SATURN V
FLIGHT PROGRAM DEVELOPMENT

"FOR INFORMATION ONLY"

Prepared For
SYSTEMS ENGINEERING OFFICE
MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA

By
THE BOEING COMPANY
HUNTSVILLE, ALABAMA

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
TABLE OF CONTENTS

I. Flight Program - General

001 Saturn V Flight Program Development
002 Flight Program Functions
003 Flight Program Operational Elements
004 Preliminary Mission Studies and Constraints
005 Level I Flight Program Development
006 Level II Flight Program Development
007 Flight Program Verification and Review
008 LVDC Flight Program and Related Documentation, Reviews, Approvals, and Deliveries

II. Mission Development

009 Mission Definition Development
010 Program Mission Planning
011 Flight Program Development Event Sequence and Milestones
012 Milestones for LVDC Software Development
013 Typical Flight Program Development Schedule
014 Mission Defining Document
015 Documentation and Data Inputs to Mission Defining Document
016 Equation Defining Document
017 Final Mission Defining Document
018 Documentation and Data Inputs to Final Mission Defining Document
019 Flight Program Documentation
020 Documentation and Data Inputs to Final Flight Data Document
021 Flight Program Verification Plan
022 LVDC Flight Program Tape Development
023 Flight Program Baseline Reviews
024 Change Control
025 Software Change Procedure (Class I Changes)
026 Software Change Procedure (Class II Changes)
TABLE OF CONTENTS

(CONTINUED)

III. Verification/Simulation

027 Flight Program Verification Activities and Documentation
028 Huntsville Simulation Facilities - Characteristics and Capabilities
029 Level I Flight Program Acceptance Tests
030 Level II Flight Program Acceptance Tests and Preparation of KSC Tapes
031 All Digital Perturbation Runs (Typical)
032 Simulation Lab Perturbations (Typical)
033 Saturn V Systems Development Facility (Breadboard)
034 Differences between Flight and Simulated Flight

IV. Postflight

035 IBM Postflight Evaluation Tasks
036 Summary of Boeing Postflight Contractual Tasks

V. Appendix A

Saturn V Flight Program Development Source Data
The Saturn V Flight Program development can be broken down into two distinct phases, separated by issuance of a Mission Defining Document. Leading up to the Mission Defining Document are the generalities; the ground rules, guidelines, and objectives; and preliminary and reference material on which to base and plan specifics. With the issuance of the Mission Defining Document, operational data becomes necessary; specific vehicle characteristics and capabilities are important; equations are recorded for a vehicle performing a mission; and the actual flight program software is prepared and documented.

As shown by the slide, a mission assignment is made and preliminary and reference phase studies are conducted for establishment and definition of the flight program design requirements. These are assembled into a Mission Defining Document from which an Equation Defining Document is prepared. Simultaneously with release of an EDD, preparation is begun on an initial (level I) flight program. More firm data is realized from operational phase studies and analyses based on the specific vehicle and mission, resulting in changes to the initiated flight program. Incorporation of this data results in a level II flight program. Simulations of the vehicle and its flight are conducted to verify the flight program. The finalized constants and any minor logic changes are incorporated, and the flight program is verified and loaded into the magnetic core memory of the Launch Vehicle Digital Computer. The vehicle now possesses the instructions which will control the LVDC, and consequently the vehicle flight, from seconds before liftoff until the separation of the Instrument Unit from the launch vehicle payload.

(1), (2), (3), (4), (5)
FLIGHT PROGRAM FUNCTIONS

The flight program is defined as the set of instructions which controls the launch vehicle digital computer (LVDC) operation from seconds before liftoff until the end of the launch vehicle mission. These instructions are stored in core memory within the LVDC.

The flight program consists of information relevant to the following functions:

- NAVIGATION
- GUIDANCE
- ATTITUDE CONTROL
- EVENT SEQUENCING
- DATA MANAGEMENT
- GROUND COMMAND PROCESSING
- HARDWARE EVALUATION
The flight program is defined as the set of instructions which controls the Launch Vehicle Digital Computer (LVDC) operation from seconds before liftoff until the end of the launch vehicle mission. These instructions are stored in core memory within the LVDC.

The flight program consists of information necessary to perform many functions during the launch vehicle mission. These functions include: navigation, guidance, attitude control, event sequencing, data management, ground command processing, and hardware evaluation. Specific definition of these functions depends on mission objectives.

The flight program is designed to operate successfully in the presence of stage failure conditions. Each external signal which starts a computer time base after guidance reference release is backed up by an alternate means which signifies occurrence of the specific event. Moreover, the program prevents premature initiation of time bases by appropriate logic, even if an erroneous start-time-signal is received.
FLIGHT PROGRAM
OPERATIONAL ELEMENTS

THE FLIGHT PROGRAM MAY BE DIVIDED INTO THE FOLLOWING OPERATIONAL ELEMENTS:

- POWERED FLIGHT MAJOR LOOP
- ORBITAL FLIGHT PROGRAM
- MINOR LOOP
- INTERRUPTS & FLIGHT SEQUENCING
- TELEMETRY & COMMUNICATIONS
The flight program can be divided into five operational elements. These are the powered flight major loop, the orbital flight program, the minor loop, interrupts, and telemetry.

1. The powered flight major loop contains guidance and navigation calculations, timekeeping, and all repetitive functions which do not occur on an interrupt basis.

2. The orbital flight program consists of an executive routine concerned with IU equipment evaluation during orbit and a telemetry time-sharing routine to be employed while the vehicle is over receiving stations. In addition, all navigation, guidance, and timekeeping computations are carried out on an interrupt basis keyed to the minor loop in the orbital flight program.

3. The minor loop contains the platform gimbal angle and accelerometer sampling routines and the control system computations.

4. An interrupt routine permits interruption of the normal program operation to free the LVDC for priority work. Several subroutines or secondary functions are available to the main program. They are utilized at specific times within the main loop or at certain phases of the flight. Other interrupt operations may occur at any time within the program. Actually, the minor loop is an interrupt operation which will occur at intervals of 25 times per second during powered flight. (i.e. every 40 milliseconds the main program is interrupted while gimbal angle readings, accelerometer samplings, and control system routines are processed).

5. A programmed telemetry feature is provided as a method of monitoring LVDC and LVDA operations. The telemetry routine transmits specified information and data to the ground via IU telemetry equipment. In orbit, telemetry data must be stored at times when the vehicle is not within electromagnetic range of a ground receiving station. This operation is referred to as data compression. The stored data will be transmitted later, on a time-shared basis with real-time telemetry, when range conditions are favorable.

(8), (11), (12), (13)
PRELIMINARY MISSION STUDIES AND CONSTRAINTS
The Saturn V Flight Program development for any given launch vehicle and mission occurs over approximately a two year period. It begins with NASA Headquarters providing a "Mission Assignment Document" stating objectives and guidelines.

The Flight Mechanics Panel produces "Preliminary Mission Constraints" which, in turn, provides limitations on targeting, guidance, and launch azimuth. This makes possible the establishment of mission design requirements (considerations and constraints) from the separate MSFC laboratories.

Preliminary and reference phase studies done by the individual MSFC organizations and contractors generate general flight program design requirements (considerations and constraints impacting everything associated with a vehicle and its mission). These flight program design requirements are arrived at by numerous studies and analyses, including:

R-AERO
1. Trajectories --resulting in planned flight path
2. Guidance computations--resulting in equations, presettings
3. Range safety, abort and alternate mission plans
4. Tracking and communication coverage, aerodynamic coefficient.

R-ASTR
1. Navigation equations, integration routines
2. Control system data--resulting in sample rates, gains
3. Sequencing--resulting in listing of timed events

I-MO
MCC Telemetry Requirements

R-P&VE
Propulsion data, thrust, mass, flow rates, C.G.

(1), (2), (3), (4), (5)
LEVEL I FLIGHT PROGRAM DEVELOPMENT

MISSION DEFINING DOCUMENT IS ASSEMBLED BY ASTRONICS FROM DESIGN REQUIREMENT AND MISSION OBJECTIVE STUDIES & ANALYSES.

EQUATION DEFINING DOCUMENT IS PREPARED BY IBM AND SHOULD CONTAIN ALL THE INFORMATION NECESSARY TO PREPARE A FLIGHT PROGRAM.

LEVEL I (INITIAL) FLIGHT PROGRAM PREPARED (INITIATED BY IBM AT THE SAME TIME THE EDD IS DELIVERED).
The design requirements are provided to Astrionics, who is responsible for the implementation of these requirements into a Saturn V flight program and has contracted with IBM to accomplish this end.

Astrionics assembles the design requirements by reference under a cover letter referred to as a "Mission Defining Document" and transmits them to IBM for actual preparation of the flight program.

Based on the "Mission Defining Document," IBM prepares an "Equation Defining Document," which should contain all the information necessary to prepare a flight program for storage in the Launch Vehicle Digital Computer (LVDC) core memory.

Development of a level I flight program based on the EDD is initiated by IBM at the same time the EDD is delivered to MSFC.

The flight program must be functionally equivalent to the equations and presets, as originated from the design requirements and mission objectives, as recorded in the appropriate lab studies, and as specified in the EDD. (In actuality, the previous launch vehicle's Equation Defining Document is updated and a copy of the previous vehicle's flight program becomes the level I flight program upon which the current flight program requirements are based.)
LEVEL II FLIGHT PROGRAM DEVELOPMENT

PRELIMINARY DESIGN REVIEW

REVIEW DESIGN PHILOSOPHY, LVDC MEMORY UTILIZATION, SCAI I NG REQUIREMENTS, MODEL SIMULATIONS, POSSIBLE PROBLEM AREAS, KNOWN DEVIATIONS FROM ORIGINAL DEFINITION TO ASSURE THAT THE EDD IS A SOUND BASELINE FOR THE FLIGHT PROGRAM.

AFTER MSFC REVIEWS THE EDD, THEY ISSUE A "FINAL MISSION DEFINING DOCUMENT" INCORPORATING LOGIC CHANGES AND UPDATING CONSTANTS REQUIRED IN THE FINAL FLIGHT PROGRAM.

OPERATIONAL PHASE STUDIES CONTAINING UPDATED, REFINED, AND PREVIOUSLY MISSING DATA.

INCORPORATION OF UPDATING CHANGES RESULTS IN LEVEL II FLIGHT PROGRAM.
Astrionics is responsible for reviewing the EDD. IBM conducts a Preliminary Design Review for MSFC to assure that the EDD is a sound baseline for the flight program (IBM reviews design philosophy, LVDC memory utilization, scaling requirements, results from math model simulations, possible problem areas, known deviations from original definition).

Operational phase studies containing updated, refined, and previously missing or assumed data, are assembled at this time by Astrionics.

After Astrionics has reviewed the EDD, they issue a "Final Mission Defining Document" (FMDD) incorporating any logic changes and information which finalized the constants required in the final flight program. This is done by an Astrionics cover letter referencing operational phase studies and analyses.

Upon receipt of the FMDD, IBM is to make the necessary changes to the previously initiated level I flight program for incorporation into a level II flight program.

(1), (2), (3), (4), (5)
FLIGHT PROGRAM VERIFICATION AND REVIEW

Verification/simulation models and tests: There are three principal simulation facilities used to verify proper performance of the flight program:

1. IBM's all digital 360/6D simulation model used for 6-D boost verification (does not test hardware/software compatibility)

2. Astronic's digital hybrid simulation model used for orbital verification (does test hardware/software compatibility)

3. MSFC's system development facility (breadboard) used for time sequencing of hardware.

Assure that: (1) the EDD adequately defines the Level II flight program (2) the PVP specifies adequate verification procedures, (3) the Level II flight program satisfies final mission definition document requirements.

Verifies that: (1) all changes have been incorporated, (2) the flight program has been verified, (3) documentation has been updated and is in agreement with the final flight program.
IBM then prepare a Program Verification Plan (PVP) describing precisely how the flight program is to be verified before it is flown. IBM also conducts a Critical Design Review for MSFC to assure that: (1) The EDD adequately defines the Level II flight program, (2) The PVP specifies adequate verification procedures, and (3) the Level II flight program satisfies FMDD requirements.

There are three principal simulation facilities used to verify proper performance of the flight program: (1) IBM 360/6D all digital, (2) R-ASTR Digital Simulation Lab (HYBRID), and (3) R-ASTR Systems Development Facility (BREADBOARD). The simulation models are updated to the current vehicle configuration for verification of the level II and final flight programs.

IBM is responsible for conducting and documenting the primary flight program verification effort at each of the three principal simulation facilities:

(1) IBM's all digital simulation (IBM System 360) is used for 6-D boost verification (does not test hardware/software compatibility);
(2) Astronics Digital Simulation Laboratory (HYBRID), is used for orbital verification (does test hardware/software compatibility);
(3) MSFC's Systems Development Facility (BREADBOARD) is used for time sequencing of hardware.

IBM conducts a Final Configuration Review for MSFC which presents:
(1) review of all input requirements, (2) review of final flight program implementation, (3) review of final flight program verification, (4) description of all final flight program documentation - for the purpose of verifying that: (1) all changes have been incorporated, (2) programs have been verified, and (3) documentation has been updated and is in agreement with the final program.

Following the Final Configuration Review, official delivery of the flight program is made.

The remainder of this presentation concerns itself with a more detailed explanation of the documentation, simulation, verification, and procedures in the development of a Saturn V flight program.

(1), (2), (3), (4), (5)
LVDC FLIGHT PROGRAM
LEVEL II FLIGHT PROGRAM AND DOCUMENTATION
FINAL FLIGHT PROGRAM AND DOCUMENTATION

AND RELATED DOCUMENTATION,
LVDC MISSION DEFINING DOCUMENT (MDD)
LVDC EQUATION DEFINING DOCUMENT (EDD)
FINAL MISSION DEFINING DOCUMENT (FMDD)
PROGRAM VERIFICATION PLAN (PVP)
FINAL FLIGHT DATA DOCUMENT (FFDD)
POSTFLIGHT EVALUATION PLAN (PEP)
GUIDANCE & CONTROL SUMMARY INFORMATION DOCUMENTS (G&CSID)
FLIGHT PROGRAM VERIFICATION DOCUMENT (FPVD)
POSTFLIGHT EVALUATION DOCUMENT (PED)

REVIEW, APPROVALS,
PRELIMINARY DESIGN REVIEW (PDR)
CRITICAL DESIGN REVIEW (CDR)
FINAL CONFIGURATION REVIEW (FCR)

AND DELIVERIES
UNVERIFIED LEVEL II AND FINAL LVDC PROGRAMS CONCURRENT WITH
INITIAL DELIVERY TO CONTRACTOR'S SIMULATION LABORATORY FACILITY
FORMAL DELIVERY OF VERIFIED LEVEL II AND FINAL FLIGHT PROGRAM
The following flight programs and related documentation are required on each vehicle:

1. **Level II Flight Program and Documentation** is a complete flight program reflecting the approved LVDC Equation Defining Document and the Final Mission Defining Document. Documentation includes program tapes, detailed flow charts, program listings, telemetry listings, scaling and nomenclature, and repeatable simulated flight mode and flight simulation mode operating procedures.

2. **Final Flight Program and Documentation** is a complete flight program reflecting the approved LVDC Equation Defining Document, the Final Mission Defining Document, and the Final Flight Data Document. Documentation includes program tapes, detailed flow charts, program listings, telemetry listings, scaling and nomenclature, and repeatable simulated flight mode and flight simulation mode operating procedures.

The following documents are required on each vehicle with the originator and review authority identified:

1. **LVDC Mission Defining Document (MDD)** - MSFC - NONE
2. **LVDC Equation Defining Document (EDD)** - IBM - MSFC
3. **Final Mission Defining Document (FMDD)** - MSFC - IBM
4. **Program Verification Plan (PVP)** - IBM - MSFC
5. **Final Flight Data Document (FFDD)** - MSFC - IBM
6. **Postflight Evaluation Plan (PEP)** - IBM - MSFC
7. **Guidance and Control Summary Information Document (G&CSID)** - IBM - MSFC
8. Flight Program Verification Document (FPVD) - IBM - MSFC

9. Postflight Evaluation Document (PED) - IBM - NONE

The following reviews are conducted for each vehicle by the contractor (IBM) for MSFC:

1. Preliminary Design Review of EDD.

2. Critical Design Review of EDD, PVP, and the flight program.

3. Final Configuration Review of the final flight program, PEP, and G&CSID.

4. Program delivery reviews and certifications prior to each program delivery unless waived by MSFC (apply to all program deliveries to KSC).

The following approvals are required for each vehicle:

1. MSFC formal approval of the EDD and PVP.

2. MSFC formal approval of the Level II Flight Program and documentation, Final Flight Program and documentation, the PEP, G&CSID and FPVD.

3. Review and approval by the contractor (IBM) of the FMDD to delineate those areas in which adequate definition is lacking. Specific definition required in each area shall be defined.

4. Review and approval by the contractor (IBM) of the FFDD to ensure that requirements listed in the FFDD are consistent with the time available. Logic changes shall be assessed with respect to their magnitude and with respect to the magnitude of the constant changes.
The contractor (IBM) performs the following LVDC software (digital computer programs) and documentation deliveries:

1. A delivery of the unverified Level II and final LVDC programs to MSFC concurrent with the initial delivery to the contractor's Simulation Laboratory Facility. This delivery consists of a program tape and a program listing. Any subsequent deliveries of unverified programs required by MSFC are directed by the contracting officer.

2. Formal deliveries of verified Level II and Final Flight Programs and documentation are made to MSFC and KSC.
This slide illustrates the offices involved in the definition, development, and documentation of a Saturn V mission.

NASA headquarters issues a mission assignment document generally stating objectives and guidelines of the mission. The separate centers meet through intercenter panels and prepare a list of joint preliminary mission constraints; defining limitations on targeting, guidance and launch azimuth.

The Saturn V program office administers the overall program for MSFC. Numerous studies and analyses are performed by individual laboratories and project offices on mission profiles and trajectories, navigation and guidance equations and presettings, dynamics and flight control, propulsion data and performance, structural and mass analysis, aero thermodynamics, telemetry and tracking requirements, flight sequencing, and abort and alternate mission plans.

The end results of these studies and reports are routed through R-ASTR for formulation of a Mission Defining Document. IBM, as the flight program software contractor, is the recipient of this document, and based on its contents, develops the LVDC Flight Program.

MSFC and contractor elements involved include, but are not limited to, the following:

1. Astronics Laboratory
2. Aeronautics Laboratory
3. Propulsion and Vehicle Engineering Laboratory
4. I-V-E
5. I-V-IU
6. I-MO
7. Stage Contractors
8. Engine Contractor
9. Instrument Unit Contractor
10. Programming Contractors

In addition to the rigid interface demands imposed on these parties indicated, there is a continuous requirement for Inter-Center exchange of data through the Flight Mechanics Panel and its sub-panels.

(1), (2), (3), (4), (5)
The project phases of mission planning during a flight program development are:

(1) Preliminary mission planning - during which preliminary mission constraints and a preliminary mission profile and trajectory are established, resulting in a preliminary reference trajectory.

(2) Reference mission planning - during which general target requirements and guidance equations and presets are established; preliminary abort and alternate mission studies are conducted; and concluding with a general reference trajectory;

(3) Operational flight planning - during which guidance and error analysis and flight performance predictions are performed and the flight trajectory and abort and alternate mission plans are derived for the specific mission designated.

Preliminary and reference mission planning phases should result in a general definition (a reference trajectory and mission constraints) for a series of launch vehicles.

The operational flight planning is that which is conducted for a specific mission, with a given launch vehicle, for a specific flight, and encompasses the actual LVDC flight program software development; its simulation, verification, and design assurance approvals.
FLIGHT PROGRAM DEVELOPMENT EVENT
SEQUENCE AND MILESTONES

- Assign Mission
- Develop Preliminary Mission Design Requirements & Constraints

 V INCLUDES:
 - Switch Selectors Listing
 - ASTEC Runstation Lose & Gain Times

- Assemble Mission Defining Document
- Develop Equation Defining Document & Conduct Preliminary Design Review (PDR)
- Assemble Final Mission Defining Document
- Develop Level II Flight Program Verification Plan
- Develop Program Verification Plan
- Develop Level II Flight Program
- Develop Program Verification
- Conduct Flight Program Verification
- Conduct Critical Design Review (CDR)
- Prepare Final Flight Data Document
- IBM Deliver Flight Program to IBM (KSC)
- Deliver Level II Flight Program
- IBM Run Compatibility Checks with GSE Software (Including G&C)
- Update & Complete Flight Program Verification
- KSC Conduct MCC-H Test
- IBM - MSFC Deliver Final Flight Program & Conduct Final Configuration Review (FCR)

MDD EDD FMDD CDR FFDD FCR
T-104 T-57 T-47 T-29 T-23 T-12 T-6

NOTE: MILESTONES NOT TO SCALE
Preparation for and development of flight program tapes is the most complex and demanding task included in the entire software program. An extensive inter-change of data and documentation between many agencies must start more than two years prior to a given mission and continue until very shortly prior to vehicle launch.

While a previous chart illustrated WHO was involved in flight program development, this slide shows WHAT and WHEN.

(l), (2), (3), (4), (5), (7)
MILESTONES FOR LVDC SOFTWARE DEVELOPMENT

<table>
<thead>
<tr>
<th>WEEKS PRIOR TO LAUNCH</th>
<th>-57</th>
<th>-47</th>
<th>-43</th>
<th>-29</th>
<th>-23-21</th>
<th>-12</th>
<th>-10-8</th>
<th>-6</th>
<th>-3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSFC PREPARED DOCUMENTATION DELIVERED TO IBM</td>
<td>MISSION DEFINING DOCUMENT (MDD)</td>
<td>FINAL MISSION DEFINING DOCUMENT (FMDD)</td>
<td>FINAL FLIGHT DATA DOCUMENT (FFDD)</td>
<td>EDD & PVP</td>
<td>PEP & G&CSID & FINAL FLIGHT PROGRAM & DOCUMENTATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSFC REVIEWS (ASTRONAUTICS)</td>
<td></td>
</tr>
<tr>
<td>CONFIGURATION MANAGEMENT DESIGN REVIEWS</td>
<td>PRELIMINARY DESIGN REVIEW (PDR)</td>
<td>CRITICAL DESIGN REVIEW (CDR)</td>
<td>FINAL CONFIGURATION REVIEW (FCR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM REVIEWS</td>
<td></td>
</tr>
<tr>
<td>IBM PREPARED DOCUMENTATION DELIVERED TO MSFC</td>
<td>EQUATION DEFINING DOCUMENT (EDD) & LEVEL I FLIGHT PROGRAM DEVELOPMENT INITIATED</td>
<td>PROGRAM VERIFICATION PLAN (PVP)</td>
<td>POSTFLIGHT EVALUATION PLAN (PEP) AND GUIDANCE & CONTROL SUMMARY INFORMATION DOCUMENT (G&CSID)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDC FLIGHT PROGRAM VERIFIED & DELIVERED BY IBM TO MSFC & KSC</td>
<td></td>
</tr>
</tbody>
</table>
The majority of the research studies and reports are done independently by the many separate NASA organizations and their supporting contractors, but it is Astrionics Laboratory's task to integrate all of this material at the time a flight program is actually to be put together. They have contracted with IBM to actually prepare the flight program software and to conduct the simulation and verification program associated with it.

Consequently, it is appropriate to identify what IBM is more specifically responsible for and when it is due. The chart shows the delivery and review responsibility between Astrionics and IBM in order to successfully accomplish the task of preparing the flight program.

Succeeding slides will present a more detailed explanation of what each of the deliveries and reviews involve.
More than 100 individual major data inputs and documents have been identified that are required either as direct or indirect inputs to Astrionics Laboratory for the purpose of producing the three (3) major documents from which IBM develops the Flight Program. These three (3) major documents are:

1. Mission Defining Document (MDD)
2. Final Mission Defining Document (FMDD)
3. Final Flight Data Document (FFDD)

Phasing of these documents into the flight program development cycle is such that inputs to Astrionics must occur as follows:

1. Input to MDD - Launch minus 61 weeks.
2. Input to FMDD - Launch minus 33 weeks.
3. Input to FFDD - Launch minus 16 weeks.

In the above cases, the preparation of the input data must begin as much as one year prior to the Astrionics Laboratory input requirements. It must be pointed out that the majority of the 100+ major documents comprise a series/parallel network of constraints upon each other. In addition, there is the undocumented region of untold numbers of minor (or less major) data that must be compiled to support those documents that have been identified.

The next several slides discuss the MDD, EDD, FMDD, and FFDD and their identifiable major inputs (in that order) and who prepares them.

The next eight charts represent an effort to depict a typical data requirements schedule oriented to launch date. It represents a "start-from-scratch" condition and all requirements need not be repeated for every flight, particularly when successive missions are the same or similar.

Possible duplications may exist in the data schedule. Similar or identical data may be shown under more than one description or terminology.
LVDC Mission Defining Document (MDD) contains the general mission description, objectives, requirements, and constraints; preliminary vehicle and control system data; preliminary definition of inflight functions to be performed by the LVDC such as guidance, control navigation, sequencing, telemetry, orbital checkout, Digital Command System operation, simulated flight routines, antenna switching, and venting; preliminary time base backup and instrumentation backup requirements; preliminary real time alternate mission requirements; preliminary interrupt and discrete requirements; preliminary propellant utilization requirements; and any other information and/or requirements specified for the mission.

From the Mission Defining Document, IBM begins preparation of math flow diagrams and various study activities. The vehicle parameters are obtained and a 3D and a 6D simulation of the vehicle with a FORTRAN model of the guidance equations is built up. These models are exercised to determine range of all variables, validity of algorithms, behavior of guidance equations under extreme perturbations, adequacy of attitude computations, control gains, steering misalignment correction requirements, smoothing and filtering requirements, payload loss due only to implemented guidance method, and other parameters. The results of these studies are presented in a series of meetings with MSFC and trade-offs are made where required.

Additional studies will be made to establish: discrete input and output program requirements and methods for implementation; prelaunch calculations; telemetry from the LVDC; and other special operations required for the mission under study.

The initial results of these efforts are incorporated into the Equation Defining Document, containing range of variables, sampling rates, filter coefficients, attitude command gains, steering misalignment gains, special protective features for sensitive calculations, and a detailed specification for the flight computer program. A flow diagram will be included to assist in defining the program. Level I Flight Program Development will be initiated upon delivery of this document. The above studies are continued until all recommendations in the Equation Defining Document have been verified.

(1), (2), (3), (4), (5)
OUTLINE FOR MISSION DEFINING DOCUMENT PREPARATION

Assemble Data (Checklist)

Review

- Confirm Mission Requirements vs Data
- Compare with Prior Flight Programs
- Cross Check for Compatibility

Analysis

- Identify Special Routines/Algorithms
- Check Gains, Limits for Adequacy
- Estimate Scaling Requirements

Simulation

- Confirm Navigation/Guidance Equations and Pre-Settings
- Check Back-up Routines
- Assess Orbital Operation

Publication of MDD

(1), (2), (3), (4), (5)
Documentation and Data Inputs to Mission Defining Document

<table>
<thead>
<tr>
<th>Document/Activity</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Definition Labs, Centers & Stage Contractor Inputs</td>
<td>NASA HDQ</td>
</tr>
<tr>
<td>Prel L/V Mission Constraints</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Vented Data</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Weight & Mass</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Propulsion Data</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>FLIGHT MECH PANEL</td>
</tr>
<tr>
<td>Prel Mission Profile</td>
<td>FLIGHT MECH PANEL</td>
</tr>
<tr>
<td>Prel Mission Constraints</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Prel L/V Reference Trajectory</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Propulsion Data</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Atmospheric Data</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Prel Reference Trajectory</td>
<td>THE BOEING CO</td>
</tr>
<tr>
<td>Targeting Proposal</td>
<td>THE BOEING CO</td>
</tr>
<tr>
<td>Prel L/V Guidance Equations</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Atmospheric Data</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Vehicle Configuration</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Mission Profile</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Boost Aerodynamics</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Space Environment</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Orbital Configuration</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Orbital Aerodynamics</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Abort & Alternate Mission Constraints</td>
<td>FLIGHT MECH PANEL</td>
</tr>
<tr>
<td>Malfunction Definition</td>
<td>?</td>
</tr>
<tr>
<td>Abort & Alternate Mission Studies</td>
<td>THE BOEING CO</td>
</tr>
<tr>
<td>Real Time Alternate Mission Plan</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Antenna Switching Req'mts</td>
<td>R-ASTR-1</td>
</tr>
<tr>
<td>Ground Test Req'mts</td>
<td>R-ASTR-N</td>
</tr>
<tr>
<td>Control Gains & Limits</td>
<td>R-ASTR-F</td>
</tr>
<tr>
<td>M/F Filter Definition</td>
<td>R-ASTR-F</td>
</tr>
<tr>
<td>Instrumentation Back-Up Req'mts</td>
<td>R-ASTR-NG</td>
</tr>
<tr>
<td>Navigation Equations</td>
<td>R-ASTR-NG</td>
</tr>
<tr>
<td>T/M Req'mts (Other Than MCC)</td>
<td>R-AERO-AD/AM</td>
</tr>
<tr>
<td>Aerodynamic Data</td>
<td>R-AERO-P0</td>
</tr>
<tr>
<td>Preliminary Mission Constraints</td>
<td>R-AERO-N</td>
</tr>
<tr>
<td>L/V Guidance Equations</td>
<td>R-AERO-DG</td>
</tr>
<tr>
<td>Propulsion Parameters Reference List</td>
<td>?</td>
</tr>
<tr>
<td>Time Tilt Table</td>
<td>R-AERO-DA</td>
</tr>
<tr>
<td>Stage Propulsion Performance & Dispersion Data</td>
<td>R-P&VE-PP</td>
</tr>
<tr>
<td>Updated Venting Data</td>
<td>R-P&VE-PP</td>
</tr>
<tr>
<td>Mission Control Center T/M</td>
<td>I-MO</td>
</tr>
<tr>
<td>MCC Digital Control System</td>
<td>I-MO</td>
</tr>
<tr>
<td>Real Time Alternate Mission Plan</td>
<td>FLIGHT MECH PANEL</td>
</tr>
</tbody>
</table>
The documentation and data inputs to Astrionics for preparation of the Mission Defining Document are required at launch date minus 61 weeks for release of the Mission Defining Document at launch date minus 57 weeks.

Following is a list of the identified major inputs to the MDD:

DOCUMENTATION INPUT TO MISSION DEFINING DOCUMENT

<table>
<thead>
<tr>
<th>Input Category</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Definition</td>
<td>NASA Hdq.</td>
</tr>
<tr>
<td>Labs, Centers, & Stage Contractor Inputs</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Prel. L/V Mission Constraints</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Venting Data</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Weight and Mass</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Propulsion Data</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Prel. MSC Mission Profile</td>
<td>Flight Mech. Panel</td>
</tr>
<tr>
<td>Prel. L/V Reference Trajectory</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Propulsion Data</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Atmospheric Data</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Prel. Reference Trajectory</td>
<td>The Boeing Company</td>
</tr>
<tr>
<td>Targeting Proposal</td>
<td>The Boeing Company</td>
</tr>
<tr>
<td>Prel. L/V Guidance Equations</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Atmospheric Data</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Vehicle Configuration</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Mission Profile</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Boost Aerodynamics</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Space Environment</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Orbital Configuration</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Mission Profile</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Orbital Aerodynamics</td>
<td>R-AERO</td>
</tr>
</tbody>
</table>

(4>, (7)
Molnurtion Definition
Abort & Alternate Mission Studies
Real Time Alternate Mission Plan
Antenna Switching Requirements
Ground Test Requirements
Control Gains and Limits
M/F Filter Definition
Instrumentation Back-up Requirements
Navigation Equations
T/M Requirements (Other than MCC)
Aerodynamic Data
Preliminary Mission Constraints
L/V Guidance Equations
Propulsion Parameters Reference List
Time Tilt Table
Main Stage Propulsion Performance & Dispersion Data
Updated Venting Data
Mission Control Center T/M
MCC Digital Control System
Real Time Alternate Mission Plan

Flight Mech. Panel
The Boeing Company
R-AERO
R-ASTR-I
R-ASTR-N
R-ASTR-F
R-ASTR-NG
R-ASTR-NG
R-AERO-AD/AM
R-AERO-PA
R-AERO-DG/N
R-AERO-DG/N
R-AERO-DA
R-P&VE/PP
R-P&VE/PP
I-MO
I-MO
Flight Mech. Panel
EQUATION DEFINING DOCUMENT

EQUATION DEFINING DOCUMENT CONTENTS

- Exact Equations (algorithm form)
- Range of variables, scaling of parameters
- Input/output specifications
- Initial conditions, final conditions
- Sampling rates, digital filter specifications
- Digital command system requirements
- Reasonableness tests, with limits
- Sequencing requirements
- Flight simulation definition and constraints
- Orbital operations and timelines
- Estimated memory requirements
- Vent and atmospheric data
- List of parameters for telemetrying

* Boost tilt profile
 - Order of equation solution

EQUATION DEFINING DOCUMENT REVIEW

- Edit for compliance with MDD
- Analyze areas of compromise
- Evaluate algorithm accuracy and convergence
- Determine adequacy of back-ups
- Analyze consistency of scaling and accuracy
- Critique proposed implementation
- Judge credibility of flow diagrams
- Evaluate utilization of hardware redundancy
- Evaluate degree of program flexibility

* Data most subject to change
A Guidance Studies and Analyses effort is concerned with performance of system studies which result in the definition of the LVDC Flight Program. The main result is the generation of the Equation Defining Document and a math flow diagram for each flight. The contents of the Equation Defining Document are IBM's recommendations for the equations that are to be performed in the LVDC during preflight and flight of a specified mission. These equations pertain to navigation, guidance, and control calculations.

This document defines the Launch Vehicle Digital Computer (LVDC) flight program for the powered flight and orbital operations phase of a specific Apollo Saturn mission. Included are general and detailed flow charts, equations, and analyses covering guidance, navigation, control, sequencing, test and telemetry functions. In addition, results of digital computer simulations and other detailed studies to verify the flight program are appended.

The definition provides both a general description of the various aspects of the flight program and a basis for the programming effort required to generate the Level 1 Flight Program Documentation.

LVDC Equation Defining Document (EDD) is based on the MDD and contains all the information necessary to program the LVDC. The EDD includes the following: exact equations to be solved in the LVDC (algorithm form); order in which equations must be solved; range of variables; scaling of quantities; discrete input and output specifications; orbital operations, equations and definitions; mode sequencing definition; initial conditions and final conditions (IGM); sampling rates; estimated memory requirements; specifications of all digital filters to be used in the flight program, including those required to reduce the effects of any undesirable characteristics of the platform accelerometer outputs arising from thrust oscillation; noise, and other causes which affect the guidance accuracy and stability; and other equations and information specified by the MDD.

(1), (2), (3), (4), (5), (8)
A follow-up effort is required after delivery of the Equation Defining Document and math flow diagram. This effort is required to incorporate minor changes brought about by mission changes occurring after original mission definition and prior to issuance by MSFC of the Final Mission Defining Document.

The expected range of the important flight computer variables will be available from the results of the various perturbed flight simulation runs. From these ranges, an envelope can be established within which the guidance system performance can be expected to fall, barring unexpected perturbations or failures.

Final Mission Defining Document (FMDD) is based upon the same general mission as specified by the MDD and shall update and/or complement the information and requirements of the MDD. The FMDD finalizes the logic requirements for the Level II Flight Program. (Ref. earlier slide on MDD).

(1), (2), (3), (4), (5), (7), (9)
Documentation and Data Inputs to Final Mission Defining Document

<table>
<thead>
<tr>
<th>Document/Activity</th>
<th>Responsibility</th>
<th>Document/Activity</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Constraints</td>
<td>Flight Mech Panel</td>
<td>Ref Trajectory</td>
<td>The Boeing Co</td>
</tr>
<tr>
<td>Mission Profile</td>
<td>R-Aero</td>
<td>Final L/Y Guidance Equations</td>
<td>R-Aero</td>
</tr>
<tr>
<td>Atmospheric Data</td>
<td>R-Aero</td>
<td>Mission Constraints</td>
<td>Flight Mech Panel</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-P&VE</td>
<td>Maneuvers</td>
<td>Flight Mech Panel</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>R-Aero</td>
<td>Venting Data</td>
<td>R-P&VE</td>
</tr>
<tr>
<td>Prel Reference Trajectory</td>
<td>The Boeing Co</td>
<td>Flight Sequence</td>
<td>R-P&VE - R-Astr</td>
</tr>
<tr>
<td>Prel Guidance Equations</td>
<td>The Boeing Co</td>
<td>Reference Vehicle Attitude Time Lines</td>
<td>R-Aero</td>
</tr>
<tr>
<td>Propulsion Data</td>
<td>R-P&VE</td>
<td>Flight Sequence Programs</td>
<td>R-Astr-EA</td>
</tr>
<tr>
<td>L/Y Reference Trajectory</td>
<td>R-Aero</td>
<td>Final Antenna Switching Req'Mts</td>
<td>R-Astr-1</td>
</tr>
<tr>
<td>Prel Guidance Equations</td>
<td>Flight Mech Panel</td>
<td>Updated Guidance Equation Documents</td>
<td>R-Aero-Da</td>
</tr>
<tr>
<td>Mission Constraints</td>
<td>R-Aero</td>
<td>Reference Trajectory</td>
<td>R-Aero-Da</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>R-P&VE</td>
<td>Updated Propulsion Performance Data</td>
<td>R-P&VE/PP</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-Aero</td>
<td>Updated Venting Data</td>
<td>R-P&VE/PP</td>
</tr>
<tr>
<td>Atmospheric Data</td>
<td>R-Aero</td>
<td>Mass Characteristics (Depletion Cut Off)</td>
<td>R-P&VE-Voo</td>
</tr>
<tr>
<td>Propulsion Data</td>
<td>R-P&VE</td>
<td>Flight Sequence Data</td>
<td>R-P&VE-Voo</td>
</tr>
<tr>
<td>Control System Data</td>
<td>R-Astr</td>
<td>Updated Mission Vehicle Time Lines</td>
<td>Flight Mech Panel</td>
</tr>
<tr>
<td>Venting Data</td>
<td>R-P&VE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The documentation and data inputs to Astrionics for preparation of the Final Mission Defining Document are required at launch date minus 33 weeks for release of the Final Mission Defining Document at launch date minus 29 weeks.

Following is a list of the identified major inputs to the FMDD:

DOCUMENTATION INPUT TO FINAL MISSION DEFINING DOCUMENT

<table>
<thead>
<tr>
<th>Mission Constraints</th>
<th>Flight Mech. Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Profile</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Atmospheric Data</td>
<td>R-P&VE-</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Prel. Reference Trajectory</td>
<td>The Boeing Company</td>
</tr>
<tr>
<td>Prel. Guidance Equations</td>
<td>The Boeing Company</td>
</tr>
<tr>
<td>Propulsion Data</td>
<td>R-P&VE-</td>
</tr>
<tr>
<td>L/V Reference Trajectory</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Prel. Guidance Equations</td>
<td>The Boeing Company</td>
</tr>
<tr>
<td>Mission Constraints</td>
<td>Flight Mech. Panel</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-P&VE-</td>
</tr>
<tr>
<td>Atmospheric Data</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Propulsion Data</td>
<td>R-P&VE-</td>
</tr>
<tr>
<td>Control System Data</td>
<td>R-ASTR-</td>
</tr>
<tr>
<td>Venting Data</td>
<td>R-P&VE-</td>
</tr>
<tr>
<td>Ref. Trajectory</td>
<td>The Boeing Company</td>
</tr>
<tr>
<td>Final L/V Guidance Equations</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Mission Constraints</td>
<td>Flight Mech. Panel</td>
</tr>
<tr>
<td>Maneuvers</td>
<td>Flight Mech. Panel</td>
</tr>
<tr>
<td>Venting Data</td>
<td>R-P&VE-</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-P&VE-</td>
</tr>
<tr>
<td>Reference Vehicle Attitude Time Lines</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Flight Sequence Programs</td>
<td>R-ASTR-EA</td>
</tr>
<tr>
<td>Final Antenna Switching Requirement</td>
<td>R-ASTR-I</td>
</tr>
<tr>
<td>Updated Guidance Equation Documents</td>
<td>R-AERO-DA</td>
</tr>
<tr>
<td>Reference Trajectory</td>
<td>R-AERO-DA</td>
</tr>
<tr>
<td>Updated Propulsion Performance Data</td>
<td>R-P&VE/PP</td>
</tr>
<tr>
<td>Updated Venting Data</td>
<td>R-P&VE/PP</td>
</tr>
<tr>
<td>Mass Characteristics: (Depletion Cut-off)</td>
<td>R-P&VE/VOO</td>
</tr>
<tr>
<td>Flight Sequence Data:</td>
<td>R-P&VE/VOO</td>
</tr>
<tr>
<td>Updated Mission Vehicle Time Lines</td>
<td>Flight Mech. Panel</td>
</tr>
</tbody>
</table>

(4), (7)
FLIGHT PROGRAM DOCUMENTATION

FINAL FLIGHT DATA DOCUMENT:

CONTAINS MINOR LOGIC CHANGES AND INFORMATION WHICH FINALIZES THE CONSTANTs REQUIRED IN THE FINAL FLIGHT PROGRAM. CONSTANTS RESULTING FROM FFDD SHALL BE WITHIN THE PARAMETER SCALING LIMITS ESTABLISHED IN THE EQUATION DEFINING DOCUMENT (EDD).

BASED ON OPERATIONAL TRAJECTORY:
 FINAL BOOST TILT PROFILES
 FINAL PRESETTINGS
 FINAL SEQUENCING
 FINAL ORBITAL TIMELINES
 TARGETING AND LAUNCH AZIMUTH

GUIDANCE & CONTROL SUMMARY INFORMATION DOCUMENT:

CONSOLIDATES PERTINENT INFORMATION ABOUT THE GUIDANCE AND CONTROL SYSTEM AND THE LVDC FLIGHT PROGRAM FOR EACH VEHICLE. IT INCLUDES BLOCK DIAGRAMS OF THE GUIDANCE AND CONTROL SYSTEM, GENERAL FLOW CHARTS OF THE LVDC FLIGHT PROGRAM, CONTROL SYSTEM EQUATIONS, GAINS, POLARITIES, SCALE FACTORS, SEQUENCE OF EVENTS, AND ALL FLIGHT PROGRAM BACKUP MODES.
Final Flight Data Document (FFDD) contains minor logic changes and information which finalizes the constants required in the Final Flight Program. The contractor shall assess all changes to determine if the magnitude of the change will necessitate an adjustment in the final program delivery schedule. Constants resulting from the FFDD shall be within the parameter scaling limits established in the EDD.

Final Flight Data document contents (based on the operational trajectory) are:

Final Boost Tilt Profile
Final Presettings
Final Sequencing
Final Orbital Timelines
Targeting and Launch Azimuth

Guidance and Control Summary Information Document (G and CSID) consolidates pertinent information about the guidance and control system and LVDC flight program for each vehicle. The document constitutes a single source of general information on the mission and operation of the guidance and control system and LVDC flight program. It includes block diagrams of the guidance and control system, general flow charts of the LVDC flight program, control system equations, gains, polarities, scale factors, sequence of events, and all flight program backup modes. This document does not include test specifications.

(1), (2), (3), (4), (5)
Documentation and Data Inputs to Final Flight Data Document

<table>
<thead>
<tr>
<th>Document/Activity</th>
<th>Responsibility</th>
<th>Document/Activity</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Constraints</td>
<td>Flight Mech Panel</td>
<td>Final Vehicle Altitude Time Lines</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>R-AERO</td>
<td>Tracking Network</td>
<td>R-AERO</td>
</tr>
<tr>
<td>Atmospheric Data</td>
<td>R-AERO</td>
<td>Operational Trajectory Tape</td>
<td>THE BOEING CO</td>
</tr>
<tr>
<td>Control System Data</td>
<td>R-ASTR</td>
<td>Acquisition & Loss</td>
<td>R-AERO</td>
</tr>
<tr>
<td>LVDC EDD</td>
<td>R-P&VE - R-ASTR</td>
<td>Final Flight Sequence</td>
<td>R-ASTR-EA</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-P&VE</td>
<td>Operational Trajectory</td>
<td>R-AERO/FM</td>
</tr>
<tr>
<td>Venting Data</td>
<td>R-ASTR</td>
<td>Guidance PreSettings</td>
<td>R-AERO/FM</td>
</tr>
<tr>
<td>APS Data</td>
<td>R-P&VE - R-ASTR</td>
<td>Final Mission Vehicle Altitude Time Lines</td>
<td>FLIGHT MECH PANEL</td>
</tr>
<tr>
<td>Weight & Mass</td>
<td>R-P&VE</td>
<td>Mission Defining Document (MSFC)</td>
<td>R-ASTR-NG</td>
</tr>
<tr>
<td>Propulsion Data</td>
<td>R-ASTR</td>
<td>Equation Defining Document</td>
<td>IBM</td>
</tr>
<tr>
<td>Guidance Preset</td>
<td>R-P&VE</td>
<td>Flight Program Development</td>
<td>IBM</td>
</tr>
<tr>
<td>L/V Operational Trajectory</td>
<td>R-AERO</td>
<td>Final Mission Defining Document (MSFC)</td>
<td>R-ASTR-NG</td>
</tr>
<tr>
<td>Maneuvers</td>
<td>R-AERO</td>
<td>Basic Flight Program Available</td>
<td>IBM</td>
</tr>
<tr>
<td>Venting Data</td>
<td>R-P&VE</td>
<td>Basic Flight Program Verified</td>
<td>IBM</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-P&VE - R-ASTR</td>
<td>Final Flight Data Document</td>
<td>R-ASTR-NG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Flight Program on Dock KSC</td>
<td>IBM(I-V-I(U))</td>
</tr>
</tbody>
</table>
The documentation and data inputs to Astrionics for preparation of the Final Flight Data Document are required at launch date minus 16 weeks for release of the Final Flight Data Document at launch minus 12 weeks.

Following is a list of the identified major inputs to the FFDD:

DOCUMENTATION INPUT TO FINAL FLIGHT DATA DOCUMENT

<table>
<thead>
<tr>
<th>Documentation Input</th>
<th>Input Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Constraints</td>
<td>Flight Mech. Panel</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Atmospheric Data</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Control System Data</td>
<td>R-ASTR-</td>
</tr>
<tr>
<td>LVDC EDD</td>
<td>R-ASTR-</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-P&VE-/R-ASTR-</td>
</tr>
<tr>
<td>Venting Data</td>
<td>R-P&VE-</td>
</tr>
<tr>
<td>APS Data</td>
<td>R-P&VE-/R-ASTR-</td>
</tr>
<tr>
<td>Weight and Mass</td>
<td>R-P&VE-</td>
</tr>
<tr>
<td>Propulsion Data</td>
<td>R-P&VE-</td>
</tr>
<tr>
<td>Guidance Presettings</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>L/V Operational Trajectory</td>
<td>Flight Mech. Panel</td>
</tr>
<tr>
<td>Mission Constraints</td>
<td>Flight Mech. Panel</td>
</tr>
<tr>
<td>Maneuvers</td>
<td>Flight Mech. Panel</td>
</tr>
<tr>
<td>Venting Data</td>
<td>R-P&VE-</td>
</tr>
<tr>
<td>Flight Sequence</td>
<td>R-P&VE-/R-ASTR</td>
</tr>
<tr>
<td>Final Vehicle Attitude Time Lines</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Tracking Network</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Operational Trajectory Tape</td>
<td>The Boeing Company</td>
</tr>
<tr>
<td>Acquisition and Loss</td>
<td>R-AERO-</td>
</tr>
<tr>
<td>Final Flight Sequence</td>
<td>R-ASTR-EA</td>
</tr>
<tr>
<td>Operational Trajectory</td>
<td>R-AERO/FM</td>
</tr>
<tr>
<td>Guidance Presettings</td>
<td>R-AERO/FM</td>
</tr>
<tr>
<td>Final Mission Vehicle Attitude Time Lines</td>
<td>Flight Mech. Panel</td>
</tr>
</tbody>
</table>

The remaining items shown are the resulting steps in development and delivery of the flight program from the 105 pieces of documentation just discussed.

Mission Defining Document
Equation Defining Document

R-ASTR-NG
IBM

(4), (7)
CONTINUED-2
070-008-020
DOCUMENTATION AND DATA INPUTS TO FINAL FLIGHT DATA DOCUMENT

Flight Program Development IBM
Final Mission Defining Document R-ASTR-NG
Basic Flight Program Available IBM
Basic Flight Program Verified IBM
Final Flight Data Document R-ASTR-NG
Final Flight Program on Dock KSC IBM (I-V-IU)
THIS PAGE INTENTIONALLY LEFT BLANK
FLIGHT PROGRAM VERIFICATION PLAN

PROGRAM VERIFICATION PLAN (PVP) CONTENTS

A DESCRIPTION OF ALL PLANNED SIMULATIONS

- A DISCUSSION OF HOW EACH PORTION OF THE FLIGHT PROGRAM IS TO BE EXERCISED AND WHICH TEST CASES ARE TO ACCOMPLISH THAT PARTICULAR TASK.

SECTIONS:

- NAVIGATION
- SEQUENCING
- GUIDANCE
- COMMAND SYSTEM
- CONTROL
- TELEMETRY
- MISCELLANEOUS

FLIGHT PROGRAM VERIFICATION DOCUMENT (FPVD) CONTENTS

PROGRAM VERIFICATION RESULTS

- NAVIGATION ERRORS
- TERMINAL CONDITIONS FOR PERTURBATION CASES
- GUIDANCE ERRORS

UNCORRECTED PROBLEMS

- A DESCRIPTION OF EACH PROBLEM
- AN EXPLANATION OF WHY IT WAS NOT CORRECTED

DEVIATIONS FROM THE PVP

- THE DEVIATION IS IDENTIFIED AND EXPLAINED IN EACH CASE
Program Verification Plan (PVP) is a plan stating how the flight program is to be verified before it is flown. It includes the following items:

(1) A description of the simulation facilities to be used.

(2) The results of an analysis to determine specifically what simulated flights should be made to verify that the primary equations are adequate for the mission and to insure that all system backups are exercised. This number of simulated flights must take into account the simulation facilities and time available.

(3) All flight program functions will be assessed.

PVP Development

Test runs are selected to check program capability under a worse case trajectory envelope based on performance variations and failure conditions.

Additional runs are required to generate hardware failures that exercise all program backups.

Each successive PVP uses previous experience as a baseline.

Modifications are made to the PVP based on mission or flight program changes.

Flight Program Verification Document (FPVD) contains the results of the verification effort specified in the Program Verification Plan, expected positions and velocity envelopes under perturbed flight conditions, accuracy estimates, and other predicted flight performance data. This will include a discussion of uncorrected problems and any deviations from the PVP.

(1), (2), (3), (4), (5), (10)
IBM performs the following tasks:

Assists in debugging the flight program and investigates potential problem areas.

Verifies the final flight program. The program checkout procedure will include the following tests:

a. Run the flight program under nominal and/or perturbed conditions continuously through all stages
b. Check the preflight sequencing
c. Check the switch selector functions
d. Run the simulated flight (SIMFLT) and pseudo flight (PSEUDO FLT) program
e. Monitor all PCM outputs by means of the PCM ground station for special tests

Performs guidance system performance prediction and error analysis.

Digital error models of all pertinent subsystems will be constructed and used to prepare a guidance system error prediction for each flight. Specific tasks include:

Establish error models and procedures. This task includes preliminary studies of subsystems, definition of error equations, and construction of appropriate digital models.

Predict the total guidance errors due to guidance intelligence errors, navigation errors, steering errors, and cutoff and sequencing errors.

The results of these predictions and error analyses will be incorporated into the flight program verification and performance prediction documents.
LVDC Flight Program Tape Development

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Receive mission requirements (mission defining document and prelaunch & orbital checkout program).</td>
</tr>
<tr>
<td>2A.</td>
<td>Update previous equation defining document and vehicle simulation models.</td>
</tr>
<tr>
<td>2B.</td>
<td>Complete analysis of special problems and changes to EDD. Also run simulation model tests.</td>
</tr>
<tr>
<td>3.</td>
<td>Update simulation models based on final program data and perform model simulation and flight hardware laboratory simulation verifications.</td>
</tr>
</tbody>
</table>

- **Initiate Level I LVDC Flight Program**
 - (Begin with initial delivery of EDD 47 weeks prior to launch)

- **Develop Level II LVDC Flight Program**
 - (Deliver ten weeks prior to launch)

- **Prepare Final Flight Program**
 - (Deliver six weeks prior to launch)
The Saturn V Flight Program tape development is normally considered to progress through three steps: Level I, Level II, and Final. However, if the mission requirements and objectives are similar, a duplicate of the previous flight's program is used as the next flight's Level I flight program. Consequently, each flight's tape development actually consists of updating a previously proven tape (Level I), checking out a developed tape (Level II) and then preparing the Final Flight Program.

In order to record the contents of the flight program, the EDD is updated. In order to verify the flight program, the various simulation models must be updated. These actions accompany the flight program tape development.

The following flight programs and related documentation are required on each vehicle:

a. Level II Flight Program and Documentation is a complete flight program reflecting the approved LVDC Equation Defining Document and the Final Mission Defining Document. Documentation includes program tapes, detailed flow charts, program listings, telemetry listings, scaling and nomenclature, and repeatable simulated flight mode operating procedures.

b. Final Flight Program and Documentation is a complete flight program reflecting the approved LVDC Equation Defining Document, the Final Mission Defining Document, and the Final Flight Data Document. Documentation includes program tapes, detailed flow charts, program listings, telemetry listings, scaling and nomenclature, and repeatable simulated flight mode and flight simulation mode operating procedures.

The contractor shall perform LVDC software (digital computer programs)
and documentation deliveries as follows:

a. A delivery of the unverified Level II and final LVDC programs shall be made to MSFC concurrent with the initial delivery to the contractor's simulation laboratory facility. This delivery shall consist of a program tape and a program listing. Any subsequent deliveries of unverified programs required by MSFC shall be directed by the Contracting Officer.

b. Formal deliveries of verified Level II and Final Flight programs and documentation shall be made to MSFC and KSC. Pending establishment of the revised detailed requirements and procedures through separate contractual action, the present procedures and requirements shall remain in effect concerning delivery of the Level II and Final Flight Programs.

(1), (2), (3), (4), (5)
PRELIMINARY DESIGN REVIEW (PDR)
PRESENTS:
1. FLIGHT PROGRAM DESIGN PHILOSOPHY
2. LVDC MEMORY UTILIZATION
3. CRITERIA FOR SCALING REQUIREMENTS
4. RESULTS FROM MATH MODEL SIMULATIONS
5. POSSIBLE PROBLEM AREAS
6. KNOWN DEVIATION FROM ORIGINAL DEFINITION
PURPOSE:
ASSURE EDD IS SOUND BASELINE FOR FLIGHT PROGRAM

CRITICAL DESIGN REVIEW (CDR)
PRESENTS:
1. CHANGES TO EDD AND PROGRAM IMPACT THEREOF
2. IMPACT OF FINAL MISSION DEFINITION DOCUMENT
3. BASIS AND LIMITATIONS OF PVP
4. FINAL CONFIGURATION OF LEVEL II FLIGHT PROGRAM
5. OUTSTANDING CHANGES TO LEVEL II FLIGHT PROGRAM
PURPOSE:
1. ASSURE EDD ADEQUATELY DEFINES LEVEL II FLIGHT PROGRAM
2. ASSURE PVP SPECIFIES ADEQUATE VERIFICATION PROCEDURES
3. ASSURE LEVEL II FLIGHT PROGRAM SATISFIES FMDD REQUIREMENT

FINAL CONFIGURATION REVIEW (FCR)
PRESENTS:
1. REVIEW OF ALL INPUT REQUIREMENTS
2. REVIEW OF FINAL FLIGHT PROGRAM IMPLEMENTATION
3. REVIEW OF FINAL FLIGHT PROGRAM VERIFICATION
4. DESCRIPTION OF ALL FINAL FLIGHT PROGRAM DOCUMENTATION
PURPOSE:
1. VERIFY THAT ALL CHANGES HAVE BEEN INCORPORATED
2. VERIFY THAT FINAL FLIGHT PROGRAM REFLECTS ALL PROGRAM SPECIFICATIONS
3. VERIFY THAT PROGRAMS HAVE BEEN VERIFIED AND ARE FLIGHTWORTHY
4. VERIFY THAT PROGRAMS AND UPDATED DOCUMENTATION ARE IN AGREEMENT
Baseline reviews are established at those times in a program when it is necessary to "fix" the design, development, or production of a system, equipment, or facility in order to have a point of reference for control and maintenance of design. A basic premise of the baseline concept is that there must be a recognized and documented statement of requirements. Once stated, any changes to these requirements will be documented so that the current status and configuration of a program may be judged in terms of conformance to established requirements.

PRELIMINARY DESIGN REVIEW (PDR)

The flight program preliminary design review is a formal technical review of the basic design approach used in the Equation Defining Document (EDD). This review presents the following:

1. Flight program design philosophy
2. Launch Vehicle Digital Computer (LVDC) memory utilization
3. Criteria for scaling requirements
4. Results from math model simulations
5. Possible problem areas
6. Known deviations from original definition

Its purpose is to assure that the EDD is a sound baseline for the flight program. (The previous vehicle flight program forms the basis for each succeeding one).

CRITICAL DESIGN REVIEW (CDR)

The flight program critical design review is a formal technical review of the design for the Level II Flight Program as defined by the EDD and the Program Verification Plan. This review presents the following:

1. Changes to the EDD and their program impact
2. Impact of the Final Mission Defining Document (FMDD)
3. Basis and limitations of the Program Verification Plan
4. The final configuration of the Level II Flight Program
5. Outstanding changes to the Level II Flight Program (FPCR's)

(1), (2), (3), (4), (5), (15)
Its purpose is to assure that the EDD and its changes adequately define the design for the Level II Flight Program, that the Program Verification Plan specifies an adequate verification procedure for the Level II Flight Program, and that the Level II Flight Program design will satisfy all known requirements existing through final MDD delivery.

FINAL CONFIGURATION REVIEW (FCR)

The final configuration review is a formal technical review of the final flight program and documentation. This review presents the following:

1. Review of all flight program input requirements, including changes to baseline documents.
2. Review of final flight program implementation.
3. Review of final flight program verification history and verification results.
4. Description of all final flight program documentation.

Its purpose is to verify that all changes not incorporated in the Level II Flight Program have been incorporated in the Final Flight Program, that the Final Flight Program reflects all previous program specifications and changes, that the documentation has been updated, that the programs have been verified in accordance with the Program Verification Plan and proven flightworthy, and that the programs and the related documentation are in complete agreement.

The preceding discussion was concerned with configuration baseline reviews only as they apply to the flight program. As a matter of general information and comparison, the following paragraphs describe principal configuration management reviews as they are defined in the MSFC Configuration Management Manual:

1. Preliminary Design Review (PDR) - is a formal technical review of the basic design approach for a contract end item. The PDR is accomplished prior to, or early in, the detail design stage to ensure compatibility between the selected basic design approach, as identified by Part I of the Contract End Item (CEI) Detail Specification, and the program requirements and criteria.
The primary products of a PDR are identification of engineering documentation which establishes physical and functional relationships of the CEI to other system equipment/facilities and approval of Part I of the CEI specification.

2. The Critical Design Review (CDR) - is a formal technical review of the detail design and performance characteristics of a contract end item.

The CDR is accomplished when the detail design is essentially complete in order to establish the design and provide the basis for formal release of engineering drawings describing the CEI, for purposes of manufacturing, preparation of technical manuals, certain test activities, and other supporting activities.

The primary product of the CDR is identification and NASA approval of specific engineering documentation which defines the design of the CEI and which will be released for manufacturing of the unit.

3. The First Article Configuration Inspection (FACI) - is a comparison of a selected article's configuration with the CEI specification (Part I and Part II) to establish the product configuration baseline for the contract end item.

FACI results in the approval and contractual implementation of Part II of the CEI specification.

The primary product of the FACI is acceptance by the procuring agency of Part II of the end item detail specification as an audited and approved document and contractual implementation of Part II as the product configuration baseline.

4. The Final Configuration Review (FCR) - is a formal technical review of the deliverable CEI.

The FCR is performed prior to initiation of simulated countdown. The purpose is to verify that all changes approved since FACI have been incorporated, the documentation has been updated and that the configuration and related documentation are in complete agreement.

(1), (2), (3), (4), (5), (15)
Various degrees of change control are applied to the contractors with each successive baseline review. Normal quality assurance surveillance is conducted throughout the manufacturing, testing, installation, and checkout phases of a program to assure compliance with engineering requirements.
CHANGE CONTROL

FLIGHT PROGRAM CHANGE DECISIONS FOR KNOWN PROBLEMS

• A decision to correct the flight program when a problem is discovered in the verification process is based on the following, in order of priority:

 • The effect (mission failure, loss of redundancy, etc.)
 • The probability (a combination of unlikely events or time restricted)
 • The impact (how complex, expensive, schedule impact, tradeoff in reliability)

• Final decisions on flight program changes are made by the program manager.

REVERIFICATION

• A complete rerun of all perturbation cases is not usually required after a single flight program change.
• The nominal run is repeated as a standard for comparison.
• Perturbation cases are selected from the PVP based on their applicability to the change.
• Special runs are sometimes devised to create specific test conditions.
A decision to correct the flight program when a problem is discovered in the verification process is based on the following, in order of priority:

1. The effect (mission failure, loss of redundancy, etc.)
2. The probability (a combination of unlikely events or time restricted)
3. The impact (how complex, expensive, schedule impact, tradeoff in reliability)

Final decisions on flight program changes are made by the program manager.

Reverification of the flight program is necessary if a change has been made in it. However, the following statements generally apply:

1. A complete rerun of all perturbation cases is not usually required after a single flight program change.
2. The nominal run is repeated as a standard for comparison.
3. Perturbation cases are selected from the PVP based on their applicability to the change.
4. Special runs are sometimes devised to create specific test conditions.
SOFTWARE CHANGE PROCEDURE (CLASS 1 CHANGES)

1. Initiation of Change:
 1. ECR (MSFC)
 2. ECP (Contractor)

2. Submittal of Change to Configuration Board (CCB)
 1. Level I
 2. Level II
 3. Level III

3. Staffing and Evaluation by MSFC and Contractors

4. Approval or Disapproval of Change or Referral to Higher Level CCB for Action

5. Submittal of Assessment and Evaluation to CCB

4. Affect Cost or Scheduled Software Deliveries
5. Degradation Reliability or Safety

Note: Class I Changes
1. Affect Both Software and Hardware
2. Require Stage or GSE Changes
3. Affect ICD’s and IRN’s
To impose effective change control of the flight program and to permit corrections when a problem is discovered in the verification process, procedures must be established and terms defined. Following is a definition of Class I changes.

Class I changes are so designated whenever one or more of the following items are affected:

1. Contract specification, contract price or fee, contract weight, contract guarantees, contract delivery, or contract test schedules.

2. Contract reliability or contract maintainability.

3. Performance as stated either in definite terms or goals or as experienced in items in service use.

4. Interchangeability or a change in category regarding substitution or replaceability.

5. Safety

6. Electrical interference to communications, electrical equipment, or electromagnetic radiation hazards.

7. Aerospace ground equipment/support equipment (AGE/SE) trainers, training devices, or government furnished equipment (GFE).

8. Present adjustments of preset schedules to the extent that (a) new identification must be assigned or (b) operating limits are affected.

9. Systems, equipment, or facilities produced by other contractors to the extent that the affected contractor must accomplish an engineering change to maintain compatibility of the interface.

10. Operational computer programs.

(1), (15)
Class I changes to the flight program are processed according to configuration management procedures as explained in MSFC CMM-002-001-2H and R&DO directive 4-11.

An MSFC laboratory can initiate a change by means of an ECR (MSFC form 2327). A contractor initiated change is by means of an ECP.

The requested or proposed change is processed through the responsible project office (I-V-IU) and identified as an agenda item for the appropriate configuration control board (CCB). The CCB, in accordance with their procedures, advise affected contractors of the ECR (requesting impact change packages) and coordinate administrative and technical evaluation of the contractors' ECP's between IO and R&DO.

R&DO analyzes each ECP to determine all end-items affected and technically assesses the change. An evaluation report is prepared to record their findings and state their recommendations for approval or disapproval. After technical evaluation, reconciliation of technical areas, and agreement between the responsible R&DO laboratory organization and IO project offices and affected contractors, the change package is acted upon by the appropriate CCB.

The appropriate CCB will formally act upon each change package by issuing a CCBD (CCB Directive), either approving or disapproving the change. (CCBD's constitute the sole authority for change implementation).

The decision is processed back through the project offices for instruction sheets and to the contracting office for implementation by affected contractors as required.
SOFTWARE CHANGE PROCEDURE (CLASS II CHANGES)

- Approval is automatic two days after submittal.
- Disapproval requires MSFC response.
- MSFC receives and reviews all Class II changes.
- Coordination precedes formal submittal by IBM.
- Implementation of approved changes.
- Release of related documentation.

Initiation of changes by IBM:
1. Make-it-work
2. Software effect
3. Only
4. No cost

No impact
Class II changes are any changes which do not fall within the previously noted categories.

Class II changes are coordinated between IBM and Astronics and are not processed through a configuration control board.
This slide illustrates LVDC Flight Program verification activities and major associated documentation. Time phasing used for planning purposes is also shown (in weeks).

Program Verification Plan (PVP)

The Program Verification Plan (PVP) is a plan stating how the flight program is to be verified before it is flown. It includes the following items:

1. A brief description of the existing simulation facilities used.
2. The results of an analysis to determine specifically what simulated flights should be made to verify that the primary equations are adequate for the mission and to insure that all system backups are exercised. This number of simulated flights must take into account the simulation facilities and time available.
3. A description of all planned perturbations.
4. The expected flight environment, such as signal noise and combinations of perturbations.

PVP Development

Test runs are selected to check program capability under a worse case trajectory envelope based on performance variations and failure conditions.

Additional runs are required to generate hardware failures that exercise all program backups.

Each successive PVP uses previous experience as a baseline.

Modifications are made to the PVP based on mission or flight program changes.

All Digital, Sim. Lab and SDF Verification

A discussion of "all digital," sim lab and Systems Development Facility (SDF) verification activities is presented later in this section.
Reverification

A complete rerun of all perturbation cases is not usually required after a single flight program change. The nominal run is repeated as a standard for comparison. Perturbation cases are selected from the PVP based on their applicability to the change. Special runs are sometimes devised to create specific test conditions.

Flight Program Changes and Change Approval

A decision to correct the flight program when a problem is discovered in the verification process is based on the following, in order of priority.

(1) The effect (mission failure, loss of redundancy, etc).

(2) The probability (a combination of unlikely events or time restricted).

(3) The impact (how complex, schedule impact, tradeoff in reliability).

Flight Program Verification Document (FPVD)

The Flight Program Verification Document (FPVD) contains the results of the verification effort specified in the Program Verification Plan, expected positions and velocity envelopes under perturbed flight conditions, accuracy estimates, and other predicted flight performance data.

A description of each uncorrected problem and an explanation of why it was not corrected is included in the document. Deviations from the Program Verification Plan (PVP) are identified and explained in each case.
Huntsville Simulation Facilities - Capabilities & Characteristics

Overall Huntsville Simulation Capabilities
- Accurately simulate any vehicle inputs to LVDC/LVDA
- Simulate any sequence or combination of inputs to LVDC/LVDA
- Force any hardware failures - both vehicle and LVDC/LVDA
- Simulate extreme vehicle and environmental conditions

<table>
<thead>
<tr>
<th>Digital Simulation Laboratory (R-ASTR)</th>
<th>All Digital Simulation (IBM 360)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Use - Orbital Verification Characteristics:</td>
<td>Primary Use - Boost Verification Characteristics:</td>
</tr>
<tr>
<td>• Flight Type LVDC/LVDA</td>
<td>• Simulation of LVDC/LVDA</td>
</tr>
<tr>
<td>• Simulation of Platform Interface</td>
<td>• Simulation of Platform Interface</td>
</tr>
<tr>
<td>• Flight Type Switch Selector</td>
<td>• Flight Type Switch Selector</td>
</tr>
<tr>
<td>• Real Time Operation</td>
<td>• Perturbation Capability</td>
</tr>
<tr>
<td>• Limited Perturbation Capabilities</td>
<td>• Trace and Restart Capability</td>
</tr>
<tr>
<td></td>
<td>• Relatively Slow</td>
</tr>
<tr>
<td></td>
<td>8:1 Real Time - MOD 50</td>
</tr>
<tr>
<td></td>
<td>2:1 Real Time - MOD 75</td>
</tr>
</tbody>
</table>
Two principal simulation facilities are used in Huntsville to verify proper performance of the flight program prior to its use at the Systems Development Facility (SDF) and at KSC. These are the "all digital" simulation facility (IBM 360) and the R-ASTR Digital Simulation Laboratory.

All Digital Simulation (IBM System 360). The "all digital" simulation is composed of two principal simulators: (a) A 6 degree of freedom vehicle simulator (3 degrees of translational freedom and 3 degrees of rotational freedom) which simulates vehicle perturbations (b) An LVDC simulator which is a bit-by-bit simulator with trap and trace facilities. One limitation of this system is that it is relatively slow, as shown on the slide. Another is that it does not test hardware/software compatibility.

Digital Simulation Laboratory (R-ASTR). The Digital Simulation Laboratory is a hybrid test facility (Analog vs LVDC). It uses 5 computers (including the LVDC) and provides real time simulation. A flight type LVDC, LVDA and switch selector are used and hardware/software compatibility is tested. One limitation of this system is that there is limited access to internal LVDC quantities.

In addition to the above simulation facilities there is also an ASTEC/ACAPE test facility which utilizes a programmable test controller (PTC) and an LVDC. This facility is not 6-D and cannot run in flight mode. Tests can be run with or without an LVDA. The facility is used for real time checkout and debug.
The Level I Flight Program is a preliminary flight program based on information contained in the LVDC/LVDA Equation Defining Document for a particular mission. The acceptance tests which are performed on this program are outlined in this slide.
LEVEL II FLIGHT PROGRAM ACCEPTANCE TESTS AND PREPARATION OF KSC TAPES

- LEVEL II FLIGHT PROGRAM RELEASE FOR ACCEPTANCE TESTS
 - CLOSED-LOOP ALL DIGITAL PERTUBATION STUDIES UTILIZING LVDC/LVDA SIM, G&C SIMULATOR & 6-D VEH SIMULATOR
 - LAUNCH ASSOCIATED HARDWARE/SOFTWARE INTEGRATION TESTS UTILIZING SIMULATED LAUNCH COMPLEX FACILITY
 - CLOSED-LOOP G&C SYS INTEGRATION TESTS UTILIZING FLIGHT TYPE HARDWARE & TEST EQUIP & HYBRID ENVIR SIM STUDIES COMPL.
 - LABORATORY TESTS AT KSC UTILIZING FLIGHT TYPE LVDC & TEST EQUIP.

- LAUNCH COMPLEX TESTS COMPLETE
 - PREPARE & VERIFY RCA-110A TAPE FOR LAUNCH COMPLEX TESTS & LAUNCH
 - PREPARE & VERIFY LVDC TAPE FOR LAUNCH COMP. TESTS & LAUNCH

LEVEL II FLIGHT PROGRAM ACCEPTANCE TESTS COMPLETE
The Level II Flight Program is a complete flight program reflecting the approved LVDC Equation Defining Document and the Final Mission Defining Document. Acceptance tests performed and tapes prepared are shown on this slide. Current planning calls for delivery of the Level II Flight Program and documentation approximately ten (10) weeks prior to launch. Documentation includes program tapes, detailed flow charts, program listings, telemetry listings, scaling and nomenclature, and repeatable simulated flight mode and flight simulation mode operating procedures.
ALL DIGITAL PERTURBATION RUNS (TYPICAL)
FIRST BOOST AND PARKING ORBIT PERTURBATIONS

- ±5% THRUST DEVIATIONS COMBINED WITH θ AND β BIASES
- S-IC ENGINE OUT AT VARIOUS TIMES
- S-II ENGINE OUT AT VARIOUS TIMES AND 5% LOW THRUST
- RANGE SAFETY LIMITS
- MINOR LOOP BACKUPS
- HARD FAILURE OF FINE GIMBALS

- COMBINATIONS OF ACCELEROMETER FAILURES
- TIME BASE BACKUPS
- ABORT TO ORBIT AT VARIOUS TIMES WITH 5% LOW THRUST
- SWITCH SELECTOR FAILURES AND TIMING
- UNUSUAL DISCRETES AND INTERRUPTS

SECOND BOOST AND WAITING ORBIT PERTURBATIONS

- ±5% THRUST DEVIATIONS COMBINED WITH θ AND β BIASES
- LADDER FAILURE MGMTES

- COMBINATIONS OF ACCELEROMETER FAILURES
- RE-IGNITION EQUATION TESTS
- SWITCH SELECTOR TIMING
- MINOR LOOP
This slide lists typical perturbation runs for the System 360 6D/LVDC Simulation. Exact perturbations are given in the Program Verification Plan for each mission.
SIMULATION LAB PERTURBATIONS (TYPICAL)

- CIU PERTURBATIONS
- DCS PERTURBATIONS
 - DCS NOMINAL OPERATION
 - FINE GIMBAL ANGLE FAILURES
 - ABORT TO ORBIT AT VARIOUS TIMES
 - SWITCH SELECTOR FAILURES AND TIMING
 - UNEXPECTED INTERRUPTS AND DISCRETES
 - TELEMETRY TESTS
This slide lists typical simulation lab perturbations. A detailed listing is available in the Program Verification Plan for each mission.

A great deal of redundancy exists between the IBM 360 all digital and the simulation lab perturbation runs. This is done intentionally to provide greater confidence in the total verification effort.
The Saturn V Systems Development Facility (SDF) provides an electrical simulation of the Saturn V vehicle and electrical support equipment with some items of flight-type hardware being used. Items of flight type equipment include the LVDC/LVDA, ST-124M platform, switch selectors and the flight control computer. The breadboard is the final proving ground for flight program tapes prior to their delivery to MSFC and KSC. Nominal, accelerated and abort-to-orbit runs are made at the SDF.
DIFFERENCES BETWEEN FLIGHT AND SIMULATED FLIGHT

- SIMULATED FLIGHT INDICATOR
- VELOCITY TEST FOR STARTING TB2 CANNOT BE FAILED IN SIMULATED FLIGHT
- ENGINE OUT GUIDANCE CAPABILITY NOT IN SIMULATED FLIGHT
- STORED THRUST PROFILE BIASED FROM OPERATIONAL THRUST PROFILE
- VEHICLE MASS RE-INITIALIZED IN TB6 TO GUARANTEE PREDICTABLE SECOND BURN OF S-IVB
- ROLL GIMBAL ANGLE INITIALIZATION
- PLATFORM NOT USED AFTER FIRST S-IVB CUTOFF
- DATA COMPRESSION OPTION
This chart illustrates the differences that exist between a simulated flight and the actual flight of a vehicle.
IBM POSTFLIGHT EVALUATION TASKS

2 MSFC
FLIGHT DATA REDUCTION

6 MSFC
POSTFLIGHT EVALUATION

4, 9 IBM/MSFC
PRESENTATIONS TO FEWG

-9 IBM
POST FLT. EVAL PLAN (PEP)

-3 MSFC
APPROVE PLAN

7 IBM
POSTFLIGHT EVALUATION

9 IBM
POSTFLIGHT EVAL. REPT. (PED)

12 MSFC
REVIEW REPORTS

0 IBM
FLIGHT TEST

2 IBM
FLIGHT DATA REDUCTION

FEEDBACK TO DESIGN ORGANIZATIONS

NOTE:
HEAVY LINE INDICATES MILESTONE
Data necessary from MSFC for the postflight evaluation effort are:

Telemetry tapes and charts from the overall systems test, for each vehicle at KSC, covering the IU operation.

All telemetry tapes and charts from each flight covering the IU operation, as specified in the Contractor Data Requirements Document.

The necessary calibration curves and/or other data necessary for interpreting these telemetry tapes and charts.

Range tracking data in the form of trajectories for the comparison with guidance computer data.

The primary reports issued by the IBM postflight evaluation group are listed below with the delivery times based on the flight:

- Quick look report 72 hours after flight
- Intermediate evaluation report 21 days after flight
- Final evaluation report 60 days after completion of IU mission

POSTFLIGHT EVALUATION PLAN (PEP) DEVELOPMENT

The PEP will define:

- The postflight data format.
- The quick look evaluation procedures.
- The techniques for evaluation of program performance.
- The techniques for evaluation of total navigation errors.

The PEP will contain the results of an error analysis based on measured or known errors and anomalies.

POSTFLIGHT EVALUATION DOCUMENT (PED) CONTENTS

- Review of launch problems
- Event and switch selector time compared to nominal (1), (2), (3), (4), (5)
A description of navigation, guidance and control performance

Terminal conditions compared to nominal (Error Analysis)

A description of flight program operation compared with preflight simulation

A summary of malfunctions and deviations

(1), (2), (3), (4), (5)
The Boeing Saturn Flight Evaluation Activity is composed of 36 individual tasks with deliveries beginning on the day of launch + 120 days.

Technical analyses are performed in the following areas:

a. Post launch trajectory reconstruction.

b. Inspection and analysis of telemetry data.

c. Structural and loads analyses.

d. Dynamic and control analyses.

e. Propulsion system performance reconstruction.

f. Aerodynamic and aerothermodynamic analyses.

Each of these Flight Evaluation Activities have required the development of extensive analytical and computer program software able to perform many of the required Flight Evaluation tasks.

Additional support is provided in program management and in publishing Flight Evaluation reports.

Boeing also provides technical assistance to the Flight Evaluation Working Group (FEWG) in preparing the necessary FEWG reports.

FLIGHT EVALUATION TASKS

(1) Provide a post-flight reconstruction of propulsion system flight performance

The Post-flight Reconstruction provides data for evaluation of trajectories, flight control systems, S-IC stage clustered engine performance and structural loads.

(1), (2), (3), (4), (5)
2. Summarize propulsion system flight evaluation and review and verify stage contractor propulsion system inputs to FEWG.

 The summary of all propulsion system flight evaluation efforts in documented form, and review of stage contractor propulsion system inputs to the Flight Evaluation Working Group (FEWG), are included in this task.

3. Review stage contractor flight reports to P&VE

 The post-flight review of the 60-day stage contractor's reports provides a documented review and verification of the propulsion sections of the reports.

4. Produce the propulsion data requirements for input to the processed data requirements document.

 The Propulsion Data Requirements Task identifies telemetry data required for post-flight propulsion performance analyses.

 This information from postflight analyses is then used in preparation of the next mission flight program.

(1), (2), (3), (4), (5)
THIS PAGE INTENTIONALLY LEFT BLANK
THIS PAGE INTENTIONALLY LEFT BLANK
APPENDIX "A"

SATURN V FLIGHT PROGRAM DEVELOPMENT SOURCE DATA

070-008

1. MSFC
 MSFC Flight Software Presentation for Guidance Software Task Force
 February 23, 1968

2. The Boeing Company
 Saturn V Program Documentation and Software Task 8.0 Flight Vehicle Systems
 Analysis Program

3. IBM No. 67-F11-0012
 Saturn V Vehicle Flight Program

4. The Boeing Company
 Synopsis of Saturn V Software Program Requirements and Development Study
 May 26, 1967

5. The Boeing Company
 Saturn V Mission Planning, February 1967

6. MSFC
 Software Development Presentation (Unidentified)

7. I-V-IU-1577-66
 MOD 760 to Contract NAS8-14000

8. IBM No. 7915041
 LVDC EDD for AS-503

9. R-ASTR-NG-49-68
 FMDD for AS-503

10. IBM No. 68-K10-007
 PVP for AS-503 (D-Mission)

11. No Number
 Astrionics Systems Handbook

12. MSFC-MAN-503
 Saturn V Flight Manual

13. 66-966-0003
 Navigation, Guidance, and Control System Description

14. FC-004
 Saturn Launch Vehicle Systems Handbook

15. CMM-MSFC-002-001-2H
 Saturn V Configuration Management Manual