Introduction

The present velocity-nulling guidance law has a fixed time constant. This guidance law is used for the last ten seconds of P64 and all of P65. This fixed gain guidance law is simply

\[\ddot{a}_{TD} = \frac{(v_D - v_o)}{\tau_v} - g_o \]

(1)

where

- \(\ddot{a}_{TD} \) is the present desired thrust acceleration.
- \(g_o, v_o \) are the last measured gravitational acceleration vector and velocity vector.
- \(v_D \) is the desired touchdown velocity vector.
- \(\tau_v \) is the fixed time-constant for nulling the velocity error; currently equal to six seconds.

A variable-gain (\(\tau_v \) not fixed) velocity-nulling guidance law has certain advantages. For example, it is desirable to null the velocity error early and quickly so that there is not much attitude maneuvering near touch-down. Also, with lags in the system (computation lag and FINDCDUW lag chiefly) stabilization...
suggests a larger \(\tau_v \) than one might otherwise choose.

The following guidance law has time-varying gains and guidance command projection. It is analytically derived later.

\[
T_{go} = T - t_o
\]

\[
T_{go}^* = T_{go} - \tau
\]

\[
R = \frac{T_{go}^*}{T_{go}}
\]

\[
a_{TD} = nR^{n-1}(v_D - v_o)/T_{go} - g_o
\]

Equation (2) is more complicated than (1) but only marginally so and it is much simpler than Equation 15 in LUMINARY Memo #63, which is used in the guidance phase immediately preceding the velocity-nulling phase.

The quantity \(n \) is any positive non-zero integer. The best value for \(n \) is yet to be determined. From inspection it can be seen that the larger \(n \), the larger, relatively speaking, is the gain at large values of \(T_{go} \) and the earlier the velocity error is nulled. We can analytically relate the stationariness of the commanded thrust acceleration at \(t = T \), the touchdown time, to the order of \(n \).

Equation (2) has not been tested in simulations yet but its relative simplicity, time-varying gains, and guidance command projection recommend its investigation. Both MIT/IL and MSC/G&C have noted oscillations with the present law, Eq. (1).