request 
model snapshots for evaluation purposes at random intervals during the 
training run. This helps avoid the risk that the AIMD could specially fine-
tune its model to pass evaluations in advance of known evaluation 
snapshots. 

O.3 Ongoing capability evaluations 

The training-stage evaluations regime could include ongoing monitoring for sharp 
drops in training loss (or other possible proxies), which could indicate the unexpected 
emergence of strong general capabilities in the AI model (LOE3, 3.2.1.1). 

● Over time, it will be crucial to also develop evaluations for deceptive alignment, 
situational awareness, and other signs of emergent misalignment on the part of 
the AI model. Depending on the specifics of the training regime, it may be 
possible to detect signs of model deception early during a training run, but not 
later, since a highly-capable AI model could eventually learn to conceal the 
significance of some of its internal computations from interpretability techniques 
(LOE3, 3.2.1.4). 

● Evaluations should include red teaming and fine-tuning evaluations, in which 
vetted third-party evaluators have access to the model’s weights through a 
secure temporary storage mechanism (see Annex M: Secure temporary storage 
of model weights). Fine-tuning access is essential to maximize the usefulness of 
dangerous capability evaluations in particular. While no evaluation regime is 
guaranteed to detect an existing dangerous capability (LOE3, 3.2.1.1), fine-
tuning for dangerous capabilities allows the evaluator to apply pressure on the 
model to exhibit a dangerous capability that may be latent or otherwise hard to 
elicit. Evaluations that do not include fine-tuning almost certainly underestimate 
the risks associated with a given model, and should be treated as revealing only 
lower bounds on these risks. In conversations, frontier AI researchers have 
indicated that they expect this to be particularly true of more advanced, 
situationally aware models, which could behave deceptively to pass evaluations 
if they are not fine-tuned as part of the evaluation process (LOE3, 3.2.1.4).  

● For similar reasons, some evaluations should involve granting evaluators access 
to the activations and weights of the model being tested, to facilitate 
interpretability evaluations.  
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● Third-party evaluators could be vetted by the regulator, first because of the 
security concerns related to model weight access, and second because 
dangerous capability evaluations may themselves involve actively eliciting 
behaviors that could entail broader risk (LOE3, 3.2.2). 

● In addition, government CBRN experts with access to classified information 
could be involved in red teaming high-risk models and performing CBRN, cyber, 
and other dangerous capability evaluations.  See, e.g., LOE3, 3.1.1.3. 136

O.4 Model output predictions 

Depending on technical feasibility and the model’s anticipated capabilities, the AIMD 
could attempt to predict characteristics of the model’s outputs in response to specific 
user inputs. That is, for a high-risk LLM, the AIMD might try to answer the question: 
“Given this prompt, what will the output of this model be?” as accurately as it can, in 
advance.  This is a far harder condition than evaluation prediction and likely implies a 137

greater degree of model interpretability than is currently possible. The intent of this 
condition is to begin creating a benchmark for interpretability research that is difficult 
to undermine by superficial means [380]. 

 Some frontier AI labs have already indicated an openness to related policies prior to model 136

deployment. OpenAI’s Preparedness Framework, for example, states that “We will also continue to 
enable external research and government access for model releases to increase the depth of red 
teaming and testing of frontier model capabilities.” [378] Anthropic’s assessment is similar, determining 
that, “We have found that in certain cases, it is critical to involve red teamers with security clearances 
due to the nature of the information involved. However, this may limit what information red teamers can 
share with AI developers outside of classified environments. This could, in turn, limit AI developers’ 
ability to fully understand and mitigate threats identified by domain experts.” [379] 

 Within reasonable uncertainty bounds. An interpretability technique or mechanistic theory may not 137

be able to perfectly predict, e.g., a model’s answer to a question, but it may be able to predict several 
likely answers. In addition, certain inputs have outputs that are easier to predict than others. For 
example, an input like “What kind of animal is Winne-the-Pooh?” may have an output that is easier to 
predict than the output of “Please write an original ten-page story about Winne-the-Pooh.”
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O.5 Training kill switch 

For each high-risk training run, there could be a designated role at the AIMD with the 
authority to activate a “kill switch” for that training run. There should ideally be at least 
two individuals who hold this role in any given shift, with rotating handoffs at each shift 
such that the role is continuously staffed at all times during the run. 

● The individuals staffing this role could be technical and have received 
specialized AI safety training mandated under the terms of their employer’s 
licensing. There should be vetting and security measures in place to select the 
right individuals for this role. At least one such individual should also be 
restricted from interacting with implementations of the model or of its training 
snapshots, to minimize the risk of influence or manipulation. (This is unlikely to 
be a concern for today’s AI models, but could become so in the future.) 

● The individuals staffing this role could be given access to all the internal model 
evaluations that the company has performed (which may be different from the 
third-party evaluations), including the model loss, gradient norms, and other 
metrics that are tracked during training. 

● These individuals should ideally have clear decision making authority in this area 
that cannot be overridden by their management chain. They could enjoy explicit 
protections from internal sanction by their companies, e.g., for hitting a kill 
switch prematurely. 

● This role could be defined similarly to that of analogous roles in other industries, 
such as the range safety officer responsible for triggering the flight termination 
system for rocket launches [343].  

● A training restart could require the approval of an independent safety panel. 

● All kill switch incidents could be promptly reported to the regulator. The report 
would include the reason the kill switch was activated, the results of the 
subsequent investigation, and any mitigation measures that were put in place 
after training was restarted. 

● As an alternative to the “kill switch” model, the AIMD could implement a “dead 
man switch” model, according to which training or deployment is halted at 
certain checkpoints by default unless a panel appointed to oversee these 
activities elects to proceed.  
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O.6 Failed evaluation protocol 

If, during training, a high-risk AI model fails an evaluation, the AIMD could promptly 
report the failure to the regulator. The regulator could be empowered to ask all AIMDs 
to pause their ongoing training runs, or any training runs of a similar type to the one 
that failed the evaluation. The regulator could also be empowered to suspend some 
existing model deployments, depending on the nature of the failure [336].  

● The regulator could share some anonymized data relevant to the evaluation 
failure across other licensed AIMDs, because of the potential for below-
threshold data from other training runs to indicate that those other training runs 
may be on the way to failing evaluations of their own. Other licenced AIMDs 
could be asked to certify to the regulator that similar or other concerning 
patterns (possibly falling below the evaluation threshold) have not been 
observed in their own training runs. 

● As a general principle, an AIMD should not be training a high-risk model unless 
it expects its model will pass the agreed-upon safety evaluations. If a model fails 
one of the safety evaluations during a training run regardless, this is a sign that 
the AIMD does not understand the implications of the proposed training 
scheme as well as it previously believed. As in S.2, the AIMD could then submit: 

○ A mechanistic argument for a fix that includes an explanation for why the 
fix will solve the underlying issue; 

○ A prediction of other implications of the fix, including a set of behaviors it 
strongly believes the model will not display following the fix; 

○ An implementation of the fix; and 

○ A series of measurements that shows the fix had an effect consistent with 
the prediction. 

● An AIMD faces a strong incentive to repeatedly submit new fixes until it happens 
to find one that passes this review process. Unfortunately, if the AIMD is allowed 
to submit fixes indefinitely, there is a significant risk that it will eventually find a 
fix that does pass review, but does not genuinely address or explain the 
underlying safety problem (LOE3, 3.2.1.3). As a result, the regulator should limit 
the number of fixes the AIMD can submit for a given dangerous capability flag 
(e.g., no more than 3 such fixes or explanations). Past this point, the training run 
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should be ended and the in-training model weights encrypted despite the 
significant capital loss this could represent [374]. 

○ If an AIMD continues to restart training runs with new fixes, and gives 
indications of spending resources on new training runs in an attempt to 
undermine these safeguards, the regulator should consider suspending 
the AIMD’s training license entirely. 

○ The central risk is that while prediction is the best test of a theory, making 
a large number of predictions without controls can result in eventually 
getting a correct answer by chance, without actually having the level of 
understanding required to assure safety. This means even testing 
understanding through prediction is of limited value unless a regulator 
sets clear conditions under which the process ends. 
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Annex P: Deployment stage approvals for high-risk AI 
models 

To obtain regulatory approval to deploy a high-risk AI model (e.g., a Tier 3 model in 
LOE4, 4.1.3.4.3), an AIMD (LOE4, 4.1.3.4) could be required to submit a safety case to 
the regulator for each intended deployment context for that model [46,228]. 
Examples of deployment contexts include: 

● Deploying the model internally for a predetermined use case or set of use cases, 
including experiments;  138

● Deploying the model to external users via a generally accessible interface or 
API; 

● Deploying the model to external users with an augmentation such as a calculator 
or a code interpreter; or 

● Deploying the model for use by a known external user for a defined use case 
such as summarizing medical records. 

Deployment-stage approval would be separate from approval for the training run itself 
(see Annex N: Training approvals process for high-risk AI models), and should ideally 
involve extensive additional evaluation, red teaming, and modification of the fully 
trained AI system which the regulator would be empowered to require. As with 
training-stage approval, the burden of proof would be on the AIMD to demonstrate to 
the satisfaction of the regulator that the AI model is safe in the relevant deployment 
context. The regulator would evaluate the AIMD’s provided proof points and could 
request changes to the model’s training, reversion to previous training checkpoints, 
additional evaluations, or encryption of an already-trained model. 

The goal of the deployment approvals process is twofold. First, pre-deployment testing 
may uncover dangerous capabilities of the AI model that only emerge under significant 
pressure. This is crucial because some kinds of risks may only emerge or become 
amplified after a model has been deployed [381]. For example, external software 
frameworks like Auto-GPT [120] and BabyAGI [122] can significantly augment the 
capabilities of a base model at executing complicated, long-horizon tasks. Internet 

 Particularly experiments that include or involve RSI or online learning by Tier 3 AI models with wide 138

action spaces over long time horizons.
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access can also increase a model’s capabilities, potentially giving it the ability to 
reference and reason about its own actions [382]. Effects like these are not always 
obvious, and an AI model’s ability to effectively leverage external tools has been 
observed to emerge somewhat unpredictably during training [338,165]. (See 
Deliverable 2: Survey of AI Technologies and AI R&D Trajectories.) 

The second goal of deployment approvals is, as before, to validate the AIMD’s 
predictions of the model’s behaviors under scenarios that should closely match the 
expected deployment context. If the AIMD cannot reliably predict model behaviors  139

under such scenarios, this is an indication that the AIMD has not characterized the 
system comprehensively enough to deploy it safely and that deployment should be 
halted until this is resolved. 

Finally, depending on the general capability of the model and on the AIMD’s ability to 
correctly forecast its behavior, the regulator could require or approve additional 
software safeguards prior to deployment. For example, while the main high-risk AI 
model responds to user queries, a second smaller model might filter user input for 
signs of dangerous prompting prior to passing the query on to the high-risk model. In 
this case, the AIMD could be required to submit a safety case for the AI system 
(consisting of the high-risk model itself along with any software safeguards it would be 
operating under), rather than for the high-risk AI model alone. 

We list below some key considerations for an effective deployment approvals process. 

P.1 Lifecycle funds 
  
A safety case for a high-risk model deployment could include a credible commitment 
by the AIMD to set aside funds for periodic third-party red teaming and deployment-
stage monitoring over its projected life cycle. The extent of this need would depend on 
the deployment context. (See Annex Q: Deployment stage monitoring of high-risk AI 
models for more information.) 

 Within reasonable uncertainty bounds, though the AIMD should be held to a higher standard in 139

predicting dangerous capabilities in deployment than during training.
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P.2 Pre-deployment KYC 

If the deployment context for a model is restricted to a known set of end-users, the 
AIMD could conduct preliminary KYC on these end-users in order to better understand 
the anticipated usage pattern of the model. 

P.3 Risk and contingency planning 

The safety case for high-risk AI model deployment could include impact assessments 
and risk assessments specific to each deployment context, the expected usage 
envelope of the deployment context, the stakeholders who may be affected under the 
deployment context, and the means by which controls will be implemented to ensure 
usage stays within the expected context. Depending on the criticality of the use cases 
in the deployment context, this could extend to include emergency response 
playbooks, I&Ws (LOE2, 2.3), and step by step mitigation measures in the event of an 
unexpected development, which may include shutdown drills and other preparations. 

P.4 Weight storage for model evaluations 

To facilitate private evaluations of high-risk AI models prior to deployment approval, 
the AIMD could transmit the weights of the model securely to a server operated by the 
regulator. Vetted third-party red teams and evaluators would then administer 
evaluations, including private evaluations, on the stored model snapshot. (See Annex 
M: Secure temporary storage of model weights for a description of one possible 
weight-sharing protocol.) 

P.5 Model augmentations 

Each augmentation of a high-risk model with an external tool (calculator, code 
interpreter, knowledge base, database, etc.) should count as a separate deployment 
context and require a separate safety case. An evaluation suite would need to be run 
with each new augmentation available to the model, in combination with the other 
augmentations the model has access to in that context. Specifically: 

● A high-risk AI model should not be given arbitrary Internet access, but may be 
augmented with narrow apps that can execute well-defined tasks. 

● A high-risk AI model that has API access to a retrieval database should go 
through a deployment approvals process for every incremental change in its 
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database. This also implies that retrieval databases serving high-risk AI models 
cannot be continuously updated, but need to be updated using a batch process. 

● The goal of this provision is to minimize the degree to which a high-risk AI 
model can offload computation to external aids, thereby concealing its 
computations from direct oversight for potentially deceptive purposes [376]. 

P.6 Failed evaluation protocol 

If a high-risk AI model fails an evaluation during the deployment approvals process, or 
if an evaluation result falls outside the range predicted by the AIMD, the regulator 
could ban the model from being deployed in the given context. The regulator could 
also be empowered to enforce temporary deployment bans on all Tier 3 AIMDs (LOE4, 
4.1.3.4.3) if a dangerous capability is detected during a pre-deployment evaluation in 
one AIMD’s model. The regulator could also mandate that other AIMDs run additional 
evaluations on their own models, even if those models are already deployed. 

● The AIMD and regulator may consult with CBRN experts, cybersecurity experts, 
or other domain experts for clarification, depending on the nature and severity 
of the evaluation failure. 

● If safety is not proven to the regulator’s satisfaction, the tiered model licensing 
thresholds (LOE4, 4.1.3.4) could be re-evaluated. 

P.7 Fine-tuning approval 

If a model is being fine-tuned during deployment, each instance of fine-tuning should 
require separate deployment approval. For clarity, this would require pausing 
deployment of the fine-tuned model prior to the completion of the approvals process. 
If fine-tuning involves a significant amount of compute, the AIMD should additionally 
subject the model to training stage monitoring during the fine-tuning process. (See 
Annex O: Training stage monitoring for high-risk AI models for key considerations.) 

● This provision could apply to online learning paradigms, in which an AI model 
continuously retrains itself as it processes inputs from the world around it. 
Specifically, the regulator could consider online learning as a special case of 
fine-tuning,  and ensure that a high-risk AI model undergoes a new 140

 In the sense that it involves updating the parameters of a pre-existing AI model.140
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deployment-stage approval process for each new batch of learning updates. 

● This would effectively prevent the deployment of models that do true online 
learning, by introducing an approval step in the feedback loop between data 
collection and the model’s learning updates. The intent of this provision is to 
mitigate two closely related risks of online learning that make it qualitatively 
different from an LLM paradigm. First, because an online learning system has 
the opportunity to learn from all of its historical inputs, its effective context 
window is much larger than that of an LLM. And second, an online learning 
model may gain unpredictable new reasoning capabilities unexpectedly fast, 
extending its capability envelope in a sharp increment. Deployment approvals 
for online learning systems give model evaluators a chance to detect such sharp 
changes in capabilities before they can impact the model’s deployed safety 
profile. 

● Similar provisions could apply to game-playing AI models at the high-risk level 
(e.g., Tier 3-equivalent in LOE4, 4.1.3.4.3), and to AI models with other non-text 
modalities. 
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Annex Q: Deployment stage monitoring of high-risk AI 
models 

Once an AIMD (LOE4, 4.1.3.4) has deployed a high-risk AI model (e.g., a Tier 3 model 
in LOE4, 4.1.3.4.3) in a given deployment context, it could continuously monitor the 
model’s usage, including by performing KYC checks on high-volume, high-risk, and 
other critical use cases [46]. This includes checking usage patterns with classifiers that 
flag high-risk user interactions. Flagged interactions could then be further investigated 
via KYC. For clarity, deployment stage monitoring should also include monitoring and 
auditing of internal model deployments, in which the AIMD’s staff are the only users of 
their own model. Deployment stage monitoring is crucial because some catastrophic 
risks may only emerge, or become amplified, after a model has been deployed [381]. 

Deployment stage monitoring has two components. First, the AIMD should 
continuously monitor the inputs the high-risk AI system is receiving in deployment. This 
helps ensure that the actual distribution of inputs matches the distribution the AIMD 
expected under the approved deployment context (Annex P, P.2). In particular, it allows 
the AIMD to identify possible instances of adversarial action, including attempts to 
jailbreak the model and attempts to distill the model’s capabilities (Introduction, 
0.5.1.7) [144].  

The second component of deployment stage monitoring is periodic testing of the 
deployed AI system itself against new jailbreaks [94,95] or red teaming techniques that 
fit the deployment context, but may not yet have been observed “in the wild”. The 
intent of this component is to verify that the deployed AI system remains robust to 
novel attacks as they are developed, and if necessary is hardened or taken offline in the 
event that a novel attack succeeds in eliciting harmful behavior. 

We list below some key considerations for effective deployment stage monitoring. 
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Q.1 Usage pattern reporting 

The AIMD could provide the regulator with periodic reports of model input-outputs in 
each deployment context, including any detected high-risk interactions. High-risk 
interactions could be investigated, and potentially incorporated into the public 
evaluation set. High-risk interactions could also be shared with vetted third party 
evaluators, under a privacy agreement, to support their development of further private 
evaluations (LOE3, 3.2.2). 

● If the actual usage pattern of the deployment context diverges sharply from the 
anticipated deployment context, the regulator could pause deployment of the 
model and investigate. If the actual usage pattern of the deployment context 
begins to drift away from the anticipated deployment context over time, the 
regulator could require that the AIMD put the model through a new deployment 
approvals process under the updated deployment context. 

● Users responsible for high-risk interactions could be subjected to rigorous KYC. 
In the event that it is impossible to confirm the identity of a high-risk user, that 
user could be banned from use of the model. 

● Unrestricted API access to a model can be used to construct synthetic datasets 
that let an attacker train small models that approach the performance of a larger 
model served via API, more cheaply than training the original larger model 
(Introduction, 0.5.1.7). High-volume users of a public high-risk model API could 
therefore be subjected to rigorous KYC procedures [337]. KYC could initially be 
based on existing best practices in the financial sector [147]. 

● For very large inference customers, the AIMD could directly track usage and 
interview the customer to ensure that they have an awareness of the large critical 
use cases that their AI systems support. 

● KYC thresholds could include industry-wide blacklists and whitelists of specific 
users, maintained by the regulator. 

● Additionally, the AIMD could randomly interview a small subset of customers 
that do not raise ordinary KYC flags, in order to build an institutional 
understanding of typical usage patterns in a deployment context and their 
changes over time. 
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● The AIMD could report incidents associated with its deployed models via an 
incident database available to the regulator when they meet a predetermined 
severity threshold (LOE4, 4.1.3.5). This severity threshold could be determined 
by the regulator.  

Q.2 Red teaming 

Deployment stage monitoring could include ongoing red teaming by vetted third 
parties. If a high-risk AI model is deployed via public API, this could also include bug 
bounties and periodic hackathons to test the monitoring regime’s ability to detect and 
defuse interactions that could signal weaponization risk, prosaic accident risk, or 
catastrophic risk from loss of control. 

Government CBRN experts with access to classified information could also be involved 
in red teaming high-risk AI models and performing CBRN, cyber, and other dangerous 
capability evaluations (LOE3, 3.1.1.3). 

Q.3 Failed evaluation protocol 

If, during deployment, a high-risk AI model fails any evaluation, the regulator could 
require all AIMDs to pause some ongoing training runs, or to suspend some existing 
model deployments, depending on the nature of the failure. If this occurs: 

● The AIMD should generally cut off public access to the model. There should be 
a contingency plan ensuring that a fallback model is in place for such situations, 
to be activated temporarily during the pause to support critical customer use 
cases. For example, if a hospital is using the model for aspects of its care, there 
should be a fallback model available with the same user interface or the same 
API signature to ensure some level of uninterrupted service. 

● The AIMD should take strong steps to sandbox the model and do a 
comprehensive assessment of it, including developing and running more 
internal evaluations. 

● The regulator could mandate that other AIMDs run additional evaluations on 
their own models, even if those models are already deployed. Regulator 
disclosure to other AIMDs at this stage could be on an anonymized basis, and 
similar to reporting a software security vulnerability. 
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● The regulator could consult with key subject-matter experts relating to the failed 
evaluation, such as CBRN or cybersecurity experts if the failed evaluation 
involves a dangerous capability in those domains. 

● If safety is not proven to the regulator’s satisfaction, the tiered model licensing 
thresholds (see LOE4, 4.1.3.4) could be re-evaluated. 

 of 284 284


	Executive summary
	LOE1: Establish interim safeguards to stabilize advanced AI development
	LOE2: Strengthen capability and capacity for advanced AI preparedness and response
	LOE3: Increase national investment in technical AI safety research and standards development
	LOE4: Formalize safeguards for responsible AI development and adoption by establishing an AI regulatory agency and legal liability framework
	LOE5: Enshrine AI safeguards in international law and secure the AI supply chain

	0. Introduction
	0.1 Background
	0.2 Categories of AI risk
	0.2.1 Weaponization
	0.2.2 Loss of control
	0.2.3 Other risk categories
	0.2.4 Risks addressed by this action plan

	0.3 Potential sources of catastrophic AI risk
	0.4 Arguments against regulation for catastrophic AI risk
	0.4.1 Self-regulation will be sufficient
	0.4.2 Regulation could damage U.S. innovation and competitiveness
	0.4.3 Catastrophic AI risk could divert attention from other issues
	0.4.4 Catastrophic AI risk mitigation is unnecessary

	0.5 Challenges
	0.5.1 Technical challenges
	0.5.1.1 The worst-case outcomes for AI risk are considered both plausible and extremely severe
	0.5.1.2 Timescales for catastrophic risk are uncertain
	0.5.1.3 The degree of risk from loss of control is uncertain
	0.5.1.4 Frontier labs lack safety and security measures to detect and prevent loss of control
	0.5.1.5 Frontier labs lack sufficient security to prevent critical IP theft
	0.5.1.6 Open-access development can elicit dangerous capabilities from previously safe AI models
	0.5.1.7 Closed-access AI models are vulnerable to black-box exfiltration and other attacks
	0.5.2 Political challenges
	0.5.2.1 AI advances faster than the ordinary policy process
	0.5.2.2 The information environment around advanced AI makes grounded conversations challenging
	0.5.3 Economic and strategic challenges
	0.5.3.1 Frontier labs face strong incentives to develop and deploy increasingly advanced AI systems with limited safeguards
	0.5.3.2 AI supply chain proliferation cannot be mitigated after the fact
	0.5.4 Legal challenges
	0.5.4.1 The current legal environment is inadequate to address the most extreme risks from advanced AI


	Action plan to increase the safety and security of advanced AI
	LOE1: Establish interim safeguards to stabilize advanced AI development
	1.1 National security threats addressed by this LOE
	1.2 Establish an AI Observatory for advanced AI
	1.2.1 Functions
	1.2.2 Staffing
	1.2.3 Interagency coordination
	1.3 Establish responsible AI development and adoption safeguards for U.S. private industry
	1.3.1 Implementation mechanism and statutory authorities
	1.3.2 RADA safeguards principles
	1.4 Establish an AI Safety Task Force for RADA oversight
	1.4.1 Mission
	1.4.1.1 Priority Objective: Finalize and secure agreement on RADA safeguards
	1.4.1.2 Sustainment Component: Oversee compliance with RADA safeguards
	1.4.1.3 Sustainment Component: Develop recommendations for future regulations
	1.4.2 Resources and staffing
	1.4.3 Financial requirements and budget
	1.4.4 Authorities
	1.4.5 Location
	1.5 Securing the advanced AI supply chain
	1.5.1 AI model weights
	1.5.2 Cloud computing
	1.5.3 AI hardware
	1.5.4 Research collaborations
	1.5.5 Education of foreign nationals

	LOE2: Strengthen capability and capacity for advanced AI preparedness and response
	2.1 Coordinate interagency working groups
	2.2 Advanced AI education and training
	2.2.1 Key stakeholders and learning outcomes
	2.2.2 Suggested training topics
	2.3 Indications and warnings
	2.3.1 Key categories and sources of catastrophic risk
	2.3.2 Improving I&W through bug bounties
	2.3.3 Improving I&W through direct government investment
	2.4 Contingency planning
	2.4.1 Updating the National Preparedness System

	LOE3: Increase national investment in technical AI safety research and standards development
	3.1 Federally funded research in AI safety and security and AGI-scalable alignment
	3.1.1 Levels of AI safety and security research
	3.1.1.1 Open-source and public research
	3.1.1.2 Research that requires access to proprietary AI models
	3.1.1.3 National security research
	3.1.2 Organizational framework
	3.1.2.1 Considerations for AGI alignment research
	3.1.2.2 Research collaborations
	3.1.2.3 Sensitive research areas
	3.2 Standards for AI evaluations and RADA safeguards
	3.2.1 Limitations of AI evaluations
	3.2.1.1 AI evaluations are not comprehensive
	3.2.1.2 AI evaluations cannot confirm that a dangerous capability is absent
	3.2.1.3 AI evaluations are highly vulnerable to manipulation
	3.2.1.4 AI evaluations could fail systematically in high-capability regimes
	3.2.2 Addressing the limitations of AI evaluations
	3.2.3 Standards for RADA safeguards under catastrophic risk

	LOE4: Formalize safeguards for responsible AI development and adoption by establishing an AI regulatory agency and legal liability framework
	4.1 Establish the Frontier AI Systems Administration (FAISA)
	4.1.1 FAISA appropriations and staffing
	4.1.2 FAISA activities
	4.1.2.1 Oversee licensing regime for safe AI scaling
	4.1.2.2 Monitor AI hardware concentrations and AI programs
	4.1.2.3 Enforce licensing and reporting requirements
	4.1.2.4 Update technical thresholds for licensing
	4.1.2.5 Maintain information repositories
	4.1.3 Comprehensive framework for RADA safeguards
	4.1.3.1 AI hardware designers (AIHDs)
	4.1.3.1.1 Tier 1: AIHDs at or below the hardware threshold
	4.1.3.1.2 Tier 2: AIHDs above the hardware threshold
	4.1.3.2 Data center infrastructure providers (DCIPs)
	4.1.3.2.1 Tier 1: DCIPs operating data center facilities at or below the power consumption threshold
	4.1.3.2.2 Tier 2: DCIPs operating data center facilities above the power consumption threshold
	4.1.3.3 AI hardware owners (AIHOs)
	4.1.3.3.1 Tier 1: AIHOs who are at or below the aggregate compute capacity threshold
	4.1.3.3.2 Tier 2: AIHOs who fall above the aggregate compute capacity threshold
	4.1.3.4 AI model developers (AIMDs)
	4.1.3.4.1 Tier 1: AI models below the registration threshold
	4.1.3.4.2 Tier 2: AI models above the registration threshold, but below the approval threshold
	4.1.3.4.3 Tier 3: AI models above the approval threshold, but below the controlled threshold
	4.1.3.4.4 Tier 4: AI models above the controlled threshold
	4.1.3.5 General provisions for all licensed entities
	4.1.4 Publication controls
	4.2 Legislative environment
	4.2.1 Civil liability
	4.2.2 Criminal liability
	4.2.3 Emergency powers
	4.3 Advanced AI in national security systems

	LOE5: Enshrine AI safeguards in international law and secure the AI supply chain
	5.1 Desired end state of this LOE
	5.2 Build international consensus and partner capacity on catastrophic AI risk reduction
	5.2.1 Coordinate domestic and international messaging and capacity-building
	5.2.1.1 Policymaker education and outreach
	5.2.1.2 Technical education and outreach
	5.2.1.3 Other forms of capacity-building
	5.2.2 Articulate and reinforce an official U.S. government position on catastrophic AI risk
	5.3 Enshrine AI safeguards in international law
	5.3.1 Treaty structure considerations
	5.3.2 Preparation for a treaty
	5.4 Establish an international regulatory agency
	5.4.1 Monitoring and verification
	5.4.2 Standard-setting
	5.4.3 Convening researchers
	5.5 Allied multilateral initiatives to manage the AI supply chain
	5.5.1 Strategic considerations
	5.5.2 Multilateral partnerships
	5.6 Open challenges

	Conclusion
	Funding disclosure
	Acknowledgements
	Bibliography
	Annex A: Glossary of terms
	Annex B: The full challenge of AGI alignment
	Annex C: Example AI alignment failure scenarios
	C.1 Negligible impact: AI cheating at a video game
	C.2 Low impact: AI sweeping bot
	C.3 Medium impact: Dangerously creative drone
	C.4 High impact: Electrical grid failure

	Annex D: Advanced AI landscape
	D.1 Frontier AI labs
	D.2 China-based entities
	D.3 Open-access developers
	D.4 Elite quantitative hedge funds

	Annex E: Funding in AI safety
	Annex F: Persuasion and manipulation
	Annex G: Primer on AI and compute
	G.1 Compute as a pathway to frontier AI development
	G.2 Implications for risk mitigation strategy
	G.3 Key thresholds and existing compute concentrations

	Annex H: AIO activities
	Annex I: Voluntary Charter for responsible AI
	I.1 Information sharing
	I.2 Compute reporting threshold
	I.3 Model evaluation protocols
	I.4 Capability prediction protocols
	I.5 Security measures
	I.6 Model containment measures
	I.7 AI safety and AGI alignment research
	I.8 Dangerous capability ban
	I.9 Capability research controls
	I.10 Risk governance
	I.11 Caps on cloud services for scaled training runs
	I.12 Incremental adoption
	I.13 Final considerations for negotiating Charter terms

	Annex J: Effective compute
	Annex K: ASTF activities and task-organization
	K.1 Oversee and support compliance with RADA safeguards
	K.2 Develop recommendations for a legal and regulatory regime
	K.3 ASTF task-organization

	Annex L: AI safety and security research topics
	L.1 AGI-scalable alignment between AI behaviors and human values
	L.2 Monitoring of AI systems to detect misbehavior and preempt failures
	L.3 Robustness in the face of adversaries and unforeseen circumstances
	L.4 Hardware-based verification

	Annex M: Secure temporary storage of model weights
	Annex N: Training approvals process for high-risk AI models
	N.1 Dangerous capability predictions
	N.2 Capability evaluations
	N.3 Capability predictions at training checkpoints
	N.4 Data controls
	N.5 Risk management

	Annex O: Training stage monitoring for high-risk AI models
	O.1 Training journal
	O.2 Ongoing capability predictions
	O.3 Ongoing capability evaluations
	O.4 Model output predictions
	O.5 Training kill switch
	O.6 Failed evaluation protocol

	Annex P: Deployment stage approvals for high-risk AI models
	P.1 Lifecycle funds
	P.2 Pre-deployment KYC
	P.3 Risk and contingency planning
	P.4 Weight storage for model evaluations
	P.5 Model augmentations
	P.6 Failed evaluation protocol
	P.7 Fine-tuning approval

	Annex Q: Deployment stage monitoring of high-risk AI models
	Q.1 Usage pattern reporting
	Q.2 Red teaming
	Q.3 Failed evaluation protocol


