CHANGE SHEET

FOR

MSC INTERNAL NOTE NO. 70-FM-19, DATED JANUARY 30, 1970

RTEC REQUIREMENTS FOR APOLLO 14 (H-3) MISSION:

MOON-CENTERED RETURN-TO-EARTH CONIC SUBPROCESSOR

By Frances M. Northcutt

TRW Systems Group

October 1, 1971

Ronald L. Berry, Chief
Planetary Mission Analysis Branch

John P. Mayer, Chief
Mission Planning and Analysis Division

NOTE: A black or dashed line indicates the area of change.

(See Change History)

After the attached pages, which are replacements, have been inserted, insert this change sheet between the cover and the title page and write on the cover "CHANGE 1 inserted".

Title or Subject: RTGS Requirements for Apollo 14 (S-3)

Mission: Moon-Centered Return-to-Mars Comic Subprocessor

Date of Paper: October 1, 1971

Author(s): Frances M. Northcut, TN Systems Group

Distribution:

<table>
<thead>
<tr>
<th>Number of Copies</th>
<th>Addressees</th>
<th>Special Handling Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>See attachedlist.</td>
<td></td>
</tr>
</tbody>
</table>

Date: 10-5-71

CB

This is a change to distribution on Release Approval dated.

This is an addition to distribution on Release Approval dated.

Signature of Branch Head

Signature of Division Chief

Date: SEP 1971

Signature of Appropriate Assistant Director or Program Manager

Date

Change or Addition made by

Date

Location of Originals:

MSC Form 199 (Rev Dec 63)
MPAD STANDARD INTERNAL NOTE DISTRIBUTION LIST
(Revised August 6, 1971)

AB/Deputy Director
JM2/Center Data Management (3)
CS/Chief
EA3/Assistant Director for Electronic Systems
EG/Chief
EG/Assistant Chief for Engineering and Development
FA/Director of Flight Operations
FA/Assistant Director for Computation and Flight Support
FC/Chief (5)
FL/Chief (2)
FS/Chief, Flight Support Division
FS5/Chief, Flight Software Branch (3)
FS6/John E. Williams, Jr.
PA/Manager for LM
PA/Manager for GSM
PD/Chief (2)
PF/Chief
FM/Chief
FM/Deputy Chief
FM/Technical Assistant
FM2/Chief
FM3/Chief
FM4/Chief (7)
FM5/Chief
FM6/Chief
FM7/Chief
FM8/Chief
FM9/Chief
FM13/Assistant Chief
FM13/Mission Engineer
FM13/NR Representative (2)
FM13/Mission Design Manager
FM15/Report Control File (25)
FM/Author(s)
Bellcomm/K. E. Martersteck
IBM Library
TRW Library (4)
TRW/F. A. Evans (3)

ADDITIONS:
RTCC ADDITIONS:
IH/M. W. Ebker
 G. Mueller (4)
 S. James
 K. Lovinggood (7)
 R. Caldwell
 P. F. Pollacia
FS5/B. L. Brady
 R. Roundtree
 L. Dungan (5)
 M. D. Dixon
FM9/W. A. Sullivan
FL2/R. D. Snyder
NM/J. B. MacLeod
FC5/P. C. Shaffer
 M. G. Kennedy
 J. C. Bostick
THW/D. P. Johnson (2)
 F. M. Northcutt
CG5/J. W. O'Neill (5)
FM5/R. S. Davis
 G. L. Norbraten
 J. D. Yencharis
MEMORANDUM

TO: Distribution

FROM: M/ Mission Planning and Analysis Division

SUBJECT: RTCC REQUIREMENTS: Modification to Moon-Centered Portion of Return-to-Earth Abort Processor for Apollo 16

References:

Introduction

As a result of a program discrepancy report on the moon-referenced portion of the Return-to-Earth Abort Processor (RTE), a change to the moon-centered fuel-critical unspecified area (FCUA) logic is requested. This change to the moon-centered conic logic is defined by the enclosure. The new logic will eliminate the observed non-optimum solution and further enhance the ability of the FCUA logic to produce the desired solution.

In addition the enclosure documents the previous changes to subroutine FCUA. These changes do not represent a change to the current program. With their incorporation, the original defining document (reference 1) will reflect the current program logic.
Discussion

Prior to the Apollo 15 flight a non-optimum moon-referenced FCUA solution was observed. The investigation of this case indicated that for some situations the AV function was not fully minimized. A minimal change to the logic produced the desired solution for this case. Because the change is small and affects only two portions of the logic and because a non-optimum solution is difficult to identify, this change is requested for Apollo 16.

Two classes of changes are reflected in the enclosure. The first class represented by the dotted lines in the right-hand margin documents corrections for typographical and logic errors to reference 1. Corrections defined by reference 2 are included.

The second class of change represented by the solid lines in the right-hand margin is the requested change to subroutine MCUA (POMCUA). Reference 3 presents this new logic.

To provide verification of the new logic, four unit test cases are defined by reference 4.

Summary

As a result of a non-optimum moon-referenced FCUA solution from the Return-to-Earth Abort processor, a change to the MCUA logic is requested for Apollo 16 and defined herein. Also included are the previous changes to subroutine MCUA in order to update the original program specification.

Ronald L. Berry

APPROVED BY:

John P. Mayer
Chief, Mission Planning and Analysis Division

The Flight Support Division concurs with the above and directs IBM to proceed accordingly.

James C. Stokes, Jr.
Chief, Flight Support Division

Enclosure

FM54/RSDavis:jrh:9/20/71
<table>
<thead>
<tr>
<th>Change no.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/1/71</td>
<td>Page</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initialization for flag IRSCAN added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logic deleted to always allow complete AV minimization with respect to I_R^*.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. (Dashed line) Same as page A-76.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. (Solid line) New logic added to define the initial I_R^* values for the generation of the solution with a landing time 1 hour less than the landing time bound.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Same as A-76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Same as A-76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supplies tolerances around the solution constraints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eliminates possible loop and allows generation of solution on both h_{pc} and T_{max} constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Same as A-81</td>
</tr>
</tbody>
</table>
MCUA
Logic Flow
Page 2

REP = 0
INTER = \frac{i_r}{|i_r|}
i_r = |i_r| + 61_r

MCDRV: Enter with KIP, \omega_r, r_z, q_m, \xi, INTER, PNT
Exit with \Delta V, t_m, \gamma_p, q_d, \xi, REP

i_r = (i_r - 6i_r) \text{ INTER}

\begin{array}{c}
\text{REP = 0} \\
\text{YES} \\
\Delta V = 10^{10}
\end{array}
\begin{array}{c}
\text{NO} \\
\Delta V > S\Delta V
\end{array}
\begin{array}{c}
\text{NO} \\
S_i_r = i_r \\
S\Delta V = \Delta V
\end{array}

C = 3
\[\Delta 1 = 5t_zT1(2) - 4t_zT1(1) \]
\[\Delta 2 = 5t_zT1(2) - 4t_zT1(3) \]
\[MM = 1 \]

\[\Delta 1 < t_zT1(3) \]
- YES: \[t_z = \frac{t_zT1(2) + t_zT1(3)}{2} \]

\[t_z' = \frac{t_zT1(1) + t_zT1(2)}{2} \]
- NO: \[\Delta 2 < t_zT1(1) \]
- NO: \[\Delta 2 < t_zT1(1) \]
- YES: \[1 \]

A-78
MCUA
Logic Flow
Page 12

A-80
U

REP = 0

ΔV < ΔV
OR
ΔV > ΔV'_{max} + eΔV

NO

ΔV < ΔV
NO

K

NO

NO

NO

STORE: ENTER WITH OPTION = 1;
STORE SOLUTION

L

L

15

15

14

12

V

ΔV > ΔV'_{max} + 0.001

YES

t'_{z} = t'_{z} + 0.5

NO

YES

a_{r} > a''_{r_{max}} + 0.001

NO

STORE: ENTER WITH OPTION = 1;
STORE SOLUTION