TECHNICAL MANUAL

APOLLO-SATURN
EMERGENCY DETECTION SYSTEM
DESCRIPTION
(AS-500 Series Vehicles)

Prepared under Contract

NAS 8-14000

by

International Business Machines Corporation
Federal Systems Division
Huntsville, Alabama

1 August 1966
Changed 15 October 1968
LIST OF EFFECTIVE PAGES

NOTE: The portion of the text affected by the changes is indicated by a vertical line in the outer margins of the page.

<table>
<thead>
<tr>
<th>PAGE</th>
<th>ISSUE</th>
<th>PAGE</th>
<th>ISSUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Title</td>
<td>15 Oct 68</td>
<td>*503-14 Blank</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>*A</td>
<td>15 Oct 68</td>
<td>*503-15</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>1</td>
<td>1 Jul 67</td>
<td>*503-16 Blank</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>ii Blank</td>
<td>1 Jul 67</td>
<td>*503-17 Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>iii thru iv</td>
<td>1 Jul 67</td>
<td>*503-18 Blank Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>1-1</td>
<td>15 Oct 66</td>
<td>*503-19 Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>1-2</td>
<td>Original</td>
<td>*503-20 Blank Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>1-3 thru 1-4</td>
<td>15 Oct 66</td>
<td>*503-21 Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>1-5</td>
<td>1 Jan 67</td>
<td>*503-22 Blank Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>1-6 thru 1-9 Added</td>
<td>15 Oct 68</td>
<td>AS-504 Tab</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>1-10 Blank Added</td>
<td>15 Oct 66</td>
<td>*504-1</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-1</td>
<td>Original</td>
<td>*504-2 Blank</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-2 thru 2-3</td>
<td>15 Oct 66</td>
<td>AS-505 Tab</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-4</td>
<td>Original</td>
<td>*505-1</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-5 thru 2-6</td>
<td>15 Oct 66</td>
<td>*505-2 Blank</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-7</td>
<td>1 Apr 68</td>
<td>AS-506 Tab</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-8</td>
<td>15 Oct 66</td>
<td>*506-1 Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-9</td>
<td>1 Jan 67</td>
<td>*506-2 Blank Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-10 Blank</td>
<td>Original</td>
<td>AS-507 Tab</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-11</td>
<td>Original</td>
<td>*507-1 Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-12 Blank</td>
<td>Original</td>
<td>*507-2 Added Blank</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-13</td>
<td>1 Jan 67</td>
<td>AS-508 Tab</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-14 Blank</td>
<td>Original</td>
<td>*508-1 Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-15</td>
<td>Original</td>
<td>*508-2 Blank Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-16 Blank</td>
<td>Original</td>
<td>Glossary/Appendix Tab</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-17</td>
<td>Original</td>
<td>Glossary-1</td>
<td>Original</td>
</tr>
<tr>
<td>2-18 Blank</td>
<td>Original</td>
<td>Glossary-2 Blank</td>
<td>Original</td>
</tr>
<tr>
<td>2-19</td>
<td>Original</td>
<td>Appendixes-1</td>
<td>1 Apr 68</td>
</tr>
<tr>
<td>2-20 Blank</td>
<td>Original</td>
<td>Appendices-2 Blank</td>
<td>Original</td>
</tr>
<tr>
<td>2-21</td>
<td>Original</td>
<td>A-1 thru A-31</td>
<td>Original</td>
</tr>
<tr>
<td>2-22 Blank</td>
<td>Original</td>
<td>A-32 Blank</td>
<td>Original</td>
</tr>
<tr>
<td>2-23</td>
<td>1 Apr 68</td>
<td>B-1 thru B-24 Added</td>
<td>15 Oct 68</td>
</tr>
<tr>
<td>2-24 Blank</td>
<td>Original</td>
<td>C-1 thru C-24 Added</td>
<td>1 Jan 67</td>
</tr>
<tr>
<td>2-25</td>
<td>1 Apr 68</td>
<td>D-1 thru D-32 Added</td>
<td>1 Jul 67</td>
</tr>
<tr>
<td>2-26 Blank</td>
<td>Original</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-27</td>
<td>Original</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-28 Blank</td>
<td>Original</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-1</td>
<td>Original</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-2 thru 3-4</td>
<td>1 Jan 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5 thru 3-7</td>
<td>Original</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-8 Blank</td>
<td>Original</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-1</td>
<td>Original</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-2 thru 4-15 Added</td>
<td>15 Oct 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-16 Blank Added</td>
<td>15 Oct 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-1 Added</td>
<td>1 Jan 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-2 Blank Added</td>
<td>1 Jan 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-501 Tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-3</td>
<td>1 Jul 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-4 Blank Added</td>
<td>1 Jan 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-4A Added</td>
<td>1 Jul 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-46 Blank Added</td>
<td>1 Jul 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-502 Tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-5</td>
<td>1 Apr 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-6 Blank Added</td>
<td>1 Jan 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-6A Deleted</td>
<td>1 Apr 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-68 Blank Deleted</td>
<td>1 Apr 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-503 Tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*503-1 thru 503-3</td>
<td>15 Oct 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*503-4 Blank</td>
<td>15 Oct 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*503-5 thru 503-11</td>
<td>15 Oct 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*503-12 Blank</td>
<td>15 Oct 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*503-13</td>
<td>15 Oct 68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The asterisk indicates pages changed, added, or deleted by the current change.
PREFACE

This manual contains a system description of the Emergency Detection System (hereafter referred to as EDS) employed on the Apollo-Saturn 500 Series Vehicles.

Since the EDS was designed for a manned Apollo-Saturn Vehicle, the descriptions in this manual are based on the EDS for such a vehicle. For unmanned vehicles, some of the functions normally performed by a crew are performed by ground personnel through the use of RF command links. Differences between the EDS on manned and unmanned vehicles are noted as applicable in the text and on the illustrations.

It has been assumed herein that the user of this manual is generally familiar with the Apollo-Saturn program and has some knowledge of the purposes of the various sections or stages that compose the Saturn Launch Vehicle and the Apollo Spacecraft. Where the term Spacecraft is used, it generally implies the 3 sections of the Apollo Spacecraft (i.e., Command Module, Service Module, and Lunar Excursion Module) as being a single unit forward of the Saturn Instrument Unit.

Section I of this manual contains a general system description of the EDS. This section includes both functional and physical general descriptions. Section II covers EDS principles of operation in more detail than in Section I. Emphasis is placed on the relay logic used and the sequence of operation. Section III contains separate descriptions of each major EDS component. Descriptions are included for only those components that are used primarily for EDS. Section IV briefly describes the ground support equipment available for checkout of EDS. Section V provides change information for each vehicle as this information is added to the manual. The Appendixes to the manual contain reproductions of the EDS Interface Control Documents for Apollo-Saturn Vehicles.

NOTICE

Apollo-Saturn Vehicle Data Sheets (hereafter referred to as Data Sheets) are provided in Section V to supplement the basic EDS concepts contained within Sections I through IV of this manual and must be used in conjunction with these sections.

The Data Sheets are tabulated by vehicle number and are designed to provide current updated changes to the EDS circuits and the corresponding operation and sequence changes.
COMMENT SHEET

Your comments will help improve this publication. List your suggestions regarding additions, deletions, errors, or omissions on this comment sheet.

Manual Title

IBM Manual Number ___________________________ Change Date ___________________________

Comments

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Name ___________________________ Please forward completed comment sheets to:

__ Department 966

__ IBM Huntsville Facility

__ Space Systems Center

__ Huntsville, Alabama

(Use additional sheets as required)
RELATED DOCUMENTS

The following technical manuals have been published under NASA contract on the IU, its sub-systems, and components. Another listing, including technical manuals, handbooks, reports, etc., is located in Technical Manual IBM No. 66-966-0008.

Requests for these listed documents should be addressed to:

IBM Corporation
Federal Systems Division
P.O. Box 1250
Huntsville, Alabama 35807

ATTN Department 966, Manual Distribution

If the requester is located at IBM Huntsville, requests shall be made on Form 955-0924, Technical Manual Request.

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>IBM</th>
<th>MSFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apollo-Saturn Emergency Detection System Description</td>
<td>66-966-0010</td>
<td>III-5-509-6</td>
<td></td>
</tr>
<tr>
<td>(AS-200 Series Vehicles)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apollo-Saturn Emergency Detection System Description</td>
<td>66-966-0022</td>
<td>III-5-509-7</td>
<td></td>
</tr>
<tr>
<td>(AS-500 Series Vehicles)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astronics System Handbook</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Component Handling Equipment, Description and Operating</td>
<td>66-966-0005</td>
<td>III-5-510-10</td>
<td></td>
</tr>
<tr>
<td>Instructions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDS Q-Ball Sensor Assembly (50212560-1)</td>
<td>66-966-0027</td>
<td>III-5-510-22</td>
<td></td>
</tr>
<tr>
<td>IU System Description and Component Data</td>
<td>66-966-0006</td>
<td>III-5-509-4</td>
<td></td>
</tr>
<tr>
<td>Operation and Maintenance Instructions, Heat Substitute</td>
<td>67-966-0001</td>
<td>III-5-510-28</td>
<td></td>
</tr>
<tr>
<td>Cart Part No. 8525676</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume I: Control System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume II: Guidance System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume III: ST-124M-3 Inertial Stabilizer System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-IVB Forward/IU Umbilical Assembly, Saturn IB</td>
<td>67-966-0004</td>
<td>MSFC-MAN-009</td>
<td></td>
</tr>
<tr>
<td>S-IVB Forward/IU Umbilical Assembly, Saturn V</td>
<td>67-966-0005</td>
<td>MSFC-MAN-010</td>
<td></td>
</tr>
<tr>
<td>RADIO FREQUENCY SUBSYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-Band Radar Transponder Set SST-133C (5-IU-203)</td>
<td>66-966-0008</td>
<td>III-5-510-11</td>
<td></td>
</tr>
<tr>
<td>C-Band Radar Transponder Set (5-IU-204/501 and Subsequent)</td>
<td>66-966-0020</td>
<td>III-5-510-18</td>
<td></td>
</tr>
<tr>
<td>CCS Power Amplifier</td>
<td>67-966-0002</td>
<td>III-5-510-23</td>
<td></td>
</tr>
<tr>
<td>CCS Transponder</td>
<td>67-966-0003</td>
<td>III-5-510-24</td>
<td></td>
</tr>
<tr>
<td>Command Decoder</td>
<td>66-966-0019</td>
<td>III-5-510-17</td>
<td></td>
</tr>
<tr>
<td>Command Receiver</td>
<td>67-966-0014</td>
<td>III-5-510-26</td>
<td></td>
</tr>
<tr>
<td>Command System Description</td>
<td>67-966-0007</td>
<td>III-5-509-8</td>
<td></td>
</tr>
<tr>
<td>ENVIRONMENTAL CONTROL SUBSYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Control System Description</td>
<td>66-966-0009</td>
<td>III-5-509-5</td>
<td></td>
</tr>
<tr>
<td>GUIDANCE AND CONTROL SUBSYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Accelerometer</td>
<td>66-966-0012</td>
<td>III-5-510-12</td>
<td></td>
</tr>
<tr>
<td>Control-IDS Rate Gyro Package</td>
<td>66-966-0013</td>
<td>III-5-510-13</td>
<td></td>
</tr>
<tr>
<td>Control Signal Processor</td>
<td>66-966-0014</td>
<td>III-5-510-14</td>
<td></td>
</tr>
<tr>
<td>Flight Control Computer (5-IU-203)</td>
<td>66-966-0015</td>
<td>III-5-510-15</td>
<td></td>
</tr>
<tr>
<td>Flight Control Computer (500 Series Vehicles)</td>
<td>66-966-0025</td>
<td>III-5-510-21</td>
<td></td>
</tr>
<tr>
<td>MEASURING AND TELEMETRY SUBSYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring Rack and Measuring</td>
<td>66-966-0017</td>
<td>III-5-510-15</td>
<td></td>
</tr>
<tr>
<td>Back Selector (5-IU-204 thru 112/501 thru 515)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring and Telemetry System Description (Replaces</td>
<td>67-966-0008</td>
<td>III-5-509-9</td>
<td></td>
</tr>
<tr>
<td>Instrumentation System Description, 65-966-0021).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL SUBSYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Volt Measuring Voltage Supply</td>
<td>66-966-0019H</td>
<td>III-5-510-8</td>
<td></td>
</tr>
<tr>
<td>5 Volt Power Supply</td>
<td>66-966-0018H</td>
<td>III-5-510-7</td>
<td></td>
</tr>
<tr>
<td>Auxiliary Power Distributors *</td>
<td>66-966-0013H</td>
<td>III-5-510-2</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>66-966-0024</td>
<td>III-5-510-20</td>
<td></td>
</tr>
<tr>
<td>Control Distributor *</td>
<td>66-966-0016H</td>
<td>III-5-510-5</td>
<td></td>
</tr>
<tr>
<td>Emergency Detection System Distributor *</td>
<td>66-966-0015H</td>
<td>III-5-510-4</td>
<td></td>
</tr>
<tr>
<td>Measuring Distributors *</td>
<td>66-966-0017H</td>
<td>III-5-510-6</td>
<td></td>
</tr>
<tr>
<td>Power Distributor *</td>
<td>66-966-0016H</td>
<td>III-5-510-3</td>
<td></td>
</tr>
<tr>
<td>Switch Selector, Model II</td>
<td>66-966-0001</td>
<td>III-5-510-9</td>
<td></td>
</tr>
</tbody>
</table>

* These manuals are at the 5-IU-201 level. No plans exist to update their contents to later vehicle configurations.
CONTENTS

I GENERAL SYSTEM DESCRIPTION

1-1 Purpose .. 1-1
1-2 General Functional Description 1-1
1-3 Automatic Abort .. 1-1
1-4 Manual Abort .. 1-3
1-5 Abort Sequence .. 1-4
1-6 General Physical Description 1-4

II SYSTEM PRINCIPLES OF OPERATION

2-1 EDS Internal Reliability .. 2-1
2-2 EDS Power Sources ... 2-1
2-3 Abort Phases of Operation 2-1
2-4 Automatic Abort .. 2-2
2-5 Angular Overrate Automatic Abort 2-2
2-6 Two-Engine-Out Automatic Abort 2-2
2-7 Manual Abort ... 2-3
2-8 Angular Overrate Indication 2-3
2-9 S-IC, S-II, and S-IVB Engine-Out Indications 2-4
2-10 S-II Second Plane Separation Indication 2-4

III COMPONENT DESCRIPTIONS

3-1 EDS Distributor .. 3-1
3-2 EDS Cutoff Inhibit Timer .. 3-2
3-3 EDS Overtake Timer .. 3-4
3-4 EDS Q-Ball Sensor System 3-4
3-5 Launch Escape System .. 3-5

IV GROUND SUPPORT EQUIPMENT

4-1 EDS Preparation Panel ... 4-1
4-2 EDS Flight Monitor Panel .. 4-1
4-3 EDS/Control Rate Gyro Panel 4-1
4-4 Q-Angle of Attack Panel ... 4-1

V APOLLO-SATURN EDS VEHICLE DATA SHEETS

GLOSSARY ... Glossary 1
APPENDIXES .. Appendix 1

ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Emergency Detection System General Block Diagram</td>
<td>1-2</td>
</tr>
<tr>
<td>1-2</td>
<td>Mission Sequence Control Panel (Panel 24)</td>
<td>1-6</td>
</tr>
<tr>
<td>1-3</td>
<td>Crew Safety Control Panel (Panel 16)</td>
<td>1-7</td>
</tr>
<tr>
<td>1-4</td>
<td>Emergency Detection System Sequencer Display Panel (Panel 5)</td>
<td>1-8</td>
</tr>
<tr>
<td>1-5</td>
<td>Emergency Detection/Drive Control Panel (Panel 3)</td>
<td>1-9</td>
</tr>
<tr>
<td>2-1</td>
<td>Angular Overrate Automatic Abort Functional Schematic</td>
<td>2-9</td>
</tr>
<tr>
<td>2-2</td>
<td>S-IC Two-Engine-Out Automatic Abort Functional Schematic</td>
<td>2-11</td>
</tr>
<tr>
<td>2-3</td>
<td>Angular Overrate Manual-Abort Indication Functional Schematic</td>
<td>2-13</td>
</tr>
<tr>
<td>2-4</td>
<td>Engine Out Manual-Abort Indication Functional Schematic (Typical)</td>
<td>2-15</td>
</tr>
<tr>
<td>2-5</td>
<td>Abort Request Indication Functional Schematic</td>
<td>2-17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-6</td>
<td>Abort Sequence Functional Schematic</td>
<td>2-19</td>
</tr>
<tr>
<td>2-7</td>
<td>S-IVB Engine-Cutoff Functional Schematic</td>
<td>2-23</td>
</tr>
<tr>
<td>2-8</td>
<td>S-II Engine-Cutoff Functional Schematic (Typical)</td>
<td>2-25</td>
</tr>
<tr>
<td>2-9</td>
<td>S-IC Engine-Cutoff Functional Schematic (Typical)</td>
<td>2-27</td>
</tr>
<tr>
<td>3-1</td>
<td>EDS Distributor</td>
<td>3-1</td>
</tr>
<tr>
<td>3-2</td>
<td>EDS Cutoff Inhibit Timer</td>
<td>3-2</td>
</tr>
<tr>
<td>3-3</td>
<td>EDS Cutoff Inhibit Timer</td>
<td>3-3</td>
</tr>
<tr>
<td>3-4</td>
<td>EDS Q-Ball Sensor System</td>
<td>3-5</td>
</tr>
<tr>
<td>3-5</td>
<td>Q-Ball Pressure Inlet Ports and Vector Summing</td>
<td>3-6</td>
</tr>
<tr>
<td>3-6</td>
<td>Launch Escape System</td>
<td>3-7</td>
</tr>
<tr>
<td>4-1</td>
<td>EDS Preparation Panel</td>
<td>4-2</td>
</tr>
<tr>
<td>4-2</td>
<td>EDS Flight Monitor Panel</td>
<td>4-7</td>
</tr>
<tr>
<td>4-3</td>
<td>EDS/Control Rate Gyro Panel</td>
<td>4-11</td>
</tr>
<tr>
<td>4-4</td>
<td>Q-Angle of Attack Panel</td>
<td>4-14</td>
</tr>
</tbody>
</table>

Changed 1 July 1967
NOTE

The abort sequences are depicted in the sequence of events from the initiation of either an automatic or a manual abort to the successful completion of the abort sequence.

To follow the abort sequence, determine which emergency condition (number 1 on left side of figure) exists and follow the numerical sequence across the figure.

NOTE

The abort sequences are depicted in the sequence of events from the initiation of either an automatic or a manual abort to the successful completion of the abort sequence.

To follow the abort sequence, determine which emergency condition (number 1 on left side of figure) exists and follow the numerical sequence across the figure.
SECTION I

GENERAL SYSTEM DESCRIPTION

This section briefly describes the purpose of the EDS and includes general descriptions of the functional and physical characteristics of the system.

1-1 PURPOSE

The purpose of the EDS is to sense and act upon onboard emergency situations arising during Saturn-boosted phases of Apollo-Saturn space flights. Protection of the Apollo crew against failure of the Saturn vehicle is the prime function of the EDS. However, for protection of personnel at the launch area, certain portions of EDS are deactivated until a short interval after liftoff. This deactivation period prevents EDS cutoff of all engines and the resulting fall-back of the vehicle on the launch area.

1-2 GENERAL FUNCTIONAL DESCRIPTION

The EDS reacts to emergency situations in one of two ways, depending upon the seriousness of the emergency. If the EDS senses an emergency that will lead to rapid vehicle breakup, the EDS automatically initiates an abort sequence for the safety of the Apollo crew. If, however, the emergency is of such nature that the crew has time to evaluate the effects of the emergency, the EDS furnishes only visual indications of the specific emergency present. The crew then makes the decision of whether or not to manually initiate an abort sequence. Once initiated, either automatically by the EDS or manually by the crew, the abort sequence runs to completion automatically.

An EDS initiation of an abort is hereafter referred to as an automatic abort. Crew initiation of an abort is hereafter referred to as a manual abort. The visual emergency indications given by the EDS are called manual abort indications.

Portions of the EDS are deactivated during some phases of vehicle flight. This deactivation is controlled manually by the crew or automatically by the normal flight sequencing circuits of the vehicle. The time of deactivation is determined by mission plans and safety factors.

A general block diagram of the EDS appears in Figure 1-1. Not all components shown are primarily for EDS use. However, inputs from or outputs to these components are required for complete functioning of the EDS. Those components used primarily for the EDS are indicated by heavy lines.

The following paragraphs describe the general functioning of the EDS in three separate parts: automatic abort, manual abort, and abort sequence. A definite functional distinction exists between the initiation phase of an abort (consisting of automatic abort and manual abort) and the actual abort-sequence phase.

1-3 AUTOMATIC ABORT

Either of the following emergency conditions can cause an EDS automatically initiated abort of the Apollo-Saturn vehicle:

- An excessive angular rate of the vehicle about either the pitch, yaw, or roll axis.
- Loss of thrust (below 89 percent of rated thrust) on any two of the five S-IC engines during first-stage boost.

An automatic abort resulting from the first condition is referred to as an angular-overrate automatic abort. The second condition for automatic abort is referred to as a two-engine-out automatic abort.

Upon detection of either of these two emergency conditions, the EDS will energize an auto abort bus in the EDS Distributor. Energizing this bus then causes a signal to be sent to the Command Module to automatically initiate the abort sequence.

At any time during flight, the crew can inhibit this automatic initiation of an abort. Inhibiting is
Figure 1-1. Emergency Detection System General Block Diagram

1-2
performed by deactivating the inputs fed to the auto abort bus from both the angular-overrate and the two-engine-out automatic abort circuitry. This deactivation must occur, however, before the auto abort bus has been energized. (The times of deactivation, or inhibiting, by the crew * had not been determined as of the date on this manual.)

Inhibiting of automatic abort circuitry is also provided by the vehicle flight sequencing circuits through the Instrument Unit (IU) Switch Selector. This inhibiting is required prior to normal S-IC engine cutoff and other normal vehicle sequencing. While the automatic abort is inhibited, the Apollo crew must initiate a manual abort if an angular-overrate or two-engine-out condition arises.

1-4 MANUAL ABORT

On manned flights, a manual abort is initiated within the Command Module by the Apollo crew. ** A pilot's hand controller in the Command Module is used to start the abort sequence. The crew's decision of whether to initiate a manual abort can be made at any time while the Spacecraft is attached to the Saturn vehicle.

The decision to initiate a manual abort must be based on at least two separate and distinct indications of a vehicle emergency or malfunction. These two indications may be obtained from EDS displays, from information telemetered to ground and relayed back to the crew, from physiological sensing of a malfunction by the crew, or any combination of these. Although the two indications obtained may imply the presence of the same malfunction (for instance, one engine out), the two indications must not be derived from the same sensing and indicating system. For example, if the EDS indicates to the crew that one engine is out, and a one-engine-out signal is also telemetered to the ground (and relayed back to the crew), it cannot be necessarily assumed that the engine is actually out. The reason for not making this assumption is that both indications originated within the same sensing circuit. (A failure in the sensing circuit could have caused both erroneous indications.) If, however, the EDS indicates that one engine is out, and the crew also senses a reduction in vehicle acceleration, it can be reasonably assumed that the engine is actually out. (Whether or not the crew initiates a manual abort, as a result of this one-engine-out condition, is dependent upon the specific mission rules for that flight.) If any conflict arises between on-board EDS indications and the telemetered information that is relayed back to the crew, the on-board indications will always take precedence.

Only some of the on-board visual indications (required for manual abort decisions) are provided by the EDS. Other on-board visual indications are provided by the Spacecraft Guidance and Navigation System. In both cases, these indications are called manual abort indications and are displayed in the Command Module by indicator lights, meters, or other types of displays. Each of the indicator lights used contains either 2 or 4 lamps. The indicator lights are constructed so that the crew cannot distinguish whether all or only one of the lamps in the indicator is ON.

The manual abort indications displayed in the Command Module are as follows:

- Saturn vehicle angular overrate about any axis, when signaled by at least 1 of 3 gyros used for that axis (one dual-lamp indicator).
- S-IC engine out (one dual-lamp indicator for each engine). ***
- S-II engine out (one dual-lamp indicator for each engine). ***
- S-IVB engine out (one dual-lamp indicator for the single engine). ***
- S-II second plane separation (one dual-lamp indicator to indicate separation of S-II aft interstage).
- Saturn vehicle attitude reference failure (one dual-lamp indicator).
- Abort request from ground control before or after liftoff (one four-lamp indicator).
- Angle of attack (meter indication from EDS Q-Ball Sensor System).
- S-II and S-IVB fuel tank pressures (4 meters).
- Attitude error (meter type indication from Spacecraft Guidance and Navigation System). ***

* Not applicable for unmanned vehicles.
** On unmanned vehicles, a manual abort can be initiated only by ground personnel through an RF command link.
*** Only five engine-out indicators are in the Command Module. This set of 5 indicators is used for engines of the S-IC, S-II, and S-IVB Stages.

Changed 15 October 1966
1-5 ABORT SEQUENCE

As mentioned previously, the EDS abort sequence can be initiated either by an automatic abort condition or by a crew activated manual abort. To permit continuation of the abort sequence after an automatic initiation, the following conditions must first be satisfied:

- Auto abort enabling signals must have been received from the launch complex prior to liftoff.
- Liftoff must have occurred.
- An AUTO ABORT ENABLE switch in the Command Module must be set to ABORT.

The need for the first 2 of these 3 conditions can be bypassed, or overridden, by the crew.* This override is accomplished by depressing a MANUAL ABORT ENABLE pushbutton in the Command Module. (The name MANUAL ABORT ENABLE is used in EDS documentation but may be misleading because the pushbutton has no connection with the manual abort function.)

Only when the preceding conditions have been properly satisfied can the abort sequence continue after an automatic initiation.** No such conditions need be satisfied prior to or after a manual abort initiation.

When an abort sequence is initiated, either automatically or manually, the sequence normally cuts off all engines of the operating stage.*** (EDS engine cutoff is inhibited, however, until a specific time interval after liftoff. This inhibiting prevents the vehicle from falling back on the launch area.)

Regardless of whether the abort sequence succeeds in cutting off the engines, the sequence continues and selects either a Launch Escape System (LES) abort mode or a Service Propulsion System (SPS) abort mode. The sequencing that occurs in either abort mode causes removal of the Command Module from the malfunctioning Saturn vehicle.

Whether the LES mode or the SPS mode is selected during the abort sequence depends upon an interlock circuit through the LES tower. If the LES is still attached to the Command Module at abort sequence initiation, the LES mode is selected. In this mode, the Command Module is separated from the rest of the Apollo-Saturn vehicle and propelled away by the LES main motor. If, however, the LES had been previously jettisoned by the crew or by normal vehicle flight sequencing, the SPS mode is selected. In this mode, the Command Module and the Service Module are separated from the rest of the vehicle and propelled away by the Service Module engine.

After the Command Module is propelled a safe distance from the vehicle, the Command Module separates from the LES or the Service Module. Parachutes then lower the Command Module to a safe landing.

1-6 GENERAL PHYSICAL DESCRIPTION

A general physical description of the EDS is limited because most of the components involved in EDS operation are considered components of other systems of the Apollo-Saturn vehicle. Interconnections with these other systems are essential, however, for complete functioning of the EDS.

All components directly involved in EDS operation are shown in Figure 1-1. Components designed primarily for the EDS (i.e., EDS major components) are listed in Table 1-1 and are shown enclosed in heavy lines in Figure 1-1. The major EDS components are described in Section III of this manual.

The control and display panels indicated by the block Control and Display Panels in Figure 1-1 are shown in detail in Figures 1-2 through 1-5. Only the switches and indicators referred to in this manual are indexed in the figures. Since the panel labeling of the switches and indicators may not be sufficiently descriptive, more descriptive nomenclature is used within the manual. In the legend for each figure, a cross reference is made between the actual labeling on the panel and the nomenclature used in the manual.

* Not applicable for unmanned vehicles.

** On Vehicle AS-501, the abort sequence cannot continue because the AUTO ABORT ENABLE switch is purposely left at OFF.

*** On Vehicle AS-501, no EDS abort-sequence cutoff of the engines is possible.

Changed 15 October 1966
<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Reference Designation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch Escape System</td>
<td></td>
<td>Top of Spacecraft</td>
</tr>
<tr>
<td>EDS Q-Ball Sensor System</td>
<td>900A408</td>
<td>Top of Launch Escape System</td>
</tr>
<tr>
<td>EDS Distributor</td>
<td>602A5</td>
<td>Instrument Unit</td>
</tr>
<tr>
<td>EDS Cutoff Inhibit Timer</td>
<td>603A56</td>
<td>Instrument Unit</td>
</tr>
<tr>
<td>(40-Second or 60-Second)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDS Overrate Timer</td>
<td>603A58</td>
<td>Instrument Unit</td>
</tr>
<tr>
<td>(20-Second)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 40 or 60 Seconds depending upon vehicle mission
Figure 1-2. Mission Sequence Control Panel (Panel 24)

Legend for Figure 1-2

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Nomenclature on Panel</th>
<th>Nomenclature in Technical Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EDS POWER</td>
<td>EDS POWER</td>
</tr>
<tr>
<td>2</td>
<td>MASTER EVENT SEQ CONT-LOGIC</td>
<td>MASTER EVENT SEQUENCE CONTROLLER LOGIC</td>
</tr>
<tr>
<td>3</td>
<td>MASTER EVENT SEQ CONT-PYRO</td>
<td>MASTER EVENT SEQUENCE CONTROLLER PYRO</td>
</tr>
</tbody>
</table>
Figure 1-3. Crew Safety Control Panel (Panel 16)

Legend for Figure 1-3

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Nomenclature on Panel</th>
<th>Nomenclature in Technical Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABORT SYSTEM - 2 ENG OUT</td>
<td>S-1C TWO ENGINE OUT AUTO ABORT DEACTIVATE</td>
</tr>
<tr>
<td>2</td>
<td>ABORT SYSTEM - L/V RATES</td>
<td>RATE EXCESSIVE AUTO ABORT DEACTIVATE</td>
</tr>
<tr>
<td>3</td>
<td>ABORT SYSTEM - MODE LES - TWR JETT SPS MODE</td>
<td>LES JETTISON</td>
</tr>
<tr>
<td>4</td>
<td>ABORT SYSTEM - EDS</td>
<td>AUTO ABORT ENABLE</td>
</tr>
</tbody>
</table>
Figure 1-4. Emergency Detection System Sequencer Display Panel (Panel 5)

Legend for Figure 1-4

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Nomenclature on Panel</th>
<th>Nomenclature in Technical Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L/V GUID</td>
<td>LV ATT REF FAIL</td>
</tr>
<tr>
<td>2</td>
<td>L/V ENGINES</td>
<td>ENG NO. 1 OUT S-IC, S-II, OR S-IVB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(for indicator 1); ENG NO. (*) OUT S-IC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and S-II (for indicators 2 through 5); S-II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Second Plane separation (for Indicator 6); Indicators 7 and 8 are spare.</td>
</tr>
<tr>
<td>3</td>
<td>L/V RATE</td>
<td>LV RATE EXCESSIVE</td>
</tr>
</tbody>
</table>

* Number of respective engine

Added 15 October 1966
Figure 1-5. Emergency Detection/Drive Control Panel (Panel 3)

Legend for Figure 1-5

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Nomenclature on Panel</th>
<th>Nomenclature in Technical Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L/VAOA-SPS Pc</td>
<td>LV A OF A - SPS PC</td>
</tr>
<tr>
<td>2</td>
<td>L/VAOA/SPS Pc</td>
<td>Angle of Attack</td>
</tr>
<tr>
<td>3</td>
<td>ABORT</td>
<td>ABORT REQUEST</td>
</tr>
</tbody>
</table>

Added 15 October 1966
SECTION II
SYSTEM PRINCIPLES OF OPERATION

Section II includes, first, a general description of the methods employed to increase EDS reliability. Power sources for the EDS are then briefly described. Following these descriptions, the phases of EDS operation are covered in detail. For ease of explanation (although contrary to electron theory), current is considered to flow from +28 V buses, through operating circuits, to negative (common) buses.

Functional schematics to support the text are included at the end of the section. These schematics do not show all the connections to the various components. For instance, none of the outputs to telemetry or to ground support equipment are indicated. Neither are power sources shown. For more detailed schematics (although still not complete), refer to the Appendix.

2-1 EDS INTERNAL RELIABILITY

To maintain a high degree of reliability, one main principle has been applied to the operation of all EDS circuitry. This principle is that no single failure within the EDS will be allowed to cause an inadvertent abort, nor will any single failure prevent an abort when an actual emergency arises. To ensure this proper operation, both triple-redundant circuitry and duplex circuitry are employed. Triple-redundant circuitry (with 2-out-of-3 voting) is used for most of the automatic abort sensing circuits and automatic abort initiation circuits. Duplex circuitry is used for the abort sequence circuits and the indicating circuits for manual abort. Triple-redundant and duplex power sources are also utilized.

To further increase reliability, EDS circuitry is arranged to prevent ground loops. To accomplish this, the EDS circuits between vehicle stages, and between the IU and the Spacecraft, do not use the same power sources nor the same grounding points. When circuits in one stage require information from another stage, 28 V power is first supplied by the stage requiring the information. This 28 V is fed to contacts of relays whose coils are controlled by the stage possessing the desired information. After passing through the relay contacts, the resulting 28 V EDS signal is returned to the stage originally supplying the 28 V power. In this manner, valid EDS signals can be transferred between stages without the possibility of false EDS signals being generated by ground loops.

2-2 EDS POWER SOURCES

Although not shown on the functional schematics in this section, 28 V power for the EDS in each Saturn stage is supplied by batteries within that stage only. Each stage contains two or more batteries which supply power for separate +28 V buses. No electrical connection is made from a power source in one stage to a power source in any other stage. However, +28 V and ground returns from each stage are supplied to special +28 V and COM buses in each of the other stages. Power from these special buses is then used in providing EDS signals to the respective stages that originally supplied the power.

Power for the EDS circuits in the Spacecraft is supplied by three Spacecraft batteries. As is the case between stages of the Saturn vehicle, +28 V and ground returns are provided between the Spacecraft and the IU.

Three switches in the Command Module control the power for the Spacecraft EDS circuits. These switches are the EDS POWER switch, the MASTER EVENT SEQUENCE CONTROLLER LOGIC switch, and the MASTER EVENT SEQUENCE CONTROLLER PYRO switch.

2-3 ABORT PHASES OF OPERATION

As mentioned in Section I, a definite functional distinction exists between the initiation phase of an abort and the actual abort-sequence phase. Also, the initiation phase is subdivided into automatic abort initiation and manual abort initiation. These three functional areas (called automatic abort, manual abort, and abort sequence) are therefore described separately.
2-4 AUTOMATIC ABORT

An automatic abort can be initiated only by an angular overrate condition or an S-IC two-engine-out condition. In both cases, the automatic abort is considered to be initiated when the auto abort bus in the EDS Distributor is energized. The following paragraphs describe how this bus becomes energized by the sensing of either of the two emergency conditions.

2-5 ANGULAR OVERRATE AUTOMATIC ABORT

An angular overrate condition for an automatic abort is sensed by a combination of 2 components: the Control-EDS Rate Gyro Package and the Control Signal Processor. As indicated in Figure 2-1, angular rate signals are generated in the Control-EDS Rate Gyro Package by 3 gyros for each axis (roll, yaw, and pitch). These rate signals are fed to individual rate circuits, called rate switches, in the Control Signal Processor. If the angular rate of the vehicle about one of its axes exceeds a preset value, or rate limit, the rate switches for that axis will each produce a +28 V output. Each output closes a relay to indicate an angular overrate condition for that axis. At least two of the three rate switch relays for one axis must close to indicate an overrate condition for the axis.

The rate limit, above which an overrate is indicated, is changed one time during flight for the yaw and pitch axes. No inflight change is made in the rate limit for the roll axis. For yaw and pitch axes, the rate limit is preset at 3 degrees per second before the inflight change and 5 degrees per second after the change. (On Vehicles AS-501 and 502 the rate limit for pitch and yaw axes is set at 5 degrees per second and does not change during flight.) The rate limit for roll remains preset at 20 degrees per second.

The rate limit change for yaw and pitch axes is controlled by latching relays K171 and K172 or relays K173 and K174 in the EDS Distributor. Approximately 20 seconds after liftoff, the Switch Selector energizes K171 and K172, and the EDS Overrate Timer deenergizes K173 and K174. (On Vehicle AS-501, the EDS Overrate Timer energizes K173 and K174. Refer to notes on Figure 2-1.)

If an overrate occurs about the roll axis, rate switch relays K150, K151, and K152 will close. Positive 28 V is then fed to a roll overrate voting circuit in the EDS Distributor. This voting circuit consists of relays K159 and K160, with associated diodes. The relays and diodes are arranged so that a +28 V output is provided by the voting circuit only when 2 or more of its 3 inputs are +28 V. An output from the voting circuit passes through normally closed contacts of inhibiting relays K165, K166, and K167 to energize the auto abort bus. Energizing the auto abort bus initiates an abort sequence (refer to paragraph 2-15).

To prevent energizing the auto abort bus by a roll angular overrate, inhibiting relays K165, K166, and K167 can be energized. These relays can be energized by a RATE EXCESSIVE AUTO ABORT DEACTIVATE switch in the Command Module.* Normally, however, the inhibiting relays are controlled by latching relays K240 and K241 or K242 and K243 in the Control Distributor. Relays in the Control Distributor are controlled, in turn, by the Switch Selector.

Three inhibiting relays are employed in the inhibit circuitry so that a single relay malfunction cannot cause an undesired inhibit. Conversely, a single relay malfunction cannot prevent a desired inhibit.

The times during which the inhibiting relays are energized are determined by mission plans. While the automatic abort is being inhibited, the Apollo crew must make the decision as to when an abort is necessary. A manual abort may then be initiated by the crew.**

The method used to energize the auto abort bus for a pitch or yaw angular overrate is very similar to that described for a roll angular overrate. Outputs from both the yaw and the pitch voting circuits, however, are fed through a single group of inhibiting relay contacts (Figure 2-1). These inhibiting relays are energized in almost the same manner as are the roll inhibiting relays. The difference is that the roll inhibiting relays can be energized by the Switch Selector without also energizing the yaw and pitch inhibiting relays. The converse, however, is not true. That is, the yaw and pitch inhibiting relays cannot be energized without also energizing the roll inhibiting relays. This difference in operation is caused by the addition of diodes between the coils of relays K165 and K168, K166 and K169, and K167 and K170 (see Figure 2-1).

2-6 TWO-ENGINE-OUT AUTOMATIC ABORT

A two-engine-out condition for an automatic abort is sensed by engine thrust pressure switches...
in conjunction with relay logic circuitry. As shown in Figure 2-2, three thrust pressure (thrust OK) switches are used for each of the five S-IC engines. The thrust OK switches remain closed as long as engine thrust remains at least 89 percent of rated thrust. With the thrust OK switches closed, relays in the Thrust OK Distributor remain energized and no output is applied to the EDS Distributor.

If the thrust of engine number 1 falls below 89 percent, the respective thrust OK switches will open. Opening of these switches deenergizes relays K1, K2, and K3 in the Thrust OK Distributor. Positive 28 V is then fed through the relay contacts to an engine-out voting circuit for engine number 1 in the EDS Distributor. (Other contacts of K1, K2, and K3 are used in automatically cutting off engine number 1; refer to paragraph 2-16.)

The engine-out voting circuit (Figure 2-2) in the EDS Distributor is composed of relays K175 and K176 with associated diodes. The relays and diodes are arranged so that a +28 V output is provided by the voting circuit only when 2 or more of its 3 inputs are +28 V. An output from the voting circuit is applied to a two-engine-out logic circuit. This logic circuit consists of relays K191 through K200 with associated diodes.

If two or more engines lose thrust, the two-engine-out logic circuit will receive +28 V inputs from two or more engine-out voting circuits (see Figure 2-2). If engines number 1 and 2 lose thrust, for instance, +28 V will be furnished to relays K191, K192, K193, and K194 and the associated diodes. With these relays energized, +28 V from the engine number 1 voting circuit is fed through the now closed contacts of K193, and the normally closed contacts of inhibiting relays K207 and K208, to energize the auto abort bus. Also, +28 V from the engine number 2 voting circuit is fed through the now closed contacts of K192 and through inhibiting relays K207, K208, and K209 to energize the auto abort bus. Thus, two +28 V outputs are furnished to energize the auto abort bus, which in turn, initiates an abort sequence. A similar abort initiation will occur if any other two (or more) of the S-IC engines lose thrust.

To prevent energizing the auto abort bus, by a two-engine-out condition, inhibiting relays K207, K208, and K209 can be energized. These relays can be energized by a S-IC TWO ENGINE OUT AUTO ABORT DEACTIVATE switch in the Command Module.* Normally, however, the inhibiting relays are controlled by latching relays K244 and K245 in the Control Distributor. The relays in the Control Distributor are energized, in turn, by the Switch Selector just before normal engine cutoff.

Three inhibiting relays are employed in the inhibit circuitry so that a single relay malfunction cannot cause an undesired inhibit. Conversely, a single relay malfunction cannot prevent a desired inhibit.

The times during which the inhibiting relays are energized are determined by mission plans. While the automatic abort is being inhibited, the Apollo crew must make the decision as to when an abort is necessary. A manual abort may then be initiated by the crew.

2-7 MANUAL ABORT

On manned flights, a manual abort is initiated within the Command Module by the crew. The abort is begun by setting the pilot's hand controller to ABORT. (On unmanned vehicles, relays in a Mission Control Programmer functionally take the place of the pilot's hand controller. These relays are controlled by ground personnel through an RF command link.) Upon manual abort initiation, the abort sequence (paragraph 2-15) assumes control and completes the abort.

The crew's decision to initiate a manual abort is governed by the conditions specified in paragraph 1-4. Most of the manual abort indications, which are displayed in the Command Module for the crew, are provided by the EDS (refer to listing in paragraph 1-4). Only those indications provided by the EDS are described in the following paragraphs. (All manual abort indications provided for the crew are also made available to ground personnel via telemetry.)

2-8 ANGULAR OVERRATE INDICATION

An angular overrate condition about any axis is indicated by a dual-lamp LV RATE EXCESSIVE indicator in the Command Module. Both lamps of the indicator will be lit simultaneously if a valid overrate condition occurs. (See Figure 2-3 for a functional schematic.)

When any one rate switch senses an angular overrate from its rate gyro, the respective relay (K150 through K158) in the Control Signal Processor closes. (Refer to paragraph 2-5 for a description of this sequence.) When relay K151 for roll rate switch number 2 closes, +28 V is furnished to energize relay

* Not applicable for unmanned vehicles.

Changed 15 October 1966
K159 in the EDS Distributor. One set of contacts of energized K159 then supplies +28 V to one of the two lamps of the LV RATE EXCESSIVE indicator in the Command Module. Other sets of K159 contacts are used in a voting circuit for automatic abort (paragraph 2-5). When relay K152 for roll rate switch number 3 closes, a similar operating sequence causes the second lamp in the LV RATE EXCESSIVE indicator to be lit.

Contacts of relays K159, K161, and K163 are interconnected, as are contacts of relays K160, K162, and K164. Consequently, an angular overrate sensed by the number 2 rate switch for any axis will cause 1 lamp of the indicator to be lit. Likewise, an over-rate sensed by the number 3 rate switch for any axis will cause the other lamp to be lit.

2-9 S-IC, S-II, AND S-IVB ENGINE-OUT INDICATIONS

Indications of S-IC, S-II, and S-IVB engine-out conditions are provided by a set of five dual-lamp indicators in the Command Module. One indicator is used for each S-IC engine. The same indicators are also used for the five S-II engines. In addition, the indicator for S-IC and S-II engine number 1 also indicates an engine-out condition for the S-IVB engine.

A functional schematic of the engine-out indicating circuitry appears in Figure 2-4. For simplicity, only the circuitry for the combined ENG NO. 1 OUT S-IC, S-II, OR S-IVB indicator is shown.

As described in paragraph 2-6, a loss of thrust on S-IC engine number 1 (sensed by two of the thrust OK switches) produces a +28 V output from the respective voting circuit in the EDS Distributor. This +28 V energizes relays K191 and K192, which are part of the automatic abort two-engine-out logic circuit. Additional contacts of K191 and K192 are utilized in the manual abort engine-out indicating circuit.

When K191 and K192 are energized, +28 V from closed contacts of relays K205 and K206 is fed to both lamps of the combined ENG NO. 1 OUT S-IC, S-II, OR S-IVB indicator. (Relays K205 and K206 are de-energized at liftoff.)

After separation of the S-IC Stage, the S-II Stage engines are started. Thrust OK switches for the S-II engines remain closed as long as the engines produce proper thrust. If engine number 1 loses thrust, its two thrust OK switches will open. Opening of these switches deenergizes relays K50 and K51 in the Sequencer. With K50 and K51 deenergized, +28 V is fed to relays K201 and K202, respectively, in the EDS Distributor. Relays K201 and K202 cannot be energized, however, unless contacts of latching relays K203 and K204 are set (contacts closed). Relays K203 and K204 are set by the IU Switch Selector after S-IC/S-II Stage separation. With K203 and K204 set, K201 and K202 are energized by the loss of thrust on S-II engine number 1. Positive 28 V is then applied to both lamps of the combined ENG NO. 1 OUT S-IC, S-II, OR S-IVB indicator.

Upon separation of the S-II Stage, the S-IVB Stage engine is started. Thrust OK switches for the S-IVB engine remain closed as long as the engine produces proper thrust. If the engine loses thrust, the thrust OK switches will open. Opening of these switches deenergizes relays K100 and K101 in the Sequencer. When K100 and K101 are deenergized, +28 V is fed to normally open contacts of latching relays K212 and K213, respectively, in the EDS Distributor. Relays K212 and K213 are set (contacts closed) by the Switch Selector after S-II/S-IVB Stage separation. If the engine loses thrust after the setting of K212 and K213, +28 V from the contacts of K100 and K101 will energize relays K210 and K211. Positive 28 V is then fed to both lamps of the combined ENG NO. 1 OUT S-IC, S-II, OR S-IVB indicator in the Command Module.

In addition to their being used for emergency detection, the five engine-out indicators are also utilized for indicating normal engine cutoff; for example, prior to vehicle staging.

2-10 S-II SECOND PLANE SEPARATION INDICATION

Separation of the S-II aft interstage from the S-II Stage is indicated in the Command Module by a dual-lamp S-II SECOND PLANE SEPARATION indicator. Both lamps of the indicator remain lit until separation of the aft interstage. Positive 28 V from the S-II Stage is fed through the aft interstage section, back through the S-II Stage, and then applied to 2 relays in the EDS Distributor. These relays remain energized until the aft interstage separates from the S-II Stage (shortly after S-IC/S-II separation). At interstage separation, the 2 relays deenergize and the +28 V through the contacts of each relay is removed from the respective lamp in the S-II SECOND PLANE SEPARATION indicator.

2-11 ATTITUDE REFERENCE FAILURE INDICATION

Failure of the Saturn vehicle attitude reference is indicated by a dual-lamp LV ATTITUDE REFERENCE FAILURE indicator in the Command Module.
Both lamps of the indicator are lit simultaneously upon receipt of a +28 V signal from the Launch Vehicle Data Adapter (part of the Saturn Guidance and Control System).

The Apollo Spacecraft contains its own Guidance and Navigation System. This system is preprogrammed with the same tilt program as its Saturn vehicle counterpart. The crew can, in event of an emergency, switch an output from the Spacecraft Guidance and Navigation System into the Saturn Guidance and Control System. Thus, even after failure of the Saturn attitude reference, the original flight objectives can still be attained.

2-12 ABORT REQUEST INDICATION

Four lamps of an ABORT REQUEST Indicator in the Command Module are lit simultaneously when ground control personnel want the crew to initiate a manual abort. These lamps can be lit either before or after liftoff. Figure 2-5 shows the 3 methods of energizing the indicator lamps.

If an abort request is necessary before liftoff, a +28 V pad abort request signal is sent through the IU umbilical. This signal energizes relay K214 in the EDS Distributor. Positive 28 V is then fed through contacts of K214 to all lamps of the ABORT REQUEST indicator.

If the range safety officer initiates a destruct system arming command, via the Range Safety Command System, relays K102 and K103 in the Sequencer will be energized. When contacts of K102 and K103 close, +28 V is applied to relays K215 and K216 in the EDS Distributor. Positive 28 V is then fed through the contacts of K215 and K216 to all lamps of the ABORT REQUEST indicator.

The ABORT REQUEST indicator lamps can also be lit by appropriate signals received through the Spacecraft up-data command link. Positive 28 V from the up-data command system energizes relays K290 and K291 in the Relay Box. Contacts of K290 and K291, in turn, cause +28 V to be furnished to the ABORT REQUEST indicator.

2-13 ANGLE-OF-ATTACK INDICATION

An analog indication of the vehicle angle of attack is interpreted by the crew from a meter indication in the Command Module. An excessive angle of attack during first stage boost may indicate slow flight-control failures. Such failures can cause a gradual buildup in vehicle angular rates, resulting in eventual breakup of the vehicle. The angle-of-attack information warns the crew of such a possible condition before the angular rates increase to the point at which an angular overrate indication is given (refer to paragraph 2-8).

The angle-of-attack meter in the Command Module does not display the angle of attack directly. Instead, the meter displays the vector sum of the pitch and yaw differential aerodynamic pressures. These are pressures imposed on the sides of the forward tip of the vehicle during flight. From the meter indication, the crew must interpret the vehicle's angle of attack. Input to the angle-of-attack meter is received from an EDS Q-Ball Sensor System (refer to paragraph 3-4) on the LES.

2-14 S-II AND S-IVB FUEL TANK PRESSURE INDICATIONS*

Four meters in the Command Module display the pressures in the S-II Stage and S-IVB Stage fuel tanks. Two meters are used for the S-II tank and two for the S-IVB tank. The input for each meter originates from a separate pressure transducer. Signals from the transducers are conditioned by circuits in the Command Module before being applied to the meters.

2-15 ABORT SEQUENCE

An abort sequence is initiated either automatically or manually. Once begun, the abort sequence normally runs to completion automatically. The abort results in cutoff** of the engines (of the operating stage) and then propulsion of the Command Module away from the Saturn vehicle.

As mentioned previously, an automatic initiation of an abort sequence will occur if the auto abort bus in the EDS Distributor becomes energized (refer to paragraph 2-4). When the auto abort bus does become energized (supplied with +28 V), the bus provides +28 V to energize relays K217 through K222 in the EDS Distributor. (See Figure 2-6 for a functional schematic.) Contacts of relays K217 through K222 then remove +28 V from relays K250 through K252 and K275 through K277 (sheet 2, Figure 2-6) in the Master Event Sequence Controllers (MESC). (For discussion purposes, the abort sequence will hereafter be followed through MESC A only.) With removal of power from K250, K251, and K252, their contacts close to furnish +28 V to a set of contacts of relay K253.

* Not applicable for unmanned vehicles.
** Not applicable for Vehicle AS-501.

Changed 15 October 1966
Relays K217 through K222 and K250 through K252 are connected as shown in Figure 2-6 to make certain that +28 V is applied to contacts of K253 when, and only when, an abort is required. Interconnecting the contacts of relays K217 through K222, in the manner shown, ensures the following:

- No two simultaneous relay failures can inadvertently cause power to be removed from more than one of the relays K250, K251, and K252.

- No two simultaneous relay failures (relays K217 through K222) can prevent power from being removed from two of the relays K250, K251, and K252 when the auto abort bus is energized.

In addition, interconnecting the contacts of K250, K251, and K252 as shown ensures the following:

- No one relay failure (of K250, K251, or K252) can inadvertently cause power to be applied to the contacts of relay K253.

- No one relay failure can prevent power from being applied to the contacts of K253 when power has been removed from the coils of K250, K251, and K252.

Although +28 V is applied to the contacts of K253 in the manner described, the abort sequence normally could proceed no further unless 3 conditions had been previously satisfied. These conditions are as follows (see Figure 2-6):

- Auto abort enable signals must have been received by the EDS Distributor prior to liftoff.

- Liftoff must have occurred.

- The AUTO ABORT ENABLE switch in the Command Module must have been set to AUTO.

The first 2 of these 3 conditions can be satisfied by another means.* A MANUAL ABORT ENABLE pushbutton in the Command Module can bypass the circuits that require occurrence of the first 2 conditions. If relays K257 and K258 in MESC A are energized (as explained later in paragraph 2-17), depressing the MANUAL ABORT ENABLE pushbutton will supply needed +28 V to the AUTO ABORT ENABLE switch.

Normally, however, auto abort enable signals (the first condition) are received from ground equipment prior to liftoff. These +28 V signals set latching relays K227 and K228 in the EDS Distributor. At liftoff, power is removed from relays K235 and K236, causing them to deenergize. Positive 28 V is then fed through contacts of K235, K236, K227, and K228 to the AUTO ABORT ENABLE switch. This +28 V also lights the lamps of a combined LIFTOFF and NO AUTO ABORT* indicator in the Command Module, as well as starting event timers* When the crew* sets the AUTO ABORT ENABLE switch to AUTO, relays K253 and K254 energize and the NO AUTO ABORT* lamps extinguish.

If the conditions just described are properly satisfied prior to automatic abort initiation, the abort sequence can proceed normally. (On unmanned vehicles, the abort sequence cannot proceed because the AUTO ABORT ENABLE switch is purposely left at OFF. Thus, relays K253 and K254 cannot be energized, and the AS-501 flight cannot be aborted automatically.) With K253 and K254 energized, +28 V from relays K250, K251, and K252 is fed through contacts of K253 and K254 to start two time delays. After a 0.03-second delay, +28 V energizes relays K255 and K256.

From this point on, the abort sequence is the same for both an automatic abort and a manual abort. That is, relays K255 and K256 can also be energized by the pilot’s hand controller** in the Command Module. The crew initiates the manual abort by setting this hand controller to ABORT.

When K255 and K256 are energized (either automatically or manually), the abort sequence branches into 2 sequences: the engine cutoff sequence and either the LES or the SPS abort sequence. The engine cutoff sequence uses the normally closed contacts of K255 and K256, along with the normally closed contacts of corresponding relays K280 and K281 in MESC B. The LES or SPS abort sequence uses the normally open contacts of K255 and K256.

2-16 ENGINE CUTOFF SEQUENCE

To begin the engine cutoff sequence, relays K255 and K256 in MESC A (Figure 2-6) operate con-

* Not applicable for unmanned vehicles.

** On unmanned vehicles, the pilot’s hand controller is functionally replaced by relays K261, K262, K271, and K272 in the Mission Control Programmer, which is controlled by ground personnel through an RF command link.

2-6

Changed 15 October 1966
Currently with corresponding relays K280 and K281 in MESC B. When these 4 relays are energized, power is removed from relays K223 through K226 in the EDS Distributor. Again, triple-redundant relay circuitry is employed to ensure proper operation.

When power is removed from K223 through K226, their contacts close. Positive 28 V is then fed through the contacts of these relays to contacts of latching relays K233 and K234. Relays K233 and K234 are energized (set) at a time determined by mission requirements after liftoff by the EDS Cutoff Inhibit Timer and the Switch Selector, respectively. The 40-second delay prevents EDS cutoff of the engines, and the resulting fall of the vehicle, before the vehicle has cleared the launch area. (On Vehicle AS-501, as indicated in Figure 2-6, there is no connection from the contacts of relays K224 and K226 to the contacts of K233. Also, the Switch Selector is not programmed to operate relay K234. Consequently, no EDS cutoff of the engines is possible on AS-501.)

If relays K233 and K234 have been previously set, the -28 V from contacts of relays K223 through K226 will energize relays K229 through K232. Relays K229 through K232, in turn, provide +28 V cutoff signals to engine cutoff circuitry in the S-IVB, S-II and S-IC Stages.

For cutoff of the S-IVB engine, the cutoff signals from the EDS Distributor are applied not only to the S-IVB cutoff bus, thereby cutting off the engine, but also to relay K105 in the Aft Power Distributor (Figure 2-7). Relay K105 is energized, and its normally-open contacts in the Aft Power Distributor supply +28 V to the OFF contact of the motor switch. When the motor switch is actuated, its switch arms are driven to the position shown, and +28 V is removed from the engine power bus. With the removal of +28 V, relays K100, K101, and subsequently, K106 in the Sequencer are deenergized. If the stage Switch Selector has set relay K110, then +28 V is supplied to the prevalve control solenoid which actuates the prevalve of the engine.

It should be noted that the engine thrust switches would normally open when the engine cutoff bus is energized and the resultant action would be as stated above. The action of relay K106 assures that the prevalve control solenoid cannot be actuated prior to engine cutoff.

In addition to EDS cutoff, the engine can be cutoff by the stage Switch Selector, GSE, the Range Safety Command System, or by depletion of engine propellants. As shown, the stage Switch Selector can control the engine cutoff bus directly but cannot control the prevalve solenoid without first energizing the engine cutoff bus.

For EDS cutoff of the five S-II engines, cutoff signals from the EDS Distributor are fed through the S-IVB Stage to relays K67 thru K70 in the Sequencer Controller (Figure 2-8). With K67 and K68 energized, +28 V is applied to the engine cutoff bus of each engine, thereby cutting off all engines. (For simplicity, only the circuitry for engine number 1 is shown. The circuitry for the other engines is identical.)

The +28 V applied to the engine cutoff bus (for engine number 1) also energizes relay K73. With relay K62 deenergized at liftoff (or before), +28 V from K62 is fed through the now closed contacts of K73 and is applied to a time delay.

Although the time delay has power applied, two conditions must exist before the time delay can function. First, a prevalve arming relay K78 must be energized, then engine thrust sensing relays K50 and K51 must indicate a loss of thrust (be deenergized). When these conditions exist, relays K76 and K77 are energized and the time delay circuitry is complete. After a time delay of 425 milliseconds, a 28 V output from the time delay energizes relay K74. Positive 28 V is fed through the contacts of K74 to the LH2 and the LOX prevalve solenoids. Relays K71 and K72 function during EDS and Range Safety System cutoff of the S-II engines to ensure that relays K50 and K51 will deenergize immediately. Upon receipt of engine cutoff signals, relays K70 and K71 energize and their normally closed contacts remove +28 V from the engine power bus.

The engines of the S-II Stage can also be cutoff by 4 methods other than EDS cutoff, as shown in Figure 2-8. First, the Switch Selector can cutoff all engines simultaneously. Second, depletion of either the LH2 or the LOX can cause all engines to be cutoff. Third, all engines can be cutoff simultaneously by the Range Safety Command System. Fourth, internal circuitry of the Sequencer Controller can cutoff any single engine if that engine loses proper thrust (as sensed by the thrust OK switches). This fourth method is dependent, however, upon latching relay K60 being set (contacts closed) by the Switch Selector.

For EDS cutoff of the five S-IC engines, cutoff signals from the EDS Distributor are fed through the S-IVB and S-II Stages to relays K26, K27, and K28 in

Changed 1 April 1968

2-7
the Main Distributor (Figure 2-9). With K26 and K28 energized, +28 V is applied to five engine-cutoff relays in the Thrust OK Distributor, one relay for each engine. (For simplicity, the cutoff relays and other circuitry for only engine number 1 are shown in Figure 2-9. The circuitry for engines 2 through 5 is identical.)

When cutoff relay K31 (for engine number 1) is energized from the Main Distributor, +28 V is applied to an engine stop solenoid, which cuts off the engine. In addition, +28 V from contacts of K31 energizes relay K32. (Positive 28 V from energized K27 in the Main Distributor is also fed to K32.) With K32 energized, +28 V through its contacts is applied to the fuel prevalve control solenoid and the LOX prevalve control solenoid.

In addition to engine cutoff by the EDS, the S-IC engines can be cutoff by three other methods, as shown in Figure 2-9. First, signals from level sensors in the fuel and LOX tanks can cutoff the inboard engine (engine 5) separately from the outboard engines. Second, all engines can be cutoff simultaneously by the Range Safety Command System. Third, internal circuitry of the Thrust OK Distributor can cutoff any single engine if that engine loses proper thrust (as sensed by the thrust OK switches). This third method is dependent, however, upon latching relay K20 being set (contacts closed) by the Switch Selector, resulting in relay K30 being energized.

2-17 LES AND SPS ABORT SEQUENCES

The LES and SPS abort sequences are actually subsequences, or modes, of the overall abort sequence. Either the LES abort sequence or the SPS abort sequence is begun simultaneously with the engine cutoff sequence. Normally, however, neither the LES or SPS abort sequence results in removal of the Command Module from the Apollo-Saturn vehicle until after engine cutoff and thrust decay.*

Energizing of relays K255 and K256 in MESC A (Figure 2-6) causes +28 V to be applied to contacts of relay K257 and to an event timer. If the LES is still attached to the Command Module and the LES JETTISON switch has been set to LES**, relays K257 and K258 remain energized during an abort sequence. The +28 V from K256 is therefore fed through contacts of K257 and K258 to energize relays K259 and K260. When K259 and K260 are energized, a +28 V signal initiates the LES abort sequence (or mode). If the LES is not still attached or the LES JETTISON switch is not set to LES**, relays K257 and K258 will not be in an energized condition during the abort sequence. The +28 V from K256 is then fed through contacts of K257, K258, K259, and K260 to initiate the SPS abort sequence (or mode).

If the LES abort mode is initiated, the Command Module will be separated from the rest of the Apollo-Saturn vehicle and pulled away by the LES main motor. If the SPS abort mode is initiated, the Command Module and Service Module will be separated from the vehicle and pushed away by the Service Module engine.

* On Vehicle AS-501, the engines cannot be cutoff by the EDS; however, either abort sequence can remove the Command Module from the vehicle.

** On unmanned vehicles, the LES JETTISON switch is left at TOWER JETT, but the LES is not jettisoned until ground personnel actuate relays K263, K264, K273, and K274 (in the Mission Control Programmer) via an RF command link.
Figure 2-1. Angular Overrate Automatic Abort Functional Schematic

NOTES:
1. All wiring of EDS-1, except K190 and K191, is for testing only, and is not used in EDS-1 EDS-1 Signal Panel.
2. Each section contains only relay numbers for reference only and do not correspond to actual hardware.
3. All wire numbers are shown only for reference and do not correspond to actual hardware.
4. Diagrams covered by switch selector (K150, K151, and K152) are for reference only and do not correspond to actual hardware.
5. Wires between Command Module and Instrument Unit pass through Service Module and Lunar Excursion Module adapter.
6. Examples of areas are shown for reference only and do not correspond to actual hardware.

Changed 1 January 1967
Figure 2-2. S-IC Two-Engine-Out Automatic Abort Functional Schematic
3. Reset buses can be energized only from Ground Support Equipment.

4. Wires between Command Module and Instrument Unit pass through Service Module and Lunar Excursion Module adapter.

Figure 2-3. Angular Overrate Manual-Abort Indication Functional Schematic

Changed 1 January 1967
ENGINE NO. 1

NOTES:
1. Relay numbers shown are for reference only and do not correspond to actual hardware reference designations.
2. All relays are shown in deenergized or reset condition.
3. Reret buses can be energized only from Ground Support Equipment.
4. Wire runs between Command Module and Instrument Unit pass through Service Module and Lunar Excursion Module adapter.

Figure 2-4. Engine Out Manual-Abort Indication Functional Schematic (Typical)
Figure 2-5. Abort Request Indication Functional Schematic
NOTES:

1. Relay numbers shown are for reference only and do not correspond to actual hardware reference designations.
2. All relays are shown in deenergized or reset condition.
3. Switch circuits can be energized only from Ground Support Equipment.
4. Wires between Command Module and Instrument Unit pass through Service Module and Lunar Excursion Module adapter.

* This function is not programmed on Vehicle AS-501.
** This wire is not connected on Vehicle AS-501.

Figure 2-6. Abort Sequence Functional Schematic (Sheet 1 of 2)
Figure 2-6. Abort Sequence Functional Schematic (Sheet 2 of 2)

Changed 15 October 1966

NOTES:
1. No arrows shown, switch is left in position shown.
2. Applicable for unmanned vehicle only.
3. Relay symbols shown are for reference only and do not correspond to actual equipment configuration.
4. Refer to reference documentation.
5. Axes shown in position set for ground conditions.
6. Axes shown are energized only from Ground Support Equipment.
7. Axes between Command Module and Service Module Unit pass through Service Module and Lunar Excursion Module adapter.

Changed Area

IRS No. 4/72
S-IC
Engine Cutoff
from IU EDS
Distributor

NOTES:
1. Relay numbers shown are for reference only and do not correspond to actual hardware reference designations.
2. All relays shown are in disengaged or reset condition.
3. Relays K60 through K70 are used in cutoff of all engines. All other relays shown are for engine number 1 only.
1. Normal engine cutoff occurs when fuel level or LOX level falls to a preset minimum.
2. Relay numbers shown are for reference only and do not correspond to actual hardware reference designations.
3. All relays are shown in deenergized or reset condition.
4. Relays K20, K21, K23 through K28, and K30 are used in cutoff of all engines; relay K21 is used for the outboard engine only. All other relays shown are for engine number 1 only.

Figure 2-9. S-IC Engine-Cutoff Functional Schematic (Typical)
SECTION III
COMPONENT DESCRIPTIONS

This section presents a short description of each major EDS component. A major EDS component is defined herein as a component designed primarily for EDS use. Thus, those components that are involved in EDS operation but are normally considered as parts of other systems are not covered in this section.

3-1 EDS DISTRIBUTOR

The EDS Distributor (Figure 3-1) is located in the IU and provides the only communications link between the Spacecraft and the Saturn vehicle. The EDS Distributor serves as an enclosure for EDS relay logic circuitry, as well as a junction box for signals and power between the Spacecraft and the Saturn vehicle.

All EDS signals from the Saturn vehicle are routed to the logic circuits in the EDS Distributor. Output EDS signals from these logic circuits are then fed to the Spacecraft and to IU telemetry. Also, EDS signals from the Spacecraft are routed back through the EDS logic circuits before being fed to the S-IVB, S-II, and S-IC vehicle stages. The EDS Distributor

Figure 3-1. EDS Distributor
logic circuitry is described within the system description of Section II. (Additional information can be found in the component manual for the EDS Distributor. Refer to the List of Related Documents.)

Connections to the EDS Distributor are made through several connectors on 2 sides of the case. Access to internal parts is obtained by removing the top and bottom covers. Most of the internal parts are mounted on circuit boards for ease of maintenance. These parts are also encapsulated to prevent loosening during vibration.

The EDS Distributor weighs a maximum of 14.06 kilograms (31 pounds). The outside dimensions are as follows:

- Length: 36.8 centimeters (14.5 inches) max
- Width: 35.6 centimeters (14.0 inches) max
- Height: 18.8 centimeters (7.4 inches) max

3-2 EDS CUTOFF INHIBIT TIMER

A time delay is generated for the EDS by the EDS Cutoff Inhibit Timer (Figure 3-2). The time delay prevents an abort-sequence cutoff of the S-IC engines until after the vehicle has cleared the launch area. The EDS Cutoff Inhibit Timer is actuated at liftoff and produces an output after a predetermined time delay. The time delay is dependent upon mission requirements.

The EDS Cutoff Inhibit Timer (located in the IU) weighs a maximum of 0.2 kilogram (0.5 pound). The case of the timer is cast from magnesium alloy and has the following outside dimensions:

- Length: 11.7 centimeters (4.6 inches) max
- Width: 6.6 centimeters (2.6 inches) max
- Height (with connector): 4.3 centimeters (1.7 inches)

With the exception of a connector and 2 relays, all circuit parts of the timer are mounted on a printed-circuit board. The circuit board and its parts are coated with a layer of polyurethane. After all circuit parts have been installed in the case of the timer, all remaining voids in the case are filled with polyurethane foam. A fiberglass bottom plate is embedded in the foam and prevents repair of the timer.

Figure 3-2. EDS Cutoff Inhibit Timer
A schematic of the timer appears in Figure 3-3. Initially, +28 V IU power is furnished to the timer at pins B and D of connector J1. This +28 V is applied to a filter composed of diode CR2, resistor R1, and capacitor C1. Any ac signal that might be present on the 28 V input is removed by this filter. After passing through the filter, the +28 V is applied to a voltage regulator circuit. The voltage regulator consists of resistor R2 and Zener diodes CR3 and CR4. Through the action of CR3 and CR4, the output of the voltage regulator is maintained at 16.4 V.

Output of the voltage regulator furnishes power for the timing circuit which is comprised of unijunction timer Q1, capacitor C2, and resistors R3 through R7. An RC timing network is made up primarily of selected parts C2, R3, R4, and R5. At the time the regulated voltage from R2 is initially applied to the RC network, relay K2 contacts are as shown on the schematic. Consequently, the emitter of Q1 is shorted to ground and C2 charges to the output voltage of the regulator. Until relay K2 is energized, Q1 will remain grounded and C2 will remain charged.

When the timing cycle of the EDS Cutoff Inhibit Timer is to begin (at liftoff), a +28 V input is applied to pin E of J1. This input is fed through isolation diode CR1 to energize relay K2. The +28 V input is also applied to the emitter of latching switch Q3. (Diodes CR9 and CR10 across K2 prevent damage to Q3 from transients created by K2.)

As K2 is energized, its contacts open. The grounding short is thereby removed from the emitter of Q1. Also, C2 is allowed to begin a slow discharge through R3, R4, and R5. While C2 is discharging, its output voltage opposes the output of the voltage regulator. Consequently, during C2 discharge, the resulting voltage appearing at the emitter of Q1 starts at zero potential and gradually rises. When this voltage rises to a sufficient positive value, Q1 conducts.
The time interval between the opening of the K2 contacts and the conduction of Q1 is dependent upon Q1, the value of R6, and the values of the components in the RC network. Therefore, Q1, C2, and R3 through R6 must be preselected to obtain a desired time interval.

When Q1 conducts, C2 stops discharging and immediately begins to recharge rapidly through Q1 and R7. This action produces a positive pulse across R7. The pulse is applied to switch driver Q2 through coupling capacitor C3, isolation diode CR5, and current limiting resistor R9. Upon application of the pulse to Q2, Q2 conducts and causes latching switch Q3 to conduct. (Both Q2 and Q3 are driven to saturation.) Conduction of Q3 energizes relay K1. (Diodes CR7 and CR8 across K1 prevent K1 transients from damaging Q3.)

With K1 energized, +28 V from the filter network (R1 and C1) is fed through a set of now closed contacts of K1 to current limiting resistor R10. From R10, a positive voltage is applied to Q2 through isolation diode CR6 and resistor R9. Since this voltage is constant while K1 is energized, Q2 is maintained in conduction. Consequently, Q3 remains in conduction and K1 remains energized. Relay K1 will stay in the energized condition until removal of the +28 V input applied to the emitter of Q3 (through pin E of J1).

Relay K1 contains 2 sets ofNormally Closed (NC) contacts and 2 sets of Normally Open (NO) contacts. The NC contacts are not used in the EDS Cutoff Inhibit Timer for external EDS circuits (however, refer to paragraph 3-3). One set of the NO contacts is utilized as described in the preceding paragraph. The other set of NO contacts applies +28 V through pin H of J1 to an external EDS circuit.

3-3 EDS OVERRATE TIMER

A time delay generated by the EDS Overrate Timer is used in making an in-flight change to EDS angular overrate limits. This EDS Timer is actuated at liftoff and produces an output $20 (\pm 0.6, -0.2)$ seconds after being actuated.

With one exception, the EDS Overrate Timer is physically and functionally identical to the EDS Cutoff Inhibit Timer (paragraph 3-2). The one exception is in the timing RC network. For the EDS Overrate Timer, the values of the RC network resistors are selected so that the discharge time of capacitor C2 will cause relay K1 to be energized $20 (\pm 0.6, -0.2)$ seconds after relay K2 is energized.

Unlike the EDS Cutoff Inhibit Timer, the output of the EDS Overrate Timer is taken from 1 set of the NC contacts of relay K1 (pin G of J1). Therefore, a +28 V output is removed from an external EDS circuit when K1 is energized.

3-4 EDS Q-BALL SENSOR SYSTEM

Known as the Q-Ball, the EDS Q-Ball Sensor System (Figure 3-4) produces outputs that are displayed on meters as pressure differentials but are interpreted as indicators of vehicle angle of attack. The Q-Ball operates on the principle of detecting differences in aerodynamic pressures; hence, the abbreviation for dynamic pressure, or Q, in the name. One of the Q-Ball outputs is furnished to the Command Module for display; the other outputs are supplied to TM equipment for transmission to ground.

The Q-Ball (including all its electronic parts) is enclosed in a smooth outer shell, which forms the forward tip of the LES. The combined weight of the Q-Ball and its shell is 15.9 kilograms (35 pounds). The length of the shell is 33.8 centimeters (13.3 inches), and the diameter at the aft end of the shell is 31.8 centimeters (12.5 inches).

To prevent contamination of the Q-Ball prior to launch, a fiberglass cover is placed over the top of the Q-Ball. A nylon bladder is installed between the cover and the Q-Ball, and a lanyard is connected from the top of the cover to a retracting mechanism on the umbilical tower. When the cover is to be removed, the nylon bladder is pressurized with GN2 through a hose from the tower. As the bladder expands, it raises the cover. The retracting mechanism then pulls the lanyard to remove the cover from the Q-Ball.

Because of its physical location on the LES, the Q-Ball is not affected during flight by the air turbulence normally caused by the vehicle. Also, at this location, the Q-Ball is at the greatest distance forward of the vehicle pitch and yaw rotational axes. Thus, when the angle of attack is changing, the Q-Ball can more easily and accurately measure the aerodynamic pressure differentials at the forward end of the vehicle. The differences in aerodynamic pressures, imposed on opposite sides of the Q-Ball outer shell, are used in determining the vehicle angle of attack.
The Q-Ball is divided functionally into two independent but almost identical channels. An output from either channel can be used to determine the vehicle angle of attack. Each channel obtains aerodynamic pressure inputs through separate pressure inlet ports. Eight such ports are located around the perimeter and near the forward end of the Q-Ball outer shell (Figure 3-4).

Two ports on opposite sides of the shell lie in the pitch plane of the vehicle (Figure 3-5). Likewise, two ports on opposite sides of the shell lie in the yaw plane. The two pitch inlet ports provide pressure inputs to a pitch differential pressure transducer in channel A of the Q-Ball. Similarly, the two yaw ports provide pressure inputs to a yaw differential pressure transducer in channel A. Channel B of the Q-Ball obtains pressure inputs from four similar inlet ports. However, the ports for channel B are offset 45 degrees from the true pitch and yaw planes of the vehicle.

A differential pressure signal is derived from the output of each differential pressure transducer in the Q-Ball. The signals derived from the pitch and yaw transducers in channel A are combined in a summing circuit within that channel. Differential pressure signals in channel B are also combined in a summing circuit. The output from each summing circuit represents the vector sum (magnitude, not direction) of the differences in aerodynamic pressures acting on the sides of the vehicle. Figure 3-5 vectorially shows the summing in each channel.

The vector sum signal from Q-Ball channel A is displayed on a meter in the Command Module. The vector sum signal from channel B is not displayed, but is fed through the EDS Distributor in the IU to TM equipment. Separate pitch and yaw differential pressure signals from channel A are fed directly to TM equipment in the IU. When displayed, pressure differential signals from the Q-Ball are interpreted as indications of the vehicle angle of attack.

3-5 LAUNCH ESCAPE SYSTEM

Sometimes called the Launch Escape Tower, the Launch Escape System (Figure 3-6) provides the thrust necessary to pull the Command Module free of a malfunctioning vehicle. The LES normally remains with the Apollo-Saturn vehicle until shortly after S-II engine ignition. Up to this time in the flight, the vehicle acceleration is low enough that the thrust of the LES is sufficient to pull the Command Module away from the vehicle if it becomes necessary. When no longer needed, the LES is jettisoned either automatically by the flight sequencing circuits of the vehicle or manually by the crew.

The LES consists essentially of three separate solid-propellant rocket motors, two canard surfaces, a tower structure, and the apex section of a boost protective cover (Figure 3-6). Although not a functional part of the LES, the EDS Q-Ball Sensor System is mounted at the forward tip of the LES. All control of the LES rocket motors and canard surfaces originates from within the Command Module.

One of the LES rocket motors, the largest of the three, is the main launch escape motor that provides the thrust for an LES abort. The launch escape motor has 4 nozzles canted outward. A second motor, with 2 nozzles on opposite sides of the LES, is the LES jettison motor for removing the LES from the Command Module. The third motor is the pitch control motor, with a single nozzle on one side of the LES. This motor causes the LES/Command-Module combination to pitch over during a low-altitude abort.

The two canard surfaces near the forward end of the LES are automatically deployed approximately...
11 seconds after ignition of the main launch escape motor. These surfaces cause and then damp a turn-around maneuver during a medium-altitude abort. This maneuver ensures that the blunt end of the Command Module will face downward during descent. During an LES high-altitude abort, the LES is jettisoned by the crew before the canards can be deployed. In this case, the Command Module Reaction Control System is used to cause and damp the turn-around maneuver.

A tower structure physically connects the body of the main launch motor to the top of the Command Module and to the boost protective cover. The boost protective cover consists of a rigid apex section and a flexible aft section (the aft section is not shown in Figure 3-6). The cover completely surrounds the top and sides of the Command Module. At LES jettison, the complete boost protective cover is pulled from the Command Module.

Figure 3-5. Q-Ball Pressure Inlet Ports and Vector Summing
Figure 3-6. Launch Escape System
The Ground Support Equipment (GSE) for the EDS consists of four test and display panels, along with the automatic checkout equipment used for pre-launch checkout of all Saturn vehicle systems. The on-board EDS is checked by first simulating various emergency conditions in the vehicle, and then monitoring the resulting operation of the EDS circuits. Monitoring and some control of the pre-launch checkout is provided by the 4 EDS panels. Some of the panels also monitor the EDS circuits during vehicle flight. For more information on the interconnections between the on-board EDS and the GSE, refer to the Interface Control Document entitled, "Saturn-Apollo Emergency Detection System Checkout Schematics" (for the applicable vehicle).

Only the four EDS test and display panels will be described in this section. These panels are rack mounted and are located in the Launch Control Center at Kennedy Space Center.

4-1 EDS PREPARATION PANEL

Control and monitoring of EDS automatic checkout is provided by the EDS Preparation Panel. This panel can be used only during pre-launch checkout of the vehicle; the panel becomes inoperative after vehicle launch. Figure 4-1 shows the panel, and the accompanying legend describes each control and indicator. Refer to Section II of this manual for more information about the on-board EDS components mentioned in the figure legend.

4-2 EDS FLIGHT MONITOR PANEL

Containing indicator lights and meters, the EDS Flight Monitor Panel permits continuous monitoring of all important EDS functions during vehicle flight. The panel is active both prior to and during flight. All inputs to the panel are received through telemetry. The panel is shown in Figure 4-2, with the indicators described in the accompanying legend. Refer to Section II of this manual for more information about the on-board EDS components mentioned in the legend.

4-3 EDS/CONTROL RATE GYRO PANEL

The EDS/Control Rate Gyro Panel provides control and monitoring of the IU Control-EDS Rate Gyro Package and its Control Signal Processor. Control functions and some of the monitoring functions at the panel are available only during pre-launch checkout. Inputs for other monitoring functions are obtained through telemetry and are therefore available during vehicle flight as well as pre-launch checkout.

The EDS/Control Rate Gyro Panel is shown in Figure 4-3. Descriptions of the controls and indicators are given in the legend accompanying the figure. When a panel switch having an AUTO position is set to that position, the associated function can be controlled by the GSE checkout computer.

4-4 Q-ANGLE OF ATTACK PANEL

Control and monitoring of the Q-Ball is the prime function of the Q-Angle of Attack Panel. Control is permitted only during pre-launch checkout, but monitoring is available during both pre-launch checkout and vehicle flight. Monitoring of Q-Ball cover removal is also provided by the panel. The panel is shown in Figure 4-4, with the controls and indicators described in the legend. When a panel switch having an AUTO position is set to that position, the associated function can be controlled by the GSE checkout computer.
Figure 4-1. EDS Preparation Panel

Legend for Figure 4-1

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EDS ENABLE LOGIC ZERO</td>
<td>Indicates that no inhibit signal has been received from the IU Switch Selector to inhibit either an angular-overrate or two-engine-out automatic abort.</td>
</tr>
<tr>
<td>2</td>
<td>6D91, 6D92, 6D93, 1D199, 2D199, and 6D199</td>
<td>Indicate that the respective buses are energized.</td>
</tr>
</tbody>
</table>

4-2 Added 15 October 1966
<table>
<thead>
<tr>
<th>Index Number</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>PYRO FIRING RLYS SAFE A & B</td>
<td>Indicates that pyrotechnic relays in the Command Module are deenergized.</td>
</tr>
<tr>
<td>4</td>
<td>PYRO RELAYS IND SAFE</td>
<td>Indicates that neither pyrotechnic bus in the Command Module has been energized.</td>
</tr>
<tr>
<td>5</td>
<td>LOGIC RELAYS IND SAFE</td>
<td>Indicates that the logic relays in the Command Module are deenergized.</td>
</tr>
<tr>
<td>6</td>
<td>ONE ENG OUT A & B</td>
<td>Indicates that at least one S-IC engine is out (duplex circuits).</td>
</tr>
<tr>
<td>7</td>
<td>EDS READY</td>
<td>Indicates that all EDS circuits are ready for normal operation and no unsafe conditions are present.</td>
</tr>
<tr>
<td>8</td>
<td>EDS LAUNCH</td>
<td>Indicates that the Function switch (index number 43) has been set to LAUNCH or a firing command has been given.</td>
</tr>
<tr>
<td>9</td>
<td>READY FOR IGNITION</td>
<td>Indicates that the Saturn vehicle is ready for ignition.</td>
</tr>
<tr>
<td>10</td>
<td>FIRING COMMAND</td>
<td>Indicates that the Saturn firing command has been issued.</td>
</tr>
<tr>
<td>11</td>
<td>EDS NOT READY</td>
<td>Indicates that at least one of several EDS circuits is in an unsafe condition.</td>
</tr>
<tr>
<td>12</td>
<td>IGNITION COMMAND</td>
<td>Indicates that the ignition command for the S-IC engines has been issued.</td>
</tr>
<tr>
<td>13</td>
<td>IGNITION SEQ FAILURE</td>
<td>Indicates that a failure has occurred in the S-IC engine ignition sequence.</td>
</tr>
<tr>
<td>14</td>
<td>ALL ENG RUNNING</td>
<td>Indicates that all S-IC engines are producing proper thrust.</td>
</tr>
<tr>
<td>15</td>
<td>COMMIT</td>
<td>Indicates that the Apollo-Saturn vehicle has been released and is ready to leave the launch pad.</td>
</tr>
<tr>
<td>16</td>
<td>LIFTOFF</td>
<td>Indicates that the vehicle has lifted off the launch pad.</td>
</tr>
<tr>
<td>17</td>
<td>CUTOFF</td>
<td>Indicates that the S-IC engines have been cutoff before the vehicle has been committed to launch.</td>
</tr>
<tr>
<td>18</td>
<td>ENG OUT ENABLED 1, 2, and 3</td>
<td>Indicates that an automatic abort, resulting from a two-engine-out condition, has not been inhibited in the EDS Distributor. (One indicator light for each inhibiting relay.)</td>
</tr>
</tbody>
</table>
Legend for Figure 4-1 (Cont)

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>ABORT COMD TO S/C 1A, 1B, 2A, 2B, 3A, and 3B</td>
<td>Indicate that six automatic abort initiate relays in the EDS Distributor have been energized. These relays are energized either by the auto abort bus in the EDS Distributor or by the GSE checkout computer.</td>
</tr>
<tr>
<td>20</td>
<td>ABORT BUS</td>
<td>Indicates that the auto abort bus in the EDS Distributor has been energized.</td>
</tr>
<tr>
<td>21</td>
<td>CUTOFF COMD FROM S/C 1, 2, and 3</td>
<td>Indicate that the three engine-cutoff signals from the MESC's have been received by the EDS Distributor.</td>
</tr>
<tr>
<td>22</td>
<td>EDS UNSAFE A and B</td>
<td>Indicate that at least one of three automatic abort relays in each MESC has been deenergized. (Each indicator is controlled by the abort relays in one MESC only.)</td>
</tr>
<tr>
<td>23</td>
<td>YAW-PITCH ENABLED 1, 2, and 3</td>
<td>Indicate that an automatic abort, resulting from a yaw or pitch angular-overrate condition, has not been inhibited in the EDS Distributor. (One indicator light for each inhibiting relay.)</td>
</tr>
<tr>
<td>24</td>
<td>S/C CUTOFF ENABLED A and B</td>
<td>Indicate that engine cutoff has been enabled by the IU Switch Selector and by the EDS Cutoff Inhibit Timer, respectively.</td>
</tr>
<tr>
<td>25</td>
<td>ABORT ENABLE ARMED A and B</td>
<td>Indicate that the auto abort enable relays in the EDS Distributor have been energized (set) by the GSE checkout computer (duplex circuits).</td>
</tr>
<tr>
<td>26</td>
<td>ATTITUDE REF FAIL</td>
<td>Indicates that the EDS Distributor has received an attitude reference failure signal from the Saturn Guidance System.</td>
</tr>
<tr>
<td>27</td>
<td>DCR CUTOFF 1 and 2</td>
<td>Indicate that both Range Safety (Destruct) Command Receivers in the S-IVB Stage have initiated S-IVB engine cutoff.</td>
</tr>
<tr>
<td>28</td>
<td>PAD ABORT REQUEST</td>
<td>(Not used)</td>
</tr>
<tr>
<td>29</td>
<td>RF ABORT REQUEST</td>
<td>Indicates that an abort request has been transmitted to the Spacecraft from the ground.</td>
</tr>
<tr>
<td>30</td>
<td>ROLL ENABLED 1, 2, and 3</td>
<td>Indicate that an automatic abort, resulting from a roll angular-overrate condition, has not been inhibited in the EDS Distributor. (One indicator light for each inhibiting relay.)</td>
</tr>
</tbody>
</table>

Added 15 October 1966
Legend for Figure 4-1 (Cont)

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>SIM LIFTOFF ENABLE</td>
<td>Enables a simulated liftoff signal to be initiated by other GSE checkout units, which can deenergize liftoff relays in the EDS Distributor. (SIM LIFTOFF ENABLE switch is key operated. Indicator light immediately above switch indicates that switch is ON.)</td>
</tr>
<tr>
<td>32</td>
<td>TEST FAULT</td>
<td>Indicates that the GSE automatic test program has stopped due to detection of a fault.</td>
</tr>
<tr>
<td>33</td>
<td>RESET</td>
<td>Resets GSE test program to continue after a failure occurs.</td>
</tr>
<tr>
<td>34</td>
<td>TEST COMPLETE</td>
<td>Indicates that the GSE automatic test of the EDS has been completed.</td>
</tr>
<tr>
<td>35</td>
<td>START</td>
<td>Starts GSE automatic test of EDS.</td>
</tr>
<tr>
<td>36</td>
<td>TESTING</td>
<td>Indicates that the GSE automatic test of the EDS is in process.</td>
</tr>
<tr>
<td>37</td>
<td>SINGLE STEP</td>
<td>Causes the GSE automatic checkout equipment to step through its program 1 step at a time. (Indicator light above switch indicates that switch is ON.)</td>
</tr>
<tr>
<td>38</td>
<td>LIFTOFF RESET</td>
<td>Resets auto abort enable relays in the EDS Distributor. (Indicator light above switch indicates that these relays have been reset either by LIFTOFF RESET pushbutton or by IU Switch Selector.)</td>
</tr>
<tr>
<td>39</td>
<td>PITCH RATE EXCESSIVE 1, 2, and 3</td>
<td>Indicate that a pitch angular-overrate condition has been sensed by three pitch rate switches in the Control Signal Processor.</td>
</tr>
<tr>
<td>40</td>
<td>YAW RATE EXCESSIVE 1, 2, and 3</td>
<td>Indicate that a yaw angular-overrate condition has been sensed by three yaw rate switches in the Control Signal Processor.</td>
</tr>
<tr>
<td>41</td>
<td>ROLL RATE EXCESSIVE 1, 2, and 3</td>
<td>Indicate that a roll angular-overrate condition has been sensed by three roll rate switches in the Control Signal Processor.</td>
</tr>
<tr>
<td>42</td>
<td>ENG 1 through 5 THRUST OK 1, 2, and 3</td>
<td>Indicate that the three thrust OK switches for the respective S-IC engines are closed.</td>
</tr>
</tbody>
</table>
Legend for Figure 4-1 (Cont)

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Function</td>
<td>Selects mode of operation for checkout of the EDS:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF - Prevents power from being applied to EDS circuits in the IU.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MONITOR - Allows power to be applied to EDS circuits while panel monitors conditions of circuits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEST - Permits testing of EDS circuits by GSE automatic checkout equipment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAUNCH - Enables the EDS ready circuits for actual or simulated flight.</td>
</tr>
<tr>
<td>44</td>
<td>LET JETTISON LOGIC ZERO</td>
<td>Indicates the LET jettison logic circuit is safe.</td>
</tr>
<tr>
<td>45</td>
<td>SEPARATION LOGIC ZERO</td>
<td>Indicates the separation logic circuit is safe.</td>
</tr>
<tr>
<td>46</td>
<td>SEQUENCE LOGIC ZERO</td>
<td>Indicates that neither the S-II/S-IVB separation sequence nor the Saturn/Apollo separation sequence has been initiated by the IU Switch Selector.</td>
</tr>
</tbody>
</table>
Figure 4-2. EDS Flight Monitor Panel
Legend for Figure 4-2

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S-IVB PRESSURE LOX 1 and 2</td>
<td>Display the pressure in the S-IVB oxygen tank (duplex circuits).</td>
</tr>
<tr>
<td>2</td>
<td>S-IVB PRESSURE FUEL 1 and 2</td>
<td>Display the pressure in the S-IVB fuel tank (duplex circuits).</td>
</tr>
<tr>
<td>3</td>
<td>Q-BALL VECTOR SUM</td>
<td>(Not used)</td>
</tr>
<tr>
<td>4</td>
<td>6D91, 6D92, and 6D93</td>
<td>Indicate that the respective buses are energized.</td>
</tr>
<tr>
<td>5</td>
<td>PILOT ABORT A and B</td>
<td>Indicate that a manual abort has been initiated by the pilot (duplex circuits).</td>
</tr>
<tr>
<td>6</td>
<td>ABORT BUS</td>
<td>Indicates that the auto abort bus in the EDS Distributor has been energized.</td>
</tr>
<tr>
<td>7</td>
<td>EDS ABORT A and B</td>
<td>Indicate that an automatic abort has been initiated by the EDS (duplex circuits).</td>
</tr>
<tr>
<td>8</td>
<td>NO ABORT FROM L/V 1, 2, and 3</td>
<td>Indicate that no automatic abort initiate signals are sent to the Spacecraft from EDS Distributor.</td>
</tr>
<tr>
<td>9</td>
<td>CUTOFF COMMAND A and B</td>
<td>Indicate that at least two of the three engine cutoff signals from the MESC's have been received by the EDS Distributor (duplex circuits).</td>
</tr>
<tr>
<td>10</td>
<td>ABORT ENABLED A and B</td>
<td>Indicate that an automatic abort has been enabled in the Command Module (duplex circuits).</td>
</tr>
<tr>
<td>11</td>
<td>CUTOFF ENABLED A and B</td>
<td>Indicate that engine cutoff has been enabled by the IU Switch Selector and by the EDS Cutoff Inhibit Timer, respectively.</td>
</tr>
<tr>
<td>12</td>
<td>LIFTOFF TO S/C A and B</td>
<td>Indicates that a liftoff signal has been sent from the EDS Distributor to the Command Module.</td>
</tr>
<tr>
<td>13</td>
<td>CUTOFF FROM S/C A and B</td>
<td>Indicate that engine cutoff signals have been produced in the MESC's (duplex circuits).</td>
</tr>
<tr>
<td>14</td>
<td>CUTOFF A and B</td>
<td>Indicate that engine cutoff signals have been sent to the operating stage from the IU (duplex circuits).</td>
</tr>
<tr>
<td>15</td>
<td>LES ABORT A and B</td>
<td>Indicate that the LES abort mode has been initiated in the Spacecraft (duplex circuits).</td>
</tr>
<tr>
<td>16</td>
<td>CUTOFF S-IVB A and B</td>
<td>Indicate cutoff of S-IVB engine.</td>
</tr>
</tbody>
</table>
Legend for Figure 4-2 (Cont)

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>SPS ABORT A and B</td>
<td>Indicate that the SPS abort mode has been initiated in the Spacecraft (duplex circuits).</td>
</tr>
<tr>
<td>18</td>
<td>CUTOFF S-II A and B</td>
<td>Indicate cutoff of S-II engines.</td>
</tr>
<tr>
<td>19</td>
<td>ABORT REQUEST</td>
<td>Indicates that an abort request signal has been received by the Command Module.</td>
</tr>
<tr>
<td>20</td>
<td>ATT REF FAIL IND TO S/C</td>
<td>Indicates that an attitude reference failure signal has been sent from the EDS Distributor to the Command Module for display.</td>
</tr>
<tr>
<td>21</td>
<td>CUTOFF S-IC A and B</td>
<td>Indicates cutoff of S-IC engines (duplex circuits).</td>
</tr>
<tr>
<td>22</td>
<td>RF ABORT REQUEST</td>
<td>Indicates that an abort request has been transmitted to the Spacecraft from the ground.</td>
</tr>
<tr>
<td>23</td>
<td>LAUNCH RATE SELECTED</td>
<td>Indicates that a new angular-overrate has been selected in the IU.</td>
</tr>
<tr>
<td>24</td>
<td>RATE EXCESSIVE IND TO S/C</td>
<td>Indicates that an angular-overrate signal has been sent from the EDS Distributor to the Command Module for display.</td>
</tr>
<tr>
<td>25</td>
<td>YAW-PITCH ABORT</td>
<td>Indicates that a yaw or pitch angular-overrate signal has been produced in the IU.</td>
</tr>
<tr>
<td>26</td>
<td>ROLL ABORT</td>
<td>Indicates that a roll angular-overrate signal has been produced in the IU.</td>
</tr>
<tr>
<td>27</td>
<td>PITCH RATE EXCESSIVE 1, 2 and 3</td>
<td>Indicate that a pitch angular-overrate has been sensed by three pitch rate switches in the Control Signal Processor.</td>
</tr>
<tr>
<td>28</td>
<td>ROLL RATE EXCESSIVE 1, 2, and 3</td>
<td>Indicate that a roll angular-overrate has been sensed by three roll rate switches in the Control Signal Processor.</td>
</tr>
<tr>
<td>29</td>
<td>YAW RATE EXCESSIVE 1, 2, and 3</td>
<td>Indicate that a yaw angular-overrate has been sensed by three yaw rate switches in the Control Signal Processor.</td>
</tr>
<tr>
<td>30</td>
<td>S-IC ENG THRUST OK 1, 2, 3, 4, and 5</td>
<td>Indicates that the three thrust OK switches for the respective S-IC engines are closed.</td>
</tr>
<tr>
<td>31</td>
<td>S-II ENG THRUST OK 1, 2, 3, 4, and 5</td>
<td>Indicates that the three thrust OK switches for the respective S-II engines are closed.</td>
</tr>
</tbody>
</table>
Legend for Figure 4-2 (Cont)

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>ONE ENG OUT A and B</td>
<td>Indicates that one S-IC engine is out.</td>
</tr>
<tr>
<td>33</td>
<td>S-IVB ENG THRUST OK A and B</td>
<td>Indicate that both thrust OK switches for the S-IVB engine are closed.</td>
</tr>
<tr>
<td>34</td>
<td>TWO ENG OUT A and B</td>
<td>Indicate that at least two S-IC engines are out (duplex circuits).</td>
</tr>
<tr>
<td>35</td>
<td>ENG OUT IND TO S/C 1, 2, 3, 4, and 5</td>
<td>Indicate that the respective engine-out signals have been sent from the EDS Distributor to the Command Module for display.</td>
</tr>
<tr>
<td>36</td>
<td>S-II PRESSURE LOX 1 and 2</td>
<td>Display the pressure in the S-II oxygen tank (duplex circuits).</td>
</tr>
<tr>
<td>37</td>
<td>S-II PRESSURE FUEL 1 and 2</td>
<td>Display the pressure in the S-II fuel tank (duplex circuits).</td>
</tr>
</tbody>
</table>
Figure 4-3 EDS/Control Rate Gyro Panel

Legend for Figure 4-3

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GROUP SELECTION 1, 2, and 3</td>
<td>Select the associated group of rate gyros for testing. (Indicator light above each switch indicates that the respective group has been selected.)</td>
</tr>
<tr>
<td>2</td>
<td>YAW OUTPUT</td>
<td>Display the yaw rate outputs of the Control Signal Processor. The meters are calibrated in degrees per second.</td>
</tr>
<tr>
<td>3</td>
<td>ROLL OUTPUT</td>
<td>Display the roll rate outputs of the Control Signal Processor. The meters are calibrated in degrees per second.</td>
</tr>
<tr>
<td>4</td>
<td>PITCH OUTPUT</td>
<td>Display the pitch rate outputs of the Control Signal Processor. The meters are calibrated in degrees per second.</td>
</tr>
</tbody>
</table>

Added 15 October 1966
<table>
<thead>
<tr>
<th>Index Number</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>METER RANGE</td>
<td>Control the range of the associated group of output meters. The coarse range is 0 ± 10 degrees per second and the fine range is 0 ± 1 degree per second.</td>
</tr>
<tr>
<td>6</td>
<td>TORQUE CURRENT</td>
<td>Display the output current of the torquing amplifier associated with each group of rate gyros.</td>
</tr>
<tr>
<td>7</td>
<td>METER RANGE</td>
<td>Control the range of the associated TORQUE CURRENT meters.</td>
</tr>
<tr>
<td>8</td>
<td>EDS RATE SWITCHES</td>
<td>Indicate that an angular-overrate has been sensed by the associated rate switches in the Control Signal Processor.</td>
</tr>
<tr>
<td>9</td>
<td>COMPARATOR MONITORS – SPARE CHANNEL ACTIVE YAW, ROLL, and PITCH</td>
<td>Indicate that the associated spare channel in the Control Signal Processor has been activated.</td>
</tr>
<tr>
<td>10</td>
<td>EDS SW POINT</td>
<td>Provides an indication of a change in the angular-overrate limits within the Control Signal Processor.</td>
</tr>
<tr>
<td>11</td>
<td>EDS SW POINT CONTROL</td>
<td>Controls change in angular-overrate limits within the Control Signal Processor.</td>
</tr>
<tr>
<td>12</td>
<td>TORQUE COMMANDS – POSITIVE, ZERO, and NEGATIVE</td>
<td>Control the output of the selected rate gyro torquing amplifier. Output of the selected amplifier torques a selected rate gyro, which, in turn, produces an angular rate signal. This signal is conditioned in the Control Signal Processor and eventually displayed on the output meters on the panel. (Indicator light above each switch indicates that the respective torque command has been issued.)</td>
</tr>
<tr>
<td>13</td>
<td>COMPARATOR MONITOR – RESET</td>
<td>Restores the command channel in the Control Signal Processor to an active status and returns the spare to standby.</td>
</tr>
<tr>
<td>14</td>
<td>AXIS SELECTION – YAW, ROLL, and PITCH</td>
<td>Select the rate gyro to be tested within the group selected by the GROUP SELECTION switches (index number 1). (Indicator light above each switch indicates that the respective axis has been selected.)</td>
</tr>
<tr>
<td>15</td>
<td>SYSTEM POWER</td>
<td>Controls the power for operating and testing the Control-EDS Rate Gyro Package and the Control Signal Processor. (Indicator light immediately above switch indicates that the power has been applied.)</td>
</tr>
<tr>
<td>Index Number</td>
<td>Control or Indicator</td>
<td>Function</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>16</td>
<td>UP TO SPEED - GROUP 1, 2, and 3</td>
<td>Indicate that the rate gyros have reached operating speed.</td>
</tr>
<tr>
<td>17</td>
<td>ROLL RANGE</td>
<td>Changes the range of the ROLL OUTPUT meters from that selected by the METER RANGE switch (index number 5) to a range of 0-25 degrees per second.</td>
</tr>
</tbody>
</table>
Figure 4-4 Q-Angle of Attack Panel

Legend for Figure 4-4

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POWER A and B</td>
<td>Indicate that dc power has been applied to the Q-Ball from the IU (duplex circuits).</td>
</tr>
<tr>
<td>2</td>
<td>VECTOR SUM A</td>
<td>(Not used)</td>
</tr>
<tr>
<td>3</td>
<td>Pitch and Yaw Indicator</td>
<td>Displays (on 1 indicator) separate pitch and yaw differential pressures detected by the Q-Ball.</td>
</tr>
<tr>
<td>4</td>
<td>VECTOR SUM B</td>
<td>Displays the vector sum of the pitch and yaw differential pressures detected by the Q-Ball.</td>
</tr>
<tr>
<td>5</td>
<td>COVER RETRACTED</td>
<td>Indicates that the Q-Ball cover has been removed.</td>
</tr>
<tr>
<td>6</td>
<td>RETRACT PRESSURE OK</td>
<td>Indicates that the GN₂ pressure is correct for retracting the Q-Ball cover.</td>
</tr>
<tr>
<td>7</td>
<td>RETRACT</td>
<td>(Not used)</td>
</tr>
<tr>
<td>8</td>
<td>INFLATE PRESSURE OK</td>
<td>Indicates that the GN₂ pressure is correct for inflating the bladder of the Q-Ball cover.</td>
</tr>
<tr>
<td>Index Number</td>
<td>Control or Indicator</td>
<td>Function</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>9</td>
<td>INFLATE</td>
<td>(Not used)</td>
</tr>
<tr>
<td>10</td>
<td>SIMULATE COMMAND</td>
<td>Controls application of signals within the Q-Ball to simulate the inputs from the pitch and yaw pressure transducers. (Indicator light above switch indicates that a simulate command has been issued.)</td>
</tr>
<tr>
<td>11</td>
<td>Q-BALL FUNCTION A and B</td>
<td>(Not used)</td>
</tr>
<tr>
<td>12</td>
<td>FINE-COARSE</td>
<td>Controls the range of the Pitch and Yaw Indicator and the two vector sum meters.</td>
</tr>
<tr>
<td>13</td>
<td>Heaters</td>
<td>Controls the ac power applied to the heater element in the Q-Ball. (Indicator light above switch indicates that power has been applied.)</td>
</tr>
<tr>
<td>14</td>
<td>Q-BALL OVER TEMP</td>
<td>(Not used)</td>
</tr>
<tr>
<td>15</td>
<td>Power</td>
<td>Controls the dc power applied to Q-Ball circuits from the IU.</td>
</tr>
</tbody>
</table>
SECTION V

APOLLO-SATURN EDS
VEHICLE DATA SHEETS

The Data Sheets included herein provide current updated EDS changes affecting the Apollo-Saturn 500 Series Vehicles. Each Data Sheet provides both circuitry changes and text description changes applicable to the vehicle specified on the tab. The information for each vehicle is self supporting, and reference to prior Data Sheets is not required unless so specified.

NOTICE

A thorough knowledge of the EDS operational concepts discussed within Sections I through IV is essential to the complete understanding of the information contained in the Data Sheets.
THE CONTENTS OF THE PRECEDING SECTIONS OF THIS MANUAL APPLY TO THE VEHICLE SPECIFIED ON THESE DATA SHEETS EXCEPT FOR THE FOLLOWING DIFFERENCES:

1. Figure 2-6, Abort Sequence Functional Schematic (Sheet 1), and accompanying text have been changed as shown on Figure 501-1.

 In the event an abort occurs prior to 30-seconds after vehicle liftoff, launch vehicle operating engine cutoff must be activated by the Range Safety Officer.

Changed 1 July 1967
CIRCUIT DESCRIPTION

Relays K290 and K291 have been added to the launch vehicle engine cutoff circuitry located within the EDS Distributor. The contacts of relay K290 are located in series with the output of the EDS Cutoff Inhibit Timer while the contacts of K291 are in series with the output of the Switch Selector. The primary function of these contacts is to prevent an EDS automatic cutoff of the launch vehicle engines if an abort occurs between 0 and 40 seconds after liftoff.

If an abort occurs prior to 40 seconds after liftoff, the action of relays K290 and K291 will prevent the setting of relays K233 and K234 by the EDS Cutoff Inhibit Timer and Switch Selector. With the contacts of relays K233 and K234 open, the EDS Distributor cannot energize relays K229 through K232 and supply cutoff signals to the launch vehicle cutoff circuitry. Consequently, decision to cut off the launch vehicle engines rests with the Range Safety Officer.

If an abort occurs at a time later than 40 seconds after liftoff, relays K233 and K234 will be set, and the EDS Distributor will provide automatic launch vehicle engine cutoff.
THE CONTENTS OF THE PRECEDING SECTIONS OF THIS MANUAL APPLY TO THE
VEHICLE SPECIFIED ON THESE DATA SHEETS EXCEPT FOR THE FOLLOWING DIFFERENCES

The information contained in the AS-501 Data
Sheets applies also to AS-502.

(Page 5-6A/5-6B deleted)

Changed 1 April 1968
Relays K70 and K71 have been added. In the event of failure of relays K63 and K64, relays K70 and K71 would still provide engine cutoff by fuel depletion.

Figure 502-1
S-II Engine-Cutoff Functional Schematic Modification Drawing

Added 1 July 1967
THE CONTENTS OF THE PRECEDING SECTIONS OF THIS MANUAL APPLY TO THE VEHICLE SPECIFIED ON THESE DATA SHEETS EXCEPT FOR THE FOLLOWING DIFFERENCES

1. Relays K185, K186, and K187 have been added to the EDS Distributor to supply +28 V to the LV RATE EXCESSIVE lamps in the Spacecraft if an angular overrate condition occurs. Also, relays K140 and K141 have been added to supply +28 V to these same lamps if an attitude reference failure is detected by the LVDA. These changes in the EDS Distributor are shown and described in Figure 503-1. Figure 503-1 modifies Figure 2-3, Angular Overrate Manual-Abort Indication Functional Schematic.

2. One of the manual abort indications, listed in Section I, is changed as follows:

From • S-II and S-IVB fuel tank pressures (4 meters).
To • S-II and S-IVB fuel tank pressures (4 meters - Upon S-II/S-IVB separation, two of the four fuel tank indicators are used to indicate S-IVB LOX tank pressure).

3. Vehicle AS-503 uses a Block II Spacecraft Control and Display Panel, and Figures 1-2 through 1-5 are replaced by Figures 503-2 through 503-4.

4. The EDS Cutoff Inhibit Timer listed in Table 1-1 has been changed to a 30-second timer.

5. Figure 2-4, Engine Out Manual-Abort Indication Functional Schematic (Typical), has been changed as shown on Figure 503-5.

A redundant signal line has been inserted in the S-II and S-IVB engine thrust monitoring circuitry.

6. Relays K144 and K145 have been added to the EDS Distributor. The relays supply +28 V to the Spacecraft S-II SECOND PLANE SEPARATION lamps to indicate the beginning of S-IVB restart sequence. The circuit description and configuration are provided in Figure 503-6.

7. The pitch and yaw angular overrate limits discussed within Section II have been changed. Before an in-flight change, the limits are set at 4 degrees/second; after the in-flight change, the limits are set at 9.2 degrees/second.

8. The method of changing the angular overrate limits has changed. The requirement for the EDS Overrate Timer and for EDS Distributor relays K171 through K174 no longer exists. The circuit configuration and description appear in Figure 503-7.

9. Relays K246 and K247 have been added to the EDS Distributor. These relays open one of the two engine cutoff signal paths from the IU to the S-IVB Stage. The relays have been added so the S-IVB engine can be restarted after spacecraft separation. Figure 503-8 shows and describes the circuit modification. (This figure modifies Figure 2-6, Abort Sequence Functional Schematic, Sheet 1.)

10. Additional contacts of existing relays K229 and K231, in the EDS Distributor, are being used to change from the duplex engine-cutoff circuits in the IU to the triple redundant cutoff circuits in the S-IC Stage. Circuit configuration and description are given in Figure 503-8, which modifies Figure 2-6, Sheet 1.

11. The operation of relays K237 and K238 in the EDS Distributor was described in the Data Sheets for AS-501. However, the relays were incorrectly numbered K290 and K291 in the AS-501 Data Sheets. Since Figure 503-8 modifies Figure 2-6 (Sheet 1) as did the AS-501 Data Sheets, the purpose of relays K237 and K238 are described again, with corrections.

12. Figure 2-6, Abort Sequence Functional Schematic (Sheet 2), is changed as shown on Figure 503-9. No text change is required. The changed area is depicted by shading.

13. Figure 503-10 replaces Figure 2-7, S-IVB Engine-Cutoff Functional Schematic. The S-IVB engine-cutoff circuitry has been rearranged slightly within Figure 503-10. Also, relays K113 through K115 have been added and relay K106 has been deleted. The function of added relays K113 through K115 is described in Figure 503-10. Deleted relay K106 was previously used in energizing the engine prevalve control solenoid.

Changed 15 October 1968
THE CONTENTS OF THE PRECEDING SECTIONS OF THIS MANUAL APPLY TO THE VEHICLE SPECIFIED ON THESE DATA SHEETS EXCEPT FOR THE FOLLOWING DIFFERENCES

Figure 503-11 replaces Figure 2-8, S-II Engine-Cutoff Functional Schematic. Only minor changes have been made in the functions of the S-II engine-cutoff circuitry. Figure 503-11 includes these minor changes and also presents a partial rearrangement of Figure 2-8. The only changes that affect functional operations of the S-II circuitry consist of the following:

- Addition of recirculation stop relay K81, which is set by the Switch Selector.
- Setting of existing prevalves arm relay K79 by new relay K81 and by +28 V from the S-IC Stage (before S-IC Stage separation).
- Use of normally closed contacts of K78 instead of its normally open contacts.

One change in the S-II circuitry affects the S-IC Stage. Relays K65 and K66, energized by the S-II Stage Range Safety Command System, provide one of three range safety cutoff signals required by the S-IC Stage engine-cutoff circuitry.

New circuitry has been added to the S-IC Stage to make cutoff of the engines more reliable. Figure 2-9, S-IC Engine-Cutoff Functional Schematic, is replaced by Figure 503-12. A new description of the sequence of operation for S-IC engine cutoff is given with the figure.
Failure of the Saturn vehicle attitude reference previously resulted in the Launch Vehicle Data Adapter energizing relays K142 and K143 in the EDS Distributor. These two relays, in turn, caused -28 V to be supplied to the dual-lamp LV ATTITUDE REFERENCE FAILURE FAILURE indicator in the Command Module. Now, two additional relays, K140 and K141, are energized at the same time K142 and K143 are energized. Consequently, if an attitude reference failure occurs before inhibiting relays K146 and K170 are energized (refer to paragraph 2-5 for purpose of K146 and K170), -28 V will be fed through contacts of K140, K141, K146, and K170 to the dual-lamp LV RATE EXCESSIVE lamps on the Control and Display Panel of the Command Module. Therefore, the LV RATE EXCESSIVE indicator will light in addition to the LV ATTITUDE REFERENCE FAILURE indicator.

Since the roll, pitch, and yaw overrate circuits are identical, only the roll circuit will be discussed. When any two of the three roll rate switches sense an angular overrate, their associated relays K150 through K152 in the Control Signal Processor are energized and -28 V is supplied to the roll overrate voting circuit in the EDS Distributor (refer to paragraph 2-5 for a description of this sequence).

Therefore, with any two of the three relays (K150 through K152) energized, -28 V will be supplied through the normally open contacts of K159 or K160, or both, and will energize relay K185. Then -28 V is supplied through the normally open contacts of relay K186 to the LV RATE EXCESSIVE lamps on the Control and Display Panel of the Command Module. The yaw and pitch circuitry operates in a similar manner to energize relays K186 and K187.
Figure 503-2. Mission Sequence Controls, Block II (Panels 7 and 8)

Legend for Figure 503-2

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Nomenclature on Panel</th>
<th>Nomenclature in Technical Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SEQUENCE OF EVENTS CONTROL SYS.</td>
<td>MASTER EVENTS SEQUENCE CONTROLLER LOGIC</td>
</tr>
<tr>
<td>2</td>
<td>SEQUENCE OF EVENTS CONTROL SYS.</td>
<td>MASTER EVENTS SEQUENCE CONTROLLER PYRO</td>
</tr>
<tr>
<td>3</td>
<td>EDS POWER</td>
<td>EDS POWER</td>
</tr>
</tbody>
</table>
Figure 503-3. Crew Safety Controls, Block II (Part of Panel 2)

Legend for Figure 503-3

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Nomenclature on Panel</th>
<th>Nomenclature in Technical Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABORT SYSTEM - 2 ENG OUT</td>
<td>S-IC TWO ENGINE OUT AUTO ABORT DEACTIVATE</td>
</tr>
<tr>
<td>2</td>
<td>EDS AUTO</td>
<td>AUTO ABORT ENABLE</td>
</tr>
<tr>
<td>3</td>
<td>ABORT SYSTEM - LES MODE - TWR JET SPS MODE</td>
<td>LET JETTISON</td>
</tr>
<tr>
<td>4</td>
<td>ABORT SYSTEM - LV RATES</td>
<td>RATE EXCESSIVE AUTO ABORT DEACTIVATE</td>
</tr>
</tbody>
</table>
Figure 503-4. Mission Sequence Displays, Block II (Panel 1)
Legend for Figure 503-4

<table>
<thead>
<tr>
<th>Index Number</th>
<th>Nomenclature on Panel</th>
<th>Nomenclature in Technical Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABORT</td>
<td>ABORT REQUEST</td>
</tr>
<tr>
<td>2</td>
<td>LV RATE</td>
<td>LV RATE EXCESSIVE</td>
</tr>
<tr>
<td>3</td>
<td>LV GUID</td>
<td>LV ATTITUDE REFERENCE FAILURE</td>
</tr>
<tr>
<td>4</td>
<td>S-11 SEP</td>
<td>S-11 SECOND PLANE SEPARATION</td>
</tr>
<tr>
<td>5</td>
<td>LV ENGINES</td>
<td>ENG NO. 1 OUT S-IC, S-11 OR S-IVB (for indicator 1); Eng No. 2 thru 5 out S-IC and S-11 (for indicators 2 thru 5).</td>
</tr>
<tr>
<td>6</td>
<td>LIFT OFF</td>
<td>LIFTOFF</td>
</tr>
<tr>
<td>7</td>
<td>NO AUTO ABORT</td>
<td>NO AUTO ABORT</td>
</tr>
<tr>
<td>8</td>
<td>LV (\alpha) SPS P_c</td>
<td>Angle of Attack</td>
</tr>
<tr>
<td>9</td>
<td>LV/SPS IND (-\alpha P_c)</td>
<td>LV A OF A - SPS PC</td>
</tr>
</tbody>
</table>
A redundant line and diode has been added between the Engine Thrust OK switch located in the Sequencer Controller.

Figure 503-5. Engine Out Manual-Abort Indication Functional Schematic Modification Drawing

Changed 15 October 1968
When the S-IVB restart sequence is initiated, the Switch Selector sets relays K144 and K145. Their normally open contacts then supply +28 V to the indicator lamps. Relays K144 and K145 are set approximately 70 seconds before S-IVB restart and are reset approximately 10 seconds before actual S-IVB restart.

Prior to S-II second plane separation, relays K146 through K149 are energized, and +28 V is supplied to the indicator lamps. At S-II second plane separation, relays K146 and K147 are deenergized, and the indicator lamps are extinguished.

Figure 503-6. S-IVB Engine Restart Indication Functional Schematic
CIRCUIT DESCRIPTION

The angular rate limit, above which an overrate condition is indicated, as discussed in Section II of this manual, was previously switched during flight by the action of the EDS Overrate Timer (20 SEC) and the Switch Selector.

With Vehicle AS-503, the angular rate limit is switched by the rate excessive inhibiting relays K240, K241, K242 and K243 located within the Control Distributor and by the addition of two electrical lines and two diodes.

When the rate excessive inhibiting relays are activated by the Switch Selector, their normally open contacts supply +28 V through two diodes to the Control Signal Processor.

This +28 V supplied to the Control Signal Processor will change the angular rate limit, above which an overrate condition will exit.

Figure 503-7. Angular Overrate Automatic Abort Functional Schematic Modification Drawing

Changed 15 October 1968
Relays K237 and K238 have been added to the launch vehicle engine cutoff circuitry located within the EDS Distributor. The contacts of relay K237 are in series with the output of the EDS Cutoff Inhibit Timer, while contacts of K238 are in series with the output of the Switch Selector. The primary function of these contacts is to prevent an automatic EDS cutoff of the launch vehicle engines at 30 seconds after liftoff, if an abort had occurred between 0 and 30 seconds after liftoff.

If an abort occurs prior to 30 seconds after liftoff, the action of relays K233 and K234 will prevent the setting of either K233 and K234 by the EDS Cutoff Inhibit Timer and the Switch Selector. With the contacts of relays K233 and K234 open, the EDS Distributor will supply cutoff signals to the launch vehicle engines. Consequently, decision to start the launch vehicle engines rests with the Range Safety Officer.

If an abort occurs at a time later than 30 seconds after liftoff, relay K234 will have been set, and the EDS Distributor will provide automatic launch vehicle engine cutoff.

Contacts of relays K246 and K247 have been added in one leg of the S-IVB engine cutoff circuits in the EDS Distributor. These relays are used to remove one of the two engine cutoff signals that are automatically sent to the S-IVB Stage at launch vehicle/spacecraft separation. This change, along with an accompanying change in the cutoff circuits in the S-IVB Stage, allows the S-IVB engine to be restarted for a third burn after spacecraft separation, if desired.

Relays K246 and K247 are set by the Switch Selector after spacecraft separation. Contacts of relay K246, between the Switch Selector and relays K246 and K237, are closed automatically upon spacecraft separation.

The purpose of these added parts is to change from the duplex cutoff circuitry in the EDS Distributor to the triple redundant cutoff circuitry in the S-IC Stage.

Figure 503-6
Abort Sequence Functional Schematic (Sheet 1) Modification Drawing
Added 15 October 1968
Contacts of relays K113 and K114 have been added in one of the EDS engine-cutoff lines from the IU. These relays, along with relays added in the IU, are used to remove EDS engine-cutoff signals that are automatically produced at launch vehicle/spacecraft separation. Additional contacts of K113 are used to activate the motor-operated power switch. This switch then reapplies power that was removed during application of the EDS cutoff signals. Relays K113 and K114 must be set by the Switch Selector, after spacecraft separation, to allow the S-IVB Stage engine to be restarted for a third burn. Relays K113 and K114 can be set only if relay K115 is de-energized. Relay K115 will already be de-energized, however, because the EDS cutoff signals preceding the Switch Selector signal will have caused the motor-operated switch to move to the position shown, deenergizing K115.

NOTES:
1. RELAY NUMBERS SHOWN ARE FOR REFERENCE ONLY AND DO NOT CORRESPOND TO ACTUAL HARDWARE REFERENCE DESIGNATIONS.
2. ALL RELAYS ARE SHOWN IN DEENERGIZED OR RESET CONDITION.
Figure 503-11
S-II Engine-Cutoff Functional Schematic Modification Drawing

10/10/93-20

Added 15 October 1966
For EDS cutoff of the five S-IC engines, cutoff signals from the EDS Distributor are fed through the S-IVB and S-11 Stages to relays K34, K35, and K36 in the Main Distributor. Contacts of these relays form two 2-out-of-3 voting circuits. With two or more of these relays energized, +28 V is fed through both 2-out-of-3 voting circuit to engine cutoff relays for each of the 5 engines. For simplicity, cutoff relays and subsequent circuitry are shown for engine number 1 only.

Positive +28 V through one of the voting circuits is applied to cutoff relays K40 and K41 for engine number 1. Also, +28 V through the other voting circuit is applied to engine number 1 cutoff relays K42 and K43 and to cutoff enable relay K37. With K40 through K43 energized, +28 V activates both engine stop solenoids to cut off engine number 1. As the engine thrust decays, the engine thrust OK switches open and deenergize relay K1, K2, and K3 in the Thrust OK Distributor. Contacts of K1, K2, and K3 form another 2-out-of-3 voting circuit. Positive +28 V through this voting circuit activates a cutoff backup timer. After a time delay, the timer feeds +28 V through contacts of previously energized relay K37 and energizes relays K38 and K39. With K40 already energized, +28 V is now fed through relays of K39 and K40 to the fuel and LOX prevalve control valve solenoids, thereby completing engine shutdown.

In addition to engine cutoff by the EDS, the S-IC engines can be cut off by four other methods, as shown. First, the inboard engine (engine number 5) can be cut off separately by the Switch Selector. Second, signals from fuel and LOX cutoff timers can cut off all engines simultaneously. Third, all engines can be cut off simultaneously by the Range Safety Command System. Fourth, internal circuitry of the Thrust OK Distributor and the Main Distributor can cut off any single engine if that engine loses proper thrust (as sensed by the thrust OK switches). This fourth method is dependent, however, upon latching relay K23 being set by the Switch Selector, resulting in relay K37 being energized.

Notes:
1. RELAY NUMBERS SHOWN ARE FOR REFERENCE ONLY AND DO NOT CORRESPOND TO ACTUAL HARDWARE REFERENCE DESIGNATIONS.
2. ALL RELAYS ARE SHOWN IN DEENERGIZED OR RESET CONDITION.
3. RELAYS K16, K19, K21, K28, AND K31 THROUGH K36 ARE USED IN CUTOFF OF ALL VALVE SOLENOID ENGINES. RELAYS K1 THROUGH K3 AND K37 THROUGH K43 ARE USED FOR ENGINE NUMBER 1 ONLY. ALL OTHER RELAYS SHOWN ARE FOR ENGINE NUMBER 5 ONLY.
THE CONTENTS OF THE PRECEDING SECTIONS OF THIS MANUAL APPLY TO THE VEHICLE SPECIFIED ON THESE DATA SHEETS EXCEPT FOR THE FOLLOWING DIFFERENCES

The information contained in the AS-503 Data Sheets applies also to AS-504.

Changed 15 October 1968
THE CONTENTS OF THE PRECEDING SECTIONS OF THIS MANUAL APPLY TO THE VEHICLE SPECIFIED ON THESE DATA SHEETS EXCEPT FOR THE FOLLOWING DIFFERENCES

The information contained in the AS-503 Data Sheets applies also to AS-505.

Changed 15 October 1968
THE CONTENTS OF THE PRECEDING SECTIONS OF THIS MANUAL APPLY TO THE VEHICLE SPECIFIED ON THESE DATA SHEETS EXCEPT FOR THE FOLLOWING DIFFERENCES

1 The information contained in the AS-503 Data Sheets applies also to AS-506.
THE CONTENTS OF THE PRECEDING SECTIONS OF THIS MANUAL APPLY TO THE
VEHICLE SPECIFIED ON THESE DATA SHEETS EXCEPT FOR THE FOLLOWING DIFFERENCES

1 The information contained in the AS-503 Data
Sheets applies also to AS-507.
THE CONTENTS OF THE PRECEDING SECTIONS OF THIS MANUAL APPLY TO THE VEHICLE SPECIFIED ON THESE DATA SHEETS EXCEPT FOR THE FOLLOWING DIFFERENCES

1. The information contained in the AS-503 Data Sheets applies also to AS-508.

Added 15 October 1968
GLOSSARY

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM</td>
<td>Common</td>
</tr>
<tr>
<td>EDS</td>
<td>Emergency Detection System</td>
</tr>
<tr>
<td>ENG</td>
<td>Engine</td>
</tr>
<tr>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>ICD</td>
<td>Interface Control Document</td>
</tr>
<tr>
<td>IU</td>
<td>Instrument Unit</td>
</tr>
<tr>
<td>JETT</td>
<td>Jettison</td>
</tr>
<tr>
<td>LES</td>
<td>Launch Escape System</td>
</tr>
<tr>
<td>LV</td>
<td>Launch Vehicle (Saturn portion of Apollo-Saturn vehicle)</td>
</tr>
<tr>
<td>MESC</td>
<td>Master Event Sequence Controller</td>
</tr>
<tr>
<td>Q-Ball</td>
<td>EDS Q-Ball Sensor System</td>
</tr>
<tr>
<td>SPS</td>
<td>Service Propulsion System</td>
</tr>
<tr>
<td>TM</td>
<td>Telemetry</td>
</tr>
<tr>
<td>TWR</td>
<td>Tower</td>
</tr>
</tbody>
</table>
APPENDIXES

Major portions of the EDS Interface Control Documents (ICD’s) for Apollo-Saturn 500 Series Vehicles depicted on the title page have been included in the following Appendixes. The ICD’s contain useful data that supplements the information in the preceding sections of this manual. Schematics in the ICD’s provide more detail than the schematics in Section II. However, in some cases, the schematics in Section II contain later information than those in the ICD’s. In addition to schematics, the ICD’s include lists of relays and lists of the various +28 V buses required by the EDS.

The style and format of the material in the Appendix are not the same as those in the preceding sections of the manual. No attempt was made to restyle the content of the ICD’s to conform to the manual style.

Inclusion of a complete ICD for each vehicle would have caused unnecessary duplications. Therefore, when a section in one ICD is duplicated in another ICD, that section is presented only once herein and referenced thereafter.

Beginning with the insertion of the AS-505 Data Sheets, Apollo-Saturn Emergency Detection System Interface Control Documents will no longer be provided as a portion of the Appendix. The current Interface Control Documents in the Appendix will not be updated but may be retained as reference material if desired.
APPENDIX A *

GEORGE C. MARSHALL SPACE FLIGHT CENTER

INTERFACE CONTROL DOCUMENT
DESCRIPTION OF SATURN SA-501 AND APOLLO SC-017
EMERGENCY DETECTION SYSTEM

I. INTRODUCTION

A. The purpose of this document is to describe the Apollo–Saturn SA-501 Emergency Detection System (EDS) design. The design is a coordinated effort by the Crew Safety Panel members and represents technical inputs from several NASA Centers and is binding on all participating centers. The system defined in this document conforms to the "Design Criteria for Saturn-V On-Board Emergency Detection System, ICD (#13M65001)." Paragraphs 1. through 2.b. are in accordance with 13M65001 and describe deviations from the criteria which are approved by the Panel for this unmanned development mission.

1. General Guidelines

a. Abort Sequence. The EDS in this mission will operate in an open loop mode. Automatic abort signals from the Launch Vehicle will be inhibited in the spacecraft.

b. Automatic Abort Activation. The liftoff signal will not activate the EDS automatic abort mode in this mission. The entire automatic abort signal will be interrupted in the spacecraft by leaving the Auto–Abort Enable Switch in the OFF position.

c. Manual Abort Considerations

(1) Manual abort from the spacecraft will not be feasible in this mission. Criteria for ground command abort will be determined by operational authority and are not within the scope of this document.

(2) Capability for ground activation of an abort request indicator circuit in the spacecraft will be provided. Activation of the circuit will be indicated by TM. Prior to liftoff, operation of the circuit will utilize hard-line to the instrument unit. After liftoff, only the

APOLLO INTERFACE DOCUMENT

* The ICD in this Appendix was dated December 25, 1965, and included no revisions.
Range Safety destruct system arming command to the S-IVB stage will be used to activate the circuit.

2. Emergency Detection Parameters for Automatic Abort

a. Angular Overrates.

(1) Automatic abort signal will be transmitted to the spacecraft, for telemetry only, when two of three gyros in any plane indicate that the rate limits are exceeded.

(2) Angular overrate (pitch, roll, yaw) signals will be deactivated by the launch vehicle sequencer prior to inboard engine cutoff enable.

b. S-V Two Engines Out. The loss of thrust on two or more engines will initiate an automatic abort signal which is transmitted to the spacecraft for telemetry only. This signal will be deactivated prior to inboard engine cutoff arming by the launch vehicle sequencer.

B. This document defines interfaces between modules and stages in functional terms only. Detailed interface information is contained in other interface documents. The document drawing numbers and other pertinent information may be obtained from the "Inters-Center Interface Control Document Log."

C. This document does not reflect all connections from other systems into the EDS circuits.

II. ABBREVIATIONS

For use with this document the following abbreviations shall apply:

1. AUTO Automatic
2. BATT Battery
3. BME Bench Maintenance Equipment
4. CB Circuit Breaker
5. CMD Command
6. CO Cutoff
7. COM Common Return
8. COMB Combustion
9. COMP Component

APOLLO INTERFACE DOCUMENT
<table>
<thead>
<tr>
<th>No.</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>CTL</td>
<td>Control</td>
</tr>
<tr>
<td>11.</td>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>12.</td>
<td>DDAS</td>
<td>Digital Data Acquisition System</td>
</tr>
<tr>
<td>13.</td>
<td>DEACT</td>
<td>Deactivate</td>
</tr>
<tr>
<td>14.</td>
<td>DISCH</td>
<td>Discharge</td>
</tr>
<tr>
<td>15.</td>
<td>DISTR</td>
<td>Distributor</td>
</tr>
<tr>
<td>16.</td>
<td>EDS</td>
<td>Emergency Detection System</td>
</tr>
<tr>
<td>17.</td>
<td>ENG</td>
<td>Engine</td>
</tr>
<tr>
<td>18.</td>
<td>FCM</td>
<td>Flight Combustion Monitor</td>
</tr>
<tr>
<td>19.</td>
<td>FWD</td>
<td>Forward</td>
</tr>
<tr>
<td>20.</td>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>21.</td>
<td>IND</td>
<td>Indication</td>
</tr>
<tr>
<td>22.</td>
<td>INSTR</td>
<td>Instrumentation</td>
</tr>
<tr>
<td>23.</td>
<td>IU</td>
<td>Instrument Unit</td>
</tr>
<tr>
<td>24.</td>
<td>JETT</td>
<td>Jettison</td>
</tr>
<tr>
<td>25.</td>
<td>LECO</td>
<td>Lox Engine Cutoff</td>
</tr>
<tr>
<td>26.</td>
<td>LES</td>
<td>Launch Escape System</td>
</tr>
<tr>
<td>27.</td>
<td>LET</td>
<td>Launch Escape Tower</td>
</tr>
<tr>
<td>28.</td>
<td>LH2</td>
<td>Liquid Hydrogen</td>
</tr>
<tr>
<td>29.</td>
<td>LOX</td>
<td>Liquid Oxygen</td>
</tr>
<tr>
<td>30.</td>
<td>LV</td>
<td>Launch Vehicle</td>
</tr>
<tr>
<td>31.</td>
<td>MCP</td>
<td>Mission Control Programmer</td>
</tr>
<tr>
<td>32.</td>
<td>MEAS</td>
<td>Measurement</td>
</tr>
<tr>
<td>33.</td>
<td>MESC</td>
<td>Master Event Sequence Controller</td>
</tr>
<tr>
<td>34.</td>
<td>MS</td>
<td>Millisecond</td>
</tr>
<tr>
<td>35.</td>
<td>NC</td>
<td>Normally Closed</td>
</tr>
<tr>
<td>36.</td>
<td>NO</td>
<td>Normally Open</td>
</tr>
<tr>
<td>37.</td>
<td>No.</td>
<td>Number</td>
</tr>
<tr>
<td>38.</td>
<td>PRESS</td>
<td>Pressure</td>
</tr>
<tr>
<td>39.</td>
<td>PWR</td>
<td>Power</td>
</tr>
<tr>
<td>40.</td>
<td>RECIRC</td>
<td>Recirculation</td>
</tr>
<tr>
<td>41.</td>
<td>REQ</td>
<td>Request</td>
</tr>
<tr>
<td>42.</td>
<td>S</td>
<td>Switch</td>
</tr>
<tr>
<td>43.</td>
<td>SC</td>
<td>Spacecraft</td>
</tr>
<tr>
<td>44.</td>
<td>SEC</td>
<td>Second</td>
</tr>
<tr>
<td>45.</td>
<td>SEQ</td>
<td>Sequencer</td>
</tr>
<tr>
<td>46.</td>
<td>SPS</td>
<td>Service Propulsion System</td>
</tr>
<tr>
<td>47.</td>
<td>SUPV</td>
<td>Supervision</td>
</tr>
<tr>
<td>48.</td>
<td>TM</td>
<td>Telemetry</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
III. ELECTRICAL SYMBOLS

The electrical symbols used in this document are listed below.

- **Battery**
- **Elect. Magnetic Latch Relay Coil**
- **Diode or Rectifier**

- **Electrical Relay Coil**
- **Magnetic Latch Normally Closed**
- **Magnetic Latch Normally Open**

- **Solenoid**
- **Normally Closed Electrical Relay Contacts**
- **Normally Open Electrical Relay Contacts**
Resistor

Fuse

Amplifier

Transistor - NPN

Transistor - PNP

Indicating Lamp

Explosive Squib

Meter (Biased)

Meter

APOLLO INTERFACE DOCUMENT
Bus
Terminal
Solder or Crimped

Single Throw Switch

Pressure Switch
Transfer with increase
in Pressure

Circuit Breaker

Double Throw Switch

Push Button
Switch/Maintained

Motor Switch

Bus/First Energized

APOLLO INTERFACE DOCUMENT
IV. INTERSTAGE SIGNALS

The method used in transmitting signals between stages will be as follows: If stage "A" requires a signal from stage "B" it will furnish stage "B" with a plus 28 volts, and stage "B" will switch the plus 28 volts and return the switched signal to stage "A". (See figure 1.) The plus 28 volts for signal transmission need only be furnished one time for a set of signals between stages. This method of transmitting signals allows the d.c. power of each stage to be completely independent and eliminates the problems of current transfer in the negative side of the d.c. power systems.

V. DESCRIPTION OF 28 VOLT BUSSES

+1D10 The +1D10 bus is supplied directly from S-IC Battery Number One (115A10).

+1D11 The +1D11 bus is supplied from the +1D111 bus before power transfer or the +1D10 bus after power transfer.

+1D20 The +1D20 bus is supplied directly from S-IC Battery Number Two (115A20).

+1D21 The +1D21 bus is supplied from the +1D211 bus before power transfer or the +1D20 bus after power transfer.

+1D111 The +1D111 bus is supplied from the GSE networks and supplies the +1D11 bus during vehicle checkout and prelaunch sequence prior to power transfer.

+1D119 The +1D119 bus is supplied from the +1D119 supply in the GSE.

+1D211 The +1D211 bus is supplied from the GSE networks and supplies the +1D21 bus during vehicle checkout and prelaunch sequence prior to power transfer.

+2D11 The +2D11 bus is supplied from any of the following:

(a) GSE Regulated +28 VDC Main Power Supply before power transfer.
(b) S-IV Main Battery 2071A1 after power transfer.
(c) GSE Main DC Power Supply before liftoff.

APOLLO INTERFACE DOCUMENT
Figure 3. Interstage Signals

APOLLO INTERFACE DOCUMENT
The +2D21 bus is supplied from any of the following:
(a) GSE Regulated +28 VDC Instrumentation Power Supply before power transfer.
(b) S-II Instrumentation Battery 207A1A2 after power transfer.
(c) GSE Instrumentation DC Power Supply before liftoff.

The +4D11 bus is supplied from the +4D11 bus before power transfer or the +4D10 bus after power transfer.

The +4D15 bus is supplied from the +4D11 bus after the S-IVB receives the "Sequencer Power ON Command" from GSE.

The +4D31 bus is supplied from the +4D31 bus before power transfer or the +4D30 bus after power transfer.

The +6D10 bus is supplied directly from the IU Battery 601A7.

The +6D11 bus is supplied from the +6D11 bus before power transfer or the +6D10 bus after power transfer.

The +6D30 bus is supplied directly from the IU Battery 601A9.

The +6D31 bus is supplied from the +6D21 bus before power transfer or the +6D30 bus after power transfer.

The +6D40 bus is supplied directly from the IU Battery 601A10.

The +6D41 bus is supplied from the +6D21 bus before power transfer or the +6D40 bus after power transfer.

The +6D91 bus is supplied from the +6D11 bus and is one of three EDS buses used in the IU for EDS circuitry.

The +6D92 bus is supplied from the +6D31 bus and is one of three buses used in the IU for EDS circuitry.

The +6D93 bus is supplied from the +6D41 bus and is one of three buses used in the IU for EDS circuitry.
Appendix A

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>+6D119 bus</td>
<td>The +6D119 bus is supplied to the IU from GSE.</td>
</tr>
<tr>
<td>Battery Bus A</td>
<td>Battery Bus A is supplied directly from the Apollo Entry Battery A.</td>
</tr>
<tr>
<td>Battery Bus B</td>
<td>Battery Bus B is supplied directly from the Apollo Entry Battery B.</td>
</tr>
<tr>
<td>EDS Bus No. 1</td>
<td>The EDS Bus No. 1 is supplied from Battery Bus A through a circuit breaker and the EDS power switch.</td>
</tr>
<tr>
<td>EDS Bus No. 2</td>
<td>The EDS bus No. 2 is supplied from Battery C through a circuit breaker and the EDS power switch.</td>
</tr>
<tr>
<td>EDS Bus No. 3</td>
<td>The EDS Bus No. 3 is supplied from the Battery Bus B through a circuit breaker and the EDS power switch.</td>
</tr>
<tr>
<td>EDS Change Over Bus A</td>
<td>The EDS Change Over Bus A energizes from EDS Bus No. 1 except when EDS Bus No. 1 fails (becomes de-energized) it automatically switches over to EDS Bus No. 2.</td>
</tr>
<tr>
<td>EDS Change Over Bus B</td>
<td>The EDS Change Over Bus B energizes from EDS Bus No. 3 except when EDS Bus No. 3 fails (becomes de-energized) it automatically switches over to EDS Bus No. 2.</td>
</tr>
<tr>
<td>Logic Bus A</td>
<td>Supplied from Battery Bus A through a circuit breaker and logic bus arm relay. This bus is armed or safed by the GSE operated logic bus arm relays and is used to activate the circuitry in MESC A.</td>
</tr>
<tr>
<td>Logic Bus B</td>
<td>Supplied from Battery Bus B through a circuit breaker and logic bus arm relay. This bus is armed or safed by the GSE operated logic bus arm relays and is used to activate the circuitry in MESC B.</td>
</tr>
<tr>
<td>Reset Bus No. 1</td>
<td>Supplied from the GSE networks and is used to reset critical EDS magnetic latch relays prior to launch. It may also be used during vehicle checkout to return these relays to their normal position.</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
Reset
Bus No. 2

Supplied from the GSE networks and is used to reset critical EDS magnetic latch relays prior to launch. It may also be used during vehicle checkout to return these relays to their normal position.

VI. RELAY CROSS REFERENCE LIST

SATURN V
EDS RELAY FUNCTIONS

<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>Coll</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>S-IC Engine No. 1 Thrust Voting Relay A</td>
<td>2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>S-IC Engine No. 2 Thrust Voting Relay A</td>
<td>2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>S-IC Engine No. 3 Thrust Voting Relay A</td>
<td>2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K4</td>
<td>S-IC Engine No. 4 Thrust Voting Relay A</td>
<td>2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K5</td>
<td>S-IC Engine No. 5 Thrust Voting Relay A</td>
<td>2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K9-1</td>
<td>EDS Manual/Auto Cutoff of LV Engines A</td>
<td>4 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K9-2</td>
<td>EDS Manual/Auto Cutoff of LV Engines A</td>
<td>7 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K10-1</td>
<td>EDS Manual/Auto Cutoff of LV Engines B</td>
<td>4 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K10-2</td>
<td>EDS Manual/Auto Cutoff of LV Engines B</td>
<td>7 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K11</td>
<td>S-IC Engine No. 1 Thrust Voting Relay B</td>
<td>2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K12</td>
<td>S-IC Engine No. 2 Thrust Voting Relay B</td>
<td>2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K13</td>
<td>S-IC Engine No. 3 Thrust Voting Relay B</td>
<td>2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K14</td>
<td>S-IC Engine No. 4 Thrust Voting Relay B</td>
<td>2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K15</td>
<td>S-IC Engine No. 5 Thrust Voting Relay B</td>
<td>2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K19-1</td>
<td>EDS or Manual Cutoff of LV Engines Armed A</td>
<td>3 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>K19-2</td>
<td>EDS or Manual Cutoff of LV Engines Armed B</td>
<td>NC</td>
<td>NO</td>
<td>NC</td>
<td>NO</td>
<td>NC</td>
<td>NO</td>
<td>3</td>
</tr>
<tr>
<td>K20-1</td>
<td>LV Engines Cutoff No. 1 from Apollo Spacecraft</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K20-2</td>
<td>LV Engines Cutoff No. 2 from Apollo Spacecraft</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K20-3</td>
<td>LV Engines Cutoff No. 3 from Apollo Spacecraft</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K20-4</td>
<td>LV Engines Cutoff No. 2 from Apollo Spacecraft</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K21-1</td>
<td>S-IC Engine No. 1 Thrust Monitor A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>K21-2</td>
<td>S-IC Engine No. 1 Thrust Monitor B</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K22-1</td>
<td>S-IC Engine No. 2 Thrust Monitor A</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K22-2</td>
<td>S-IC Engine No. 2 Thrust Monitor B</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K23-1</td>
<td>S-IC Engine No. 3 Thrust Monitor A</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K23-2</td>
<td>S-IC Engine No. 3 Thrust Monitor B</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K24-1</td>
<td>S-IC Engine No. 4 Thrust Monitor A</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K24-2</td>
<td>S-IC Engine No. 4 Thrust Monitor B</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K25-1</td>
<td>S-IC Engine No. 5 Thrust Monitor A</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K25-2</td>
<td>S-IC Engine No. 5 Thrust Monitor B</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K29-1</td>
<td>Auto Abort 1A to Apollo Spacecraft</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K29-2</td>
<td>Auto Abort 1B to Apollo Spacecraft</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K29-3</td>
<td>Auto Abort 2A to Apollo Spacecraft</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K29-4</td>
<td>Auto Abort 2B to Apollo Spacecraft</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K29-5</td>
<td>Auto Abort 3A to Apollo Spacecraft</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K29-6</td>
<td>Auto Abort 3B to Apollo</td>
<td></td>
</tr>
<tr>
<td>K30</td>
<td>+6D95 Monitor to GSE</td>
<td></td>
</tr>
<tr>
<td>K31-1</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 1</td>
<td>10 10 10</td>
</tr>
<tr>
<td>K31-2</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 2</td>
<td>3 2 3 2</td>
</tr>
<tr>
<td>K31-3</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 3</td>
<td>3 2 3 2</td>
</tr>
<tr>
<td>K32-1</td>
<td>S-IC Engine No. 2 Thrust Monitor No. 1</td>
<td></td>
</tr>
<tr>
<td>K32-2</td>
<td>S-IC Engine No. 2 Thrust Monitor No. 2</td>
<td></td>
</tr>
<tr>
<td>K32-3</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 3</td>
<td>2</td>
</tr>
<tr>
<td>K33-1</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 1</td>
<td>2</td>
</tr>
<tr>
<td>K33-2</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 2</td>
<td>2</td>
</tr>
<tr>
<td>K33-3</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 3</td>
<td>2</td>
</tr>
<tr>
<td>K34-1</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 1</td>
<td>2</td>
</tr>
<tr>
<td>K34-2</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 2</td>
<td>2</td>
</tr>
<tr>
<td>K34-3</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 3</td>
<td>2</td>
</tr>
<tr>
<td>K35-1</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 1</td>
<td>2</td>
</tr>
<tr>
<td>K35-2</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 2</td>
<td>2</td>
</tr>
<tr>
<td>K35-3</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 3</td>
<td>2</td>
</tr>
<tr>
<td>K39</td>
<td>EDS Bus Changeover B</td>
<td>1 1 1</td>
</tr>
<tr>
<td>K40</td>
<td>Excessive Rate Auto Abort Inhibit (P, Y, & R)</td>
<td>6 6 6</td>
</tr>
<tr>
<td>K41</td>
<td>Excessive Rate Auto Abort Inhibit (Roll)</td>
<td>6 6 6</td>
</tr>
<tr>
<td>K42</td>
<td>S-IC Two Engine Out Auto Abort Inhibit</td>
<td>6 6 6</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>K43-1</td>
<td>S-IC Two Engine Out Auto Abort Inhibit No. 1</td>
<td>2</td>
</tr>
<tr>
<td>K43-2</td>
<td>S-IC Two Engine Out Auto Abort Inhibit No. 2</td>
<td>2</td>
</tr>
<tr>
<td>K43-3</td>
<td>S-IC Two Engine Out Auto Abort Inhibit No. 3</td>
<td>2</td>
</tr>
<tr>
<td>K44</td>
<td>LET Jettisoned B1</td>
<td>9</td>
</tr>
<tr>
<td>K45</td>
<td>S-IVB Engine Thrust Monitor B</td>
<td>7</td>
</tr>
<tr>
<td>K46-1</td>
<td>Excessive Rate Auto Abort Inhibit (P & Y) No. 1</td>
<td>8</td>
</tr>
<tr>
<td>K46-2</td>
<td>Excessive Rate Auto Abort Inhibit (P & Y) No. 2</td>
<td>8</td>
</tr>
<tr>
<td>K46-3</td>
<td>Excessive Rate Auto Abort Inhibit (P & Y) No. 3</td>
<td>8</td>
</tr>
<tr>
<td>K47-1</td>
<td>Excessive Rate Auto Abort Inhibit (Roll) No. 1</td>
<td>8</td>
</tr>
<tr>
<td>K47-2</td>
<td>Excessive Rate Auto Abort Inhibit (Roll) No. 2</td>
<td>8</td>
</tr>
<tr>
<td>K47-3</td>
<td>Excessive Rate Auto Abort Inhibit (Roll) No. 3</td>
<td>8</td>
</tr>
<tr>
<td>K48</td>
<td>LET Jettisoned B2</td>
<td>9</td>
</tr>
<tr>
<td>K49</td>
<td>Range Safety Destruct Armed A from S-IVB</td>
<td>7</td>
</tr>
<tr>
<td>K50</td>
<td>Range Safety Destruct Armed B from S-IVB</td>
<td>7</td>
</tr>
<tr>
<td>K51</td>
<td>S-IVB Thrust Monitor A Indicator</td>
<td>7</td>
</tr>
<tr>
<td>K53</td>
<td>EDS Manual/Auto Cutoff A of S-IC Engines</td>
<td>3</td>
</tr>
<tr>
<td>K54-1</td>
<td>EDS Manual/Auto Cutoff B of S-IC Engines</td>
<td>3</td>
</tr>
<tr>
<td>K54-2</td>
<td>EDS Manual/Auto Cutoff B of S-IC Engines</td>
<td>3</td>
</tr>
<tr>
<td>K55</td>
<td>S-IC Engines Cutoff Enable</td>
<td>3</td>
</tr>
<tr>
<td>K56</td>
<td>S-IC Engines Cutoff Enable</td>
<td>3</td>
</tr>
<tr>
<td>K57</td>
<td>S-IVB Engine Start Command</td>
<td>6</td>
</tr>
<tr>
<td>K58</td>
<td>S-IVB Engine Prevent Start</td>
<td>6</td>
</tr>
<tr>
<td>K59</td>
<td>S-IC All Engines OK A</td>
<td>2</td>
</tr>
</tbody>
</table>
EDS Description

Appendix A

40M37533

<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K60</td>
<td>Excessive Roll Rate Voting Relay A</td>
<td>NC</td>
</tr>
<tr>
<td>K61</td>
<td>Excessive Roll Rate Voting Relay B</td>
<td>8</td>
</tr>
<tr>
<td>K62</td>
<td>Excessive Pitch Rate Voting Relay A</td>
<td>8</td>
</tr>
<tr>
<td>K63</td>
<td>Excessive Pitch Rate Voting Relay B</td>
<td>8</td>
</tr>
<tr>
<td>K64</td>
<td>Excessive Yaw Rate Voting Relay A</td>
<td>8</td>
</tr>
<tr>
<td>K65</td>
<td>Excessive Yaw Rate Voting Relay B</td>
<td>8</td>
</tr>
<tr>
<td>K66</td>
<td>EDS Arming of S-IVB Engine</td>
<td>6</td>
</tr>
<tr>
<td>K67</td>
<td>EDS Manual/Auto Cutoff A of S-IVB Engine</td>
<td>7</td>
</tr>
<tr>
<td>K68-1</td>
<td>S-II/S-IVB Separation Simulate</td>
<td>6</td>
</tr>
<tr>
<td>K68-2</td>
<td>S-II/S-IVB Separation Simulate</td>
<td>6</td>
</tr>
<tr>
<td>K69</td>
<td>Range Safety S-IVB Destruct Arm B</td>
<td>7</td>
</tr>
<tr>
<td>K70</td>
<td>Range Safety S-IVB Destruct Arm A</td>
<td>6</td>
</tr>
<tr>
<td>K71</td>
<td>Pad Abort Request</td>
<td>7</td>
</tr>
<tr>
<td>K72</td>
<td>S-IVB Thrust Monitor A</td>
<td>7</td>
</tr>
<tr>
<td>K73</td>
<td>EDS Bus Changeover A</td>
<td>1</td>
</tr>
<tr>
<td>K74</td>
<td>LES Abort Lock-Up A1</td>
<td>9</td>
</tr>
<tr>
<td>K75</td>
<td>LES Abort Lock-up A2</td>
<td>9</td>
</tr>
<tr>
<td>K76</td>
<td>Normal S-IVB Engine Cutoff</td>
<td>6</td>
</tr>
<tr>
<td>K77</td>
<td>EDS Manual/Auto Cutoff B of S-IVB Engine</td>
<td>6</td>
</tr>
<tr>
<td>K78</td>
<td>Cutoff S-IC Inboard Engine</td>
<td>3</td>
</tr>
<tr>
<td>K79</td>
<td>Cutoff S-IC Outboard Engine</td>
<td>3</td>
</tr>
<tr>
<td>K80</td>
<td>S-II All Engines Normal Cutoff</td>
<td>4</td>
</tr>
<tr>
<td>K81</td>
<td>S-II Engine No. 1 Thrust Monitor A</td>
<td>7</td>
</tr>
<tr>
<td>K82</td>
<td>S-II Engine No. 2 Thrust Monitor A</td>
<td>7</td>
</tr>
<tr>
<td>K83</td>
<td>S-II Engine No. 3 Thrust Monitor A</td>
<td>7</td>
</tr>
<tr>
<td>K84</td>
<td>S-II Engine No. 4 Thrust Monitor A</td>
<td>7</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>K85</td>
<td>S-II Engine No. 5 Thrust Monitor A</td>
</tr>
<tr>
<td>K90</td>
<td>Auto-Abort System A Enable Inhibit</td>
</tr>
<tr>
<td>K91</td>
<td>Auto-Abort System B Enable Inhibit</td>
</tr>
<tr>
<td>K92</td>
<td>Auto-Abort System B Enable from GSE</td>
</tr>
<tr>
<td>K93</td>
<td>Auto-Abort System B Enable from GSE</td>
</tr>
<tr>
<td>K94-1</td>
<td>LV Attitude Reference Fail A</td>
</tr>
<tr>
<td>K94-2</td>
<td>LV Attitude Reference Fail B</td>
</tr>
<tr>
<td>K95</td>
<td>LET Jettisoned A1</td>
</tr>
<tr>
<td>K96</td>
<td>LET Jettisoned A2</td>
</tr>
<tr>
<td>K97</td>
<td>EDS Abort Voting Logic Input A1</td>
</tr>
<tr>
<td>K98</td>
<td>EDS Abort Voting Logic Input A2</td>
</tr>
<tr>
<td>K99</td>
<td>EDS Abort Voting Logic Input A3</td>
</tr>
<tr>
<td>K100</td>
<td>EDS Abort Voting Logic Input B1</td>
</tr>
<tr>
<td>K101</td>
<td>EDS Abort Voting Logic Input B2</td>
</tr>
<tr>
<td>K102</td>
<td>EDS Abort Voting Logic Input B3</td>
</tr>
<tr>
<td>K103</td>
<td>Abort B1</td>
</tr>
<tr>
<td>K104</td>
<td>Abort B2</td>
</tr>
<tr>
<td>K105</td>
<td>Abort A1</td>
</tr>
<tr>
<td>K106</td>
<td>Abort A2</td>
</tr>
<tr>
<td>K107</td>
<td>Auto-Abort System Enable A1</td>
</tr>
<tr>
<td>K108</td>
<td>Auto-Abort System Enable A2</td>
</tr>
<tr>
<td>K109</td>
<td>Auto-Abort System Enable B1</td>
</tr>
<tr>
<td>K110</td>
<td>Auto-Abort System Enable B2</td>
</tr>
<tr>
<td>K111</td>
<td>LES Abort Lock-up B1</td>
</tr>
<tr>
<td>K112</td>
<td>LES Abort Lock-up B2</td>
</tr>
<tr>
<td>K113</td>
<td>Excessive Rate Auto-Abort Inhibit (P, Y & R)</td>
</tr>
<tr>
<td>K114</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll)</td>
</tr>
</tbody>
</table>

Contacts – Schematic Sheet No.

<table>
<thead>
<tr>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>Coat</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay #</td>
<td>Function</td>
<td>Contacts - Schematic Sheet No.</td>
<td>Coil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------------------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC</td>
<td>NO</td>
<td>NC</td>
<td>NO</td>
<td>NC</td>
</tr>
<tr>
<td>K115</td>
<td>S-IC Two Engine Out</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto-Abort Inhibit</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K116</td>
<td>+6D91 Bus GSE Disable</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K117</td>
<td>+6D92 Bus GSE Disable</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K118</td>
<td>+6D93 Bus GSE Disable</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K119-1</td>
<td>Liftoff</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K119-2</td>
<td>Liftoff</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K121-1</td>
<td>S-II Engine No. 1 Thrust Monitor A (Type 1 of 5)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K121-2</td>
<td>S-II Engine No. 1 Thrust Monitor B (Type 1 of 5)</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K122</td>
<td>Excessive Pitch Rate Output No. 1</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K123</td>
<td>Excessive Pitch Relay Output No. 2</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K124</td>
<td>Excessive Pitch Rate Output No. 3</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K125</td>
<td>Excessive Yaw Rate Output No. 1</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K126</td>
<td>Excessive Yaw Rate Output No. 2</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K127</td>
<td>Excessive Yaw Rate Output No. 3</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K128</td>
<td>Excessive Roll Rate Output No. 1</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K129</td>
<td>Excessive Roll Rate Output No. 2</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K130</td>
<td>Excessive Roll Rate Output No. 3</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K131</td>
<td>RF Link Abort Request A</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K132</td>
<td>RF Link Abort Request B</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K134</td>
<td>S-IVB Thrust OK Monitor B Indication</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K135-1</td>
<td>Rate Gyro High Rate on A1</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K135-2</td>
<td>Rate Gyro High Rate on A2</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K136-1</td>
<td>Rate Gyro High Rate on B1</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K136-2</td>
<td>Rate Gyro High Rate on B2</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K137</td>
<td>Logic A Bus Arm A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K138</td>
<td>Logic A Bus Arm B</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K139</td>
<td>Logic B Bus Arm A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EDS Description

Appendix A

<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>K140</td>
<td>Logic B Bus Arm B</td>
<td>NC NO NC NO NC NO</td>
<td>1 1</td>
</tr>
<tr>
<td>K145</td>
<td>LET Jettison A</td>
<td>10 10 10</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K146</td>
<td>LET Jettison B</td>
<td>10 10 10</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K147</td>
<td>S-IC Engine No. 1 Rough Combustion Voting Relay</td>
<td>3 3</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K148</td>
<td>S-IC Engine No. 2 Rough Combustion Voting Relay B</td>
<td>3 3 3</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K149</td>
<td>S-II Second Plane Separation Simulate</td>
<td>5 5 5</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K150</td>
<td>S-II LH₂ Prevalves Close Command</td>
<td>4 4</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K151</td>
<td>S-II Engine No. 1 Thrust Monitor B</td>
<td>7 4</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K152</td>
<td>S-II Engine No. 2 Thrust Monitor B</td>
<td>7</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K153</td>
<td>S-II Engine No. 3 Thrust Monitor B</td>
<td>7</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K154</td>
<td>S-II Engine No. 4 Thrust Monitor B</td>
<td>7</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K155</td>
<td>S-II Engine No. 5 Thrust Monitor B</td>
<td>7</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K156</td>
<td>S-II Range Safety No. 1 Engines Cutoff</td>
<td>4 4 4</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K157</td>
<td>S-II Range Safety No. 2 Engines Cutoff</td>
<td>4 4 4</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K158</td>
<td>S-IC Engine No. 1 Prevalves Close</td>
<td>3 3 3</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K159</td>
<td>S-IC Engine No. 1 Cutoff</td>
<td>3 3 3</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K160</td>
<td>EDS Manual/Auto Cutoff A of S-II Engines</td>
<td>4 4 4 4</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K161</td>
<td>EDS Manual/Auto Cutoff B of S-II Engines</td>
<td>4 4 4 4</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K162-1</td>
<td>S-II LH₂ Prevalves Close Command from Engines Prevent Start</td>
<td>4 4</td>
<td>NC NO NC NO</td>
</tr>
<tr>
<td>K162-2</td>
<td>S-II LH₂ Prevalves Close Command from Engines Prevent Start</td>
<td>4</td>
<td>NC NO NC NO</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>K162-3</td>
<td>S-II LH₂ Prevalves Close Command from Engines</td>
<td>4</td>
</tr>
<tr>
<td>K163</td>
<td>S-II Start Phase Limiter</td>
<td>4</td>
</tr>
<tr>
<td>K166</td>
<td>Engine Start Interlock By-pass</td>
<td>6</td>
</tr>
<tr>
<td>K167</td>
<td>EDS Arming of S-IVB Engine Thrust Indication B</td>
<td>7</td>
</tr>
<tr>
<td>K171</td>
<td>GSE Engine Thrust Indication Enable A</td>
<td>7</td>
</tr>
<tr>
<td>K172</td>
<td>GSE Engine Thrust Indication Enable B</td>
<td>7</td>
</tr>
<tr>
<td>K173</td>
<td>EDS Arming of S-II Thrust Indication A</td>
<td>5</td>
</tr>
<tr>
<td>K174</td>
<td>EDS Arming of S-II Thrust Indication B</td>
<td>5</td>
</tr>
<tr>
<td>K182-1</td>
<td>RF Abort A1</td>
<td>10</td>
</tr>
<tr>
<td>K182-2</td>
<td>RF Abort A2</td>
<td>9</td>
</tr>
<tr>
<td>K183-1</td>
<td>RF Abort B1</td>
<td>10</td>
</tr>
<tr>
<td>K183-2</td>
<td>RF Abort B2</td>
<td>9</td>
</tr>
<tr>
<td>K192-1</td>
<td>LET Jettison A1</td>
<td>9</td>
</tr>
<tr>
<td>K192-2</td>
<td>LET Jettison A2</td>
<td>9</td>
</tr>
<tr>
<td>K193-1</td>
<td>LET Jettison B1</td>
<td>9</td>
</tr>
<tr>
<td>K193-2</td>
<td>LET Jettison B2</td>
<td>9</td>
</tr>
<tr>
<td>K198</td>
<td>S-IVB Prevalve Control</td>
<td>6</td>
</tr>
<tr>
<td>K199</td>
<td>S-IVB Chill Down Shutoff</td>
<td>6</td>
</tr>
<tr>
<td>K201-1</td>
<td>S-II Second Plane Separation A</td>
<td>5</td>
</tr>
<tr>
<td>K201-2</td>
<td>S-II Second Plane Separation B</td>
<td>5</td>
</tr>
<tr>
<td>K202</td>
<td>S-IC Range Safety Engines Cutoff A</td>
<td>3</td>
</tr>
<tr>
<td>K203-1</td>
<td>S-IC Range Safety Engines Cutoff B1</td>
<td>3</td>
</tr>
<tr>
<td>K203-2</td>
<td>S-IC Range Safety Engines Cutoff B2</td>
<td>3</td>
</tr>
<tr>
<td>K206-1</td>
<td>MESC Logic Bus A Arm A</td>
<td>1</td>
</tr>
<tr>
<td>K206-2</td>
<td>MESC Logic Bus A Arm B</td>
<td>1</td>
</tr>
<tr>
<td>K207-1</td>
<td>MESC Logic Bus B Arm A</td>
<td>1</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
Relay Function

<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K208</td>
<td>S-II Engine No. 1 Cutoff</td>
<td>4 4 4</td>
</tr>
<tr>
<td>K212</td>
<td>Timers Test</td>
<td>2 6 6</td>
</tr>
<tr>
<td>K214</td>
<td>Normal S-II Engines Cutoff B</td>
<td>4 4 4</td>
</tr>
<tr>
<td>K215</td>
<td>Normal S-II Engines Cutoff A</td>
<td>4 4 4</td>
</tr>
<tr>
<td>K216</td>
<td>S-II All Engines Start Command</td>
<td>4 4 4</td>
</tr>
<tr>
<td>K217</td>
<td>S-II Engines Prevent Start</td>
<td>4 4</td>
</tr>
<tr>
<td>K218</td>
<td>S-II Engines Prevent Start</td>
<td>4 4</td>
</tr>
<tr>
<td></td>
<td>By-pass Command</td>
<td>4 4</td>
</tr>
<tr>
<td>K219</td>
<td>S-IC All Engines OK B</td>
<td>2 2</td>
</tr>
</tbody>
</table>
DRAWING NOTES:

1. The Auto-Abort bus can be energized from the excessive rate circuit as well as the two Engine Out Circuit on Page 2.

2. This function is not programmed on the switch selector for this mission.

3. This circuit is not active on this mission and the function is inhibited.
APPENDIX B*

GEORGE C. MARSHALL SPACE FLIGHT CENTER

INTERFACE CONTROL DOCUMENT
DESCRIPTION OF SATURN SA-502 AND APOLLO SC-020
EMERGENCY DETECTION SYSTEM

I. INTRODUCTION

A. The purpose of this document is to describe the Apollo-Saturn SA-502 Emergency Detection System (EDS) design. The design is a coordinated effort by the Crew Safety Panel members and represents technical inputs from several NASA Centers and is binding on all participating centers. The system defined in this document conforms to the "Design Criteria for Saturn-V On-Board Emergency Detection System, ICD (#13M65001)." Paragraphs 1. through 2.b. are in accordance with 13M65001 and describe deviations from the criteria which are approved by the Panel for this unmanned development mission.

1. General Guidelines

a. Abort Sequence. The EDS in this mission will operate in an open loop mode. Automatic abort signals from the Launch Vehicle will be inhibited in the spacecraft.

b. Automatic Abort Activation. The liftoff signal will not activate the EDS automatic abort mode in this mission. The entire automatic abort signal will be interrupted in the spacecraft by leaving the Auto-Abort Enable Switch in the OFF position.

c. Manual Abort Considerations

(1) Manual abort from the spacecraft will not be feasible in this mission. Criteria for ground command abort will be determined by operational authority and are not within the scope of this document.

(2) Capability for ground activation of an abort request indicator circuit in the spacecraft will be provided. Activation of the circuit will be indicated by TM. Prior to liftoff, operation of the circuit will utilize hard-line to the instrument unit. After liftoff, only the

APOLLO INTERFACE DOCUMENT

* The ICD in this Appendix was dated December 30, 1965, and included no revisions. Pages of the ICD that were modified for this Appendix do not retain the ICD drawing number.

Added 15 October 1966
Range Safety destruct system arming command to the S-IVB stage will be used to activate the circuit.

2. **Emergency Detection Parameters for Automatic Abort**

 a. **Angular Overrates.**

 (1) Automatic abort signal will be transmitted to the spacecraft, for telemetry only, when two of three gyros in any plane indicate that the rate limits are exceeded.

 (2) Angular overrate (pitch, roll, yaw) signals will be deactivated by the launch vehicle sequencer prior to inboard engine cutoff enabling.

 b. **S-V Two Engines Out.** The loss of thrust on two or more engines will initiate an automatic abort signal which is transmitted to the spacecraft for telemetry only. This signal will be deactivated prior to inboard engine cutoff arming by the launch vehicle sequencer.

B. **This document defines interfaces between modules and stages in functional terms only.** Detailed interface information is contained in other interface documents. The document drawing numbers and other pertinent information may be obtained from the "Inter-Center Interface Control Document Log."

C. **This document does not reflect all connections from other systems into the EDS circuits.**
II ABBREVIATIONS
(Refer to Section II in Appendix A)

III ELECTRICAL SYMBOLS
(Refer to Section III in Appendix A)

IV INTERSTAGE SIGNALS
(Refer to Section IV in Appendix A)

V DESCRIPTION OF 28 VOLT BUSES
(Refer to Section V in Appendix A)

VI RELAY CROSS REFERENCE LIST
SATURN V
EDS Relay Functions

NOTE: Relay numbers shown are for reference only and do not correspond to actual hardware reference designations.
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>S-IC Engine No. 1 Thrust Voting Relay A</td>
<td>2 2 2</td>
</tr>
<tr>
<td>K2</td>
<td>S-IC Engine No. 2 Thrust Voting Relay A</td>
<td>2 2 2</td>
</tr>
<tr>
<td>K3</td>
<td>S-IC Engine No. 3 Thrust Voting Relay A</td>
<td>2 2 2</td>
</tr>
<tr>
<td>K4</td>
<td>S-IC Engine No. 4 Thrust Voting Relay A</td>
<td>2 2 2</td>
</tr>
<tr>
<td>K5</td>
<td>S-IC Engine No. 5 Thrust Voting Relay A</td>
<td>2 2 2</td>
</tr>
<tr>
<td>K9-1</td>
<td>EDS Manual/Auto Cutoff of LV Engines A</td>
<td>4 3 3</td>
</tr>
<tr>
<td>K9-2</td>
<td>EDS Manual/Auto Cutoff of LV Engines A</td>
<td>7 3 3</td>
</tr>
<tr>
<td>K10-1</td>
<td>EDS Manual/Auto Cutoff of LV Engines B</td>
<td>4 3 3</td>
</tr>
<tr>
<td>K10-2</td>
<td>EDS Manual/Auto Cutoff of LV Engines B</td>
<td>7 3 3</td>
</tr>
<tr>
<td>K11</td>
<td>S-IC Engine No. 1 Thrust Voting Relay B</td>
<td>2 2 2</td>
</tr>
<tr>
<td>K12</td>
<td>S-IC Engine No. 2 Thrust Voting Relay B</td>
<td>2 2 2</td>
</tr>
<tr>
<td>K13</td>
<td>S-IC Engine No. 3 Thrust Voting Relay B</td>
<td>2 2 2</td>
</tr>
<tr>
<td>K14</td>
<td>S-IC Engine No. 4 Thrust Voting Relay B</td>
<td>2 2 2</td>
</tr>
<tr>
<td>K15</td>
<td>S-IC Engine No. 5 Thrust Voting Relay B</td>
<td>2 2 2</td>
</tr>
<tr>
<td>K19-1</td>
<td>EDS or Manual Cutoff of LV Engines Armed A</td>
<td>3 2 2</td>
</tr>
<tr>
<td>Relay #</td>
<td>Function</td>
<td>NC</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>----</td>
</tr>
<tr>
<td>K19-2</td>
<td>EDS or Manual Cutoff of LV Engines Armed B</td>
<td></td>
</tr>
<tr>
<td>K20-1</td>
<td>LV Engines Cutoff No. 1 from Apollo Spacecraft</td>
<td>3</td>
</tr>
<tr>
<td>K20-2</td>
<td>LV Engines Cutoff No. 2 from Apollo Spacecraft</td>
<td>3</td>
</tr>
<tr>
<td>K20-3</td>
<td>LV Engines Cutoff No. 3 from Apollo Spacecraft</td>
<td>3</td>
</tr>
<tr>
<td>K20-4</td>
<td>LV Engines Cutoff No. 2 from Apollo Spacecraft</td>
<td>3</td>
</tr>
<tr>
<td>K21-1</td>
<td>S-IC Engine No. 1 Thrust Monitor A</td>
<td>7</td>
</tr>
<tr>
<td>K21-2</td>
<td>S-IC Engine No. 1 Thrust Monitor B</td>
<td>7</td>
</tr>
<tr>
<td>K22-1</td>
<td>S-IC Engine No. 2 Thrust Monitor A</td>
<td>7</td>
</tr>
<tr>
<td>K22-2</td>
<td>S-IC Engine No. 2 Thrust Monitor B</td>
<td>7</td>
</tr>
<tr>
<td>K23-1</td>
<td>S-IC Engine No. 3 Thrust Monitor A</td>
<td>7</td>
</tr>
<tr>
<td>K23-2</td>
<td>S-IC Engine No. 3 Thrust Monitor B</td>
<td>7</td>
</tr>
<tr>
<td>K24-1</td>
<td>S-IC Engine No. 4 Thrust Monitor A</td>
<td>7</td>
</tr>
<tr>
<td>K24-2</td>
<td>S-IC Engine No. 4 Thrust Monitor B</td>
<td>7</td>
</tr>
<tr>
<td>K25-1</td>
<td>S-IC Engine No. 5 Thrust Monitor A</td>
<td>7</td>
</tr>
<tr>
<td>K25-2</td>
<td>S-IC Engine No. 5 Thrust Monitor B</td>
<td>7</td>
</tr>
<tr>
<td>K29-1</td>
<td>Auto Abort 1A to Apollo Spacecraft</td>
<td>10</td>
</tr>
<tr>
<td>K29-2</td>
<td>Auto Abort 1B to Apollo Spacecraft</td>
<td>10</td>
</tr>
<tr>
<td>K29-3</td>
<td>Auto Abort 2A to Apollo Spacecraft</td>
<td>10</td>
</tr>
<tr>
<td>K29-4</td>
<td>Auto Abort 2B to Apollo Spacecraft</td>
<td>10</td>
</tr>
<tr>
<td>K29-5</td>
<td>Auto Abort 3A to Apollo Spacecraft</td>
<td>10</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

Added 15 October 1966
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>K29-6</td>
<td>Auto Abort 3B to Apollo Spacecraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K30</td>
<td>+6D95 Monitor to GSE</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K31-1</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K31-2</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K31-3</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K32-1</td>
<td>S-IC Engine No. 2 Thrust Monitor No. 1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K32-2</td>
<td>S-IC Engine No. 2 Thrust Monitor No. 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K32-3</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K33-1</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K33-2</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K33-3</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K34-1</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K34-2</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K34-3</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K35-1</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K35-2</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K35-3</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K39</td>
<td>EDS Bus Changeover B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K40</td>
<td>Excessive Rate Auto Abort Inhibit (P, Y, & R)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K41</td>
<td>Excessive Rate Auto Abort Inhibit (Roll)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K42</td>
<td>S-IC Two Engine Out Auto Abort Inhibit</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
APOLLO INTERFACE DOCUMENT

Relay #	**Function**	**Contacts - Schematic Sheet No.**	**Coil**
K43-1 | S-IC Two Engine Out Auto Abort Inhibit No. 1 | NC NO NC NO NC NO | 2 2 6
K43-2 | S-IC Two Engine Out Auto Abort Inhibit No. 2 | 2 2 6
K43-3 | S-IC Two Engine Out Auto Abort Inhibit No. 3 | 2 6
K44 | LET Jettisoned B1 | 9 9 9 9
K45 | S-IVB Engine Thrust Monitor B | 7 7
K46-1 | Excessive Rate Auto Abort Inhib (P & Y) No. 1 | 8 8 8 6
K46-2 | Excessive Rate Auto Abort Inhib (P & Y) No. 2 | 8 6
K46-3 | Excessive Rate Auto Abort Inhib (P & Y) No. 3 | 8 6
K47-1 | Excessive Rate Auto Abort Inhibit (Roll) No. 1 | 8 8 8 6
K47-2 | Excessive Rate Auto Abort Inhibit (Roll) No. 2 | 8 6
K47-3 | Excessive Rate Auto Abort Inhibit (Roll) No. 3 | 8 6
K48 | LET Jettisoned B2 | 9 9 9 9
K49 | Range Safety Destruct Armed A from S-IVB | 7 7 7
K50 | Range Safety Destruct Armed B from S-IVB | 7 7 7
K51 | S-IVB Thrust Monitor A Indicator | 7 7
K52 | EDS Manual/Auto Cutoff A of S-IC Engines | 3 3 3
K54-1 | EDS Manual/Auto Cutoff B of S-IC Engines | 3 3
K54-2 | EDS Manual/Auto Cutoff B of S-IC Engines | 3 3
K55 | S-IC Engines Cutoff Enable | 3 3
K56 | S-IC Engines Cutoff Enable | 3 3
K57 | S-IVB Engine Start Command | 6 6
K58 | S-IVB Engine Prevent Start | 6 6
K59 | S-IC All Engines OK A | 2 2

Added 15 October 1966
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>K60</td>
<td>Excessive Roll Rate Voting Relay A</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K61</td>
<td>Excessive Roll Rate Voting Relay B</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K62</td>
<td>Excessive Pitch Rate Voting Relay A</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K63</td>
<td>Excessive Pitch Rate Voting Relay B</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K64</td>
<td>Excessive Yaw Rate Voting Relay A</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K65</td>
<td>Excessive Yaw Rate Voting Relay B</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K66</td>
<td>EDS Arming of S-IVB Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>K67</td>
<td>EDS Manual/Auto Cutoff A of S-IVB Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>K68-1</td>
<td>S-II/S-IVB Separation Simulate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>K68-2</td>
<td>S-II/S-IVB Separation Simulate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>K69</td>
<td>Range Safety S-IVB Destruct Arm B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>K70</td>
<td>Range Safety S-IVB Destruct Arm A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>K71</td>
<td>Pad Abort Request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>K72</td>
<td>S-IVB Thrust Monitor A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>K73</td>
<td>EDS Bus Changeover A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>K74</td>
<td>LES Abort Lock-Up A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>K75</td>
<td>LES Abort Lock-up A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>K76</td>
<td>Normal S-IVB Engine Cutoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>K77</td>
<td>EDS Manual/Auto Cutoff B of S-IVB Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>K78</td>
<td>Cutoff S-IC Inboard Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>K79</td>
<td>Cutoff S-IC Outboard Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>K80</td>
<td>S-II All Engines Normal Cutoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>K81</td>
<td>S-II Engine No. 1 Thrust Monitor A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>K82</td>
<td>S-II Engine No. 2 Thrust Monitor A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K83</td>
<td>S-II Engine No. 3 Thrust Monitor A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K84</td>
<td>S-II Engine No. 4 Thrust Monitor A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Apollo Interface Document

Added 15 October 1966
Relay Function Table

<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts</th>
<th>Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K90</td>
<td>Auto-Abort System A Enable Inhibit</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>K91</td>
<td>Auto-Abort System B Enable Inhibit</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>K92</td>
<td>Auto-Abort System B Enable from GSE</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>K93</td>
<td>Auto-Abort System B Enable from GSE</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>K94-1</td>
<td>LV Attitude Reference Fail A</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>K94-2</td>
<td>LV Attitude Reference Fail B</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>K95</td>
<td>LET Jettisoned A1</td>
<td>9 9</td>
<td>9 9</td>
</tr>
<tr>
<td>K96</td>
<td>LET Jettisoned A2</td>
<td>9 9</td>
<td>9 9</td>
</tr>
<tr>
<td>K97</td>
<td>EDS Abort Voting Logic Input A1</td>
<td>10</td>
<td>9 9 9</td>
</tr>
<tr>
<td>K98</td>
<td>EDS Abort Voting Logic Input A2</td>
<td>10</td>
<td>9 9 9</td>
</tr>
<tr>
<td>K99</td>
<td>EDS Abort Voting Logic Input A3</td>
<td>10</td>
<td>9 9 9</td>
</tr>
<tr>
<td>K100</td>
<td>EDS Abort Voting Logic Input B1</td>
<td>10</td>
<td>9 9 9</td>
</tr>
<tr>
<td>K101</td>
<td>EDS Abort Voting Logic Input B2</td>
<td>10</td>
<td>9 9 9</td>
</tr>
<tr>
<td>K102</td>
<td>EDS Abort Voting Logic Input B3</td>
<td>10</td>
<td>9 9 9</td>
</tr>
<tr>
<td>K103</td>
<td>Abort B1</td>
<td>6 6</td>
<td>9 9</td>
</tr>
<tr>
<td>K104</td>
<td>Abort B2</td>
<td>6 6</td>
<td>9 9</td>
</tr>
<tr>
<td>K105</td>
<td>Abort A1</td>
<td>6 6</td>
<td>9 9</td>
</tr>
<tr>
<td>K106</td>
<td>Abort A2</td>
<td>6 6</td>
<td>9 9</td>
</tr>
<tr>
<td>K107</td>
<td>Auto-Abort System Enable A1</td>
<td>9 9 9</td>
<td>9 9</td>
</tr>
<tr>
<td>K108</td>
<td>Auto-Abort System Enable A2</td>
<td>9 9 9</td>
<td>9 9</td>
</tr>
<tr>
<td>K109</td>
<td>Auto-Abort System Enable B1</td>
<td>9 9 9</td>
<td>9 9</td>
</tr>
<tr>
<td>K110</td>
<td>Auto-Abort System Enable B2</td>
<td>9 9 9</td>
<td>9 9</td>
</tr>
<tr>
<td>K111</td>
<td>LES Abort Lock-up B1</td>
<td>9 9 9</td>
<td>9 9</td>
</tr>
<tr>
<td>K112</td>
<td>LES Abort Lock-up B2</td>
<td>9 9 9</td>
<td>9 9</td>
</tr>
<tr>
<td>K113</td>
<td>Excessive Rate Auto-Abort Inhibit (P, Y & R)</td>
<td>6 6 6</td>
<td></td>
</tr>
<tr>
<td>K114</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll)</td>
<td>6 6 6</td>
<td></td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

Added 15 October 1966
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>K115</td>
<td>S-IC Two Engine Out</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto-Abort Inhibit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K116</td>
<td>+6D91 Bus GSE Disable</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K117</td>
<td>+6D92 Bus GSE Disable</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K118</td>
<td>+6D93 Bus GSE Disable</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K119-1</td>
<td>LiftOff</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K119-2</td>
<td>LiftOff</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K121-1</td>
<td>S-II Engine No. 1 Thrust Monitor A (Type 1 of 5)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K121-2</td>
<td>S-II Engine No. 1 Thrust Monitor B (Type 1 of 5)</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K122</td>
<td>Excessive Pitch Rate Output No. 1</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K123</td>
<td>Excessive Pitch Relay Output No. 2</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K124</td>
<td>Excessive Pitch Rate Output No. 3</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K125</td>
<td>Excessive Yaw Rate Output No. 1</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K126</td>
<td>Excessive Yaw Rate Output No. 2</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K127</td>
<td>Excessive Yaw Rate Output No. 3</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K128</td>
<td>Excessive Roll Rate Output No. 1</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K129</td>
<td>Excessive Roll Rate Output No. 2</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K130</td>
<td>Excessive Roll Rate Output No. 3</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K131</td>
<td>RF Link Abort Request A</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K132</td>
<td>RF Link Abort Request B</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K134</td>
<td>S-IVB Thrust OK Monitor B Indication</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K135-1</td>
<td>Rate Gyro High Rate on A1</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K135-2</td>
<td>Rate Gyro High Rate on A2</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K136-1</td>
<td>Rate Gyro High Rate on B1</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K136-2</td>
<td>Rate Gyro High Rate on B2</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K137</td>
<td>Logic A Bus Arm A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K138</td>
<td>Logic A Bus Arm B</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K139</td>
<td>Logic B Bus Arm A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
Relay

<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>K140</td>
<td>Logic B Bus Arm B</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K145</td>
<td>LET Jettison A</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K146</td>
<td>LET Jettison B</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K147</td>
<td>S-IC Engine No. 1 Rough Combustion Voting Relay</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K148</td>
<td>S-IC Engine No. 2 Rough Combustion Voting Relay B</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K149</td>
<td>S-2 Second Plane Separation Simulate</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K150</td>
<td>S-2 LH₂ Prevalves Close Command</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K151</td>
<td>S-2 Engine No. 1 Thrust Monitor B</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K152</td>
<td>S-2 Engine No. 2 Thrust Monitor B</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K153</td>
<td>S-2 Engine No. 3 Thrust Monitor B</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K154</td>
<td>S-2 Engine No. 4 Thrust Monitor B</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K155</td>
<td>S-2 Engine No. 5 Thrust Monitor B</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K156</td>
<td>S-2 Range Safety No. 1 Engines Cutoff</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K157</td>
<td>S-2 Range Safety No. 2 Engines Cutoff</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K158</td>
<td>S-IC Engine No. 1 Prevalves Close</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K159</td>
<td>S-IC Engine No. 1 Cutoff</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K160</td>
<td>EDS Manual/Auto Cutoff A of S-2 Engines</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K161</td>
<td>EDS Manual/Auto Cutoff B of S-2 Engines</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K162-1</td>
<td>S-2 LH₂ Prevalves Close Command from Engines Prevent Start</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K162-2</td>
<td>S-2 LH₂ Prevalves Close Command from Engines Prevent Start</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

Added 15 October 1966
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>K162-3</td>
<td>S-II LHg Prevalves Close Prevent Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>K163</td>
<td>S-II Start Phase Limiter Cutoff Arm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>K166</td>
<td>Engine Start Interlock By-pass</td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K167</td>
<td>EDS Arming of S-IVB Engine Thrust Indication B</td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K171</td>
<td>GSE Engine Thrust Indication Enable A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>K172</td>
<td>GSE Engine Thrust Indication Enable B</td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K173</td>
<td>EDS Arming of S-II Thrust Indication A</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K174</td>
<td>EDS Arming of S-II Thrust Indication B</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K182-1</td>
<td>RF Abort A1</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K182-2</td>
<td>RF Abort A2</td>
<td></td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K183-1</td>
<td>RF Abort B1</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K183-2</td>
<td>RF Abort B2</td>
<td></td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K192-1</td>
<td>LET Jettison A1</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K192-2</td>
<td>LET Jettison A2</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K193-1</td>
<td>LET Jettison B1</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K193-2</td>
<td>LET Jettison B2</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K198</td>
<td>S-IVB Prevalve Control Command</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K199</td>
<td>S-IVB Chill Down Shutoff Command</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K201-1</td>
<td>S-II Second Plane Separation A</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K201-2</td>
<td>S-II Second Plane Separation B</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K202</td>
<td>S-IC Range Safety Engines Cutoff A</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K203-1</td>
<td>S-IC Range Safety Engines Cutoff B1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K203-2</td>
<td>S-IC Range Safety Engines Cutoff B2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>K206-1</td>
<td>MESC Logic Bus A Arm A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K206-2</td>
<td>MESC Logic Bus A Arm B</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K207-1</td>
<td>MESC Logic Bus B Arm A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>K208</td>
<td>S-II Engine No. 1 Cutoff</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K212</td>
<td>Timers Test</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K214</td>
<td>Normal S-II Engines Cutoff B</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K215</td>
<td>Normal S-II Engines Cutoff A</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K216</td>
<td>S-II All Engines Start Command</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>K217</td>
<td>S-II Engines Prevent Start</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K218</td>
<td>S-II Engines Prevent Start By-pass Command</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K219</td>
<td>S-IC All Engines OK B</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DRAWING NOTES:

1. The Auto-Abort bus can be energized from the excessive rate circuit as well as the two Engine Out Circuit on Page 2.

2. This function is not programmed on the switch selector for this mission.

3. This circuit is not active on this mission and the function is inhibited.

APOLLO INTERFACE DOCUMENT
APPENDIX C*

GEORGE C. MARSHALL SPACE FLIGHT CENTER

INTERFACE CONTROL DOCUMENT
DESCRIPTION OF SATURN SA-503 AND APOLLO SC-102
EMERGENCY DETECTION SYSTEM

I. INTRODUCTION

A. The purpose of this document is to describe the Apollo-Saturn AS-503 Emergency Detection System (EDS) design. The design is a coordinated effort by the Crew Safety Panel members and represents technical inputs from several NASA Centers and is binding on all participating centers. The system defined in this document conforms to the "Design Criteria for Saturn-V On-Board Emergency Detection System, ICD (#13M55001)."

B. This document defines interfaces between modules and stages in functional terms only. Detailed interface information is contained in other interface documents. The document drawing numbers and other pertinent information may be obtained from the "Inter-Center Interface Control Document Log."

C. This document does not reflect all connections from other systems into the EDS circuits.

II. ABBREVIATIONS

For use with this document the following abbreviations shall apply:

1. ACE Automatic Checkout Equipment
2. AP GSE Access Point Monitored by Apollo ACE
3. AUTO Automatic
4. BATT Battery
5. BME Bench Maintenance Equipment

APOLLO INTERFACE DOCUMENT

* The ICD in this Appendix was dated February 1, 1966 and included Revision A dated June 21, 1966. Pages of the ICD that were modified for this Appendix do not retain the ICD drawing number.

Added 1 January 1967
<table>
<thead>
<tr>
<th>No.</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>CB</td>
<td>Circuit Breaker</td>
</tr>
<tr>
<td>7</td>
<td>CMD</td>
<td>Command</td>
</tr>
<tr>
<td>8</td>
<td>CO</td>
<td>Cutoff</td>
</tr>
<tr>
<td>9</td>
<td>COM</td>
<td>Common Return</td>
</tr>
<tr>
<td>10</td>
<td>COMB</td>
<td>Combustion</td>
</tr>
<tr>
<td>11</td>
<td>COMP</td>
<td>Component</td>
</tr>
<tr>
<td>12</td>
<td>CTL</td>
<td>Control</td>
</tr>
<tr>
<td>13</td>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>14</td>
<td>DDAS</td>
<td>Digital Data Acquisition System</td>
</tr>
<tr>
<td>15</td>
<td>DACT</td>
<td>Deactivate</td>
</tr>
<tr>
<td>16</td>
<td>DISCH</td>
<td>Discharge</td>
</tr>
<tr>
<td>17</td>
<td>DISTR</td>
<td>Distributor</td>
</tr>
<tr>
<td>18</td>
<td>EDS</td>
<td>Emergency Detection System</td>
</tr>
<tr>
<td>19</td>
<td>ENG</td>
<td>Engine</td>
</tr>
<tr>
<td>20</td>
<td>FCM</td>
<td>Flight Combustion Monitor</td>
</tr>
<tr>
<td>21</td>
<td>FTP</td>
<td>Fuel Tank Pressure</td>
</tr>
<tr>
<td>22</td>
<td>FWD</td>
<td>Forward</td>
</tr>
<tr>
<td>23</td>
<td>GPI</td>
<td>Gimbal Position Indication</td>
</tr>
<tr>
<td>24</td>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>25</td>
<td>IND</td>
<td>Indication</td>
</tr>
<tr>
<td>26</td>
<td>INSTR</td>
<td>Instrumentation</td>
</tr>
<tr>
<td>27</td>
<td>IU</td>
<td>Instrument Unit</td>
</tr>
<tr>
<td>28</td>
<td>JETT</td>
<td>Jettison</td>
</tr>
<tr>
<td>29</td>
<td>LECO</td>
<td>Lox Engine Cutoff</td>
</tr>
<tr>
<td>30</td>
<td>LES</td>
<td>Launch Escape System</td>
</tr>
<tr>
<td>31</td>
<td>LET</td>
<td>Launch Escape Tower</td>
</tr>
<tr>
<td>32</td>
<td>LH₂</td>
<td>Liquid Hydrogen</td>
</tr>
<tr>
<td>33</td>
<td>LOX</td>
<td>Liquid Oxygen</td>
</tr>
<tr>
<td>34</td>
<td>LV</td>
<td>Launch Vehicle</td>
</tr>
<tr>
<td>35</td>
<td>MCP</td>
<td>Mission Control Programmer</td>
</tr>
<tr>
<td>36</td>
<td>MEAS</td>
<td>Measurement</td>
</tr>
<tr>
<td>37</td>
<td>MESC</td>
<td>Master Event Sequence Controller</td>
</tr>
<tr>
<td>38</td>
<td>MS</td>
<td>Millisecond</td>
</tr>
<tr>
<td>39</td>
<td>NC</td>
<td>Normally Closed</td>
</tr>
<tr>
<td>40</td>
<td>NO</td>
<td>Normally Open</td>
</tr>
<tr>
<td>41</td>
<td>No.</td>
<td>Number</td>
</tr>
<tr>
<td>42</td>
<td>PRESS</td>
<td>Pressure</td>
</tr>
<tr>
<td>43</td>
<td>PWR</td>
<td>Power</td>
</tr>
<tr>
<td>44</td>
<td>RECIRC</td>
<td>Recirculation</td>
</tr>
<tr>
<td>45</td>
<td>REQ</td>
<td>Request</td>
</tr>
<tr>
<td>46</td>
<td>S</td>
<td>Switch</td>
</tr>
<tr>
<td>47</td>
<td>SC</td>
<td>Spacecraft</td>
</tr>
<tr>
<td>48</td>
<td>SCS</td>
<td>Stabilization and Control System</td>
</tr>
<tr>
<td>49</td>
<td>SEC</td>
<td>Second</td>
</tr>
<tr>
<td>50</td>
<td>SEQ</td>
<td>Sequencer</td>
</tr>
<tr>
<td>51</td>
<td>SPS</td>
<td>Service Propulsion System</td>
</tr>
<tr>
<td>52</td>
<td>SUPV</td>
<td>Supervision</td>
</tr>
<tr>
<td>53</td>
<td>TM</td>
<td>Telemetry</td>
</tr>
<tr>
<td>54</td>
<td>USM</td>
<td>Apollo ACE Monitor at Service Module Umbilical</td>
</tr>
</tbody>
</table>
III ELECTRICAL SYMBOLS
(Refer to Section III in Appendix A)

IV INTERSTAGE SIGNALS
(Refer to Section IV in Appendix A)

V DESCRIPTION OF 28 VOLT BUSES
(Refer to Section V in Appendix A)

VI RELAY CROSS REFERENCE LIST
SATURN V
EDS Relay Functions

NOTE: Relay numbers shown are for reference only and do not correspond to actual hardware reference designations.
SATURN V
EDS RELAY FUNCTIONS

<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>NO</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>S-IC Engine No. 1 Thrust Voting Relay A</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>S-IC Engine No. 2 Thrust Voting Relay A</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>S-IC Engine No. 3 Thrust Voting Relay A</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K4</td>
<td>S-IC Engine No. 4 Thrust Voting Relay A</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K5</td>
<td>S-IC Engine No. 5 Thrust Voting Relay A</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K9-1</td>
<td>EDS Manual/Auto Cutoff of LV Engines A</td>
<td></td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K9-2</td>
<td>EDS Manual/Auto Cutoff of LV Engines A</td>
<td></td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K10-1</td>
<td>EDS Manual/Auto Cutoff of LV Engines B</td>
<td></td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K10-2</td>
<td>EDS Manual/Auto Cutoff of LV Engines B</td>
<td></td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K11</td>
<td>S-IC Engine No. 1 Thrust Voting Relay B</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K12</td>
<td>S-IC Engine No. 2 Thrust Voting Relay B</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K13</td>
<td>S-IC Engine No. 3 Thrust Voting Relay B</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K14</td>
<td>S-IC Engine No. 4 Thrust Voting Relay B</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K15</td>
<td>S-IC Engine No. 5 Thrust Voting Relay B</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K19-1</td>
<td>EDS or Manual Cutoff of LV Engines Armed A</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K19-2</td>
<td>EDS or Manual Cutoff of LV Engines Armed B</td>
<td>NC NO NC NO NC NO Coil</td>
</tr>
<tr>
<td>K20-1</td>
<td>LV Engines Cutoff No. 1 from Apollo Spacecraft</td>
<td>3 2 2</td>
</tr>
<tr>
<td>K20-2</td>
<td>LV Engines Cutoff No. 2 from Apollo Spacecraft</td>
<td>3 3 10</td>
</tr>
<tr>
<td>K20-3</td>
<td>LV Engines Cutoff No. 3 from Apollo Spacecraft</td>
<td>3 3 3 10</td>
</tr>
<tr>
<td>K20-4</td>
<td>LV Engines Cutoff No. 2 from Apollo Spacecraft</td>
<td>3 3 3 10</td>
</tr>
<tr>
<td>K21-1</td>
<td>S-IC Engine No. 1 Thrust Monitor A</td>
<td>7 2</td>
</tr>
<tr>
<td>K21-2</td>
<td>S-IC Engine No. 1 Thrust Monitor B</td>
<td>7 2 2 2</td>
</tr>
<tr>
<td>K22-1</td>
<td>S-IC Engine No. 2 Thrust Monitor A</td>
<td>7 2 2</td>
</tr>
<tr>
<td>K22-2</td>
<td>S-IC Engine No. 2 Thrust Monitor B</td>
<td>7 2 2</td>
</tr>
<tr>
<td>K23-1</td>
<td>S-IC Engine No. 3 Thrust Monitor A</td>
<td>7 2 2</td>
</tr>
<tr>
<td>K23-2</td>
<td>S-IC Engine No. 3 Thrust Monitor B</td>
<td>7 2 2</td>
</tr>
<tr>
<td>K24-1</td>
<td>S-IC Engine No. 4 Thrust Monitor A</td>
<td>7 2 2</td>
</tr>
<tr>
<td>K24-2</td>
<td>S-IC Engine No. 4 Thrust Monitor B</td>
<td>7 2 2</td>
</tr>
<tr>
<td>K25-1</td>
<td>S-IC Engine No. 5 Thrust Monitor A</td>
<td>7 2 2</td>
</tr>
<tr>
<td>K25-2</td>
<td>S-IC Engine No. 5 Thrust Monitor B</td>
<td>7 2 2</td>
</tr>
<tr>
<td>K29-1</td>
<td>Auto-Abort 1A to Apollo Spacecraft</td>
<td>10 10 10 10</td>
</tr>
<tr>
<td>K29-2</td>
<td>Auto-Abort 1B to Apollo Spacecraft</td>
<td>10 10 10</td>
</tr>
<tr>
<td>K29-3</td>
<td>Auto-Abort 2A to Apollo Spacecraft</td>
<td>10 10 10 10</td>
</tr>
<tr>
<td>K29-4</td>
<td>Auto-Abort 2B to Apollo Spacecraft</td>
<td>10 10 10</td>
</tr>
<tr>
<td>K29-5</td>
<td>Auto-Abort 3A to Apollo Spacecraft</td>
<td>10 10 10 10</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

Added 1 January 1967
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
<th>40M37557A</th>
</tr>
</thead>
<tbody>
<tr>
<td>K29-6</td>
<td>Auto-Abort 3B to Apollo Spacecraft</td>
<td>10 10 10</td>
<td></td>
</tr>
<tr>
<td>K30</td>
<td>+6D95 Monitor to GSE</td>
<td>10 10</td>
<td>10</td>
</tr>
<tr>
<td>K31-1</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 1</td>
<td>3 2 3</td>
<td>2</td>
</tr>
<tr>
<td>K31-2</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 2</td>
<td>3 3 2</td>
<td>2</td>
</tr>
<tr>
<td>K31-3</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 3</td>
<td>3 3 2</td>
<td>2</td>
</tr>
<tr>
<td>K32-1</td>
<td>S-IC Engine No. 2 Thrust Monitor No. 1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K32-2</td>
<td>S-IC Engine No. 2 Thrust Monitor No. 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K32-3</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K33-1</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K33-2</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K33-3</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K34-1</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K34-2</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K34-3</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K35-1</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K35-2</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K35-3</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K39</td>
<td>EDS Bus Changeover B</td>
<td>1 1 1</td>
<td></td>
</tr>
<tr>
<td>K40</td>
<td>Excessive Rate Auto-Abort Inhibit (P, Y, & R)</td>
<td>6 6 6</td>
<td></td>
</tr>
<tr>
<td>K41</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll)</td>
<td>6 6 6</td>
<td></td>
</tr>
<tr>
<td>K42</td>
<td>S-IC Two Engine Out Auto-Abort Inhibit</td>
<td>6 6 6</td>
<td></td>
</tr>
</tbody>
</table>

Apollo Interface Document

Added 1 January 1967
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts</th>
<th>Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K43-1</td>
<td>S-IC Two Engine Out Auto-Abort Inhibit No. 1</td>
<td>NC 2</td>
<td>NO 2</td>
</tr>
<tr>
<td>K43-2</td>
<td>S-IC Two Engine Out Auto-Abort Inhibit No. 2</td>
<td>NC 2</td>
<td>NO 2</td>
</tr>
<tr>
<td>K43-3</td>
<td>S-IC Two Engine Out Auto-Abort Inhibit No. 3</td>
<td>NC 2</td>
<td>NO 2</td>
</tr>
<tr>
<td>K44</td>
<td>LET Jettisoned B1</td>
<td>NC 9</td>
<td>NO 9</td>
</tr>
<tr>
<td>K45</td>
<td>S-IVB Engine Thrust Monitor B</td>
<td>NC 7</td>
<td>NO 7</td>
</tr>
<tr>
<td>K46-1</td>
<td>Excessive Rate Auto-Abort Inhibit (P & Y) No. 1</td>
<td>NC 8</td>
<td>NO 8</td>
</tr>
<tr>
<td>K46-2</td>
<td>Excessive Rate Auto-Abort Inhibit (P & Y) No. 2</td>
<td>NC 8</td>
<td>NO 8</td>
</tr>
<tr>
<td>K46-3</td>
<td>Excessive Rate Auto-Abort Inhibit (P & Y) No. 3</td>
<td>NC 8</td>
<td>NO 8</td>
</tr>
<tr>
<td>K47-1</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll) No. 1</td>
<td>NC 8</td>
<td>NO 8</td>
</tr>
<tr>
<td>K47-2</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll) No. 2</td>
<td>NC 8</td>
<td>NO 8</td>
</tr>
<tr>
<td>K47-3</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll) No. 3</td>
<td>NC 8</td>
<td>NO 8</td>
</tr>
<tr>
<td>K48</td>
<td>LET Jettisoned B2</td>
<td>NC 9</td>
<td>NO 9</td>
</tr>
<tr>
<td>K49</td>
<td>Range Safety Destruct Armed A from S-IVB</td>
<td>NC 7</td>
<td>NO 7</td>
</tr>
<tr>
<td>K50</td>
<td>Range Safety Destruct Armed B from S-IVB</td>
<td>NC 7</td>
<td>NO 7</td>
</tr>
<tr>
<td>K51</td>
<td>S-IVB Thrust Monitor A Indicator</td>
<td>NC 7</td>
<td>NO 7</td>
</tr>
<tr>
<td>K53</td>
<td>EDS Manual/Auto Cutoff A of S-IC Engines</td>
<td>NC 3</td>
<td>NO 3</td>
</tr>
<tr>
<td>K54-1</td>
<td>EDS Manual/Auto Cutoff B of S-IC Engines</td>
<td>NC 3</td>
<td>NO 3</td>
</tr>
<tr>
<td>K54-2</td>
<td>EDS Manual/Auto Cutoff B of S-IC Engines</td>
<td>NC 3</td>
<td>NO 3</td>
</tr>
<tr>
<td>K55</td>
<td>S-IC Engines Cutoff Enable</td>
<td>NC 3</td>
<td>NO 3</td>
</tr>
<tr>
<td>K56</td>
<td>S-IC Engines Cutoff Enable</td>
<td>NC 3</td>
<td>NO 3</td>
</tr>
<tr>
<td>K57</td>
<td>S-IVB Engine Start Command</td>
<td>NC 7</td>
<td>NO 7</td>
</tr>
<tr>
<td>K58</td>
<td>S-IVB Engine Prevent Start</td>
<td>NC 7</td>
<td>NO 7</td>
</tr>
<tr>
<td>K59</td>
<td>S-IC All Engine OK A</td>
<td>NC 2</td>
<td>NO 2</td>
</tr>
</tbody>
</table>
Relay Functions

<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K60</td>
<td>Excessive Roll Rate Voting Relay A</td>
<td>8 7 8</td>
</tr>
<tr>
<td>K61</td>
<td>Excessive Roll Rate Voting Relay B</td>
<td>8 8 7 8</td>
</tr>
<tr>
<td>K62</td>
<td>Excessive Pitch Rate Voting Relay A</td>
<td>8 7 8</td>
</tr>
<tr>
<td>K63</td>
<td>Excessive Pitch Rate Voting Relay B</td>
<td>8 8 7 8</td>
</tr>
<tr>
<td>K64</td>
<td>Excessive Yaw Rate Voting Relay A</td>
<td>8 7 8</td>
</tr>
<tr>
<td>K65</td>
<td>Excessive Yaw Rate Voting Relay B</td>
<td>8 8 7 8</td>
</tr>
<tr>
<td>K66</td>
<td>EDS Arming of S-IVB Engine Thrust Indication A</td>
<td>7 7 7</td>
</tr>
<tr>
<td>K68-1</td>
<td>S-II/S-IVB Separation Simulate</td>
<td>6 6</td>
</tr>
<tr>
<td>K68-2</td>
<td>S-II/S-IVB Separation Simulate</td>
<td>6 6</td>
</tr>
<tr>
<td>K69</td>
<td>Range Safety S-IVB Destruct Arm B</td>
<td>7 7</td>
</tr>
<tr>
<td>K70</td>
<td>Range Safety S-IVB Destruct Arm A</td>
<td>7 7</td>
</tr>
<tr>
<td>K71</td>
<td>Pad Abort Request</td>
<td>7 7 7</td>
</tr>
<tr>
<td>K72</td>
<td>S-IVB Thrust Monitor A</td>
<td>7 7</td>
</tr>
<tr>
<td>K73</td>
<td>EDS Bus Changeover A</td>
<td>1 1 1</td>
</tr>
<tr>
<td>K74</td>
<td>LES Abort Lock-up A1</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>K75</td>
<td>LES Abort Lock-up A2</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>K76</td>
<td>Normal S-IVB Engine Cutoff</td>
<td>7 6</td>
</tr>
<tr>
<td>K78</td>
<td>Cutoff S-IC Inboard Engine</td>
<td>3 3</td>
</tr>
<tr>
<td>K79</td>
<td>Cutoff S-IC Outboard Engine</td>
<td>3 3</td>
</tr>
<tr>
<td>K80</td>
<td>S-II All Engines Normal Cutoff</td>
<td>4 4</td>
</tr>
<tr>
<td>K81</td>
<td>S-II Engine No. 1 Thrust Monitor A</td>
<td>7 4</td>
</tr>
<tr>
<td>K82</td>
<td>S-II Engine No. 2 Thrust Monitor A</td>
<td>7</td>
</tr>
<tr>
<td>K83</td>
<td>S-II Engine No. 3 Thrust Monitor A</td>
<td>7</td>
</tr>
<tr>
<td>K84</td>
<td>S-II Engine No. 4 Thrust Monitor A</td>
<td>7</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K85</td>
<td>S-II Engine No. 5 Thrust Monitor A</td>
<td></td>
</tr>
<tr>
<td>K90</td>
<td>EDS Liftoff Inhibit A</td>
<td>NC 9 10</td>
</tr>
<tr>
<td>K91</td>
<td>EDS Liftoff Inhibit B</td>
<td>NC 9 10</td>
</tr>
<tr>
<td>K92</td>
<td>EDS Liftoff Enable A</td>
<td>NO 10 9</td>
</tr>
<tr>
<td>K93</td>
<td>EDS Liftoff Enable B</td>
<td>NO 10 9</td>
</tr>
<tr>
<td>K94-1</td>
<td>LV Attitude Reference Fail A</td>
<td>5 5 5</td>
</tr>
<tr>
<td>K94-2</td>
<td>LV Attitude Reference Fail B</td>
<td>5 5 5</td>
</tr>
<tr>
<td>K95</td>
<td>LET Jettisoned A1</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>K96</td>
<td>LET Jettisoned A2</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>K97</td>
<td>EDS Abort Voting Logic Input A1</td>
<td>10 9 9 10</td>
</tr>
<tr>
<td>K98</td>
<td>EDS Abort Voting Logic Input A2</td>
<td>10 9 9 10</td>
</tr>
<tr>
<td>K99</td>
<td>EDS Abort Voting Logic Input A3</td>
<td>10 9 9 10</td>
</tr>
<tr>
<td>K100</td>
<td>EDS Abort Voting Logic Input B1</td>
<td>10 9 9 10</td>
</tr>
<tr>
<td>K101</td>
<td>EDS Abort Voting Logic Input B2</td>
<td>10 9 9 10</td>
</tr>
<tr>
<td>K102</td>
<td>EDS Abort Voting Logic Input B3</td>
<td>10 9 9 10</td>
</tr>
<tr>
<td>K103</td>
<td>Abort B1</td>
<td>10 10 9 9</td>
</tr>
<tr>
<td>K104</td>
<td>Abort B2</td>
<td>10 10 9 9</td>
</tr>
<tr>
<td>K105</td>
<td>Abort A1</td>
<td>10 10 9 9</td>
</tr>
<tr>
<td>K106</td>
<td>Abort A2</td>
<td>10 10 9 9</td>
</tr>
<tr>
<td>K107</td>
<td>Auto-Abort System Enable A1</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>K108</td>
<td>Auto-Abort System Enable A2</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>K109</td>
<td>Auto-Abort System Enable B1</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>K110</td>
<td>Auto-Abort System Enable B2</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>K111</td>
<td>LES Abort Lock-up B1</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>K112</td>
<td>LES Abort Lock-up B2</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>K113</td>
<td>Excessive Rate Auto-Abort Inhibit (P, Y, & R)</td>
<td>6 6 6</td>
</tr>
<tr>
<td>K114</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll)</td>
<td>6 6 6</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

Added 1 January 1967
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K115</td>
<td>S-IC Two Engine Out Auto-Abort Inhibit Enable</td>
<td>NC 6 NO 6 NC 6 NC 6</td>
</tr>
<tr>
<td>K116</td>
<td>+6D91 Bus GSE Disable</td>
<td>NO 1 NO 1</td>
</tr>
<tr>
<td>K117</td>
<td>+6D92 Bus GSE Disable</td>
<td>NO 1 NO 1</td>
</tr>
<tr>
<td>K118</td>
<td>+6D93 Bus GSE Disable</td>
<td>NO 1 NO 1</td>
</tr>
<tr>
<td>K121-1</td>
<td>S-II Engine No. 1 Thrust Monitor A (Type 1 of 5)</td>
<td>NO 4 NO 4 NO 4</td>
</tr>
<tr>
<td>K121-2</td>
<td>S-II Engine No. 1 Thrust Monitor B (Type 1 of 5)</td>
<td>NO 4 NO 4</td>
</tr>
<tr>
<td>K122</td>
<td>Excessive Pitch Rate Output No. 1</td>
<td>NO 8 NO 8</td>
</tr>
<tr>
<td>K123</td>
<td>Excessive Pitch Relay Output No. 2</td>
<td>NO 8 NO 8</td>
</tr>
<tr>
<td>K124</td>
<td>Excessive Pitch Rate Output No. 3</td>
<td>NO 8 NO 8</td>
</tr>
<tr>
<td>K125</td>
<td>Excessive Yaw Rate Output No. 1</td>
<td>NO 8 NO 8</td>
</tr>
<tr>
<td>K126</td>
<td>Excessive Yaw Rate Output No. 2</td>
<td>NO 8 NO 8</td>
</tr>
<tr>
<td>K127</td>
<td>Excessive Yaw Rate Output No. 3</td>
<td>NO 8 NO 8</td>
</tr>
<tr>
<td>K128</td>
<td>Excessive Roll Rate Output No. 1</td>
<td>NO 8 NO 8</td>
</tr>
<tr>
<td>K129</td>
<td>Excessive Roll Rate Output No. 2</td>
<td>NO 8 NO 8</td>
</tr>
<tr>
<td>K130</td>
<td>Excessive Roll Rate Output No. 3</td>
<td>NO 8 NO 8</td>
</tr>
<tr>
<td>K131</td>
<td>RF Link Abort Request A</td>
<td>NO 7 NO 7</td>
</tr>
<tr>
<td>K132</td>
<td>RF Link Abort Request B</td>
<td>NO 7 NO 7</td>
</tr>
<tr>
<td>K134</td>
<td>S-IVB Thrust OK Monitor B Indication</td>
<td>NO 7 NO 7</td>
</tr>
<tr>
<td>K135-1</td>
<td>Rate Gyro High Rate On A1</td>
<td>NO 8 NO 8 NO 8</td>
</tr>
<tr>
<td>K135-2</td>
<td>Rate Gyro High Rate On A2</td>
<td>NO 8 NO 8</td>
</tr>
<tr>
<td>K136-1</td>
<td>Rate Gyro High Rate On B1</td>
<td>NO 8 NO 8 NO 8</td>
</tr>
<tr>
<td>K136-2</td>
<td>Rate Gyro High Rate On B2</td>
<td>NO 8 NO 8 NO 8</td>
</tr>
<tr>
<td>K137</td>
<td>Logic A Bus Arm A</td>
<td>NO 1 NO 1</td>
</tr>
<tr>
<td>K138</td>
<td>Logic A Bus Arm B</td>
<td>NO 1 NO 1</td>
</tr>
<tr>
<td>K139</td>
<td>Logic B Bus Arm A</td>
<td>NO 1 NO 1</td>
</tr>
<tr>
<td>K140</td>
<td>Logic B Bus Arm B</td>
<td>NO 1 NO 1</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT
### Relay #	Function	NC	NO	NC	NO	NC	NO	Coil
K149 | S-II Second Plane Separation Simulate | 5 | 5 | 5 |
K150 | S-II LH₂ Prevalves Close Command | 4 | 4 |
K151 | S-II Engine No. 1 Thrust Monitor B | 7 | 4 |
K152 | S-II Engine No. 2 Thrust Monitor B | 7 |
K153 | S-II Engine No. 3 Thrust Monitor B | 7 |
K154 | S-II Engine No. 4 Thrust Monitor B | 7 |
K155 | S-II Engine No. 5 Thrust Monitor B | 7 |
K156 | S-II Range Safety No. 1 Engines Cutoff | 4 | 4 | 4 |
K157 | S-II Range Safety No. 2 Engines Cutoff | 4 | 4 | 4 |
K158 | S-IC Engine No. 1 Prevalves Close | 3 | 3 | 3 |
K159 | S-IC Engine No. 1 Cutoff | 3 | 3 | 3 |
K160-1 | EDS Manual/Auto Cutoff A1 of S-II Engines | 4 | 4 | 4 |
K160-2 | EDS Manual/Auto Cutoff B1 of S-II Engines | 4 | 4 |
K161-1 | EDS Manual/Auto Cutoff A2 of S-II Engines | 4 | 4 | 4 |
K161-2 | EDS Manual/Auto Cutoff B2 of S-II Engines | 4 | 4 |
K162-1 | S-II LH₂ Prevalves Close Command from Engines Prevent Start | 4 | 4 |
K162-2 | S-II LH₂ Prevalves Close Command from Engines Prevent Start | 4 |
K162-3 | S-II LH₂ Prevalves Close Command from Engines Prevent Start | 4 |

APOLLO INTERFACE DOCUMENT

Added 1 January 1967
### Relay #	Function
K163 | S-II Start Phase Limiter
 | Cutoff Arm
K166 | Engine Start Interlock
 | By-pass
K167 | EDS Arming of S-IVB Engine
 | Thrust Indication B
K171 | GSE Engine Thrust Indication
 | Enable A
K172 | GSE Engine Thrust Indication
 | Enable B
K173 | EDS Arming Of S-II Thrust
 | Indication A
K174 | EDS Arming of S-II Thrust
 | Indication B
K198 | S-IVB Prevalve Control
 | Command
K199 | S-IVB Chilldown Shutoff
 | Command
K201-1 | S-II Second Plane Separation A
K201-2 | S-II Second Plane Separation B
K202 | S-IC Range Safety Engines
 | Cutoff A
K203-1 | S-IC Range Safety Engines
 | Cutoff B1
K203-2 | S-IC Range Safety Engines
 | Cutoff B2
K208 | S-II Engine No. 1 Cutoff
K209 | S-II Engine No. 1 Lox and
 | LH2 Prevalves Control
K210 | S-II Prevalve Lockout
 | Command from GSE
K212 | Timers Test
K214-1 | Normal S-II Engines Cutoff B1
K214-2 | Normal S-II Engines Cutoff B2
K215-1 | Normal S-II Engines Cutoff A1
K215-2 | Normal S-II Engines Cutoff A2
K216 | S-II All Engines Start Command

<table>
<thead>
<tr>
<th>Contacts - Schematic Sheet No.</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>NC</th>
<th>NO</th>
<th>Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>K163</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K166</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K167</td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K171</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K172</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K173</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K174</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K198</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K199</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K201-1</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K201-2</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K202</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K203-1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K203-2</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K208</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K209</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K210</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K212</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K214-1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K214-2</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K215-1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K215-2</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K216</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay #</td>
<td>Function</td>
<td>Contacts - Schematic Sheet No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K217</td>
<td>S-II Engines Prevent Start</td>
<td>4 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K218</td>
<td>S-II Engines Prevent Start</td>
<td>4 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K219</td>
<td>S-IC Alt Engine OK B</td>
<td>2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Descriptions

- **NC**: Normally Closed
- **NO**: Normally Open

Appendix C

EPOLLO INTERFACE DOCUMENT

Added 1 January 1967
The Auto-Abort bus, +6D95, can be energized from the excessive rate circuit as well as the two engine out circuit.

This function is not programmed on the switch selector for this mission.

This circuit is not active on this mission and the function is inhibited.
APPENDIX D*

GEORGE C. MARSHALL SPACE FLIGHT CENTER

INTERFACE CONTROL DOCUMENT
DESCRIPTION OF SATURN SA-504 AND APOLLO SC-103
EMERGENCY DETECTION SYSTEM

I. INTRODUCTION

A. The purpose of this document is to describe the Apollo-Saturn AS-504 Emergency Detection System (EDS) design. The design is a coordinated effort by the Crew Safety Panel members and represents technical inputs from several NASA Centers and is binding on all participating centers. The system defined in this document conforms to the "Design Criteria for Saturn-V On-Board Emergency Detection System, ICD (#13M65001)."

B. This document defines interfaces between modules and stages in functional terms only. Detailed interface information is contained in other interface documents. The document drawing numbers and other pertinent information may be obtained from the "Inter-Center Interface Control Document Log."

C. The document does not reflect all connections from other systems into the EDS circuits.

II. ABBREVIATIONS

For use with this document the following abbreviations shall apply:

1. ACE Automatic Checkout Equipment
2. AP GSE Access Point Monitored by Apollo ACE
3. AUTO Automatic
4. BATT Battery
5. BME Bench Maintenance Equipment

* The ICD in this Appendix was dated Feb. 23, 1966, and contained revision A dated Sept. 15, 1966.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>CB</td>
<td>Circuit Breaker</td>
</tr>
<tr>
<td>7.</td>
<td>CMD</td>
<td>Command</td>
</tr>
<tr>
<td>8.</td>
<td>CO</td>
<td>Cutoff</td>
</tr>
<tr>
<td>9.</td>
<td>COM</td>
<td>Common Return</td>
</tr>
<tr>
<td>10.</td>
<td>COMB</td>
<td>Combustion</td>
</tr>
<tr>
<td>11.</td>
<td>COMP</td>
<td>Component</td>
</tr>
<tr>
<td>12.</td>
<td>CTL</td>
<td>Control</td>
</tr>
<tr>
<td>13.</td>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>14.</td>
<td>DDAS</td>
<td>Digital Data Acquisition System</td>
</tr>
<tr>
<td>15.</td>
<td>DACT</td>
<td>Deactivate</td>
</tr>
<tr>
<td>16.</td>
<td>DISCH</td>
<td>Discharge</td>
</tr>
<tr>
<td>17.</td>
<td>DISTR</td>
<td>Distributor</td>
</tr>
<tr>
<td>18.</td>
<td>EDS</td>
<td>Emergency Detection System</td>
</tr>
<tr>
<td>19.</td>
<td>ENG</td>
<td>Engine</td>
</tr>
<tr>
<td>20.</td>
<td>FCM</td>
<td>Flight Combustion Monitor</td>
</tr>
<tr>
<td>21.</td>
<td>FTP</td>
<td>Fuel Tank Pressure</td>
</tr>
<tr>
<td>22.</td>
<td>FWD</td>
<td>Forward</td>
</tr>
<tr>
<td>23.</td>
<td>GPI</td>
<td>Gimbal Position Indication</td>
</tr>
<tr>
<td>24.</td>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>25.</td>
<td>IND</td>
<td>Indication</td>
</tr>
<tr>
<td>26.</td>
<td>INSTR</td>
<td>Instrumentation</td>
</tr>
<tr>
<td>27.</td>
<td>IU</td>
<td>Instrument Unit</td>
</tr>
<tr>
<td>28.</td>
<td>JETT</td>
<td>Jettison</td>
</tr>
<tr>
<td>29.</td>
<td>LECO</td>
<td>LOX Engine Cutoff</td>
</tr>
<tr>
<td>30.</td>
<td>LES</td>
<td>Launch Escape System</td>
</tr>
<tr>
<td>31.</td>
<td>LET</td>
<td>Launch Escape Tower</td>
</tr>
<tr>
<td>32.</td>
<td>LH₂</td>
<td>Liquid Hydrogen</td>
</tr>
<tr>
<td>33.</td>
<td>LOX</td>
<td>Liquid Oxygen</td>
</tr>
<tr>
<td>34.</td>
<td>LV</td>
<td>Launch Vehicle</td>
</tr>
<tr>
<td>35.</td>
<td>MCP</td>
<td>Mission Control Programmer</td>
</tr>
<tr>
<td>36.</td>
<td>MEAS</td>
<td>Measurement</td>
</tr>
<tr>
<td>37.</td>
<td>MESC</td>
<td>Master Event Sequence Controller</td>
</tr>
<tr>
<td>38.</td>
<td>MS</td>
<td>Millisecond</td>
</tr>
<tr>
<td>39.</td>
<td>NC</td>
<td>Normally Closed</td>
</tr>
<tr>
<td>40.</td>
<td>NO</td>
<td>Normally Open</td>
</tr>
<tr>
<td>41.</td>
<td>No.</td>
<td>Number</td>
</tr>
<tr>
<td>42.</td>
<td>PRESS</td>
<td>Pressure</td>
</tr>
<tr>
<td>43.</td>
<td>PWR</td>
<td>Power</td>
</tr>
<tr>
<td>44.</td>
<td>RECIRC</td>
<td>Recirculation</td>
</tr>
<tr>
<td>45.</td>
<td>REQ</td>
<td>Request</td>
</tr>
<tr>
<td>46.</td>
<td>S</td>
<td>Switch</td>
</tr>
<tr>
<td>47.</td>
<td>SC</td>
<td>Spacecraft</td>
</tr>
<tr>
<td>48.</td>
<td>SCS</td>
<td>Stabilization and Control System</td>
</tr>
<tr>
<td>49.</td>
<td>SEC</td>
<td>Second</td>
</tr>
<tr>
<td>50.</td>
<td>SEQ</td>
<td>Sequencer</td>
</tr>
<tr>
<td>51.</td>
<td>SPS</td>
<td>Service Propulsion System</td>
</tr>
<tr>
<td>52.</td>
<td>SUPV</td>
<td>Supervision</td>
</tr>
<tr>
<td>53.</td>
<td>TM</td>
<td>Telemetry</td>
</tr>
<tr>
<td>54.</td>
<td>USM</td>
<td>Apollo ACE Monitor at Service Module Umbilical</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

Added 1 July 1967
III. ELECTRICAL SYMBOLS

The electrical symbols used in this document are listed below.

- **Battery**
- **Elect. Magnetic Latch Relay Coil**
- **Diode or Rectifier**
- **Electrical Relay Coil**
- **Magnetic Latch Normally Closed**
- **Magnetic Latch Normally Open**
- **Solenoid**
- **Normally Closed Electrical Relay Contacts**
- **Normally Open Electrical Relay Contacts**
- **Resistor**
- **Fuse**
- **Amplifier**

APOLLO INTERFACE DOCUMENT

Added 1 July 1967
IV. INTERSTAGE SIGNALS

The method used in transmitting signals between stages will be as follows: If stage "A" requires a signal from stage "B" it will furnish stage "B" with a plus 28 volts, and stage "B" will switch the plus 28 volts and return the switched signal to stage "A". (See figure 1.) The plus 28 volts for signal transmission need only be furnished one time for a set of signals between stages. This method of transmitting signals allows the d.c. power of each stage to be completely independent and eliminates the problems of current transfer in the negative side of the d.c. power systems.

V. DESCRIPTION OF 28 VOLT BUSES

+1D10 The +1D10 bus is supplied directly from S-IC Battery Number One (115A10).

+1D11 The +1D11 bus is supplied from the +1D11 bus before power transfer or the +1D10 bus after power transfer.

+1D20 The +1D20 bus is supplied directly from S-IC Battery Number Two (115A20).

+1D21 The +1D21 bus is supplied from the +1D21 bus before power transfer or the +1D20 bus after power transfer.

+1D111 The +1D111 bus is supplied from the GSE networks and supplies the +1D11 bus during vehicle checkout and prelaunch sequence prior to power transfer.

+1D119 The +1D119 bus is supplied from the +1D119 supply in the GSE.

+1D211 The +1D211 bus is supplied from the GSE networks and supplies the +1D21 bus during vehicle checkout and prelaunch sequence prior to power transfer.

+2D11 The +2D11 bus is supplied from any of the following:

(a) GSE Regulated +28 VDC Main Power Supply before power transfer.

(b) S-II Main Battery 207A1A1 after power transfer.
The +2D21 bus is supplied from any of the following:
(a) GSE Regulated +28 VDC Instrumentation Power Supply before power transfer.
(b) S-II Instrumentation Battery 207A1A2 after power transfer.

The +4D11 bus is supplied from the +4D11 bus before power transfer or the +4D10 bus after power transfer.

The +4D15 bus is supplied from the +4D11 bus after the S-IVB receives the "Sequencer Power ON Command" from GSE.

The +4D31 bus is supplied from the +4D131 bus before power transfer or the +4D30 bus after power transfer.

The +6D10 bus is supplied directly from the IU Battery 601A7.

The +6D11 bus is supplied from the +6D111 bus before power transfer or the +6D10 bus after power transfer.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+6D30</td>
<td>The +6D30 bus is supplied directly from the IU Battery 601A8.</td>
</tr>
<tr>
<td>+6D31</td>
<td>The +6D31 bus is supplied from the +6D211 bus before power transfer or the +6D30 bus after power transfer.</td>
</tr>
<tr>
<td>+6D40</td>
<td>The +6D40 bus is supplied directly from the IU Battery 601A10.</td>
</tr>
<tr>
<td>+6D41</td>
<td>The +6D41 bus is supplied from the +6D211 bus before power transfer or the +6D40 bus after power transfer.</td>
</tr>
<tr>
<td>+6D91</td>
<td>The +6D91 bus is supplied from the +6D11 bus and is one of three EDS buses used in the IU for EDS circuitry.</td>
</tr>
<tr>
<td>+6D92</td>
<td>The +6D92 bus is supplied from the +6D31 bus and is one of three buses used in the IU for EDS circuitry.</td>
</tr>
<tr>
<td>+6D93</td>
<td>The +6D93 bus is supplied from the +6D41 bus and is one of three buses used in the IU for EDS circuitry.</td>
</tr>
<tr>
<td>+6D119</td>
<td>The +6D119 bus is supplied to the IU from GSE.</td>
</tr>
</tbody>
</table>

Battery Bus A
- Battery Bus A is supplied from the Apollo Entry Battery A through a circuit breaker.

Battery Bus B
- Battery Bus B is supplied from the Apollo Entry Battery B through a circuit breaker.

EDS Bus No. 1
- The EDS Bus No. 1 is supplied from Battery Bus A through a circuit breaker and the EDS power switch.

EDS Bus No. 2
- The EDS Bus No. 2 is supplied from Battery C through a circuit breaker and the EDS power switch.

EDS Bus No. 3
- The EDS Bus No. 3 is supplied from the Battery Bus B through a circuit breaker and the EDS power switch.

EDS Changeover Bus A
- The EDS Changeover Bus A is energized from EDS Bus No. 1 except when EDS Bus No. 1 fails (becomes deenergized) it automatically switches over to EDS Bus No. 2

EDS Changeover Bus B
- The EDS Changeover Bus B is energized from EDS Bus No. 3 except when EDS Bus No. 3 fails (becomes deenergized) it automatically switches over to EDS Bus No. 2

Logic Bus A
- Supplied from Battery Bus A through a circuit breaker and logic bus arm relay. This bus, which is used to activate EDS circuitry in the MESC A, may be armed or safed manually with either of the two redundant logic bus arm switches which operate the logic bus arm relay.
Logic Bus B
Supplied from Battery Bus B through a circuit breaker and logic bus arm relay. This bus, which is used to activate EDS circuitry in the MESC B, may be armed or safed manually with either of the two redundant logic bus arm switches which operate the logic bus arm relay.

Reset Bus No. 1
Supplied from the GSE networks and is used to reset critical EDS magnetic latch relays prior to launch. It may also be used during vehicle checkout to return these relays to their normal position.

Reset Bus No. 2
Supplied from the GSE networks and is used to reset critical EDS magnetic latch relays prior to launch. It may also be used during vehicle checkout to return these relays to their normal position.

VI. RELAY CROSS REFERENCE LIST

SATURN V
EDS RELAY FUNCTIONS

<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>S-IC Engine No. 1 Thrust Voting Relay A</td>
<td>NC NO NC NO NC NO Coil</td>
</tr>
<tr>
<td>K2</td>
<td>S-IC Engine No. 2 Thrust Voting Relay A</td>
<td>2 2 2 2</td>
</tr>
<tr>
<td>K3</td>
<td>S-IC Engine No. 3 Thrust Voting Relay A</td>
<td>2 2 2 2</td>
</tr>
<tr>
<td>K4</td>
<td>S-IC Engine No. 4 Thrust Voting Relay A</td>
<td>2 2 2 2</td>
</tr>
<tr>
<td>K5</td>
<td>S-IC Engine No. 5 Thrust Voting Relay A</td>
<td>2 2 2 2</td>
</tr>
<tr>
<td>K9-1</td>
<td>EDS Manual/Auto Cutoff of LV Engines A</td>
<td>4 3 3 3</td>
</tr>
<tr>
<td>K9-2</td>
<td>EDS Manual/Auto Cutoff of LV Engines A</td>
<td>7 3</td>
</tr>
<tr>
<td>K10-1</td>
<td>EDS Manual/Auto Cutoff of LV Engines B</td>
<td>4 3 3 3</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

D-8

Added 1 July 1967
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K10-2</td>
<td>EDS Manual/Auto Cutoff of LV Engines B</td>
<td>NC NO NC NO NC NO Coil</td>
</tr>
<tr>
<td>K11</td>
<td>S-IC Engine No. 1 Thrust Voting Relay B</td>
<td>2 2</td>
</tr>
<tr>
<td>K12</td>
<td>S-IC Engine No. 2 Thrust Voting Relay B</td>
<td>2 2</td>
</tr>
<tr>
<td>K13</td>
<td>S-IC Engine No. 3 Thrust Voting Relay B</td>
<td>2 2</td>
</tr>
<tr>
<td>K14</td>
<td>S-IC Engine No. 4 Thrust Voting Relay B</td>
<td>2 2</td>
</tr>
<tr>
<td>K15</td>
<td>S-IC Engine No. 5 Thrust Voting Relay B</td>
<td>2 2</td>
</tr>
<tr>
<td>K19-1</td>
<td>EDS or Manual Cutoff of LV Engines Armed A</td>
<td>3 2 2</td>
</tr>
<tr>
<td>K19-2</td>
<td>EDS or Manual Cutoff of LV Engines Armed B</td>
<td>3 2 2</td>
</tr>
<tr>
<td>K20-1</td>
<td>LV Engines Cutoff No. 1 from Apollo Spacecraft</td>
<td>3 3 10</td>
</tr>
<tr>
<td>K20-2</td>
<td>LV Engines Cutoff No. 2 from Apollo Spacecraft</td>
<td>3 3 3 10</td>
</tr>
<tr>
<td>K20-3</td>
<td>LV Engines Cutoff No. 3 from Apollo Spacecraft</td>
<td>3 3 10</td>
</tr>
<tr>
<td>K20-4</td>
<td>LV Engines Cutoff No. 2 from Apollo Spacecraft</td>
<td>3 3 3 10</td>
</tr>
<tr>
<td>K21-1</td>
<td>S-IC Engine No. 1 Thrust Monitor A</td>
<td>7 2</td>
</tr>
<tr>
<td>K21-2</td>
<td>S-IC Engine No. 1 Thrust Monitor B</td>
<td>7 2 2 2</td>
</tr>
<tr>
<td>K22-1</td>
<td>S-IC Engine No. 2 Thrust Monitor A</td>
<td>7 2 2 2</td>
</tr>
<tr>
<td>K22-2</td>
<td>S-IC Engine No. 2 Thrust Monitor B</td>
<td>7 2 2 2</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

Added 1 July 1967
EDS Description
Appendix D

<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K23-1</td>
<td>S-IC Engine No. 3 Thrust Monitor A</td>
<td>7 2 2 2 2</td>
</tr>
<tr>
<td>K23-2</td>
<td>S-IC Engine No. 3 Thrust Monitor B</td>
<td>7 2 2 2 2</td>
</tr>
<tr>
<td>K24-1</td>
<td>S-IC Engine No. 4 Thrust Monitor A</td>
<td>7 2 2 2 2</td>
</tr>
<tr>
<td>K24-2</td>
<td>S-IC Engine No. 4 Thrust Monitor B</td>
<td>7 2 2 2 2</td>
</tr>
<tr>
<td>K25-1</td>
<td>S-IC Engine No. 5 Thrust Monitor A</td>
<td>7 2 2 2 2</td>
</tr>
<tr>
<td>K25-2</td>
<td>S-IC Engine No. 5 Thrust Monitor B</td>
<td>7 2</td>
</tr>
<tr>
<td>K29-1</td>
<td>Auto-Abort 1A to Apollo Spacecraft</td>
<td>10 10 10 10 10</td>
</tr>
<tr>
<td>K29-2</td>
<td>Auto-Abort 1B to Apollo Spacecraft</td>
<td>10 10 10</td>
</tr>
<tr>
<td>K29-3</td>
<td>Auto-Abort 2A to Apollo Spacecraft</td>
<td>10 10 10 10 10</td>
</tr>
<tr>
<td>K29-4</td>
<td>Auto-Abort 2B to Apollo Spacecraft</td>
<td>10 10 10</td>
</tr>
<tr>
<td>K29-5</td>
<td>Auto-Abort 3A to Apollo Spacecraft</td>
<td>10 10 10 10 10</td>
</tr>
<tr>
<td>K29-6</td>
<td>Auto-Abort 3B to Apollo Spacecraft</td>
<td>10 10 10</td>
</tr>
<tr>
<td>K30</td>
<td>+6D95 Monitor to GSE</td>
<td>10 10</td>
</tr>
<tr>
<td>K31-1</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 1</td>
<td>3 2 3 2</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

D-10

Added 1 July 1967
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>K31-2</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 2</td>
<td>3</td>
</tr>
<tr>
<td>K31-3</td>
<td>S-IC Engine No. 1 Thrust Monitor No. 3</td>
<td>3</td>
</tr>
<tr>
<td>K32-1</td>
<td>S-IC Engine No. 2 Thrust Monitor No. 1</td>
<td>2</td>
</tr>
<tr>
<td>K32-2</td>
<td>S-IC Engine No. 2 Thrust Monitor No. 2</td>
<td>2</td>
</tr>
<tr>
<td>K32-3</td>
<td>S-IC Engine No. 2 Thrust Monitor No. 3</td>
<td>2</td>
</tr>
<tr>
<td>K33-1</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 1</td>
<td>2</td>
</tr>
<tr>
<td>K33-2</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 2</td>
<td>2</td>
</tr>
<tr>
<td>K33-3</td>
<td>S-IC Engine No. 3 Thrust Monitor No. 3</td>
<td>2</td>
</tr>
<tr>
<td>K34-1</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 1</td>
<td>2</td>
</tr>
<tr>
<td>K34-2</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 2</td>
<td>2</td>
</tr>
<tr>
<td>K34-3</td>
<td>S-IC Engine No. 4 Thrust Monitor No. 3</td>
<td>2</td>
</tr>
<tr>
<td>K35-1</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 1</td>
<td>2</td>
</tr>
<tr>
<td>K35-2</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 2</td>
<td>2</td>
</tr>
<tr>
<td>K35-3</td>
<td>S-IC Engine No. 5 Thrust Monitor No. 3</td>
<td>2</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

Added 1 July 1967
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K39</td>
<td>EDS Bus Changeover B</td>
<td>NC 1 NO 1 NC 1 NO 1 Coil</td>
</tr>
<tr>
<td>K40</td>
<td>Excessive Rate Auto-Abort Inhibit (P, Y, & R)</td>
<td>NC 6 NO 6 NC 6 NO 6 Coil</td>
</tr>
<tr>
<td>K41</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll)</td>
<td>NC 6 NO 6 NC 6 NO 6 Coil</td>
</tr>
<tr>
<td>K42</td>
<td>S-IC Two Engine Out Auto-Abort Inhibit</td>
<td>NC 6 NO 6 NC 6 NO 6 Coil</td>
</tr>
<tr>
<td>K43-1</td>
<td>S-IC Two Engine Out Auto-Abort Inhibit No. 1</td>
<td>NC 2 NO 2 NC 2 NO 2 Coil</td>
</tr>
<tr>
<td>K43-2</td>
<td>S-IC Two Engine Out Auto-Abort Inhibit No. 2</td>
<td>NC 2 NO 2 NC 2 NO 2 Coil</td>
</tr>
<tr>
<td>K43-3</td>
<td>S-IC Two Engine Out Auto-Abort Inhibit No. 3</td>
<td>NC 2 NO 2 NC 2 NO 2 Coil</td>
</tr>
<tr>
<td>K44</td>
<td>LET Jettisoned B1</td>
<td>NC 9 NO 9 NC 9 NO 9 Coil</td>
</tr>
<tr>
<td>K45</td>
<td>S-IVB Engine Thrust Monitor B</td>
<td>NC 7 NO 7 NC 7 NO 7 Coil</td>
</tr>
<tr>
<td>K46-1</td>
<td>Excessive Rate Auto-Abort Inhibit (P & Y) No. 1</td>
<td>NC 8 NO 8 NC 8 NO 8 Coil</td>
</tr>
<tr>
<td>K46-2</td>
<td>Excessive Rate Auto-Abort Inhibit (P & Y) No. 2</td>
<td>NC 8 NO 8 NC 8 NO 8 Coil</td>
</tr>
<tr>
<td>K46-3</td>
<td>Excessive Rate Auto-Abort Inhibit (P & Y) No. 3</td>
<td>NC 8 NO 8 NC 8 NO 8 Coil</td>
</tr>
<tr>
<td>K47-1</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll) No. 1</td>
<td>NC 8 NO 8 NC 8 NO 8 Coil</td>
</tr>
<tr>
<td>K47-2</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll) No. 2</td>
<td>NC 8 NO 8 NC 8 NO 8 Coil</td>
</tr>
<tr>
<td>Relay #</td>
<td>Function</td>
<td>Contacts - Schematic Sheet No.</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>K47-3</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll) No. 3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>K48</td>
<td>LET Jettisoned B2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>K49</td>
<td>Range Safety Destruct Armed A from S-IVB</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>K50</td>
<td>Range Safety Destruct Armed B from S-IVB</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>K51</td>
<td>S-IVB Thrust Monitor A Indicator</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>K53</td>
<td>EDS Manual/Auto Cutoff A of S-IC Engines</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>K54-1</td>
<td>EDS Manual/Auto Cutoff B of S-IC Engines</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>K54-2</td>
<td>EDS Manual/Auto Cutoff B of S-IC Engines</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>K55</td>
<td>S-IC Engines Cutoff Enable</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>K56</td>
<td>S-IC Engines Cutoff Enable</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>K57</td>
<td>S-IVB Engine Start Command</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>K58</td>
<td>S-IVB Engine Prevent Start</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>K59</td>
<td>S-IC All Engines OK A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>K60</td>
<td>Excessive Roll Rate Voting Relay A</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>K61</td>
<td>Excessive Roll Rate Voting Relay B</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Relay #</td>
<td>Function</td>
<td>Contacts - Schematic Sheet No.</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>K62</td>
<td>Excessive Pitch Rate Voting Relay A</td>
<td>NC 8 NO 8 NC 8 NO 8</td>
</tr>
<tr>
<td>K63</td>
<td>Excessive Pitch Rate Voting Relay B</td>
<td>8 8 8</td>
</tr>
<tr>
<td>K64</td>
<td>Excessive Yaw Rate Voting Relay A</td>
<td>NC 8 NO 8</td>
</tr>
<tr>
<td>K65</td>
<td>Excessive Yaw Rate Voting Relay B</td>
<td>8 8 8</td>
</tr>
<tr>
<td>K66</td>
<td>EDS Arming of S-IVB Engine Thrust Indication A</td>
<td>7 7 7</td>
</tr>
<tr>
<td>K68-1</td>
<td>S-II/S-IVB Separation Simulate</td>
<td>6 6</td>
</tr>
<tr>
<td>K68-2</td>
<td>S-II/S-IVB Separation Simulate</td>
<td>6 6</td>
</tr>
<tr>
<td>K69</td>
<td>Range Safety S-IVB Destruct Arm B</td>
<td>NC 7 NO 7</td>
</tr>
<tr>
<td>K70</td>
<td>Range Safety S-IVB Destruct Arm A</td>
<td>NC 7 NO 7</td>
</tr>
<tr>
<td>K71</td>
<td>Pad Abort Request</td>
<td>7 7 7</td>
</tr>
<tr>
<td>K72</td>
<td>S-IVB Thrust Monitor A</td>
<td>7 7</td>
</tr>
<tr>
<td>K73</td>
<td>EDS Bus Changeover A</td>
<td>NC 1 NO 1 NC 1 NO 1</td>
</tr>
<tr>
<td>K74</td>
<td>LES Abort Lockup A1</td>
<td>NC 9 NO 9 NC 9 NO 9</td>
</tr>
<tr>
<td>K75</td>
<td>LES Abort Lockup A2</td>
<td>NC 9 NO 9 NC 9 NO 9</td>
</tr>
<tr>
<td>K76</td>
<td>Normal S-IVB Engine Cutoff</td>
<td>7 6</td>
</tr>
<tr>
<td>K78</td>
<td>Cutoff S-IC Inboard Engine</td>
<td>3 3</td>
</tr>
<tr>
<td>K79</td>
<td>Cutoff S-IC Outboard Engine</td>
<td>3 3</td>
</tr>
<tr>
<td>Relay #</td>
<td>Function</td>
<td>NC</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>K80</td>
<td>S-II All Engines Normal Cutoff</td>
<td>4</td>
</tr>
<tr>
<td>K81</td>
<td>S-II Engine No. 1 Thrust Monitor A</td>
<td></td>
</tr>
<tr>
<td>K82</td>
<td>S-II Engine No. 2 Thrust Monitor A</td>
<td></td>
</tr>
<tr>
<td>K83</td>
<td>S-II Engine No. 3 Thrust Monitor A</td>
<td></td>
</tr>
<tr>
<td>K84</td>
<td>S-II Engine No. 4 Thrust Monitor A</td>
<td></td>
</tr>
<tr>
<td>K85</td>
<td>S-II Engine No. 5 Thrust Monitor A</td>
<td></td>
</tr>
<tr>
<td>K90</td>
<td>EDS Liftoff Inhibit A</td>
<td></td>
</tr>
<tr>
<td>K91</td>
<td>EDS Liftoff Inhibit B</td>
<td></td>
</tr>
<tr>
<td>K92</td>
<td>EDS Liftoff Enable A</td>
<td></td>
</tr>
<tr>
<td>K93</td>
<td>EDS Liftoff Enable B</td>
<td></td>
</tr>
<tr>
<td>K94-1</td>
<td>LV Attitude Reference Fail A</td>
<td></td>
</tr>
<tr>
<td>K94-2</td>
<td>LV Attitude Reference Fail B</td>
<td></td>
</tr>
<tr>
<td>K95</td>
<td>LET Jettisoned A1</td>
<td></td>
</tr>
<tr>
<td>K96</td>
<td>LET Jettisoned A2</td>
<td></td>
</tr>
<tr>
<td>K97</td>
<td>EDS Abort Voting Logic Input A1</td>
<td></td>
</tr>
<tr>
<td>K98</td>
<td>EDS Abort Voting Logic Input A2</td>
<td></td>
</tr>
<tr>
<td>Relay</td>
<td>Function</td>
<td>Contacts - Schematic Sheet No.</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>K99</td>
<td>EDS Abort Voting Logic Input A3</td>
<td>NC 10 NO 9 NC 9 NO 10</td>
</tr>
<tr>
<td>K100</td>
<td>EDS Abort Voting Logic Input B1</td>
<td>NC 10 NO 9 NC 9 NO 10</td>
</tr>
<tr>
<td>K101</td>
<td>EDS Abort Voting Logic Input B2</td>
<td>NC 10 NO 9 NC 9 NO 10</td>
</tr>
<tr>
<td>K102</td>
<td>EDS Abort Voting Logic Input B3</td>
<td>NC 10 NO 9 NC 9 NO 10</td>
</tr>
<tr>
<td>K103</td>
<td>Abort B1</td>
<td>NC 10 NO 10 NO 9 NO 9</td>
</tr>
<tr>
<td>K104</td>
<td>Abort B2</td>
<td>NC 10 NO 10 NO 9 NO 9</td>
</tr>
<tr>
<td>K105</td>
<td>Abort A1</td>
<td>NC 10 NO 10 NO 9 NO 9</td>
</tr>
<tr>
<td>K106</td>
<td>Abort A2</td>
<td>NC 10 NO 10 NO 9 NO 9</td>
</tr>
<tr>
<td>K107</td>
<td>Auto-Abort System Enable A1</td>
<td>NC 9 NO 9 NO 9 NO 9</td>
</tr>
<tr>
<td>K108</td>
<td>Auto-Abort System Enable A2</td>
<td>NC 9 NO 9 NO 9 NO 9</td>
</tr>
<tr>
<td>K109</td>
<td>Auto-Abort System Enable B1</td>
<td>NC 9 NO 9 NO 9 NO 9</td>
</tr>
<tr>
<td>K110</td>
<td>Auto-Abort System Enable B2</td>
<td>NC 9 NO 9 NO 9 NO 9</td>
</tr>
<tr>
<td>K111</td>
<td>LES Abort Lockup B1</td>
<td>NC 9 NO 9 NO 9 NO 9</td>
</tr>
<tr>
<td>K112</td>
<td>LES Abort Lockup B2</td>
<td>NC 9 NO 9 NO 9 NO 9</td>
</tr>
<tr>
<td>K113</td>
<td>Excessive Rate Auto-Abort Inhibit (P, Y, & R)</td>
<td>NC 6 NO 6 NO 6</td>
</tr>
<tr>
<td>K114</td>
<td>Excessive Rate Auto-Abort Inhibit (Roll)</td>
<td>NC 6 NO 6 NO 6</td>
</tr>
<tr>
<td>Relay #</td>
<td>Function</td>
<td>Contacts - Schematic Sheet No.</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>K115</td>
<td>S-IC Two Engine Out Auto-Abort Inhibit Enable</td>
<td>NC 6 NO 6 NC 6</td>
</tr>
<tr>
<td>K116</td>
<td>+6D91 Bus GSE Disable</td>
<td>1 1</td>
</tr>
<tr>
<td>K117</td>
<td>+6D92 Bus GSE Disable</td>
<td>1 1</td>
</tr>
<tr>
<td>K118</td>
<td>+6D93 Bus GSE Disable</td>
<td>1 1</td>
</tr>
<tr>
<td>K121-1</td>
<td>S-II Engine No. 1 Thrust Monitor A (Type 1 of 5)</td>
<td>4 4 4</td>
</tr>
<tr>
<td>K121-2</td>
<td>S-II Engine No. 1 Thrust Monitor B (Type 1 of 5)</td>
<td>4 4</td>
</tr>
<tr>
<td>K122</td>
<td>Excessive Pitch Rate Output No. 1</td>
<td>8 8</td>
</tr>
<tr>
<td>K123</td>
<td>Excessive Pitch Rate Output No. 2</td>
<td>8 8</td>
</tr>
<tr>
<td>K124</td>
<td>Excessive Pitch Rate Output No. 3</td>
<td>8 8</td>
</tr>
<tr>
<td>K125</td>
<td>Excessive Yaw Rate Output No. 1</td>
<td>8 8</td>
</tr>
<tr>
<td>K126</td>
<td>Excessive Yaw Rate Output No. 2</td>
<td>8 8</td>
</tr>
<tr>
<td>K127</td>
<td>Excessive Yaw Rate Output No. 3</td>
<td>8 8</td>
</tr>
<tr>
<td>K128</td>
<td>Excessive Roll Rate Output No. 1</td>
<td>8 8</td>
</tr>
<tr>
<td>K129</td>
<td>Excessive Roll Rate Output No. 2</td>
<td>8 8</td>
</tr>
<tr>
<td>K130</td>
<td>Excessive Roll Rate Output No. 3</td>
<td>8 8</td>
</tr>
<tr>
<td>Relay #</td>
<td>Function</td>
<td>Contacts - Schematic Sheet No.</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>K131</td>
<td>RF Link Abort Request A</td>
<td>NC 7 NO 7 NC 7 NO 7 Coil</td>
</tr>
<tr>
<td>K132</td>
<td>RF Link Abort Request B</td>
<td>NC 7 NO 7 NC 7 NO 7 Coil</td>
</tr>
<tr>
<td>K134</td>
<td>S-IVB Thrust OK Monitor B</td>
<td>NC 7 NO 7 NC 7 NO 7 Coil</td>
</tr>
<tr>
<td>K135-1</td>
<td>Rate Gyro High Rate On A1</td>
<td>NC 8 NO 8 NC 6 NO 8 Coil</td>
</tr>
<tr>
<td>K135-2</td>
<td>Rate Gyro High Rate On A2</td>
<td>NC 8 NO 8 NC 6 NO 8 Coil</td>
</tr>
<tr>
<td>K136-1</td>
<td>Rate Gyro High Rate On B1</td>
<td>NC 8 NO 8 NC 6 NO 8 Coil</td>
</tr>
<tr>
<td>K136-2</td>
<td>Rate Gyro High Rate On B2</td>
<td>NC 8 NO 8 NC 6 NO 8 Coil</td>
</tr>
<tr>
<td>K137</td>
<td>Logic A Bus Arm A</td>
<td>NC 1 NO 1 NC 1 NO 1 Coil</td>
</tr>
<tr>
<td>K138</td>
<td>Logic A Bus Arm B</td>
<td>NC 1 NO 1 NC 1 NO 1 Coil</td>
</tr>
<tr>
<td>K139</td>
<td>Logic B Bus Arm A</td>
<td>NC 1 NO 1 NC 1 NO 1 Coil</td>
</tr>
<tr>
<td>K140</td>
<td>Logic B Bus Arm B</td>
<td>NC 1 NO 1 NC 1 NO 1 Coil</td>
</tr>
<tr>
<td>K149</td>
<td>S-Ⅱ Second Plane Separation</td>
<td>NC 5 NO 5 NC 5 NO 5 Coil</td>
</tr>
<tr>
<td></td>
<td>Simulate</td>
<td></td>
</tr>
<tr>
<td>K150</td>
<td>S-Ⅱ LH2 Prevalves Close Command</td>
<td>NC 4 NO 4 NC 4 NO 4 Coil</td>
</tr>
<tr>
<td>K151</td>
<td>S-Ⅱ Engine No. 1 Thrust Monitor</td>
<td>NC 7 NO 7 NC 4 NO 7 Coil</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>K152</td>
<td>S-Ⅱ Engine No. 2 Thrust Monitor</td>
<td>NC 7 NO 7 NC 4 NO 7 Coil</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>K153</td>
<td>S-Ⅱ Engine No. 3 Thrust Monitor</td>
<td>NC 7 NO 7 NC 4 NO 7 Coil</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>K154</td>
<td>S-Ⅱ Engine No. 4 Thrust Monitor</td>
<td>NC 7 NO 7 NC 4 NO 7 Coil</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Relay</td>
<td>Function</td>
<td>Contacts - Schematic Sheet No.</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>K155</td>
<td>S-II Engine No. 5 Thrust Monitor B</td>
<td></td>
</tr>
<tr>
<td>K156</td>
<td>S-II Range Safety No. 1 Engines Cutoff</td>
<td>NC 4 NO NC 4 NO NC 4</td>
</tr>
<tr>
<td>K157</td>
<td>S-II Range Safety No. 2 Engines Cutoff</td>
<td>4 4 4</td>
</tr>
<tr>
<td>K158</td>
<td>S-IC Engine No. 1 Prevalves Close</td>
<td>3 3 3</td>
</tr>
<tr>
<td>K159</td>
<td>S-IC Engine No. 1 Cutoff</td>
<td>3 3 3</td>
</tr>
<tr>
<td>K160-1</td>
<td>EDS Manual/Auto Cutoff A1 of S-II Engines</td>
<td></td>
</tr>
<tr>
<td>K160-2</td>
<td>EDS Manual/Auto Cutoff B1 of S-II Engines</td>
<td>4 4 4</td>
</tr>
<tr>
<td>K161-1</td>
<td>EDS Manual/Auto Cutoff A2 of S-II Engines</td>
<td>4 4 4</td>
</tr>
<tr>
<td>K161-2</td>
<td>EDS Manual/Auto Cutoff B2 of S-II Engines</td>
<td>4 4</td>
</tr>
<tr>
<td>K162-1</td>
<td>S-II LH₂ Prevalves Close Command from Engines Prevent Start</td>
<td>4 4</td>
</tr>
<tr>
<td>K162-2</td>
<td>S-II LH₂ Prevalves Close Command from Engines Prevent Start</td>
<td>4 4</td>
</tr>
<tr>
<td>K162-3</td>
<td>S-II LH₂ Prevalves Close Command from Engines Prevent Start</td>
<td>4 4</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

Added 1 July 1967
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>K163</td>
<td>S-II Start Phase Limiter</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cutoff Arm</td>
<td></td>
</tr>
<tr>
<td>K166</td>
<td>Engine Start Interlock</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>By-pass</td>
<td></td>
</tr>
<tr>
<td>K167</td>
<td>EDS Arming of S-IVB Engine</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Thrust Indication B</td>
<td></td>
</tr>
<tr>
<td>K171</td>
<td>GSE Engine Thrust Indication</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Enable A</td>
<td></td>
</tr>
<tr>
<td>K172</td>
<td>GSE Engine Thrust Indication</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Enable B</td>
<td></td>
</tr>
<tr>
<td>K173</td>
<td>EDS Arming of S-II Thrust</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Indication A</td>
<td></td>
</tr>
<tr>
<td>K174</td>
<td>EDS Arming of S-II Thrust</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Indication B</td>
<td></td>
</tr>
<tr>
<td>K198</td>
<td>S-IVB Prevalve Control</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Command</td>
<td></td>
</tr>
<tr>
<td>K199</td>
<td>S-IVB Chilldown Shutoff</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Command</td>
<td></td>
</tr>
<tr>
<td>K201-1</td>
<td>S-II Second Plane Separation A</td>
<td>5</td>
</tr>
<tr>
<td>K201-2</td>
<td>S-II Second Plane Separation B</td>
<td>5</td>
</tr>
<tr>
<td>K202</td>
<td>S-IC Range Safety Engines</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Cutoff A</td>
<td></td>
</tr>
<tr>
<td>K203-1</td>
<td>S-IC Range Safety Engines</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Cutoff B1</td>
<td></td>
</tr>
<tr>
<td>K203-2</td>
<td>S-IC Range Safety Engines</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Cutoff B2</td>
<td></td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

D-20

Added 1 July 1967
<table>
<thead>
<tr>
<th>Relay #</th>
<th>Function</th>
<th>Contacts - Schematic Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>K208</td>
<td>S-II Engine No. 1 Cutoff</td>
<td>4</td>
</tr>
<tr>
<td>K209</td>
<td>S-II Engine No. 1 LOX and LH₂ Prevalves Control</td>
<td>4</td>
</tr>
<tr>
<td>K210</td>
<td>S-II Prevalve Lockout Command from GSE</td>
<td>4</td>
</tr>
<tr>
<td>K212</td>
<td>Timers Test</td>
<td>2</td>
</tr>
<tr>
<td>K214-1</td>
<td>Normal S-II Engines Cutoff B1</td>
<td>4</td>
</tr>
<tr>
<td>K214-2</td>
<td>Normal S-II Engines Cutoff B2</td>
<td>4</td>
</tr>
<tr>
<td>K215-1</td>
<td>Normal S-II Engines Cutoff A1</td>
<td>4</td>
</tr>
<tr>
<td>K215-2</td>
<td>Normal S-II Engines Cutoff A2</td>
<td>4</td>
</tr>
<tr>
<td>K216</td>
<td>S-II All Engines Start Command</td>
<td>4</td>
</tr>
<tr>
<td>K217</td>
<td>S-II Engines Prevent Start</td>
<td>4</td>
</tr>
<tr>
<td>K218</td>
<td>S-II Engines Prevent Start By-pass Command</td>
<td>4</td>
</tr>
<tr>
<td>K219</td>
<td>S-IC All Engines OK B</td>
<td>2</td>
</tr>
<tr>
<td>K220</td>
<td>Excessive Roll Rate Indication</td>
<td>7</td>
</tr>
<tr>
<td>K221</td>
<td>Excessive Pitch and Yaw Rate Indication A</td>
<td>7</td>
</tr>
<tr>
<td>K222</td>
<td>Excessive Pitch and Yaw Rate Indication B</td>
<td>7</td>
</tr>
</tbody>
</table>

APOLLO INTERFACE DOCUMENT

Added 1 July 1967

D-21
The Auto-Abort bus, +6D95, can be energized from the excessive rate circuit as well as the two engine out circuit.

This function is not programmed on the switch selector for this mission.

This circuit is not active on this mission and the function is inhibited.
APOLLO INTERFACE DOCUMENT

Added 1 July 1967
APOLLO INTERFACE DOCUMENT

Added 1 July 1967
APOLLO INTERFACE DOCUMENT

Added 1 July 1967