
The Science of Security

MAY/JUNE 2011 1540-7993/11/$26.00 © 2011 IEEE COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES 33

Jean Paul
Degabriele
anD Kenneth
g. Paterson

Royal
Holloway,
University
of London

gaven J.
Watson

University
of Calgary

I f we define science as an objective approach to
analysis and pursuit of knowledge on the basis
of rigorous logical arguments, then cryptogra-
phy undoubtedly has become a science. The area

of research responsible for bringing about this transi-
tion is commonly known as provable security. Provable
security introduces formal definitions of security and
adopts techniques from probability theory and com-
putational complexity theory to analyze the security
of cryptographic constructs. Recently, the merits of
this approach have been subject to debate, spurred in
part by a series of articles by Neal Koblitz and Alfred
Menezes, beginning with “Another Look at ‘Prov-
able Security.’”1 One of the main issues at stake here
is the degree of assurance that provable security pro-
vides. Researchers have discovered many attacks on
cryptographic schemes that were previously proven to
be secure. However, we must consider that no sci-
ence provides an absolute guarantee of the truth of
its results, and that sciences evolve over time. Indeed,
compared to more mature sciences, the field of cryp-
tography, while developing rapidly, is still new. More-
over, the application of any scientific discipline always
lags behind theoretical developments. As Einstein is
reputed to have said, “In theory, theory and practice
are the same. In practice they are not.” In this article,
we illustrate some of the gaps that exist between cryp-
tography’s theory and practice (see the “Cultures in
Cryptography” sidebar).

Although researchers have applied provable secu-
rity to almost all aspects of cryptography, we focus
only on its application to analyzing the security of

symmetric encryption schemes
used in Internet Protocol security
(IPsec), Secure Sockets Layer (SSL)/
Transport Layer Security (TLS),
and Secure Shell (SSH) protocols. However, much of
what we say here applies more widely to other aspects
of cryptography and analysis techniques, such as formal
methods and universal composability.

Two Milestones in Provable Security
Provable security dates back to 1949 when Claude
Shannon used information-theoretic concepts to
prove the perfect secrecy of the one-time pad in a pa-
per titled “A Mathematical Theory of Cryptogra-
phy.”2 Perfect secrecy is an information theoretic
notion of security that, informally, defines an encryp-
tion scheme to be perfectly secure if the ciphertext
doesn’t leak information about the plaintext. Note
that perfect secrecy makes no assumptions about the
adversary’s computational capabilities, meaning that
an exhaustive search on the encryption key would
convey no additional information. The drawback of a
perfectly secret encryption scheme is that its key space
needs to be at least as large as its plaintext space. This
creates significant issues for the practical deployment
of such a scheme. Essentially, the problem of secure
communication is replaced by the problem of gener-
ating, distributing, and securely destroying the large
amounts of keying material necessary for the scheme.
Indeed, such schemes haven’t been widely deployed
despite their proven security properties.

In 1984, Shafi Goldwasser and Silvio Micali made

Provable security plays an important role in the design

and analysis of systems using cryptography. However,

protocols can be vulnerable to attacks outside the scope

of the existing formal analyses.

Provable Security in the Real World

The Science of Security

34 IEEE SECURITY & PRIVACY MAY/JUNE 2011

a breakthrough in provable security, introducing se-
mantic security for public-key encryption.3 Seman-
tic security adapts Shannon’s perfect secrecy to the
computational setting, considering only adversaries
having bounded computational resources. Informal-
ly, semantic security states that no computationally
bounded adversary given the ciphertext can predict
anything about the plaintext any better than it can
when it’s not given the ciphertext. Goldwasser and
Micali’s original scheme was very inefficient in terms
of computation and bandwidth, involving bit-by-bit
encryption of plaintexts. However, we now have
schemes that achieve semantic security efficiently,
with security based on reasonable number-theoretic
hardness assumptions. Thus, although weaker than
perfect secrecy, semantic security doesn’t pose the
same practical limitations as perfect secrecy. Goldwas-
ser and Micali’s introduction of semantic security is
widely recognized as the start of provable security as
we know it today.

Understanding Security Proofs
Provable security, as its name implies, is about prov-
ing cryptographic schemes secure according to some
notions of security. Such proofs commonly take the
form of reductions, a concept borrowed from complex-
ity theory. Reducing problem A to problem B means

that given access to an algorithm MB that solves prob-
lem B, we can construct an algorithm MA that em-
ploys MB as a subroutine to efficiently solve problem
A. Now suppose we can reduce solving problem P
to breaking an encryption scheme E. Then, by con-
traposition, breaking E is at least as hard as solving
P. Such a reduction would then represent a conditional
proof of security for encryption scheme E on the ba-
sis that problem P is hard. However, we still need to
clarify break and hard. We illustrate these concepts in
the context of encryption schemes.

A break is normally defined through a game, in
which one player (the challenger) gives well-defined
capabilities to the other player (the adversary), and the
adversary winning the game directly translates to a
breach of a well-defined and well-motivated security
notion. Semantic security for public-key encryption
is an instance of such a notion but is cumbersome to
use in proofs. Therefore, proofs often use the notion
of indistinguishability (IND). Goldwasser and Micali
showed that indistinguishability implies semantic se-
curity, and in “The Notion of Security for Proba-
bilistic Cryptosystems,” Micali and colleagues later
proved the converse, showing that the two notions are
equivalent (at least in the framework of polynomial-
time reductions).4

The IND game for public-key encryption has two

Cultures in Cryptography

I t might seem strange that there can be such an obvious

discrepancy between the theory and practice of cryptography.

This gap might be in part due to the fact that different actors ap-

proach the field from completely different perspectives.

Theoreticians
First, consider a typical theoretical cryptographer’s viewpoint.

Judging by cryptographic research literature, one might surmise

that many in the community view cryptography as a branch of

theoretical computer science. With notable exceptions, the litera-

ture addresses theoretical questions as opposed to the real-world

problems currently affecting widely used protocols. Although this

focused approach has driven the field forward as a theoretical

subject, it has done less to improve the security of currently used

systems and makes the field seem less accessible to those in the

applied community.

Practitioners
Provable security has become an important research area in

modern cryptography but is still met with skepticism by many

in the practical community. This is understandable consider-

ing the types of attack that we outline here. Practitioners might

think provable security results provide an absolute statement of

security, especially if they’re presented in such a manner. When

they later discover that a scheme is insecure because of an attack

outside the security model, this might damage their confidence

in the whole enterprise of provable security.

In the practical community, there are at least two viewpoints

to consider: the perspective of specification document writers

and that of the implementers using these documents as a guide

for writing code. Usually, writers must include some flexibility in

a specification to allow for differences in implementations, allow

interoperability, and account for the competing interests of the

different parties contributing to the development process. Also,

there’s often a requirement to support certain options for back-

ward compatibility. Unfortunately, this flexibility only increases

the specifications’ complexity and the consequent risk that an

unfortunate feature interaction will lead to an attack.

Next, consider the practitioner implementing a system using

cryptography. Because implementers base their implementations

on the relevant specification documents and RFCs, they might

not read theoretical research papers. With many options open

to implementers in these documents, they might introduce a

vulnerability. Without knowledge of the theory behind the choice

being presented, implementers will have little idea of the effect a

particular choice might have on security.

The Science of Security

 www.computer.org/security 35

phases. In the first phase, the challenger generates a
public/private key pair for the scheme and gives the
adversary the public key. The adversary performs its
computation, selects two equal-length plaintexts m0,
m1, and submits these to the challenger. The chal-
lenger randomly picks one of the two plaintexts,
encrypts it, and gives the resulting challenge cipher-
text to the adversary. In the second phase, the adver-
sary performs further computation and then guesses
which of its two chosen plaintexts was encrypted
in the challenge ciphertext. The adversary wins the
IND game if it guesses correctly. Because an adver-
sary can always win this game with probability 1/2
by guessing randomly, we consider the adversary suc-
cessful (and the scheme broken) only if it wins the
IND game with probability significantly greater than
1/2. Notice that because the adversary has access to the
public key, it could simply reencrypt the two plain-
texts m0, m1 in the second phase. If the encryption
scheme was deterministic, then one of the two results
would match the challenge ciphertext, and the ad-
versary would win the IND game with probability 1.
Thus, a semantically secure encryption scheme can’t
be deterministic.

Having described the adversary’s goal in the IND
game, we next classify its capabilities more carefully.
Throughout our game, the adversary has the public
key and can perform arbitrary encryptions. In the
symmetric-key setting, we can’t simply give the ad-
versary the key, so we give the adversary access to an
encryption oracle. The adversary submits arbitrary
plaintexts to this oracle and in return receives cipher-
texts encrypting those plaintexts. In public-key and
symmetric-key settings, we then talk of a chosen
plaintext attack (CPA). To capture a more powerful
adversary, we also consider the chosen ciphertext at-
tack (CCA) setting. Here, we give the adversary access
to both the public key (or an encryption oracle for the
symmetric-key setting) and a decryption oracle. The
adversary sends ciphertext to the decryption oracle
and in return obtains that ciphertext’s decryption,
or an indication that the decryption process failed.
(However, we can’t let the adversary query the chal-
lenge ciphertext to the decryption oracle, or winning
the IND game would be trivial.) This oracle mod-
els the fact that, in practice, an adversary might have
access to such a decryption capability, for example,
through interaction with the scheme’s users. It also
reflects a general conservatism in provable security: to
capture the widest set of possible attacks in our model,
we try to make attackers as powerful as possible (with-
out making it trivial for them to win). In addition to
being given access to the oracles, the adversary can
perform arbitrary computations. In this way, a secu-
rity proof applies to all adversaries, not simply those

who behave in particular ways that might be limited
by designers’ imaginations.

However, we must limit the amount of resources
consumed by the adversary. Otherwise, for example,
the adversary could simply perform an exhaustive
search for the private key, rendering our definitions
vacuous. We use complexity theory and the frame-
work of polynomial-time algorithms to assist us
here. We introduce a security parameter k that can
be thought of as defining the key size in the encryp-
tion scheme. Then an encryption scheme is said to
be IND-CPA or IND-CCA secure if we can prove
that no polynomial-time-bounded adversary can win
the respective IND game with probability that is non-
negligibly greater than 1/2 in the parameter k. Here, a
function f(k) is said to be negligible if for every poly-
nomial p(k) there exists an N such that for all integers
k > N, f(k) < 1/p(k). Thus, a non-negligible function
is one that grows faster than the inverse of some poly-
nomial in k, and the scheme is secure if no polyno-
mial-time adversary has an advantage that grows in
this way.

The proof of such a statement takes the form of a
reduction from a problem P to the problem of winning
the particular scheme’s IND-CPA or IND-CCA game
with non-negligible probability. However, barring a
major breakthrough in complexity theory, the exis-
tence of cryptographically useful problems P not hav-
ing polynomial-time solutions remains in doubt. We
can only prove our cryptographic scheme’s security on
the basis of the assumption that P really is sufficiently
hard. Hence, the security proof is only conditional. For
this reason, some consider the term provable security mis-
leading or inappropriate and prefer the term reduction-
ist security. Nonetheless, this approach is beneficial for
several reasons. First, for many years, researchers have
analyzed certain computational problems, such as inte-
ger factorization, the discrete logarithm problem over
a finite field, and the problem of finding the shortest
vector in a lattice, and these are now generally consid-
ered to be hard. More specifically, for certain choices
of parameters, we can estimate the success probabilities
and running times of algorithms for solving such prob-
lems. When a new cryptographic scheme is introduced,
reducing a well-known and hard problem to its security
transfers our confidence about the problem’s hardness
to the cryptographic scheme’s security. Furthermore,
because we can compare and contrast the hardness of
problems through their complexity classes, we can use
this as a criterion for comparing the security of crypto-
graphic schemes.

Concrete security is a natural development of the
above approach. Instead of working in the fairly ab-
stract framework of polynomial-time algorithms and
negligible functions, we try to directly relate any ad-

The Science of Security

36 IEEE SECURITY & PRIVACY MAY/JUNE 2011

versary’s success probability and running time to that
of the algorithms to solve some assumed-to-be-hard
problem P via the security reduction obtained in the
proof. For example, suppose we can prove that for any
adversary running in time t and having success prob-
ability 1/2 + ε against the scheme, there’s an algorithm
to solve problem P that runs in time f(t, ε) and has
success probability g(t, ε), for functions f and g. Then,
by inverting this relationship, we can in principle use
our knowledge about the current and projected state
of the art in solving problem P along with our desired
security level to select a concrete security parameter
for the scheme. This approach also provides a means
by which to judge the quality of proofs: a better proof
is one that closely relates the resources an adversary
consumed when breaking the scheme to those of an
algorithm to solve the underlying problem P.

Another benefit of the provable security approach
is that it enables the analysis of complex cryptograph-
ic schemes and protocols in terms of the security of
simpler cryptographic primitives from which they’re
constructed. Such constructions might achieve more
useful goals or meet stronger notions of security than
their constituent components. By reducing a con-
structed scheme’s security to that of its component
primitives, we can achieve a higher security goal
without introducing any further assumptions. Mihir
Bellare and Chanathip Namprempre offered one such
construction.5 They considered the sequential compo-
sition of a symmetric encryption scheme that is IND-
CPA secure and a MAC (message authentication code)
that is SUF-CMA (strongly unforgeable under chosen
message attack) secure. Here, SUF-CMA is a standard
security notion for a MAC. Bellare and Namprempre
showed that such an encrypt-then-MAC construc-
tion yields an IND-CCA-secure encryption scheme.
Hugo Krawczyk showed similar results for the analo-
gous MAC-then-encrypt construction, for certain
classes of encryption scheme.6

Some Limitations of Security Proofs
Provable security has obvious applications to crypto-
graphic practice, such as protocol design and scheme
selection. The existence of a correct security proof
should be an important factor in selecting crypto-
graphic schemes and adopting constructions for use
in real-life protocols. However, we should take care
when interpreting provable security results for prac-
tice. To reiterate, a security proof isn’t an absolute
guarantee of security. Rather, proofs are conditional,
and security is guaranteed only as long as the underly-
ing assumptions hold. But the reasons why caution is
needed extend beyond this point.

In particular, security claims might not complete-
ly capture what should be considered a break in real

life. For instance, indistinguishability implies that the
adversary can’t distinguish between the encryptions
of plaintexts of its choice, given that they’re of equal
length. However, in real life, an attacker might be able
to predict something about the plaintext through the
ciphertext’s length unless we take extra precautions to
prevent such traffic analysis. In some applications, this
might constitute a confidentiality breach (see “Attack-
ing and Repairing the WinZip Encryption Scheme”
for a concrete example in the context of data compres-
sion7). In addition, the basic indistinguishability defi-
nition says nothing about denial of service or attacks
based on message replays. Thus, we must be aware of
what security is guaranteed by the proof as opposed to
what our security requirements are.

Furthermore, the capabilities we gave the adver-
sary in the security game might not accurately re-
flect those a real-world adversary possesses. We offer
several examples of practical attacks in which adver-
saries can glean small amounts of information about
the plaintext format from the manner in which the
decryption process proceeds (or fails to proceed). In
some cases, this information can be leveraged to en-
able real-world adversaries to extract plaintext from
a challenge ciphertext. This information is rarely in-
cluded in formal security models, but our examples
show the importance of considering this kind of
leakage. More generally, side-channel attacks use ex-
tra information produced by an implementation to
mount an attack. These types of attacks might not be
captured by traditional formal security analyses be-
cause they lie outside the scope of the security model.
To obtain meaningful real-world security guarantees
from a security proof, it’s essential that the security
model used accurately captures all the powers avail-
able to real-world adversaries.

Furthermore, designing and implementing secure
cryptosystems—and combining various cryptograph-
ic primitives—are difficult tasks with many different
aspects to consider. Vulnerabilities might be intro-
duced inadvertently because of a fundamental system
design flaw or by a programmer during implemen-
tation. Specification documents, if available, typi-
cally give implementers some flexibility, but without
proper and detailed guidance, their choices can affect
a system’s security dramatically. Even a slight change
to a provably secure scheme can render the system in-
secure. So how do we know if an implementation is
an accurate translation of what has been modeled and
proven secure?

Applying Provable Security
to Secure Communications Protocols
Here, we highlight problems that arise when apply-
ing provable security results. Our examples focus on

The Science of Security

 www.computer.org/security 37

symmetric cryptography as used in SSL/TLS, IPsec,
and SSH. These examples make good case studies
because the protocols are widely deployed and ap-
pear to be simple enough to be amenable to provable
security analysis.

SSL/TLS
SSL is perhaps the most popular secure network pro-
tocol. One of its main uses is to secure credit-card
data for Internet purchases. SSL was originally de-
veloped in the mid 1990s by Netscape and has since
been adopted by the Internet Engineering Task Force
(IETF) and renamed TLS. The current version of the
protocol, TLS 1.2, is defined in RFC 5246. SSL/TLS
consists of a number of subprotocols; here, we focus
on the SSL/TLS Record Protocol, which provides
confidentiality and integrity services for all SSL/TLS
messages. At a high level, the Record Protocol uses
a MAC-then-encrypt construction. This means that
the message to be sent first has a MAC calculated on it
and then encryption is performed over the concatena-
tion of the message and the MAC tag. In addition, if
a block cipher in CBC (cipher block chaining) mode
is used, then the RFC specifies that we must add pad-
ding after the MAC is added and before the encryp-
tion. The padding must follow a particular format,
and the RFC requires that this format be checked
again after decryption.

Now consider what’s known about encryption
schemes following a MAC-then-encrypt structure
from a provable security perspective. Bellare and
Namprempre performed a formal analysis of generic
compositions of a MAC and an IND-CPA-secure
symmetric encryption scheme.5 They studied three
constructions in detail: encrypt-and-MAC, encrypt-
then-MAC, and MAC-then-encrypt. Of these, they
showed that encrypt-then-MAC is the only one that
can achieve IND-CCA security (starting with appro-
priate notions of security for the encryption and MAC
components). Indeed, they showed that the MAC-
then-encrypt construction isn’t IND-CCA secure
by exhibiting an SUF-CMA-secure MAC scheme
and an IND-CPA secure encryption scheme whose
MAC-then-encrypt composition can be broken
in the IND-CCA attack model. Their analysis tells
us nothing positive about the specific MAC-then-
encrypt case used in SSL/TLS. Krawczyk further
analyzed the MAC-then-encrypt composition, show-
ing that if we use CBC mode of a good block cipher
as the encryption component, then a MAC-then-
encrypt construction will provide a secure channel.6
A secure channel is weaker than IND-CCA security
but provides a positive result about the construction’s
security. In fact, Krawczyk’s results can be improved
to show that MAC-then-encrypt achieves IND-CCA

security when the encryption component is instanti-
ated using CBC mode of a good block cipher.

So we now have a security proof for the MAC-
then-encrypt construction using CBC mode. Is this
enough to claim security of the SSL/TLS Record
Protocol in practice? Even setting aside implementa-
tion questions, the answer, unfortunately, is no. Brice
Canvel and colleagues’ attack against the MAC-then-
encrypt construction used in SSL/TLS worked in
practice against OpenSSL, one of the most widely
used implementations.8 Their attack exploits the way
SSL/TLS handles padding during encryption. Recall
that when SSL/TLS uses CBC mode, some padding
must be added to the message before encryption. This
padding’s format should also be checked during de-
cryption, with an error message returned over the
Record Protocol if the format is incorrect. Similarly,
an error message is returned if the MAC fails to verify.
These errors are “fatal”—the SSL/TLS channel is de-
stroyed if either of the errors arises. Because of the
construction, it’s natural to check the padding before
the MAC when decrypting. Canvel and colleagues’
attack exploits the small timing difference that arises
between the appearance of a padding error and MAC
error to mount a special type of side-channel attack
called a padding oracle attack. This type of attack can
recover plaintext from arbitrary ciphertext blocks.
Moreover, if a fixed plaintext is repeated across many
sessions (for example, a password), then the attack can
be iterated to boost its success probability even though
the channel is destroyed at each attempt.

Canvel and colleagues’ attack seems to contradict
Krawczyk’s security proof. How does the contradic-
tion arise? Krawczyk’s proof is mathematically cor-
rect, but his model doesn’t accurately capture the way
SSL/TLS works in practice. Indeed, the particular
construction that Krawczyk studied doesn’t include
padding: it simply assumes that the plaintext lengths
are already suitable for applying a block cipher in CBC
mode. Also, his analysis doesn’t consider the possibil-
ity of distinguishable error outputs. This means that
although Krawczyk’s analysis is correct and rules out
many possible attacks against SSL/TLS, it can’t be ap-
plied directly to the protocol as specified. Instead, we
need a more accurate model that reflects the fact that
SSL/TLS really uses a MAC-then-pad-then-encrypt
construction. Kenneth Paterson and Gaven Watson
have taken initial steps in this direction in “Immun-
ising CBC Mode against Padding Oracle Attacks:
A Formal Security Treatment,” in which they study
the CBC mode’s IND-CPA security in a situation in
which the attacker has access to padding error infor-
mation.9 However, extending this type of analysis to
the IND-CCA case for the specific construction used
in SSL/TLS remains an open problem. We still don’t

The Science of Security

38 IEEE SECURITY & PRIVACY MAY/JUNE 2011

have strong, formally proven guarantees for the SSL/
TLS Record Protocol.

Note that the IETF community’s reaction to Can-
vel and colleagues’ SSL/TLS attacks wasn’t to change
the protocol to use a construction known to be IND-
CCA secure in the face of padding oracle attacks (for
example, by using a different padding scheme or by
using a different construction entirely). Instead, RFC
5246 recommends that implementers ensure the MAC
and padding errors aren’t distinguishable by content or
timing. This prevents the attack and requires minimal
code changes. Thus, a pragmatic but unproven fix has
been the solution of choice, reflecting the constraints
and compatibility issues the IETF community faces
when changing such a significant protocol.

IPsec
IPsec is a protocol suite offering security services at
the TCP/IP stack’s IP layer. IPsec is most widely de-
ployed to build virtual private networks (VPNs) and
secure remote access solutions. Its major components
are the AH (authentication header), ESP (encapsu-
lating security payload), and IKE (Internet key ex-
change) protocols specified in RFCs 4302, 4303, and
4306, respectively. AH provides data-origin authen-
tication and replay protection services using a MAC
in combination with sequence numbers and a replay
window. ESP originally provided a data confidenti-
ality service but now provides data-origin authenti-
cation as well. IKE provides an automated security
capability negotiation and key-management service.
Because of IPsec’s flexibility, users have various op-
tions for how to combine these protocols to build a
secure channel that suits their needs.

Jean Paul Degabriele and Kenneth Paterson recent-
ly demonstrated a series of plaintext-recovery attacks
against various IPsec configurations in which AH is
first applied to an IP datagram and the result is then
protected by ESP in encryption-only mode.10 This is
yet another instantiation of the MAC-then-encrypt
construction, analyzed by Bellare and Namprempre5
and Krawczyk.6 These attacks work regardless of the
block cipher or MAC algorithm, as long as we use the
block cipher in CBC mode. As with Canvel and col-
leagues’ SSL/TLS attack, Degabriele and Paterson’s
attacks exploit several features from the IPsec real-
ization of the basic MAC-then-encrypt composition,
which aren’t captured in Krawczyk’s security mod-
el. These include fields in the AH-protected packet
that aren’t covered by the MAC algorithm, extra
unauthenticated padding fields in the plaintext be-
fore encryption (namely, traffic flow confidentiality
[TFC] padding bytes, encryption padding bytes, and
the next- header byte), and the fact that IPsec should
check certain padding fields for correctness after de-

cryption. Here, incorrect formatting leads to a packet
drop, whereas correct formatting leads to further
processing, which can be arranged to result in a re-
sponse message being sent on the secure channel. The
presence (or absence) of such a message can reveal a
small amount of information about the plaintext for-
mat, which can in turn be leveraged to recover arbi-
trary amounts of plaintext in a reliable manner. One
of Degabriele and Paterson’s attacks also exploits the
manner in which IPsec’s processing interacts with IP
fragment processing to generate error messages that
the attacker can detect.

These attacks on IPsec—as with those on SSL/
TLS—demonstrate that an attacker can exploit error
information not normally considered in formal ana-
lyses to mount attacks against provably secure cryp-
tosystems. Formal analyses that don’t consider such
error information will typically fail to capture all the
subtleties in the implementation of a secure channel
protocol, and this can lead to attacks.

Another important distinction between Krawc-
zyk’s theoretical model and the way in which cryp-
tography operates in IPsec relates to atomicity.
Krawczyk’s model treats the MAC-then-encrypt
construction as an atomic operation (although a
counterexample given in his article highlights that
MAC-then-encrypt might not be secure when an in-
termediate encoding step is introduced). However, in
IPsec, the MAC-then-encrypt configurations are re-
alized by combining two separate protocols, AH and
ESP, with each protocol performing its own process-
ing, and with the possibility of additional processing
between these steps.

SSH
Finnish researcher Tatu Ylönen originally designed
SSH in the mid 1990s to replace insecure remote
logins after his university’s network was targeted by
some password-sniffing attacks. In 2006, a collec-
tion of RFCs specified SSH version 2. We’re inter-
ested in RFC 4253, which specifies the SSH Binary
Packet Protocol (BPP)—the part of SSH responsible
for ensuring messages’ confidentiality and integrity.
The BPP follows an encode-then-encrypt-and-MAC
construction. The payload message is first encoded
and then encrypted; the MAC is calculated on the
encoded message together with a sequence number.
A ciphertext packet consists of the concatenation of
the encrypted message and the MAC tag. The encod-
ing scheme adds three fields to the payload message: a
packet-length field, a padding-length field, and some
padding bytes. The packet-length field specifies the
total length of what follows, that is, the combined
length of the padding-length field, the payload mes-
sage, and the padding field. It’s ostensibly encrypted

The Science of Security

 www.computer.org/security 39

to protect against traffic analysis. This has a significant
effect on the protocol’s security.

Mihir Bellare and colleagues performed a formal
analysis of the SSH BPP.11 Because of a distinguish-
ing attack by Wei Dai that exploits the use of initial
packet chaining when using CBC mode encryption,12
Bellare and colleagues weren’t able to directly prove
security for the SSH BPP as defined in RFC 4253. In-
stead, they proposed several minor SSH BPP variants
and proved them secure in an extended version of the
IND-CCA model, with the new model taking into
account the stateful nature of SSH decryption.

As with our previous examples, the SSH BPP
turned out to be vulnerable to attack, despite having
a mathematically correct security proof. Martin Al-
brecht and colleagues discovered plaintext-recovery
attacks that exploit the SSH BPP’s use of an encrypted
packet-length field, its reliance on CBC mode, and the
attacker’s ability to send ciphertext data in small chunks
and observe how the recipient reacts.13 The attack prin-
ciples are simple. An attacker observes a ciphertext and
chooses one block to attack. The attacker sends this
target block to the recipient in such a way that the re-
cipient interprets it to be the start of a new packet. The
recipient must immediately decrypt this block to re-
trieve the packet-length field, to know how much data
it must wait for before it receives and verifies the MAC.
The attacker then proceeds by sending random blocks
one at a time until the recipient outputs a MAC error.
By counting how many random blocks have been sent,
the attacker can deduce the new packet’s packet-length
field and, by the properties of CBC mode, deduce the
corresponding bits in the target plaintext block. In
practice, this attack is complicated by checks performed
on the packet-length field once the recipient covers it.
Albrecht and colleagues implemented variants of this
attack against OpenSSH, one of which recovers 32 bits
of plaintext with probability 2-18.

This attack can be applied to one of the provably
secure variants of the SSH BPP proposed by Bellare
and colleagues. So what went wrong? First, their
analysis assumes that ciphertexts are self-describing in
terms of their lengths. In reality, we see that recipients
must decrypt the first block of a packet as soon as they
receive it to obtain the packet length. RFC 4253 actu-
ally states that

[i]mplementations SHOULD decrypt the length af-
ter receiving the first 8 (or cipher block size, which-
ever is larger) bytes of a packet.

In addition, Bellare and colleagues’ model doesn’t al-
low for the possibility that the amount of data needed
to complete the decryption process is governed by
data produced during the decryption process. Second,

we note that in their analysis, ciphertexts and plain-
texts are handled as atomic strings. In contrast, Al-
brecht and colleagues’ attacks exploit the fact that an
attacker can send data in small chunks to the recipient.
Many implementations use a buffer to store data until
it’s needed, but Bellare and colleagues’ analysis doesn’t
model this.

Kenneth Paterson and Gaven Watson recently pro-
vided a new formal analysis of the SSH BPP using
counter-mode encryption, with the explicit intention
of addressing the shortcomings of the previous analy-
sis.14 Paterson and Watson begin by defining a new
version of SSH-CTR that accurately captures how
the SSH BPP with counter-mode encryption is de-
fined in the RFCs and coded in practice in OpenSSH
and other implementations. They also extended the
previous security model to account for the manner
in which the SSH BPP buffers as-yet-unprocessed ci-
phertext bytes, and to let the attacker deliver cipher-
text to a decryption oracle in a byte-by-byte fashion.
They then proved that their new definition of SSH-
CTR is secure in the new model. Because this new
analysis more accurately captures how SSH is defined
in the RFCs and how it’s implemented, we can be
more confident that this provable security result is
more meaningful in practice.

The Future
Provable security is maturing into a very useful tool
that can and should play an important role in the de-
sign and analysis of systems using cryptography. How-
ever, we’ve seen that protocols can be vulnerable to
attacks outside the scope of the existing formal analy-
ses. Nonetheless, such analyses can rule out large class-
es of attack. This leaves us with two major questions:
How can we make the formal analyses more closely
related to real implementations? And how can we bet-
ter integrate formal analyses with the design process?

Making Theory More Applicable
In the SSH example, we saw that it’s possible to per-
form analyses that accurately capture how schemes

operate in practice. Researchers are actively pursuing
further work in this area, including the examination
of how hardware and software side-channel attacks
can be captured by formal analyses. For example,

Provable security is maturing into a very useful

tool that can and should play an important

role in the design and analysis of systems

using cryptography.

The Science of Security

40 IEEE SECURITY & PRIVACY MAY/JUNE 2011

leakage-resilient cryptography is a particularly active
research area that attempts to reason about security
when the attacker has access to some secret informa-
tion gained using a side channel.

When considering how to make the theory more
practical, we still have at least one fundamental question
to answer: How do we know exactly which protocol
features are critical to its security and therefore must
be included in the formal analysis? Many fine-grained
details in cryptographic implementations might ulti-
mately play a significant role in the protocol’s overall
security. As we’ve shown, omitting one of these details
from a formal analysis can have a large effect on how
that analysis applies in practice. On the other hand, Pa-
terson and Watson’s analysis of SSH attempts to model
exactly how the RFCs specify the SSH BPP and how
it’s implemented in OpenSSH. Because of the model’s
detail and accuracy, we now have more confidence
that no significant attack vectors were omitted. That
said, Paterson and Watson’s approach involves manual
code inspection and proof generation. In the longer
term, we hope that developers will create automated
tools to assist in this kind of task. However, even this
might not be sufficient—their analysis doesn’t consider
any issues arising from compression, which can play an
important role in determining protocol security.7

Phillip Rogaway and Till Stegers have taken an
alternative to Paterson and Watson’s approach.15
They consider a protocol to consist of two parts: a
partially specified protocol (PSP) and the protocol
details (PD). The PSP will be the protocol’s cryp-
tographic core and is strictly defined by the proto-
col’s specifications documents. The PD encompasses
additional features necessary for an implementation
but left open for the implementer to choose. Again,
these additional choices sometimes introduce security
vulnerabilities. To address this, Rogaway and Stegers
give the adversary control over the PD, then attempt
to prove the PSP’s security. The idea is that if we
can prove the PSP is secure when the adversary has
control over the PD, then the full protocol (PSP, PD)
must be secure in practice for any PD implementa-
tion. This is an intriguing approach that we expect to
see further developed.

Bringing Theory into Practice
Today, formal protocol analyses are predominantly
performed in a reactive manner: typically, some-
one designs and specifies a protocol, and only later
does someone perform a formal analysis. Along with
this approach, we’ve seen the rise of a model-attack-
remodel cycle, with the models gradually being up-
graded to more closely reflect practice in light of new
attacks. It’s reminiscent of cryptography’s break-fix
cycle but has the advantage that, at each iteration, the

security proof rules out a larger class of attacks. In an
ideal world, we’d perform proactive formal analyses
as part of the design process, before systems become
widely deployed and therefore harder to change. By
bringing together analysis and design, we can get a
better idea of how various options might affect sys-
tem security. Specification documents should include
formal analysis results, giving the implementer a clear
rationale for choices made in the design phase. How-
ever, this requires careful presentation, with provable
security results presented in a simple and understand-
able manner for the consumption of practitioners.

I n our view, better communication is key to unit-
ing the theoretical and applied communities in

cryptography. Without this, the two communities
will continue to pull in opposite directions. By en-
gaging both theoreticians and practitioners in a com-
mon endeavor—that of improving the security of
real systems—we will foster a greater understanding
of what provable security results actually mean and
speed their adoption by practitioners. We hope that
this article provides a small step in this direction.

Acknowledgments
Vodafone Group Services Limited, a Thomas Holloway
Research Studentship, and the Strategic Educational Path-
ways Scholarship Scheme (Malta), partly financed by the
European Union–European Social Fund support Dega-
briele’s research. An EPSRC Leadership Fellowship, EP/
H005455/1, supports Paterson’s research. An EPSRC In-
dustrial CASE studentship sponsored by BT Research Lab-
oratories supports Watson’s research.

References
1. N. Koblitz and A. Menezes, “Another Look at ‘Provable

Security,’” J. Cryptology, vol. 20, no. 1, 2007, pp. 3–37.
2. C. Shannon, “Communication Theory of Secrecy Sys-

tems,” Bell System Technical J., vol. 28, no. 4, 1949, pp.
656–715.

3. S. Goldwasser and S. Micali, “Probabilistic Encryp-
tion,” J. Computer Systems Science, vol. 28, no. 2, 1984,
pp. 270–299.

4. S. Micali, C. Rackoff, and B. Sloan, “The Notion of
Security for Probabilistic Cryptosystems,” CRYPTO
1986, LNCS 263, Springer, 1986, pp. 381–392.

5. M. Bellare and C. Namprempre, “Authenticated En-
cryption: Relations among Notions and Analysis of the
Generic Composition Paradigm,” ASIACRYPT 2000,
LNCS 1976, Springer, 2000, pp. 531–545.

6. H. Krawczyk, “The Order of Encryption and Authen-
tication for Protecting Communications (or How Se-
cure Is SSL?),” CRYPTO 2001, LNCS 2139, Springer,
2001, pp. 310–331.

The Science of Security

 www.computer.org/security 41

7. T. Kohno, “Attacking and Repairing the WinZip En-
cryption Scheme,” ACM Conf. Computer and Comm.
Security, ACM Press, 2004, pp. 72–81.

8. B. Canvel et al., “Password Interception in a SSL/TLS
Channel,” CRYPTO 2003, LNCS 2729, Springer,
2003, pp. 583–599.

9. K.G. Paterson and G.J. Watson, “Immunising CBC
Mode against Padding Oracle Attacks: A Formal Se-
curity Treatment, SCN, LNCS 5229, Springer, 2008,
pp. 340–357.

10. J.P. Degabriele and K.G. Paterson, “On the (In)security
of IPsec in MAC-then-Encrypt Configurations,” Proc.
17th ACM Conf. Computer and Comm. Security (CCS 10),
ACM Press, 2010, pp. 493–504.

11. M. Bellare, T. Kohno, and C. Namprempre, “Break-
ing and Provably Repairing the SSH Authenticated
Encryption Scheme: A Case Study of the Encode-
then-Encrypt-and-MAC Paradigm,” ACM Trans. In-
formation and Systems Security, vol. 7, no. 2, 2004, pp.
206–241.

12. W. Dai, “An Attack Against SSH2 Protocol,” 6 Feb.
2002; www.ietf.org/mail-archive/text/secsh/2002-02.
mail.

13. M.R. Albrecht, K.G. Paterson, and G.J. Watson,
“Plaintext Recovery Attacks against SSH,” IEEE Symp.
Security and Privacy, IEEE CS Press, 2009, pp. 16–26.

14. K.G. Paterson and G.J. Watson, “Plaintext-Dependent
Decryption: A Formal Security Treatment of SSH-

CTR,” EUROCRYPT 2010, LNCS 6110, Springer,
2010, pp. 345–361.

15. P. Rogaway and T. Stegers, “Authentication without
Elision: Partially Specified Protocols, Associated Data,
and Cryptographic Models Described by Code,” 22nd
Computer Security Foundations Symp. (CSF 09), IEEE CS
Press, 2009, pp. 26–39.

Jean Paul Degabriele is a PhD student at Royal Holloway,

University of London. His research interests include cryptogra-

phy and network security. Degabriele has an MSc in informa-

tion security from the University of London. Contact him at

j.p.degabriele@rhul.ac.uk.

Kenneth G. Paterson is a professor of information security at

Royal Holloway, University of London. His research interests

include cryptography and information security. Paterson has

a PhD in mathematics from the University of London. He’s a

fellow of the IMA and a Journal of Cryptology editorial board

member. Contact him at kenny.paterson@rhul.ac.uk.

Gaven J. Watson is a postdoc at the University of Calgary. His

research interests are in cryptography and network security.

Watson has a PhD in mathematics from Royal Holloway, Uni-

versity of London. Contact him at gavenjwatson@gmail.com.

Selected CS articles and columns are also available for
free at http://ComputingNow.computer.org.

handles the details
 so you don’t have to!

Professional management and production of your publication

Inclusion into the IEEE Xplore and CSDL Digital Libraries

Access to CPS Online: Our Online Collaborative Publishing System

Choose the product media type that works for your conference:

Books, CDs/DVDs, USB Flash Drives, SD Cards, and Web-only delivery!

www.computer.org/cps or cps@computer.org
Contact CPS for a Quote Today!

