APOLLO GUIDANCE COMPUTER
Information Series
ISSUE 32
BLOCK II MACHINE INSTRUCTIONS
FR-2-132
29 October 1965







Paragraph

32-1

32-3

32-5
32-9
32-16
32-21
32-25

32-30

32-31
32-32
32-38
32-44
32-50
32-56
32-61
32-62
32-68
32-73
32-79
32-84
32-92
32-98
32-103
32-108
32-114
32-115
32-122
32-127
32-128
32-134
32-139
32-143
32-148
32~-154

CONTENTS

INTRODUCTION
EXECUTION OF INSTRUCTIONS.

Execution of Subinstructions.
Control Pulses

Subinstruction STD2

Data Transfer Diagrams . 3
Example of Instruction Executions

REGULAR INSTRUCTIONS,

Sequence Changing Instructions.

Instruction TC K .,

Instruction TCF F

Instruction CCS E

Instruction BZF F

Instruction BZMF F , ;
Fetching and Storing Instructions .

Instruction CA K .

Instruction CS K

Instruction DCA K

Instruction DCS K.

Instruction TS E

Instruction XCH E

Inetruction LXCH E .

Instruction QXCH E .

Instruction DXCH E .,
Modifying Instructions

Instruction NDX E

Instruction NDX K ..
Arithmetic and Logic Instructions.

Instruction AD K .

Instruction SU E , ,

Instruction MP K ,

Principle of Operation
Actual Execution , , ., , .
Instruction DVE , ., , .

FR-2-132

Page
32-1
32-19

32-19
32-20
32-20
32-21
32-23

32-53

32-53
32-53
32-54
32-56
32-62
32-66
32-67
32-67
32-69
32-72
32-74
32-75
32-79
32-81
32-82
32-83
32-87
32-87
32-88
32-92
32-92
32-94
32-95
32-96
32-97
32-112

iii



FR-2-132

Paragraph

iv

32-158
32-162
32-171
32-177
32-186
32-192
32-197
32-202
32~-212
32-218
32-219
32-225
32-230
32-236
32-241
32-247
32-252
32-258
32-259
32-263
32-267
32-271
32-275

32-277

32-278
32-279
32-283
32-286
32-287
32-293
32-297
32-301
32-305
32-309
32-315

32-319

CONTENTS (cont)

Principle of Operation. . . . .,
Actual Execution
Instruction ADS E, ¢ % W %
Instruction DAS E, . . . . . . .
Instruction INCR E
Instruction AUG E
Instruction DIM E O
Instruction MSUE , ., ., . .,

Instruction MSK K

Channel Instructions ., . . . . .
Instruction READ H , e e e e e
Instruction WRITEH, , ., . . . . .
Instruction RANDH , , ., . . . .
Instruction WANDH, ., ., . . . .
Instruction RORH ., . ., . . . . .
Instruction WOR H ., . . ., . . . .
Instruction RXORH . . . . . . . .

Special Instructions . . . . . . . .

Instruction EXTEND,

Instruction INHINT ..
Instruction RELINT ., . ., .
Instruction RESUME, ¢ ® & @
Instructions CYR, SR, CYL, and EDOP

INVOLUNTARY INSTRUCTIONS .

Interrupting Instructions .
Instruction RUPT .,
Instruction GO,

Counter Instructions
Instruction PINC C
Instruction MINC C
Instruction DINC C .
Instruction PCDU C .
Instruction MCDU C .
Instruction SHINC C .
Instruction SHANC C,

PERIPHERAL INSTRUCTIONS

Page

32-113
32-114
32-132
32-134
32-138
32-141
32-143
32-144
32-149
32-151
32-151
32-153
32-154
32-157
32-158
32-160
32-161
32-163
32-163
32-165
32-166
32-166
32-169

32-171

32-171
32-171
32-174
32-174
32-174
32-176
32-176
32-177
32-178
32-179
32-181

32-183



Paragraph

32-320
32-321
32-325
32-326
32-329
32-332
32-335

32-8

32-9

32-10
32-11
32-12

32-13

32-14
32-15
32«16
32~17
32-18
32-19
32-20

CONTENTS (cont)

Sequence Changing Test Instructions .
Instruction TCSAJ K. .

Display and Load Test Instructlons « e e
Instruction FETCH K
Instruction STORE E . .
Instruction INOTRDH ., ., .
Instruction INOTLD H

ILLUSTRATIONS

Subinstruction STD2 . . . . . « + o .« .

Subinstruction
Subinstruction

than Plus Zero

Subinstruction
Subinstruction

TCO R
CCS0, Branch on Quantity Greater
CCS0, Branch on Plus Zero

CCS0, Branch on Quantity Less

than Minus Zero.

Subinstruction

CCS0, Branch on Minus Zero.

Subinstruction BZF0, With Register A Containing
a Positive Non-Zero Quantity

Subinstruction
Plus Zero.
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Register A
Subinstruction

BZF0, With Register A Conta1n1ng

CAO

DCAO.

DCA1., :
TS0, Without Overflow B1t in

TSO W1th Posltlve Overflow B1t

in Register A. .
Subinstruction XCHO .

Subinstruction
Subinstruction

DXCHO . . . . .
DEXCHL « « « « =

Subinstruction NDX0, ., ., . . . T I

Subinstruction

NDXI . . . . . . . . [} . .

Subinstruction ADO , , . ., . . . . .+ . .

Positive Produ

ct, Principle of Multiplication , ,

FR-2-132

Page

32-183
32-183
32-183
32-183
32-184
. 32-187
. 32-187

Page

. 32-22
32-55

32-58
32-59

32-60
32-61

32-64

32-65
32-68
32-72
32-73

32-77

32-78
32-80
32-85
- 32-86
« 32-89
+ 32-90
+ 32-93
32-98



FR-2-132

vi

Figure

32-21
32-22

32-23
32-24

32-25
32-26
32-27
32-28
32-29
32-30
32-31
32-32
32-33
32-34
32-35
32-36
32-37
32-38
32-39
32-40
32-41
32-42
32-43
32-44
32-45
32-46
32-47
32-48
32-49
32-50
32-51
32-52
32-53
32-54
32-55
32-56

ILLUSTRATIONS (cont)

Negative Product,Principle of Multiplication.

Subinstruction
Quantities.

Subinstruction
and Negative

Subinstruction

MPO, With Two Positive

MPO W1th Pos1t1ve Quant1ty in A
Quantlty' in E
MPO, With Negatlve Quantlty in A

and Positive Quantity in E

Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction

MPO, With Two Negat1ve Quantltles
MPl, Positive Product . « =
MP3, Positive Product. . ., . .
MPIl, Negative Product.
MP3, Negative Product.

Positive Product, Actual Multiplication
Negative Product, Actual Multiplication
Principle of Division, Manual Method .
Principle of Division, Machine Method.
Divide Instruction, Flow Diagram

Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction

bvo . . . . . . .
bpvi . .,

DV3

Dv7

Dve . . .

DV4 , . &

Actual Division

Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction
Subinstruction

ADSO .
DASO .
DASI1 .
INCRO
MSUO.
MSKO .
BEADD , . & « & =
RANDO , . « . . .
RORO.
RXORO

STD2, Preced1ng Instructlon EXTEND

NDXO of Instruction RESUME ,
RSM3 .
RUPTO
RUPTI

Page
32-99
32-100
32-101

32-102
32-103
32-104
32-105
32-106
32-107
32-108
32-110
32-116
32-117
32-119
32-123
32-124
32-125
32-126
32-127
32-128
32-129
32-133
32-136
32-137
32-140
32-146
32-150
32-152
32-156
32-159
32-162
32-164
32-167
32-168
32-172
32-173



FR-2-132

ILLUSTRATIONS (cont)

Figure Page
32-57 Subinstruction PINC. . . . . . . . . . . . 32-175
32-58 Subinstruction SHINC . . . . . . . . . . . 32-180
32-59 Subinstruction FETCHO. . . . . . . . . . . 32-185
32-60 Subinstruction FETCHLI. . . . . . . . . . . 32-186

TABLES

Table Page
32-1 Machine Instruction Types. . . . . . . . . . 32=-1
32-2 Machine Instructions., . . . . . . . . . . . 32=2
32-3 Machine Instructions, Alphabetical Listing . . . . 32-13
32-4 Control Pulses Generated at Various Actions , . . 32-25
32-5 Control Pulses. . . . . . .« .+ .+ +« « « . . 32-47

vii






FR-2-132

32-1. INTRODUCTION

32-2. This is the thirty-second issue of the AGCIS published to inform the
technical staff at MIT/IL and Raytheon about the Apollo guidance computer
(AGC) subsystems. The various Block II instruction types and the order

code structure of Machine Instructions are discussed in paragraphs 30-148
through 30-187 of Issue 30. Issue 32 analyzes the operations performed by
the Machine Instructions. Table 32-1 (shown below) briefly reviews Machine
Instruction types. Table 32-2 contains a functional description of all Machine
Instructions and table 32-3 lists all Machine Instructions alphabetically for

quick reference.

Table 32-1
MACHINE INSTRUCTION TYPES

Group ' Type
Regular Basic Instructions Sequence changing instructions
Instructions | Extra Code Instructions Fetching and storing instructions

Modifying instructions
Arithmetic and logic instructions

Channel Instructions
Special Instructions

Involuntary Interrupting Instructions
Instructions Counter Instructions

Peripheral Sequence changing test instructions
Instructions Display and load test instructions




FR-2-132

TABLE 32-2

MACHINE INSTRUCTIONS

A\

2

A\

Symbolic Sub- A
Instruction| Order Code instructions Description
Word Executed A
REGULAR INSTRUCTIONS
Sequence Changing Instructions
TC K 00. TCO " Transfer Control to K"
Takes next instruction from K and
stores return address (I+1) in Q.
TCF F 01.2 TCFO "Transfer Control to Fixed F"
01.4 Takes next instruction from F
0I.6 without changing c (Q).
CCS E 01,0 CCs0 ""Count, Compare, and Skip on E"
STD2 Branches according to c (E) and
stores in A the|c (E)|diminished
by one.

c(E) Transfers to
positive nonzero I+1
plus zero I+2
negative nonzero I+3
minus zero I+4

BZF F 16.2 BZFO0 "Branch on Zero to Fixed F"
16.4 STD2 Branches according to c(A).
16.6

c(A)

Transfers to

plus or minus|F
zero

non zero

(subinstruc-
tion STD2 is
not executed)

I+1 (subinstruc~

tion STD2 is
executed)

32-2




TABLE 32-2

FR-2-132

MACHINE INSTRUCTIONS (cont)

A\

A\

A\

Symbolic Sub -
Instruction| Order Code | instructions Description
Word Executed
REGULAR INSTRUCTIONS
Sequence Changing Instructions (cont)

BZMF F 12.2 BZMFO "Branch on Zero or Minus to
12.4 STD2 Fixed F'" Branches according to
12.6 c(A).

c(A) Transfers to
zero or nega-| F (subinstruc-
tive nonzero tion STD2 is

not executed)
positive non- | I+1 (subinstruc-
Zero tion STD?2 is
.executed)
Fetching and Storing Instructions
CA K 03. CAO0 "Clear and Add K"

STD2 Enters c(K) into A.

Takes next instruction from I+1.
CS K 04. CS0 "Clear and Subtract K"

STD?2 Enters the complemented c(K)
into A. Takes next instruction
from I+1.

DCA K 13. DCAO "Double Clear and Add K"

DCAIl Enters c(K, K+1) into A and L.

STD2 Takes next instruction from I+1.

DCS K 14. DCSO0 "Double Clear and Subtract K'
DCs1 Enters the complemented c(K,
STD2 K+1) into A and L,

Takes next instruction from I+1,

32-3




FR-2-132

TABLE 32-2

MACHINE INSTRUCTIONS (cont)

A\

£\

/A

Symbolic Sub- A
Instruction| Order Code instructions Description
Word Executed A
REGULAR INSTRUCTIONS
Fetching and Storing Instructions (cont)
TS E 05.4 TS0 "Transfer to Storage E"
STD2 If A does not contain an overflow
quantity, instruction enters c(A)
into E and takes next instruction
from I+1.
If A contains a positive overflow,
instruction enters c(A) without
overflow bit into E, enters plus
one into A, and takes next instruc-
tion from I+2.
If A contains a negative overflow,
instruction enters c(A) without
overflow bit into E, enters minus
one into A, and takes next instruc-
tion from I+2,
XCHE 05.6 XCHO "Exchange A and E"
STD?2 Exchanges c(A) with c(E).
Takes next instruction from I+1.
LXCHE 02.2 LXCHO "Exchange L and E"
STD2 Exchanges c(L) with c(E).
Takes next instruction from I+1,
QXCHE 12.2 QXCHO "Exchange Q and E"
STD2 Exchanges c(Q) with c(E).
Takes next instruction from I+1,
DXCH E 05.2 DXCHO | '"Double Exchange A and E"
DXCHI1 Exchanges c(A, L) with c(E, E+1),
STD?2 Takes next instruction from I+1.

32-4




TABLE 32-2
MACHINE INSTRUCTIONS (cont)

FR-2-132

A\

Symbolic
Instruction
Word

N

Order Code

A

Sub~
instructions
Executed

Description

REGULAR INSTRUCTIONS

Modifying Instructions

NDX E

NDX K

05.0

15.

NDXO0
NDX1

NDXXO0
NDXX1

"Index Next Basic Instruction
with E" Adds c(E) to c(I+1) and
takes sum as next instruction.

"Index Next Extra-Code Instruc-
tion with K"

Adds c(K) to ¢(I+2) and takes sum
as next instruction,

Retains the ONE in bit position
SQ-EXT,.

Arithmetic and Logic Instructions

AD K

SU E

MP K

06.

16.0

17.

ADO
STD2

SU0
STD2

MPO
MP1
MP3

"Add K"

Adds c(K) to c(A) and stores
sum in A.

T akes next instruction

from I+l.

"Subtract E"

Subtracts c(E) from c(A) and
stores the difference in A.
Takes next instruction

from I+1.

"Multiply K"

Multiplies c(K) by c(A) and
stores double precision pro-
duct in A and L (signs in A
and L agree).

Takes next instruction

from I+1.

32-5



FR-2-132

TABLE 32-2

MACHINE INSTRUCTIONS (cont)

A\

2\

A\

Symbolic Sub-
Instruction Order Code | instructions Description
Word Executed
REGULAR INSTRUCTIONS
Arithmetic and Logic Instructions (cont)
DV E 11.0 DVO ) "Divide by E' Divides double pre-
DV1 cision quantity c(A, L) by c(E),
DV3 stores quotient in A and remaind-
DV7 'A er in L., Takes next instruction
DVé from I+1. Signs of b(A) and b(L)
Dv4 & need not agree. Sign of remaind-~
STD% er equals sign of dividend.
ADS E 02.6 ADSO "Add to Storage E"
STD?2 Adds c(A) and c(E), stores sum
with overflow bit in A and
sum without overflow bit in E,
DAS E 02.0 DASO ""Double Add to Storage E'"
DAS1 Adds c(A, L) and c(E, E+1) and
STD2 stores sum without overflow bit
in E and E+1. Enters plus
one into A in case of positive
overflow, minus one in case of
negative overflow, and plus zero
in case of no overflow. .Enters
plus zero into L and takes next
instruction from I+1.
INCR E 02.4 INCRO "Increment E'
STD2 Adds plus one to c(E) and stores
incremented quantity in E,
Takes next instruction from I+1.
AUG E 12.4 AUGO "Augment E'"' Increases the
STD2 magnitude of the quantity con-

tained in E by one and stores the
augmented quantity in E. Takes
next instruction from I+1.

32-6




TABLE 32-2
MACHINE INSTRUCTIONS ({cont)

FR-2-132

A\

A

A\

Symbolic Sub- A
Instruction Order Code | instructions Description
Word Executed A
REGULAR INSTRUCTIONS
Arithmetic and Logic Instructions (cont)
DIM E 12.6 DIMO "Diminish E" Decrcases the

STD2 magnitude of the quantity con-
tained in E by one and stores
diminished quantity in E.

Takes next instruction from I+1.
MSU E 12.0 MSUO "Modular Subtract E"

STD2 Subtracts cyclic TWO's comple-
ment number in E from cyclic
TWO's complement number in A
and stores difference expressed
in ONE's complement number in
A, Takes next instruction from
I+1,

MSK K 07. MSKO "Mask with K''

STD?2 AND's c(A) with c(K) and stores
logical product in A, Takes
next instruction from I+1,

Channel Instructions
READ H 10.0 READO "Read H"

STD?2 Enters c(H) into A,

Takes next instruction from I+1,
WRITE H 10.1 WRITEO | "Write 1"

STD2 Enters c(A) into H.

T akes next instruction from I+1,
RAND H 10, 2 RANDO | "Read and AND H"

STD2 AND's c(A) and c(H) and stores
logical product in A, Takes
next instruction from I+l1,

32-7




FR-2-132

TABLE 32-2

MACHINE INSTRUCTIONS (cont)

A

A\

A\

Symbolic Sub- A
Instruction Order Code |instructions Description
Word Executed
REGULAR INSTRUCTIONS
Channel Instructions (cont)
WAND H 10.3 WANDO | "Write and AND H"

STD?2 AND's c(A) and c(H), and stores
logical product in A and H., Takes
next instruction from I+1.

ROR H 10.4 RORO "Read and OR H"

STD2 OR's c(A) and c(H), and stores
logical sum in A, Takes next
instruction from I+1.

WOR H 10.5 WORDO "Write and OR H"

STD2 OR's c(A) and c(H), and stores
logical sum in A and H.,

Takes next instruction from I+1,
RXOR H 10,6 RXORO "Read and Exclusive OR H"

STD2 Forms exclusive OR from
c(A) and c(H), and stores
result in A. Takes next in-
struction from I+1.

Special Instructions
EXTEND |00.0006 STD?2 "Extend"
Enters a ONE into bit position
SQ-EXT, The next instruction,
taken from I+1l, is an Extra-
Code Instruction.
INHINT |00.0004 STD2 "Inhibit Interrupt"

Sets inhibit interrupt switch in
Interrupt Priority Control to pre-
vent interruption of program
execution, Takes next instruc-
tion from I+1,

32-8




TABLE 32-2

FR-2-132

MACHINE INSTRUCTIONS (cont)

A\

2\

A\

A

Symbolic Sub-
Instruction Order Code instructions Description
Word Executed
REGULAR INSTRUCTIONS
Special Instructions (cont)
RELINT |00.0003 STD2 "Release Inhibit Interrupt"
Resets inhibit interrupt switch
to allow program interruption
in favor of a programmed opera=-
tion of higher priority. Takes
next instruction from It+1.
RESUME |05.0017 NDXO0 "Resume Interrupted Program'
RSM3 Takes next instruction from loca-
tion 0017 and enters content of
location 0015 into Z. Thus, ex-
ecution of the interrupted pro-
gram section is resumed.
CYR . 0020 & "Cycle Right"
Cycles quantity, which is entered
into location 0020, one place to
the right.
SR . 0021 /N "Shift Right"
Shifts quantity, which is entered
into location 0021, one place to
the right.
CYL . 0022 A "Cycle Left"
Cycles quantity, which is entered
into location 0022, one place to
the left,
EDOP .0023 & "Edit Operator"

Shifts quantity, which is entered
into location 0023, seven places
to the right.

32-9




FR-2-132

TABLE 32-2

MACHINE INSTRUCTIONS (cont)

Symbolic Sub-
Instruction | Order Code instructions Description
Word Executed A
INVOLUNTARY INSTRUCTIONS
Interrupting Instructions
RUPT 10.7 RUPTO | "Interrupt Program Execution'
RUPTI Takes next instruction from
STD2 address supplied by Interrupt
Priority Control, Stores c(B)
in location 0017 and c(Z) in
location 0015,
GO 00, GOJ1 "Go'"
00. 4000 TCO Takes next instruction from loca-
tion 04000 in E Memory.
Counter Instructions
PINC C none PINC "Plus Increment C''
Adds one to c(C) and
stores incremented quantity
in C,

MINC C none MINC ""Minus Increment C"
Subtracts one from c(C) and
stores decremented quantity
in C,

DINC C none DINC "Diminish Increment C'" De-
creases the magnitude of the
quantity contained in C by one and
stores diminished quantity in C.

PCDU C none PCDU "Plus CDU C"

Adds one to cyclic TWO's com-
plement number in C and
stores incremented quantity in
C.

32-10




FR-2-132

TABLE 32-2
MACHINE INSTRUCTIONS (cont)

A\

£\

A\

A\

Symbolic Sub-
Instruction | Order Code [instructions Description
Word Executed
INVOLUNTARY INSTRUCTIONS
Counter Instructions (cont)

MCDU C none MCDU "Minus CDU C"

Subtracts one from cyclic
TWO's complement number
in C and stores decremented
quantity in C,

SHINC C none SHINC ""Shift Increment C'

Shifts ¢(C) one place to the left
and enters a ZERO into bit posi=~
tion 0 of C.

SHANC C none SHANC ""Shift and Add Increment C"
Shifts c(C) one place to the left
and enters a ONE into bit posi-
tion 0 of C.

PERIPHERAL INSTRUCTIONS
TCSAJ K 00. TCSAJ3 "Transfer control to specified
STD2 address K'' Takes next instruc=-
tion from address which is sup-
plied by GSE.
FETCH K | none FETCHO "Fetch K''; displays c(K) on GSE.
FETCHI1 Address K is supplied by
GSE.
STORE E none STOREOQ "Store E''; data supplied by GSE
STORE1 is entered into E by GSE. Address

E is also supplied by GSE.

32-11




FR-2-132

TABLE 32-2
MACHINE INSTRUCTIONS (cont)

A\ 2\ A\

Symbolic Sub- &
Instruction [ Order Code instructions Description
Word Executed

PERIPHERAL INSTRUCTIONS (cont)

INOTRD H | none INOTRD "In Out Read H'; displays c(H)

INOTLD H | nonec INOTLD "In Out Load H'; data supplied

on GSE. Channel address H is
supplied by GSE.

by GSE is entered into H by GSE.
Channel address H is supplied
by GSE.

> >

> [

32-12

Address symbol K can represent any address in the Central Processor
(CP), E Memory or F Memory.

Address symbol F can represent an address in F Memory only.

Address symbol E can represent an address in the CP or E Memory only.
Address symbol H can represent any channel address.

Address symbol C can represent any counter address.

Entered into SQ, or SQ and S.

The execution of each subinstruction, except DV0O and DV4, takes one
MCT or about 11.7 psec. DVO and DV4 together require 1 MCT.

Address symbol I represents address of instruction described.
Register symbols A, L, Q, B, S, SQ, and G refer to registers defined
in table 30-1.

Expression c(K) means ''content of location (or register) K"\

Execution of these seven subinstructions takes only six MCT's.

The code which can be used with any K or E instruction, is contained
in register S. Whenever address 0020, 0021, 0022, or 0023 is con-
tained in register S, register G cycles or shifts the quantity it receives
from a CP register before that quantity is transferred to one of the
four locations (paragraph 30-41).



FR-2-132

Table 32-3

MACHINE INSTRUCTIONS, ALPHABETICAL LISTING

Symbolic Order Code
Instructio Name and Type
Word 1 A
AD K 06. "Add K'"; an arithmetic instruction
ADS E 02.6 ""Add to Storage E'; an arithmetic instruction
AUG E 12. 4 "Augment E'"; an arithmetic instruction
BZF F 11. 2 "Branch on Zero to Fixed F''; a sequence
11. 4 changing instruction
11.6
BZMF F 16. 2 "Branch on Zero or Minus to Fixed F'; a se-
16. 4 quence changing instruction
16. 6
CAK 03. ""Clear and Add K'" a fetching instruction
CAE E 03. Alternate spelling of CA K when referring to
E Memory
CAF F 03. Alternate spelling of CA K when referring to
F Memory
CCS E 01.0 "Count, Compare, and Skip on E''; a sequence
changing instruction
COM 04. 0000 "Complement''; CS A
CS K 04. '"Clear and Subtract K'; a fetching instruction
CYL .0022 "Cycle Left'; a Special Instruction
CYR .0020 ""Cycle Right''; a Special Instruction
DAS E 02.0 "Double Add to Storage E'; an arithmetic
instruction
DCA K 13, "Double Clear and Add K''; a fetching instruc-
tion
DCS K 14, "Double Clear and Subtract K''; a fetching in-
struction
DCOM 14. 0000 "Double Precision Complement'’; DCS A
DDOUBL 02.0000 "Double Precision Double''; DAS A

32-13




FR-2-132

Table 32-3

MACHINE INSTRUCTIONS, ALPHABETICAL LISTING (cont)

Symbolic Order Code
Instruction Name and Type

Word é

DIM E 12. 6 "Diminish E'"; an arithmetic instruction

DINC C none "Diminish Increment C'"; a Counter Instruc-
tion

DOUBLE 06.0000 "Double''; AD A

DTCB 05. 2005 "Double Precision Transfer Control Both
Banks'"; DXCH Z

DTCF 05. 2004 "Double Precision Transfer Control Fixed
Bank''; DXCH FBANK

DV E 11.0 "Divide by E'; an arithmetic instruction

DXCH E 05. 2 "Double Exchange A and E'; a fetching and
storing instruction

EDOP .0023 "Edit Operator'’; a Special Instruction

EXTEND 00. 0006 "Extend''; a Special Instruction

FETCH K none "Fetch K'; a Peripheral Instruction

GO 00. "GO"; an Interrupting Instruction

INCR E 02.4 "Increment E'"; an arithmetic instruction

INDEX E 05.0 Alternate spelling for NDX E

INDEX K 15, Alternate spelling for NDX K

INHINT 00. 0004 "Inhibit Interrupt"; a Special Instruction

INOTLD H | none "In Out Load H'"; a Peripheral Instruction

INOTRD H | none "In Out Read H'; a Peripheral Instruction

LXCH E 02.2 "Exchange L and E'; a fetching and storing
instruction

MASK K 07. Alternate spelling of MSK K

MCDU C none "Minus CDU C'"; a Counter Instruction

32-14




FR-2-132

Table 32-3

MACHINE INSTRUCTIONS, ALPHABETICAL LISTING (cont)

Symbolic Order Code
Instruction Name and Type

Word A

MINC C none '"Minus Increment C''; a Counter Instruction

MP K 17 "Multiply K''; an arithmetic instruction

MSK K 07. "Mask with K''; a logic instruction

MSU E 12.0 ""Modular Subtract E'; an arithmetic instruc-]
tion

NDX E 05.0 "Index Next Basic Instruction with E''; a
modifying instruction

NDX K 15, "Index Next Extra-Code Instruction with K'’;
a modifying instruction

NOOP 03.0000 "No Operation (Erasable)'’; instruction is
stored in E Memory; CA A

NOOP TCF{I+1) '""No Operation (Fixed)'; where I is address
of instruction TCF (I+1) stored in F Memory

OVSK 05, 4000 "Overflow Skip”; TS A

PCDU C none "Plus CDU C'"; a Counter Instruction

PINC C none "Plus Increment C''; a Counter Instruction

QXCH E 12,2 "Exchange Q and E'; a fetching and storing
instruction

RAND H 10,2 '"Read and AND H''; a Channel Instruction

READ H 10.0 "Read H''; a Channel Instruction

RELINT 00. 0003 "Release Interrupt Inhibit'"; a Special In-
struction

RESUME 05.0017 "Resume Interrupted Program'’; a Special
Instruction

RETURN 00. 0002 "Return''; TC Q

ROR H 10, 4 "Read and OR H'; a Channel Instruction

32-15



FR-2-132

Table 32-3

MACHINE INSTRUCTIONS, ALPHABETICAL LISTING (cont)

Symbolic Order Code
Instruction Name and Type

Word /A

RUPT 10. 7 "Interrupt Program Execution'’; an Interrupt-
ing Instruction

RXOR H 10. 6 "Read and Exclusive OR H'; a Channel In-
struction

SHANC C none "'Shift and Add Increment C'; a Counter In-
struction

SHINC C none ''Shift Increment C'"; a Counter Instruction

SQUARE 17. 0000 "Square'’; MP A

SR .0021 "Shift Right'; a Special Instruction

STORE E none ''Store E''; a Peripheral Instruction

SU E 16. 0 "'Subtract E'; an arithmetic instruction

TCAA 05. 4005 "Transfer Control to Address in A'"; TS Z

TC K 00. "Transfer Control to K''; a sequence chang-
ing instruction

TCF F 0l.2 "Transfer Control to Fixed F'; a sequence

01.4 changing instruction
0l.6

TCR K 00. Alternate spelling of TC K (Transfer Control
Setting up Return)

TCSAJ K 00. "Transfer Control to Specified Address K'}
a Peripheral Instruction

TS E 05. 4 "Transfer to Storage E'; a storing instruction

WAND H 10. 3 "Write and AND H'"; a Channel Instruction

WOR H 10.5 "Write and OR H'; a Channel Instruction

WRITE H 10.1 "Write H'; a Channel Instruction

XCH E 05. 6 "Exchange A and E'; a fetching and storing

instruction

32-16




FR-2-132

Table 32-3

MACHINE INSTRUCTIONS, ALPHABETICAL LISTING (cont)

Symbolic Order Code
Instruction Name and Type
Word A
ZL 02, 2007 "Zero L'"; LXCH ZERO
zZQ 12. 2007 "Zero Q'"; QXCH ZERO

A Address symbol K can represent any address in the Central Pro-
cessor (CP), E Memory or F Memory,
Address symbol F can represent an address in F Memory only.
Address symbol E can represent an address in the CP or E Memory

only.

él Entered into SQ, or SQ and S.

32-17/32-18






FR-2-132

32-3. EXECUTION OF INSTRUCTIONS

32-4. The execution of all Machine Instructions is under the control of the
Sequence Generator (SQG). The initiation of instruction executions is
described in paragraphs 30-24 through 30-27. All Machine Instructions are
composed of one, two, three, or seven subinstructions, as indicated in the
third column of table 32-2. All but two subinstructions consist of twelve
actions, Refer to table 32-4 at the end of this section and paragrapn 30-21.
Subinstructions DV0 and DV4 together consist of twelve actions, An action
is defined as a set of control pulses generated by the SQG and may be com-
posed of zero, one, or several control pulses. One action occurs every
0.977 psec and the execution of one subinstruction takes 11. 7 psec which
equals one Memory Cycle Time (MCT).

32-5, EXECUTION OF SUBINSTRUCTIONS

32-6. When a Regular Instruction, instruction RUPT, instruction GO, or
instruction TCSAJ K is executed, the content of register SQ and the content
of the stage counter (ST) determine the subinstruction to be executed as shown
in columns three and four of table 32-4. Subinstruction STD2 (standard two)
is executed whenever the stage counter (ST) contains octal 2 regardless of the
contents of register SQ as indicated by the X symbols. If the stage counter
(ST) contains any other octal number than 2, a subinstruction is executed as
defined by the content of register SQ. Subinstructions of Regular Instruc-
tions with whole order codes are determined by the content of bit positions
EXT through 13 of register SQ while the content of bit positions 12 through

10 is irrelevant. Subinstructions of Regular Instructions with quarter codes
are defined by the content of bit positions EXT through 11 while the content

of bit position 10 is irrelevant. Subinstructions of Channel Instructions are
defined by the content of bit positions EXT through 10. (Refer to paragraphs
30-153 and 30-154.)

32-7. When a Counter Instruction is executed, the contents of register SQ

and the stage counter (ST) are irrelevant; the execution of Counter Instruc-

tions is determined by the setting of certain flip-flops only. When a Periph-
eral Instruction is executed, the setting of certain flip-flops and the content

of the stage counter (ST) determine the subinstruction being executed.

32-8. The twelve actions (1 through 12) of a DV subinstruction do not occur

in the same sequence as time pulses TOl through T12 are generated. Actions
1 through 3 of subinstruction DVO are caused by time pulses 1 through 3.

32-19



FR-2-132

Actions 4 through 12 and 1 through 3 of subinstructions DV1 through DV6
(table 30-4) are caused by time pulses 4 through 12, and 1 through 3 in that
sequence. Actions 4 through 12 of subinstruction DV4 are caused by time
pulses 4 through 12 and complete the last MCT. Thus, the execution of the
six DV subinstructions takes only five MCT's.

32-9. CONTROL PULSES

32-10. Control pulses are signals generated by the SQG which regulates data
flow within the Central Processor (CP) and the Input-Output Control. The
control pulses can be grouped in five categories: read pulses, write pulses,
direct read-write pulses, test pulses, and special pulses (paragraph 30-28).
All control pulses are defined in table 32-5 at the end of this section.

32-11, A read pulse gates the content of a register or input-output channel
into the write amplifiers (WA's). Read pulses such as RA, RB, etc., read
the content of a specific register into the WA's. Read pulses RSC and RCH
read the content of that CP register or input-output channel into the WA's the
address of which is contained in register S. Read pulses R15, RI1C, etc.
enter certain octal quantities into the WA's.

>

32-12. A write pulse clears a register or input-output channel and gates
into it the data which is present at the WA's, i.e., the data which is gated
into the WA's by a read pulse at the same time. Write control pulses such
as WA, WB, etc., write into a specific register. Write pulses WSC and
WCH write into a register or channel which is defined by the content of reg-
ister S.

32-13. Direct read-write pulses copy the content of one register into an-
other register without using the WA's. Control pulse A2X, for example,
enters the content of register A into register X.

32-14. Test control pulses test the content of certain bit positions, set the
branch flip-flops accordingly and thus initiate branching operations. For
instance, control pulse TSGN tests the content of WA 16 (bit 16) and sets flip-
flop BR1 to ONE if WA 16 contains a ONE (minus sign).

32-15. Special control pulses are used to set stage counters, certain flip-
flops, to initiate certain operations, etc.

32-16. SUBINSTRUCTION STD2

32-17. Subinstruction STD2 (standard two) is used as a concluding subin-
struction with most Regular Instructions and instructions RUPT and TCSAJ K.
Its purpose is to increment by one the content of register Z, the program

32-20



FR-2-132

counter, and to call forward the instruction to be executed next. Subinstruc-
tion STD2 is executed when the stage counter (ST) contains 2.

32-18. Control pulses RZ and WY12 of action 1 (row 1 of table 32-4) clear
the Adder and enter bits 12 through 1 contained in register Z into Adder input
register Y. Pulse CI enters a carry bit into bit position 1 of the Adder, thus
adding a one to the quantity entered by pulse WY1l2. The incremented quan-
tity is returned to register Z by pulses RU and WZ of action 6. Before this
operation, register Z contained the address of the instruction to be executed
next, After the operation, register Z contains the address of the instruction
to be executed thereafter which becomes the ''address of the next instruction'
during the execution of the next instruction.

32-19. Control pulses RSC and WG of action 2 clear register G if no CP
register address (addresses 0000 through 0007) is contained in register S.
If register S contains a CP register address, the content of the specified CP
register is entered into register G. If register S contains an E memory
address (address 0010 through 1777), the content of the specified E location
is entered automatically into register G at time 4 by the E Memory (para-
graph 30-52). If register S contains an F memory address (addresses 2000
and above), the content of the specified F location is entered automatically
into register G at time 6 by the F Memory (paragraph 30-53). The informa-
tion being entered into register G is the instruction to be executed after the
current STD2 subinstruction. The content of register G is returned auto-
matically to an E memory location after time 10 if an E memory location is
addressed to restore the content of the location (destroyed during readout).

32-20. Control pulse RAD of action 8 normally generates control pulse RG.
Pulses RG, WB, and WS of action 8 enter the next instruction into register B
and its relevant address into register S, Control pulse NISQ of action 2,
causes the generation of pulses RB and WSQ at time 12, thus entering bits 15
through 10 of the next instruction into register SQ and initiating the execution
of the next instruction. See example in paragraphs 32-25 through 32-29.

32-21. DATA TRANSFER DIAGRAMS

32-22. The data transfer diagrams are used to describe the operation of
subinstructions, Figure 32-1, for instance, illustrates the execution of sub-
instruction STD2 discussed in paragraphs 32-16 through 32-20. Box F at

the top represents a location in F Memory if one has been addressed, box E,
a location in E Memory if one has been addressed, and box H an input-output
channel if one has been addressed. The subsequent boxes represent CP reg-
isters and the Adder with input registers Y and X, output gates (U), and
carry input flip-flop CI. The large box below register SQ represents the SQG.
The control pulses generated at the various actions are listed in this box,

32-21



FR-2-132

F |o3000 ]
E ' '
1 l
H | |
T f
s |2660 [ wsTsooo |
I 1
I 1
| 003000 |
1 i
T
G |025252 WG 4000000 l ¥ 003000 RG ¢ ¢
.
000000 003000
T
B |025252 | w8 ¥003000 RB ¢
|
}
A |o25354 RSCé
|
L RSCé
|
Q RSCl
z OOZGGOTRZ Rscl wzfoozea
002660 @@
u |025354 | 002661 RUl
wYI2
Y 025252 ¥ 002660
X |000102 @ 000000
cI leCI |
sQ |ose.l wsQv00.3
ACTION I 2 3 4 5 6 8 10 1] 12
RZ RSC RU RAD
wYI2 WG wz wB
cI NISQ ws
ST | 2 0
BR |0 0

Figure 32-1. Subinstruction STD2

32-22

2700A



FR-2-132

The 3-bit stage counter (ST) and the 2-bit branch flip-flops (BR) are repre-
sented by two small boxes at the bottom. (Branch flip-flop BR1 contains the
high order bit and BR2, the low order bit.) Data shown in the registers prior
to action 1 indicate starting conditions.

32-23. The information flow caused by the control pulses is indicated by
vertical lines. Numbers in ellipses indicate data passing through the WA's,
Information moving between memory and register G does not pass through
the WA's, therefore, no ellipses are shown in the respective flow lines.
When data is gated directly from one register into another, no flow line is
shown. Broken flow lines are used to indicate information flow which may
occur under conditions different from those pertaining to the given numeric
example.

32-24. The 5-digit octal quantities used in boxes ¥, E, and CH represent
15 bit words (bits 15 through 1, no parity bit). Register S is able to store
12 bit addresses represented by 4 octal digits. Registers G, B, A, L, Q,
Z, Y, and X are able to store 16 bit words represented by 6 octal digits and
the same is true for the output gates (U) of the Adder. Register SQ is able
to store 7 bits expressed in fractional octal numbers, 4 bits or 2 octal digits
in front of the octal point, and 3 bits or 1 octal digit after the octal point.

32-25. EXAMPLE OF INSTRUCTION EXECU TIONS

32-26. The following sequence of instructions has been chosen as an example:

Location Instruction Code
2657 AD 1213 6.1213
2660 TC 3000 0.3000
2661 CS 2765 4, 2765
3000 CA 0375 3.0375

Let us assume that subinstruction ADO has been executed and that subinstruc-
tion STD?2 is being executed. Prior to time 1 of STD2, register Z and S con-
tain 2660, the address of instruction TC 3000 to be executed next, as indicated
in figure 32-1. Since address 2660 refers to F Memory, instruction TC 3000
(03000) is shown in the top box. The contents of registers G, B, A, Y, X,
and SQ, which remained from the execution of subinstruction ADO, are ir-
relevant. The stage counter has been set to 2 at the last time 12 to initiate
the execution of subinstruction STDZ.

32-27. Control pulse RZ of action 1 gates address 002660 into the WA's and

pulse WY 12 gates the content of WA's 12 through 1 into register Y. Pulse
WY12 also clears register X. Pulse CI forces a carry bit into bit position 1

32-23



FR-2-132

of the Adder and the quantity 002661 appears at the output gates (U). Pulses
RU and WZ of action 6 return the incremented address to register Z.

32-28. Since register S does not contain a CP register address, no CP reg-
ister is gated for read out at the occurrence of pulse RSC of action 2, the
WA's contain 000000, and pulse WG writes this quantity into register G, thus
clearing register G. Since register S also does not contain an E memory
address, nothing is entered into register G by E Memory at time 4. Because
register S contains address 2660 of F Memory, instruction TC 3000 contained
at location 2660 is entered into register G by F Memory at time 6. Since
register S does not contain an E memory address prior to time 6, no data

is restored in E Memory after time 10.

32-29. Control pulse RAD of action 8 is interpreted as RG and enters in-
struction TC 3000 into the WA's., Pulse WB enters the same instruction into
register B while pulse WS enters the relevant address into register S. Con-
trol pulses RB and WSQ, which are caused by pulse NISQ, enter 00. 3 into
register SQ at time 12. The stage counter is reset to 0. Thus the execution
of subinstruction TCO has been initiated.

(text continued on page 32-53)

32-24



FR=2~132

TABLE 32-4
CONTROL PULSES GENERATED AT VARIOUS ACTIONS

Actions
Row | Subinstruction o) il Remarks
No. Symbol EXT 16,1413 121110 321 1 2 3 5 6 7 8 9 10 11 12
1 STD2 X XXX XXX 010 RZ RSC RU RAD Follows any subinstruction which sets c(ST)= 2
WY12 WG Wz WB with control pulse ST2. Followed by next instruction.
Cl NISQ WS See note A
2 TCO 0 000 XXX 000 RB RSC RZ RU RAD Followed by instruction to which control is transferred.
WY12 WG WwQ Wz WB See note A.
Ci NISQ LN
3 TCFO 0 001 01X 000 RB RSC RU RAD Followed by instruction to which control is transferred.
0 001 10X 000 wY12 WG | 74 WwB See note A.
0 001 11X 000 Ci NISQ WS
4 CCs0 0 001 00X 000 RL10BB RSC RG &RZ RU RB AWY RU A If ¢(BR) = 0, c(G) is positive non-zero at time 5.
LN WG WB WY12 WZ WG RB WA
TSGN WS MONEX /2\ 11 ¢(BR) =1, ¢(G) is plus zero at time 5.
T™Z Cl
TPZG ST2 A If c(BR) = 2, c(G) is negative non-zero at time 5.
/A\RZ A\ WY /
WY12 $T2 /A\ 1f ¢(BR) =3, c(G) is minus zero at time 5.
PONEX
RZ &wv Followed by STD2.
Wy12 RC
PTWOX MONEX
Cl
ST2
/A\RZ A\ Wy
WY1z §T2
PONEX
PTWOX
5 | BzF0 1 001 01X 000 | Ra TPZG RSC A - |A - /\ Rz /N 1fc(BR) = 00r 2, c(A) is non-zero at times 1 and 2.
1 001 10X 000 WG WG EN
1 o001 11x |ooo | TseN . ST2 /2\ 1 c(BR)=10r3, c(A) is plus or minus zero at
™Z /AR |/ R /2\RAD times 1 and 2.
grlz e :? If ¢ (BR) = X0, BZFQ i followed by STDZ.
NISO If c(BR) = X1, BZFO is followed by instruction to
which control is transferred.

32-25/32-26






TABLE 32-4

FR-2-132

CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

. . ¢(5Q) c(ST) Actions
Row | Subinstruction
No. Symbol EXT 16,1413 121110 321 1 2 3 5 6 7 8 9 10 11 12
6 BZMFO 1 110 o1x |ooo| Ra TPZG RSC A—  |A\A- /N\Rz /N 1fc(BR) =0, c(A) is positive non-zero at times
1 110 10X 000 WG WG WS 1and?2
1 110 11X 000 [ TSGN . ST2 If ¢(BR) = 1, c(A) is plus zero at times 1 and 2.
T™MZ sz‘ Zfl 125 RAD
B RU A If c(BR) = 2, ¢ (A) is negative non-zero at times
LN\p12 | /N= A\WNE 1 and 2
Cl WS If ¢(BR) = 3, c(A) is minus zero at times 1 and 2
VON [\ AR
7 If ¢(BR) = 0, BZMFO is followed by STD2
If c(BR) £ 0, BZMFQ is followed by instruction to
which control is transferred.
7 CA0 0 011 XX X 000 RSC RG RZ RB RB Followed by STD2.
WG WB WS WG WA
ST?2
8 €S0 0 100 XXX 000 RSC RG RZ RB RC Followed by STD2.
WG WB WS WG WA
ST?2
9 DCAO 1 011 XXX 000 RB RSC RG RU RB RB Followed by DCAL.
wy12 WG WB WS WG wL
MONEX ST1
cl
10 DCAL 1 011 XX X 001 RSC RG RZ RB RB Followed by STD2
WG WB WS WG WA
ST?2
11 DCSO 1 100 X X X 000 RB RSC RG RU RB RC Followed by DCS1
WY12 WG iB WS WG wL
MONEX ST1
cl
12 DCS1 1 100 X X X 001 RSC RG RZ RB RC Followed by STD2.
WG WB WS WG WA
ST?2

32-27/32-28






FR-2-132

TABLE 32-4
CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

c(SQ) c(ST) Actions
Row | Subinstruction Remarks
No. Symbol EXT 161413 121110 |[321 1 2 3 4 5 6 7 8 9 10 11 12
13 | TS0 0 101 10X |000 | RLIOBB RSC R | ARz | A= RU RB RZ /\ Ifc(BR) =0, Al6,15 = Qor 3 at time 3.
WS WG WB Wy12 Wz WSC Ws
v | /A\Rz | Arel WG $T2 — [\ fc(BR) =1, Al6,15 = 1attine 3
WY12 WA |
I /\ I c(BR) =2, AI6,15 = 2 at tirie 3
ARz | Aric
Wy 12 WA Followed by STD2.
Cl
14 XCHO 0 101 11X [000 | RLIOBB RSC RA RG RB RZ Followed by STD2.
WS WG W8 WA WSC WS
WG ST2
15 LXCHO 0 010 01x |o00 | RLIOBB RSC RL RG RB RZ Followed by STDZ.
WS WG WB WL WSC WS
WG ST2
s QXCHO 1 010 01X |000 | RLoBB RSC RQ RG RB RZ Followed by STD2.
WS WG W8 WQ WSC Ws /
WG ST2
17 DXCHO 0 101 01X 000 RL10BB RSC RL RG RB RU ST1 Control pulse Cl at time 1 causes 000001 plus 177776
95 WG W8 WL WsC WS to result in 000000 instead of 177777.
wy12 WG WwB Followed by DXCHI.
MONEX .
Cl
18 DXCHI 0 101 01X ool | RLIOBB RSC RSC RG RB RZ Followed by $TD?.
WS W6 W8 WA WSC WS
WG ST2
19 NDX0 0 101 00X 1000 RSC TRSM RG RZ RB STI Normally followed by NDX1. Followed by RSM3 if
WG W8 WS WG ¢(S) = 0017 at time 5.
20 NDXI 0 101 00X 001 | RZ RSC RB RA RZ RU RG RU RB RU Followed by indexed Basic Instruction
WY12 WG wz wB WA Wz wy ws WA WwB See note A at end of table.
Cl NISQ A2X
21 NDXX0 1 101 XXX [000 RSC RG RZ RB $T1 Followed by NOXXI.
WG W8 Ws WG

32-29/32-30






FR-2-132

TABLE 32-4
CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

Row | Subinstruction Remarks
No. |  Symbol EXT 161413 121110 | 321 1 2 3 4 5 6 7 8 9 10 11 12 -
22 NDXX1 1 101 XXX 001 RZ RSC RB RA RZ RU RG RU RB RU Followed by an indexed Extra Code Instruetion.
WY12 WG Wz WB WA Wz WY Ws WA WB
cl NISQ A2X EXT
23 | ADO 0 110 XXX |o000 RSC RG RZ RB RB RU Followed by STD2.
We W8 Ws WG Wy WA
ST2 A2X
2 | suo 1 110 00X |o000 RSC RG RZ RB RC RU Followed by STD2.
WG WB Ws WG Wy WA
$T2 A2X
25 | wmPo 1 111 XXX |o000 RSC RA /\ R8 RG Rz | A\ re RU /N WA /N Itc(BR) = 0or 1, AlG = 0 at time 3.
WG WB WL WB WS WY WB _
e TSN oo /2\ I c(BR)=20r 3, Al6 = 1 at time 3.
NEACON /A\ If c(BR) =0, Al§ = 0 and GI6 = 0 at time 7.
/A Re /A RB $TL RBI
WL WY RIC /A If c(BR)= 1, A6 = 0 and G16 =1 at time 7.
i WA
A L6 /o\ If c(BR) =2, Al6 = 1 and G16 = 0 at time 7.
;5 /6\ I c(BR) =3, Al =1 and GI§ =1 at time 7.
Cl /I If ¢(BR)= 0o 1, UL6 = 0 at time 10,
L\ R
Wy If ¢(BR) =2 or 3, U16 =1 at time 10.
Followed by MP1.
2% | WPl 1111 xxx |oo1 ] zp ZAP ZIP ZAP 2IP ZAP 1P ZAP 2IP ZAP I Followed by MP3,
$T1
ST2
27 | wp3 1 111 xxx |oi1 | zap zIp ZAP RSC RZ RU A\ — RAD RA R A\ — /N Ifc(BRY=00r 1, L15 = 0at time 6.
NISQ WG W12 Wz WB
i L5 | A\ R8 Ws /A RU /\ Ifc(BR)=20r3, L15=1at time 6.
NEACOF Wy WA
A2X Followed by next instruction.
See note A.

32-31/32-32







FR-2-132

TABLE 32-4
CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

c(SQ) c(ST) _ Actions
Row | Subinstruction Remarks
No. Symbol EXT 16,1413 12,11,10 | 3,21 1 2 3 4 9 10 11 12

/\ Ifc(BRY=20r3, Al6 = 1 ai time 2.
/2 DvsT

/ / / Followed by DVI after action 3.

\

5 1
” % ’ / %
8 | Dvo 1 001 00X |000| RA /A Re | Ru 7 / 7 / , /\ 1fc(BR) = 0or 1, Al6 = 0 at time 2.
WB wa | we
TSGN ™Z | STAGE ;
™Z DVST 7 / /

29 DVl 1 001 00X 001

/ / 7 /N RL RB RU RG /A\Re | /\ re RU RL RU- | /N 11 c(BR) = 00r 2, c(A)at time 2 of DVO is
WB Wy WL RSC WYy WA wB WYD WL non-zero.
minus zZero.
A RL ARC TSGN A — RC A Ifc(BR)=0o0or1, Al6 =0 at time 2 of DVO or
: W8 WY WA L16 = 0 at time 4 of DVI.
, TSGN BISX 215 /A If ¢(BR) = 2 or 3, Al6 = L at time 2 of DVO or
/ 7 / Z16 & L16 = 0 at time 4 of DVI1.
. If c(BR) =0 or 2, no overflow at time 8.
] % 7 7 %
29 DVl 1 001 00x 001 L2GD RG RU & If ¢(BR) =1 or 3, overflow at time 8.
(cont) RB WL WB
WYD TSGU STAGE A Ifc(BR)=0o0r1, GI6 = 0 at time 9.
Il;lZ;(L DVST Ifc(BR)=2or3, Gl6 =1 at time 9.

A Ifc(BR)=0o0r1, Ul6 = 0 at time 2.
/\ cLxc .
[& Ifc(BR)=20or 3, U6 =1 at time 2.

AN RBIF / / // / A // Followed by DV3 after action 3,

30 DV3 1 001 00X 011 L2GD RG RU L2GD RG RU L2GD RG RU A If ¢c(BR)="0or 1attime5, 8, or 11, Ul6 = 0.

RB WL WB RB WL WB RB WL WwB
WYD A TSGU WYD TSGU WYD TSGU /2\ I c(BR)=20r 3 at time 5. 8, or 11, U1 = 1.
CLXC

A2X ax | /N cLxe A2X /N cuxe

7
% / i /2\ RBIF | b /A RBIF o /2\ RBIF

/A\ If ¢(BR) =0 or 1, Ul6 = 0 at time 2.

30 DV3 1 00l 00X [o011 | L2GD RG RU % a7 /

(cont) RB WL WB

\

WYD TSGU STAGE A Ifc(BR)=20r3 Ul6 =1 at time 2.
A2X DVST
PIFL A CLXC Followed by DV7 after action 3.

o 5

32-33/32-34



N



FR-2-132

TABLE 32-4
CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

Row | Subinstruction <50 D Actions
Remarks
No. Symbol EXT 16,14,13 121100 |3,21 1 2 3 4 5 6 7 8 9 10 11 12
g;/ 7 7
31 DV7 1 001 oox |11l L26D RG RU L26D RG RU L2GD RG RU
RB WL W8 RB WL W8 RB WL WB
WYD TSGU WYD TSGU WYD TSGU
ax | /N cuxe A2X /\ cuxe A2X CLXC
PIFL PIFL PIFL
/\ RBIF /A RBIF /2 RBIF /N 1fc(BR)=0or 1, Ul6 =0 at time 5, 8, 11 or 2.
2 ‘ ‘
7
31 DV7 I 001 00X |111 | LD RG RU ¢?7 //// % /// /A Ifc(BR)=20r 3, UI6 =1 at time 5, 8, 11, or 2.
(cont RB WL wB
WYD TSGU STAGE Followed by DV6 after action 3.
A2X DVST
Prt | A\ cLxe
A e / 7 7
A 4 % 7 7 %
) DV6 1 001 00X |110 //// ;;?77 L2GD RG RU L26D RG RU L26D RG RU
RB WL WB RB WL W8 RB WL WB
WYD TSGU WYD TSGU WYD TSGU
ax | A\ cuxe A2X CLXC AX CLXC
PIFL PIFL PIFL |
////// 7 /\ RBIF /2\ RBIF /\ RBIF /N fc(BRy=00r 1, Ul6 = 0at time 5, 8, 11, or 2.
4
B DV6 1 001 o0o0x |1lo| L2aD RG RU §§/ 27’ ,/// % % v /// Z /\ Ifc(BR)=20r3, Ul6 =1 at time 5, 8, 11, or 2.
(cont RB WL WB
WYD TSGU STAGE Followed by DV4 after action 3.
A2X DVST
PEL | /N cLxe /////////
/\ RBIF /}// ///// //////
% # % 2
33 DV4 1 011 00X [100 222?” ¢ L2GD RG RZ |\ — RZ RU /6\ RC /\ 1 c(BR) = 0 or 1 at time 5, U16 = 0.
RB W8 Tov WS W8 WL /\ 1t c(BR)= 2 or 3 at time 5, 16 = 1.
WYD WA /A Re ST2 W | A\ — ,
/A\ If c(BR) = 0 at time 7, U16,15 = 00 or 11.
A2X TSGU WA TSN
PIFL /A\ RC RSTSTG ZCXIfNBR)-lmtme7lH615 .
WA /3\ 1f c(BR) = 2 at time 7, U16, 15 = 10.

.

/N cuxe
/2\ RBIF

Ifc(BR)=0or1 at time 10, Z16 = 0.
Ifc(BR) =2 or 3 at time 10, Z16 = 1.
Followed by STD2 after time 12.

32-35/32-36







TABLE 32-4
CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

FR-2-132

Row | Subinstruction o680 il Actions
No. Symbol EXT 16,1413 121110 | 321 1 2 3 4 5 6 7 8 9 10 11 12
34 ADSO 0 010 11X 000 RL10BB RSC RG RU A WA RZ RC RU A Ifc(BR)=0, Ul6,15 =00 or 11 at time 7.
[N WG wy WwsC WS T™Z WA
AX WG $T2 /\ I c(BR) = 1, U16,15 = 01 at time 7
TOV é& WA
RBI & If ¢(BR) = 2, U16,15 = 10 at time 7,
A WA RC and TMZ at time 9 have no effect.
RIC Followed by STD2.
35 DASO 0 010 00X 000 | RLIOBB RSC RA RL RU RG RB RL RU A RA A If ¢(BR) =0, U16,15 =00 or 11 at time 9.
'S WG WB WA WL wy WA WB wsC wy '
WY12 AZX WG $T1 /A 1fc(BR) =1, U16,15 = 01 at time 9
MONEX Tov RA
i Wy /A\ If c(BR) = 2, U16,15 = 10 at time 9.
PONEX
ST1 Followed by DASI.
& RA
wy
MONEX
§T1
3% DASL 0 010 00X 001 | RLIOBB RSC RU RG RU A WA RZ RC A wL A — A If c(BR) =0, U16,15 = 00 or 11 at time 7.
N WG WA Wy WG WS T™Z
A2X wscC & WA ST2 @ — A RU A If c(BR) =1, U16,15 =01 at time 7.
TOV RBI WA
A If c(BR) =2, U16,15 = 10 at time 7.
& WA
RIC /A If ¢(BR) = 0 or 2,T(B)Z 177777 at time .
& If c(BR)=1or 3, T(B)= 177777 at time 9.
Followed by STD2.
37 INCRO 0 010 10X 000 RL10BB RSC RG PONEX RU RZ TSGN, TMZ, and TPZG of action 5 have no effect.
' N WG Wy WSC WS If U16,15 = 01, WOVR of action 7 requests execution
TSGN WG ST2 of PINC 0024 if ¢ (S) = 0025,or RUPT if ¢ (S) = 0026,
™Z WOVR 0027, or 0030.
TPZG

Followed by STD2.

32-37/32-38






FR-2-132

TABLE 32-4

CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

N c(SQ) ¢(ST) Actions
Row | Subinstruction Remarks
No. Symbol EXT 16,1413 121110 |3,21 1 2 3 4 5 6 7 8 9 10 11 12
3 | AuGo 1 010 10X |000 | RL0BB RSC Re | /N Ponex| Ru RZ /N I c(BR)=0or 1, GI6 = 0 at time 6.
Wws WG wy wsC WS
TSGN é_ HMONEX WG ST?2 & ifc(BR)=2o0r3, Gl6 = latilme 6.
T™Z WOVR TMZ and TPZG of action 5 have no effect. If
TPZG U16, IS = 11, WOVR of action 7 requests execution of
PINC 0024 if ¢(S) = 0025 or RUPT if c(S) = 0026,
0027, or 0030.
Followed by STD2.
39 DIMO 1 010 11X |o000 | RLIOBB RSC Re | A\ monex| Ru RZ /N 1 c(BR) = 0, ¢(6) s positive nan-zero at time §
ws e Wy WwsC Wws
TSGN A PONEX| we ST? A If ¢(BR) = 2, ¢(G)is negative non-zero at time 6.
™Z WOVR zf& . .
If ¢(BR) =1 or 3, ¢(G) is plus or minus zero at
TPZG [&—- time 6.
WOVR at time 7 has no effect.
Followed by STD2.
40 MSUQ 1 010 00X 000 | RLIOBB RSC RG RC RUS RZ RB Zﬁ;-— RUS zf; Ifc(BR)=0o0r 1, U5 =0 at time 7
Wws WG WwB WY WA WS WG WA
Cl TSGN ST2 /A\RA /2 1 c(BR)=20r 3, UI5 = 1 at time 7
A2X wy
MONEX Followed by STD2.
41 MSKO 0 111 XXX 1000 RSC RA RC RG RZ RC RU RC * Followed by STD2.
WG WB WA W8 Wws RA WB WA
ST2 wy
42 READO 1 000 000 000 | RLIOBB RA Wy RCH RB RA RZ Followed by STD2.
: WS WB WwB WA WB WS
ST2
13 WRITEO 1 000 001 000 | RLIOBB RA wy RCH RA RA RZ See note B. Followed by STD2
WS WwB WwB WCH w8 Wws
WG ST2
44 RANDO 1 000 010 000 | RLIOBB RA RC RCH RC RA RC RZ Followed by STD2.
WS WB wy WwB RU wB WA Wws
WA ST2

32-39/32-40







FR-2-132

TABLE 32-4
CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

¢(SQ) c(ST) Actions
Row | Subinstruction —
No. Symbol EXT 16,1413 121110 | 321 1 2 3 4 5 6 7 8 9 10 11 12
45 WANDO 1 000 011 000 RL10BB RA RC RCH RC RA RC RZ See note B. Followed by STD2.
WS WB WYy WB RU WB WA WS
WA WCH ST2
46 RORO 1 000 100 000 RL10BB RA RB RCH RB RA RZ Followed by STD2.
WS wB WY WB RU WB WS
WA ST?
47 WORO 1 000 101 000 RL10BB RA RB RCH RB RA RZ See note B, Followed by STD2.
N WB WY WwB RU WB WS
WA ST2
WCH
48 RXOR0 1 000 110 000 RL10BB RA RC RCH RA RG RZ RC RU RC Followed by STD2.
WS WB. RCH WB RC wB WS WG WB RG
WY WG ST2 WA
49 RSM3 0 101 00X 011 R15 RSC RG RB RAD Followed by instruction at return address.
WS WG wZ WG WB See note A.
' NISQ WS
50 RUPTO 1 000 111 000 R15 RSC RZ ST1 RSC at action 2 has no effect.
WS WG WG Followed by STD2.
51 RUPTI 1 000 111 001 R15 RSC RRPA RZ RB RSC at action 2 has no effect.
RB2 WG Wz LN WG Followed by STD2.
WS ST2 KRPT
52 GOJ1 0 000 XXX 001 RSC RSTRT Initiated by signal GOJAM. RSC at action 2 has no
WG WS effect.
W8 Followed by TC 4000.
53 PINC X X XX XXX XXX| RSCT RSC RG PONEX RU RB See note C. RSC of action 2, TSGN, TMZ, and TPZG
: WS WG WYy WSC LN of action 5, and WSC of action 7 have no effect. If
TSGN WG U16,15 = 01, WOVR of action 7 requests the execution
™Z WOVR of PINC 0024 if c(§) = 0025, or RUPT if c(S) = 0026,
TPZG 0027, or 0030.

32-41/32-42







FR-2-132

TABLE 32-4
CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont})

c(8Q) c(ST) Actions
Row | Subinstruction Remarks
No. Symbol EXT 16,1413 121110 | 3,21 1 2 3 5 6 7 8 g 10 11 12
5 MINC X XXX XXX XXX RSCT RSC RG MONEX RU RB See note C. RSC of action 2, TSGN, TMZ, and TPZG
WS WG WY WsC WS of action 5, and WSC and WOVR of action 7 have no
TSGN WG effect.
T™Z WOVR
TPZG
55 DINC X XXX XXX XXX RSCT RSC RG A MONEX RU RE See note C.
Ws WG xéN PaUT xg ¥ /A 1 c(BR) =0, ¢ (6) is positive non-zero,
™Z A PONEX|  WOVR /2\ 1 ¢(BR) = 2, ¢(G) is negative non-zero,
TPZG MOUT
& Z20UT A ifc(BRy=1or 3, c(G)is pius or minus zero.
RSC of action 2, and WSC and WOVR of action 7
have no effect.
5% PCDU X XXX XXX XXX RSCT RSC RG Cl RUS RB See note C. RSC of action 2, TSGN, TMZ, and TPZG
WS WG WY WSC WS of action 5, and WSC and WOVR of action 7 have no
TSGN WG effect.
T™Z WOVR
TPZG
51%# MCcou X XXX XXX XXX RSCT RSC RG MONEX RUS RB See note C. RSC of action 2, TSGN, TMZ, and TPZG
WS WG LA Cl WSC WS of action 5, and WSC and WOVR of action 7 have no
g TSGN WG effect.
™Z WOVR
TPZG
58 SHINC X XXX XXX XXX RSCT RSC RG RUS RB See note C. RSC of action 2, and WSC and WOVR of
WS WG WYD WSC Ws action 7 have no effect. TSGN of action 5 requests
TSGN WG RUPT if ¢(S) is 0045 and GI6 = 1.
WOVR
59 SHANC X XXX XXX XXX RSCT RSC RG RUS RB See note C. RSC of action 2, and WSC and WOVR of
[N WG WYD WsC W3S action 7 have no effect. TSGN of action 5 requests
TSGK WG RUPT if c(S) is 0045 and G16 = 1.
Cl WOVR
60 TCSAJ3 0 000 000 011 RSC WS See note D. An address is sent to the WA’s from an
WG Wz external source at time 8.
ST2 Followed by STDZ.

32-43/32-44






FR~2-132

TABLE 32-4
CONTROL PULSES GENERATED AT VARIOUS ACTIONS (cont)

Row | Subinstruction ¢(SQ) c¢(ST) Actions
Remarks
N Skt EXT 161413 1211,10 |321 1 2 3 4 5 6 7 8 9 10 11 12
61 FETCHO X XXX XXX 000 R6 RSC WSC WS See note D. A bank number is sent to the WA's from
WS WG an external source at time 4; a memory address is
wy sent to the WA's at time 8.
ST Followed by FETCHI.
62 FETCHI X XXX XXX 001 RSC RG RB RBBK , See note D. The quantity contained in the WA's at
WG WS time 7 and/or time 10 can be displayed on external
U2BBK equipment.
63 STORED X XXX XXX 000 R6 RSC WSC WS See note D. A bank number is sent to the WA's from
WS WG an external source at time 4; a memory address is
wy sent to the WA's at time 8.
STl Followed by STOREL.
64 STORE1 X XXX XXX 001 RSC WSC RG RB WG RBBK See note D. A quantity is provided for loading from
’ WG WS an external source at times 4 and 9.
U2BBK
65 INOTRD X XXX XXX XXX WS RSC RCH RB See note D. A channel address is sent to the WA's
WG WS from an external source at time 1; the quantity con-
tained in the WA’s at time 5 can be displayed on
external equipment.
66 INOTLD X X XX XXX XXX WS RSC RCH WCH RB See note D. A channel address is sent to the WA's
WG WS from an external source at time 1, and a quantity is
is sent at time 7.
NOTES: A.  If c¢(G) = 000003 (RELINT), 000004 (INHINT), or 000006 (EXTEND), control pulse RAD causes the genera-

tion of control pulses RZ and ST2, and subinstruction STD2 is executed next. If G contains any other
quantity, control pulse RAD causes the generation of control pulse RG and the next instruction is executed.

The ONE entered into bit position 10 of register § has no effect on addressing channel locations.

Counter Instructions are executed after any time 12 provided the execution of an interrupting or Peripheral
Instruction is not being requested. Each Counter Instruction delays program executioft for one MCT.

Peripheral Instructions are initiated by a signal from the GSE. Normally the AGC timegpunter is stopped
at time 12 before and after the execution of an instruction.

32-45/32-46







FR-2-132

Table 32-5
CONTROL PULSES

Pulse Purpose

A2X Copies bits 16 through 1 of register A directly (not through
WA's) into bit positions 16 through 1 of register X.

B15X Enters a ONE into bit position 15 of register X.

C1 Inserts carry bit into bit position 1 of the Adder. This adds
the quantity one to the content of the Adder if no bit is carried
around (from bit positions 16 to bit position 1).

CLXC Clears register X if flip-flop BR1 contains a ZERO. (Used in
instruction DV E.)

DVST Modifies the content of the stage counter (ST) by complementing

XT

E
GeLs /N

KRPT
Ll16
L2GD

MONEX

MOUT

the content of the next higher bit position as shown below:

Binary Octal
000 0 \
001 1 '
011 3
111 7
110 6 )
100 4

Enters a ONE into bit position EXT of register SQ.

Copies bits 16, 15 through 4, and 1 of register G directly (not
through WA's) into bit positions 16, 12 through 1, and 15 of
register X.

Resets interrupt priority cell.
Enters a ONE into bit position 16 of register L.

Copies bits 16 and 14 through 1 of register L directly (not
through WA's) into bit positions 16 and 15 through 2 of register
G; enters a ONE into bit position 1 of register G if pulse MCRO
is generated.

Clears register X and enters ONE's into bit positions 16 through
2.

Causes the generation of one minus drive pulse.

32-47




FR-2-132

Table 32-5
CONTROL PULSES (cont)

Pulse Purpose

NEACOF Permits end around carry upon completion of subinstruction
MP3,

NEACON Inhibits end around carry (also during WYD) until NEACOF.

NISQ Causes loading of next instruction into register SQ (implies RB
and WSQ at time 12). Also resets the stage counter (ST) to 0;
frees certain restrictions; permits execution of instruction RUPT
and of all Counter Instructions.

PIFL Prevents writing into bit position 1 of register Y on control
pulse WYD if bit position 15 of register L. contains a ONE.
(Used in instruction DV.)

PONEX Clears register X and enters a ONE into bit position 1.
POUT Causes the generation of one plus drive pulse.

PTWOX Clears register X and enters a ONE into bit position 2.

R15 Enters 000015 into WA's.

RIC Enters 177776 (minus one) into WA's.

R6 Enters 000006 into WA's,

RA Reads bits 16 through 1 of register A into WA's 16 through 1.
RAD Reads address of next instruction. RAD appears at last time

8 of an instruction and is normally interpreted as RG. If the
next instruction is INHINT, RELINT, or EXTEND, RAD is
interpreted as RZ and ST2 instead.

RB Reads bits 16 through 1 of register B into WA's 16 through 1.
RBI1 Enters 000001 into WA's,

RBIF Enters 000001 into WA's if flip-flop BR1 contains a ONE.
RB2 Enters 000002 into WA's.

RBBK Reads the BB (both bank) configuration into the WA's, i.e.,

copies the content of bit position 16 of register FBANK into
WA's 16 and 15, the content of bit positions 14 through 11 of
register FBANK into WA's 14 through 11, and the content of
bit positions 11 through 9 of register EBANK into WA's 3
through 1.

32-48




FR-2-132

Table 32-5
CONTROL PULSES (cont)

Pulse Purpose

RC Reads the complemented content of register B (bits 16 through
1 of C) into WA's 16 through 1.

RCH Reads the content of the input-output channel specified by the
contents of register S; bit 15 is read into WA's 16 and 15, and
bits 14 through 1 are read into WA's 14 through 1.

RG Reads bits 16 through 1 of register G into WA's 16 through 1.

RL Reads bit 16 of register L into WA's 16 and 15, and bits 14
through 1 into WA's 14 through 1.

RLI10BB Reads low 10 bits, i.e., bits 10 through 1 of register B into
WA's 10 through 1; replaces c(S), which includes a quarter code,
by a 10 bit address.

RQ Reads bits 16 through 1 of register Q into WA's 16 through 1.

RRPA Enters into the WA's the address of a RUPT Transfer Routine
supplied by the Interrupt Priority Control.

RSC Reads the content of the CP register specified by the content of
register S; bits 16 through 1 are read into WA's 16 through 1.

RSCT Enters into the WA's the address of a counter address supplied
by the Counter Priority Control (paragraph 30-94).

RSTRT Enters 004000 (Block II start address) into WA's.

RSTSTG Resets the stage counter to 0 (refer to DVST).

RU Reads bits 16 through 1 of Adder output gates (U) into WA's 16
through 1.

RUS Reads bit 15 of Adder ou put gates (U) into WA's 16 and 15, and
bits 14 through 1 into WA's 14 through 1.

RZ Reads bits 16 through 1 of register Z into WA's 16 through 1.

ST1 Sets stage 1 flip-flop to ONE at next time 12,

ST2 Sets stage 2 flip-flop to ONE at next time 12,

STAGE Causes the execution of next subinstruction as defined by the

content of the stage counter (ST).

32-49




FR-2-132

Table 32-5
CONTROL PULSES (cont)

Pulse

Purpose

TL15
T™™Z

TOV

TPZG

TRSM

TSGN

TSGN2

TSGU

UZ2BBK

WA

Copies bit 15 of register L into flip-flop BR1.

Tests the content of the WA's for minus zero: if bits 16 through
1 are all ONE's, flip-flop BR2 is set to ONE; otherwise BR2 is
set to ZERO.

Tests the content of WA's 16 and 15 for overflow: set flip-flops
BR1 and BR2 to 01 in case of positive overflow, or to 10 in case
of negative overflow.

Tests the content of register G for plus zero: if bits 16 through
1 are all ZERO's, flip-flop BR2 is set to ONE; otherwise the
content of BRZ2 is not changed.

Tests signals XT1/ and XB7 of selection logic for the resume
address (0017) during the execution of subinstruction NDXO0: if
0017 is present, subinstruction RSM3 is executed next by setting
c(ST) = 3; otherwise subinstruction NDX1 by setting c(ST) = 1.

Tests content of WA 16 for sign: if a ZERO, flip-flop BR1 is
set to ZERO; if a ONE, flip-flop BR1 is set to ONE without
changing the content of flip-flop BR2.

Tests content of WA 16 for sign: if a ZERO, flip-flop BR2 is
set to ZERO; if a ONE, flip-flop BR2 is set to ONE without
changing the content of flip-flop BR1.

Tests content of output gate Ul6 of Adder for sign: if a ZERO,
flip-flop BR1 is set to ZERO; if a ONE, flip-flop BR1 is set to
ONE.

Copies bits 16 and 14 through 11 of the Adder output gates (U)
into bit positions 16 and 14 through 11 of register FBANK, and
bits 3 through 1 (of U) into bit positions 3 through 1 of register
EBANK. U2BBK may be inhibited by signal MONWBK, which is
generated if register BBANK is addressed.

Clears register A and writes the content of WA's 16 through 1
into bit positions 16 through 1.

32-50




FR-2-132

Table 32-5
CONTROL PULSES (cont)

Pulse

Purpose

waLs /N

WB

WCH

wG

Clears register A and writes the content of WA's 16 through 3
into bit positions 14 through 1. If bit position 1 of register G
contains a ZERQO, the content of bit position 16 of register G

is entered into bit positions 16 and 15 of register A; if bit posi-
tion 1 of register G contains a ONE, the content of output gate
U 16 of the Adder is entered into bit positions 16 and 15 of
register A, WALS also clears bit positions 14 and 13 of reg-
ister L, and writes the content of WA's 2 and 1l into these bit
positions.

Clears register B and writes the content of WA's 16 through 1
into bit positions 16 through 1.

Clears the output channel specified by the content of register S
and writes the content of WA's 16 and 14 through 1 into bit
positions 15 through 1.

Clears register G and writes the content of WA's 16 through 1
into bit positions 16 through 1, except if register S contains
addresses 0020 through 0023 in which case the WA content is
cycled or shifted (paragraph 30-41).

Clears register L. and writes the content of WA's 16 through 1
into bit positions 16 through 1.

Tests the content of WA's 16 and 15 for positive overflow: if
register S contains 0025, counter 0024 is incremented; if reg-
ister S contains 0026, 0027, or 0030, instruction RUPT is ex-
ecuted.

Clears register Q and writes the content of WA's 16 through 1
into bit positions 16 through 1.

Clears register S and writes the content of WA's 12 through 1
into bit positions 12 through 1.

Clear the CP register specified by the content of register S and
writes the content of WA's 16 through 1 into bit positions 16
through 1.

Clears register SQ and writes the content of WA's 16 and 14
through 10 into bit positions 16 and 14 through 10.

32-51




FR-2-132

Table 32-5
CONTROL PULSES (cont)

Pulse Purpose
WY Clears registers X and Y and carry flip-flop CI; writes the content
of WA's 16 through 1 into bit positions 16 through 1 of register Y.
Wyl2 Clears registers X and Y and carry {lip-flop Cl; writes the content
of WA's 12 through 1 into bit positions 12 through 1 of register Y.
WYD Clears registers X and Y and carry flip-flop Ci, writes the coatent
of WA's 16 and 14 through 1 into bit positions 16 and 15 through 2
of register Y; writes the content of WA 16 into bit position 1 of reg-
ister Y cxcept in SHINC sequence, or unless bhi. position 15 of reg-
ister L. contains a ONE at PIFL, or if end arouv .« carry is inhibited
by control pulse NEACON.
wWZ Clears register Z and writes the content of W/ s 16 through 1 into
bit positions 16 through Il.
715 Enters a ONE into bit position 15 of register Z.
216 Enters a ONE into bit position 16 of register Z.
ZAP Causes the generation of control pulses RU, G2LS, and WALS
(used in instruction MJP? K).
z1P Causes generation of control pulses A2X and L2GD (used in instruc-
tion MP K); performs read/write operations depending on the con-
tent of bit positions 15, 2, and 1 of register LL as shown:
L15 L2 L1 Read Write Carry Remember
0 0 0 - WY - -
0 0 1 RDB WY - -
0 1 0 RB WYD - -
0 1 1 RC WY Cl MCRO
1 0 0 RB WY - -
1 0 1 RB wWYD - -
1 1 0 RC WY CI MCRO
1 1 1 - WY - MCRO
If MCRO occurs, a ONE is entered into L15
ZOUT | Stops the generation of drive pulses.

A This pulse does not appear inthe pulse sequences; refer to ZAP.

A This pulse does not appear in the pulse sequences; refer to NISQ,




FR-2-132

F |30357 .
; ' '
i t
H | [
| |
| |
s |3000 ‘ WS T 0357 I
T |
| 030357 |
| 1
T T
6 |oo3000 WG ?oooooo ¥ § 030357 b RG ¢
|
| 030357
L
| I
| WB ¥ 030357 RB @
i

B OO3000TRB

@ 000000

|
A RSC *

t
L RSC ¢
i
Q RSC ‘ WQ 002661

Z 002661 RSC 1 RZ 002661 wZ T 003001

003001 030@

U |oo266!1 | 00300! RU l
WYI2
Y 002660 ‘} 003000

X 000000 ® 000000

cI 1 eCI |
sQ [00.3 wSQ Y03
ACTION I 2 3 4 5 6 7 8 9 10 1l 12
RB RSC RZ RU RAD
wYi2 WG wQo wz wB
o NISQ WS
ST | O o
BR | o 0
27014

Figure 32-2. Subinstruction TCO

32-55



FR-2-132

(1) Retain c(Q).

(2) Set c(B) = c(F) = f, f being the instruction stored at location F,
Set c(S) = relevant address of f.
Set c(SQ) = order code of f.

(3) Set c(Z) =F + 1.

Point (2) implies that instruction f is executed next.

32-41. There are no restrictions on instruction TCF F, or special cases,
except that F must represent an address in F Memory.

32-42., The execution of subinstruction TCFO is similar to that of subinstruc-
tion TCO except for action 3 which has no control pulse (row 3 of table 32-2).
The content of register Q is not changed. The relevant address contained in
register B is incremented by one and entered into register Z.

32-43, INSTRUCTION CCS E

32-44, Instruction CCS E (Count, Compare, and Skip on E) is a Basic
Instruction which is represented by order code 01.0 and a 10=-bit address,.
Instruction CCS E consists of subinstructions CCS0 and STD2, the execution
of which takes two MCT's,

32-45, Instruction CCS E examines the data stored at location E in E Mem~
ory (or in a CP register) and branches accordingly, The operation CCS E
with 0024 =E 17777 can be formulated as follows:

If c(E) is positive non-zero, i.e., if 00001 = c(E) = 37777:

(1) Set c(A) = c(E) -1.

(2) Set c(B) = c(I+1) = j, Ibeing the address of instruc-
tion CCS E, and j being the instruction stored at
location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) =b(Z)+1 = I+2,

(4) Restore c(E) = b(E) and c(I+1) = b(I+1) if E and/or
(I+1) represent an address in E Memory.

If ¢(E) is plus zero,i.e., if c(E) = 00000:

(1) Set c(A) = 000000

(2) Set c(B) = c¢(+2) = j, I being the address of instruc-
tion CCS E, and j being the instruction stored at
location (I+2).

(3) Set c(Z) =b(Z)+2 = I+3.

32-56



32-46.

FR-2-132

(4) Restore c(E) = b(E) and c¢(I+2) = b(+2) if E and/or
(I+2) represent an address in E Memory.

If c(E) is negative non-zero, i.e., if 40000 =c(E) =77776:

(1) Set c(A) = ;(E) -1, ¢ for complemented content.

(2) Set c(B) = c(H3) = j, I being the address of instruc-
tion CCS E, and J being the instruction stored at
location (I+3).

Set ¢(S) = relevant address of j.
Set c(SQ) = order code of j. .

(3) Set c(Z) =b(Z) +3 = I+4

(4) Restore c(E) = b(E) and c(I+3) = b(I+3) if E and/or
(I+3) represent an address in E Memory.

If ¢c(E) is minus zero, i.e., if c(E) = 17777:

(1) Set c(A) = 000000,

(2) Set c(B) = c(+4) = j, I being the address of instruc~-
tion CCS E, and j being the instruction stored at
location (I+4).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) =b(Z)+4 = I+5,

(4) Restore c(E) = b(E) and c(I+4) = b(I+4) if E and/or
(I+4) represent an address in E Memory.

I

Point (2) of all cases implies that the respective instruction j is
executed next,

Special Cases of CCS E:

a. CCS A, a very useful instruction, examines the data in A;
however, the b(A) is changed.

b. CCS L, CCSQ, and CCS Z follow the rules of paragraph 32-45,

c. CCS EBANK, CCS FBANK, and CCS BBANK also follow fhe
rules of paragraph 32-45; however, the particular read and
write operations must be observed.

d. CCS ZERO has no purpose.

e. Instructions CCS E with 0010 <= E < 0017 follow the rules of
paragraph 32-45.

f. Instructions CCS E with 0020 < E < 0023 also follow the rules
of paragraph 32-45 except that c(E) is edited during restoring.

32-57



FR-2-132

F
E 03777 900000 03777
H
s |0300 Tws 0300 WS 4652l
000300
6 |ol0300 WGTOOOOOO ¥003777 TRG weToos777 .
|
' ; :
B [010300 @RLIOBB | wGY003777 RB RB®
|
000000
I
A Rsc+ WA 4003776
t
L RSC+
I
Q RSC#®
I
Z |ooss21 RSCé RZT wZ § 006521
006521) (006521 @77) 003777
U |oos6521 OOGSZIlRU 003776 lRU
y |006520 WYI2 ¥ 006521 WYy 003777
X |000000 ® 000000 MONEX ® 177776
cI | 0 CI |
sQ |oio
ACTION | 2 3 4 5 6 7 8 9 10 1] 12
RLIOBB RSC RG RZ RU RB wy RU
ws ¢} wB wYI2 wZz WG ST2 WA
TSGN ws RB
T™Z MONEX
TPZG CI
ST |o 2
BR | O o o

2702A

Figure 32-3. Subinstruction CCS0, Branch on Quantity Greater than Plus Zero

32-58



FR-2-132

F
E 00000 ® 00000 4 00000
H
s |0300 ? WS 0300 WS § 6524
000300
G |010300 WG 4 000000 ¥ 000000 ¢RG WG Toooooo
| *
l 000000 000000
| l
B [010300 e RrLIOBB | waloooooo RB
|
000000
—
A Rsc$ WA 4 000000
It
I
L RSC ?
Q RSC T
Z |oose52l RSC i RZ T WZ 4 006522
006521 @;@ @o@
I s il
u |o06521 006522 i RU 000000 l RU
Yy |006520 WYI2 ¥ 006521 WY ® 000000
X | 000000 PONEX ® 00000l ® 000000
cI ] 0 . o]
sq |oro
ACTION | 2 3 4 5 6 7 8 9 10 1 12
RLIOBB RSC RG RZ RU RB wY RU
WS WG wB wYI2 wZ WG sT2 WA
TSGN PONEX wSs
T™Z
TPZG
sT |o 2
BR |9 0

27054

Figure 32-4. Subinstruction CCS0, Branch on Plus Zero

32-59



FR-2-132

32-60

F'
E 76544 ® 00000 A 76544
H
s |o300 TWS 0300 WS 4 6523
(600309
S
6 |o0300 we?oooooo ¥ 176544 TRG WGTI76544 >
I —— —
@6549 @354@
| e s
B [010300 eRLIOBB | wB l 176544 RBl RC @
a .
oo
s
A RSC & WA 4 001232
|
T
L RSC +
Q RSC @
z |ooses2l RSC & RZ T WZ 4 006523
(qoss) (Gossed) (o) Goesa)
. L -
u [ooes2i 006523 lRU 001232 l RU
y |ooes520 wYI2 ¥ 00652] WY ¥ 001233
x |000000 PTWOX ® 000002 MONEX ® 177776
cI ° o) cle o)
sq |o1o
ACTION I 2 4 5 6 7 8 9 10 T 12
RLIOBB RSC RG RZ RU RB wY RU
WS WG wB wYI2 wz WG sT2 WA
TSGN PTWOX ws RC
™Z MONEX
T™ZG cT
ST |o 2
BR |O 2 6]
2704A
Figure 32-5. Subinstruction CCSO0, Branch on Quantity Less than Minus Zero



FR-2-132

F
£ 77777 € 00000 ATT7TT
H
s |o0300 TWS 0300 WS 4 6524
_ 1
000300)
6 |010300 WG ? 000000 \ Ahaddds T RG WG ? 177777 @
| -
| (7777b 77777
[ \"T"/ T
g8 |010300 @ RLIOBB | wB ‘ 77777 RB l
|
—
000000
1
A RSC ? WA 4 000000
L RSC l
e
1
Q RSC ¢
|
z |oosesai RSC & RZ T WZ 4 006524
//"L' et
u |ooes21 006524 l RU 000000 l RU
Y |oo0es20 WYI2 ¥ 006521 WY @ 000000
PONEX
X
000000 PTwox ® 000003 ® 000000
cI ° 0 ° o
sa |ono
ACTION I 2 4 5 7 8 9 10 " 12
RLIOBB RSC RG RZ RU RB wY RU
WS WG wB wylz w2z WG sT2 WA
TSGN PONEX WS
T™MZ PTWOX
TPZG
ST 0 2
BR |O 3 o]
2703A

Figure 32-6.

Subinstruction CCS0, Branch on Minus Zero

32-61



FR-2-132

32-47. When instruction CCS E is executed, action 1 of subinstruction CCSO0
(row 4 of table 32-2) enters the relevant address of instruction CCS E into
register S. At time | of the first subinstruction, register B always contains
the instruction to be executed. At time 2 or 4, the quantity to be tested is
entered into register G, Action 5 enters the quantity into register B and sets
the branch flip-flops accordingly., Actions 7 and 8 increment the content of
register Z by 0, 1, 2, or 3 to specify a new '"next address'' and enter it into
register S. Action 9 returns the tested quantity to register G for restoring
in memory. Action 10 diminishes the tested non-zero quantity by one and
action 11 enters the diminished quantity into register A. Subinstruction STD2
increments the content of register Z by one and calls forward the instruction
defined by the previous content of register Z,

32-48. The execution of subinstruction CCS0 of CCS 0300, with location
0300 containing a quantity greater than plus zero, is illustrated in figure
32-3, Figures 32-4, 32-5, and 32-6 illustrate the execution of the same
instruction with location 0300 containing different quantities (plus zero, less
than minus zero, and minus zero).

32-49, INSTRUCTION BZF F

32-50. Instruction BZF F (Branch on Zero to Fixed F) is an Extra Code
Instruction which is represented by order code 11.2, 11.4, or 11,6 and a 12
bit address. The address contains a ONE in bit position 11 or 12 or in both,
The order code is composed of 11. plus the two address bits mentioned,
Instruction BZF F must be preceded by Special Instruction EXTEND which
enters a ONE into bit position EXT of register SQ., (Code 1. is taken from
bit positions 16, 14, and 13 of register B, and entered into the corresponding
bit positions of register SQ.) Instruction BZF F consists of subinstruction
BZFO only if branching occurs, and of subinstructions BZF¥0 and STD2 if no
branching occurs; consequently, the execution of instruction BZF F may take
one or two MCT's.

32-51. Instruction BZF F examines the data contained in register A and
takes the next instruction from location F in F memory if register A contains
zero. The operation BZF F with 2000 = F < 7777 can be formulated as fol-
lows:

If c(A) is nonzero, i.e., if 000001 < c(A)< 077777 or
100000 = c(A) < 177776:

(1) Retain c(A)

(2) Set c¢(B) = ¢c(I+1) = j, I being the address of instruc-
tion BZF F, and j being the instruction stored at
location (I+1).

32-62



FR-2-132

Set c(S) = relevant address of j.
Set c(SQ)= order code of j.
(3) Set c(Z) = b(Z)+1=I+2
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address
in E Memory.

Point (2) implies that instruction j is executed next.

If c¢(A) is zero, i.e., if c(A) = 000000 or c(A) =177777:

(1) Retain c(A)
(2) Set c¢(B) = c(F) = {, { being the instruction stored at
location F.
Set c(S) = relevant address of f.
Set c(SQ) = relevant address of {.
(3) Set c(7) = F+1.

Point (2) implies that instruction f is executed next.

32-52. There are no restrictions on instruction BZF F, or special cases,
except that F must represent an address in F Memory.

32-53, When instruction BZF F is executed, action 1 of subinstruction BZFO0
(row 5 of table 32-2) enters the content of register A into register G. Actions
1 and 2 set the branch flip-flops (BR) to 0 or 2 if a non-zero quantity has been
entered, or to 1 or 3 if the quantity zero has been entered into register G.

If a non-zero quantity has been entered, the address of the next instruction is
copied from register Z into register S by action 8 and subinstruction STD2
increments the content of register Z and calls forward the next instruction.

If registers A and G contain 000000 or 177777 at time 2, the relevant address
F of instruction BZF F contained in register B is incremented by one by
action 5 and entered into register Z by action 6. (Compare with actions 1

and 6 of subinstruction TCO0,) At time 6, the instruction stored at location ¥
is entered into register G and copied into register B by action 8. Action 8
also enters the relevant address of the instruction into register S and enters
its order code into register SQ at time 12.

.32-54, The execution of subinstruction BZF0 of BZF 6055, with A contain-
ing 004765, and location 6055 containing instruction CA 0221 (30221), is illus-
trated in figure 32-7, Figure 32-8 illustrates the execution of the same
instruction when A contains 000000, When A contains any negative quantity
such as 176543, BR is set to 2 by control pulse TSGN, Otherwise, figure
32-7 applies. When A contains 177777, BR is set to 3 by control pulses TSGN
and TMZ; otherwise figure 32-8 applies.

32-63



FR-2-132

F 30221 [ ]

E

H

S 6055 WS 4 0437
G |[016055 4 WG 004765 WG @ 000000 ¥ 030221

B 016055

.
Goare3 (Goses)

A |004765 l RA

L
Q
Z | 006437 RZ ®
U 006437
Y |006436
X |006000
CI t
sSQ |Il.6
ACTION 1 2 3 4 5 6 7 8 9 10 1 12
RA TPZG RSC RZ
WG WG WS
TSGN STD2
T™Z
ST |o 2
Br |O (o] (0]

2785A

Figure 32-7. Subinstruction BZFO0, With Register A Containing

a Positive Non-Zero Quantity

32-64



FR-2-132

F |3022 [
E
H
s |[e055 ws T 0221
030221
G |016055 4 WG 000000 WG @ 000000 ¥ 03022| RG @
030221
B |016055 RB @ WB ¥ 03022| RB @
000000
A |000000 l RA
L
Q
z |ooea37 wz ? 006056
s
o
v |ooea37 006056 lRU
Y |006436 WYI2 ¥ 006055
X |000000 ® 000000
cI | CIe
sqQ |16 WSQ Y030
ACTION | 2 3 4 5 6 7 8 9 10 " 12
RA TPZG RSC RB RU RAD
WG WG wYI12 wZ wB
TSGN cI WS
T™Z NISQ
ST lo o]
BR [©O 0 o]

Figure 32-8. Subinstruction BZFO0, With Register A containing Plus Zero

2786A

32-65



FR-2-132

32-55, INSTRUCTION BZMF F

32-56. Instruction BZMF F (Branch on Zero or Minus to Fixed F) is an
Extra Code Instruction which is represented by order code 16.2, 16.4, or
16.6 and a 12 bit address. The address contains a ONE in bit position 11 or
12, or in both, The order code is composed of 16, plus the two address bits
mentioned. Instruction BZMF F must be preceded by Special Instruction
EXTEND which enters a ONE into bit position EXT of register SQ. Instruc=-
tion BZMF F consists of subinstruction BZMFO0 only if branching occurs, and
of subinstruction BZMFO0 and STD2 if no branching occurs; consequently, the
execution of instruction BZMF F may take one or two MCT's,

32-57. Instruction BZMF F examines the data contained in register A and
takes the next instruction from location F in FF Memory if register A contains
zero or a negative non-zero quantity. The operation BZMF F with 2000 = F
= 7777 can be formulated as follows:

If c(A) is positive non~-zero, i.e., if 000001 =< c(A) < 077777:

(1) Retain c(A),

(2) Set c(B) = c(I+1) = j, I being the address of instruc-
tion BZF F, and j being the instruction stored at
location (I+1),

Set c(S) = relevant address of j.
Set ¢(SQ) = order code of j.

(3) Set c(Z) =b(Z)+1 = I+2.

(4) Restore c(I+1) = b(I+1) if (I+1) represents an address
in E Memory.

Point (2) implies that instruction j is executed next.

If c(A) is not positive non-zero, i.e,, if c(A) = 000000 or
100000 = c(A) = 177777:

(1) Retain c(A)
(2) Set c(B) = c(F) = £, f being the instruction stored at
location F,
Set c(S) = relevant address of f.
Set c(SQ) = relevant address of f.
(3) Set c(A) = F+1,

Point (2) implies that instruction f is executed next.

32-58. There are no restrictions on instruction BZMF F, or special cases,
except that F must represent an address in F Memory.

32-66



FR-2-132

32-59, The execution of instruction BZMF F is similar to that of instruc-
tion BZF F. Both subinstructions BZF0 and BZMFO set the branch flip-flops
by actions 1 and 2; however, depending on the content of the branch flip-flops,
actions 5, 6, and 7 operate differently. Refer to rows 5 and 6 of table 32-4.
When A contains a positive non-zero quantity, subinstruction BZMFO sets

BR to 0 and no branching occurs. When A contains plus zero, a negative
non-zero quantity, or minus zero, BR is set to 1, 2, or 3, respectively, and
branching occurs.

32-60. FETCHING AND STORING INSTRUCTIONS

32-61, INSTRUCTION CA K

32-62. Instruction CA K (Clear and Add K) is a Basic Instruction which is
represented by order code 03. and a 12 bit address. Instruction CA K con-
sists of subinstructions CAO and STD2, the execution of which takes two
MCT's. Alternate spelling CAF K is permitted when K refers to a location
in F Memory, and CAE K when K refers to a location in E Memory or a CP
register.

32-63. Instruction CA K clears register A and enters into it the data stored
at location K, The operation CA K with 0024 = K = 7777 can be formulated
as follows:

(1) Set c(A) = c¢(K)

(2) Set c¢(B) = c(I+1) = j, I being the address of instruc-
tion CA K, and j being the instruction stored at
location (I+1),

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z)+1 = +2.

(4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or
(I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

32-64. Special Cases of CA K:

a. CA A (alternate code NOOP, for no operation) has no effect.
b. CAL, CAQ, and CA Z follow the rules of paragraph 32-63.

c. CA EBANK, CA FBANK, and CA BBANK can be used; however,
the particular read and write operations have to be observed.

d. CA ZERO enters 000000 into A.

32-67



FR-2-132

i !
E |44444 @ 00000 1 4 44444
|
H |
|
s |o0400 | WS A} 6000
|
6 |[o30400 WG s 000000 ¥ 144444 ‘ RG T WG T 144444 o
[
| 44442
' I l
B |030400 | WB V144444 RB RB T
000000 @ooo 144444
A RSC + WA l 144444
L RSC +
Q RSC L
|
Z | 006000 RSC l RZ J»
u |ooeooo
y |oos777
x |ooooo0
cI [
sq [03.0
ACTION | 2 4 5 6 7 8 9 10 " 12
RSC RG RZ RB RB
WG wB ws WG WA
sT2
ST |o 2
BR |O 0

32-68

Figure 32-9. Subinstruction CA0

2718A



FR-2-132

e. Instructions CA K with 0010 = K < 0017 follow the rules of
paragraph 32-63.

f. Instructions CA K with 0020 = K = 0023 also follow the rules
of paragraph 32-63, except that the c¢(K) is edited during
restoring.

32-65, When instruction CA K is executed, action 2 of subinstruction CAOQO
(row 7 of table 32~4) enters the desired quantity into register G if this quan-
tity is stored in a CP register. Otherwise, register G is cleared and the
desired quantity is entered by E Memory at time 4, or by F Memory at time
6. Action 7 copies this quantity into register B, and action 10 copies the
quantity (from register B) into register A, Action 9 returns the quantity to
register G for restoring in E Memory. Subinstruction STD2 increments the
content of register Z by one and calls forward the instruction defined by the
previous content of register Z.

32-66. The execution of subinstruction CA0 of CA0400, with location 0400
containing 44444, is illustrated in figure 32-9,

32-67. INSTRUCTION CS K

32-68. Instruction CA K (Clear and Subtract K) is a Basic Instruction which
is represented by order code 04. and a 12 bit address. Instruction CS K

consists of subinstructions CS0 and STD2, the execution of which takes two
MCT's.

32-69. Instruction CS K clears register A and enters into it the complement-
ed data stored at location K. The operation CS K with 0024 = K = 7777 can
be formulated as follows:

(1) Set c(A) = ¢(K), ¢ for complemented content,

(2) Set c(B) = c(I+1) = j, I being the address of instruc-
tion CS K, and j being the instruction stored at
location E(I+1),

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) =b(Z)+1 = I+2,

(4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or
(I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next,

32-70. Special Cases of CS K:

32-69



FR-2-132

a. CS A (alternate code COM, for complement) complements the
content of A,

b. CSL, CAQ, and CA Z follow the rules of paragraph 32-70,

c. CS EBANK,CA FBANK, and CA BBANK can be used; however,
the particular read and write operations must be observed.

d. CS ZERO enters 177777 into A.

e. Instructions CS K with 0010 = K = 0017 follow the rules of
paragraph 32-69.

f. Instructions CS K with 0020 = K = 0023 also follow the rules of
paragraph 32-69, except that the c(K) is edited during restoring.

32-71. The execution of instruction CS K is similar to that of instruction
CA K (compare instructions CA 0 and CS 0 in rows 7 and 8 of table 32-4),
Action 10 of CAO takes the desired quantity from the normal read side of
register B and enters this quantity into register A, Action 10 of CS0O takes
the desired quantity from the complement read side of register B and enters
the complemented quantity into register A,

32-72. INSTRUCTION DCA K

32-73, Instruction DCA K (Double Clear and Add K) is an Extra Code Instruc-
tion which is represented by order code 13, and a 12 bit address. Instruc-
tion DCA K must be preceded by Special Instruction EXTEND which enters a
ONE into bit position EXT of register SQ. (Code 3. is taken from bit posi-
tions 16, 14, and 13 of register B and entered into the corresponding bit
positions of register SQ.) Instruction DCA K consists of subinstructions
DCAO, DCAIl, and STD2, the execution of which takes three MCT's.

32-74. Instruction DCA K clears registers A and L. and enters into them the
data stored at locations K and K+1, respectively., The operation DCA K with
0024 = K = 7776, excluding the last address of any E or F Memory bank,
(tables 30-3 and 30-4) can be formulated as follows:

(1) Set c(A) = c(K)
Set c(L) = c(K+1)
(2) Set c(B) = c(I+1) = j, I being the address of instruction
DCA K and j being the instruction stored at location
(I+1).
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) = b(Z)+1 = I+2,

32-70



FR-2-132

(4) Restore c(K) = b(K), c(K+1) = b(K+1), and c(I+1) = b(I+1)
if K, (K+1) and/or (I+1) represent an address in
E Memory.

Point (2) implies that instruction j is executed next.
32-75. Special cases of DCA K:

DCA A has no purpose.

b. DCA 0010 (DCA ARUPT) and DCA 0013 (table 30-4) are useful
and follow the rules of paragraph 32-74.

c. Any DCA K with 0000 = K = 0022 must be used with extreme
care so as not to destroy stored data; K must not be 0023 in
order to prevent destruction of data in counter T2. Whenever
locations 0020 through 0023 are involved, the content is edited
during the restoring operation.

32-76. When instruction DCA K is executed, first the content of location
(K+1) is entered into register L. by subinstruction DCAOQ, then the content of
location K is entered into register A by subinstruction DCAl., The Yul Pro-
gramming System accomplishes this by replacing instruction DCA K with
code DCA (K+1) which is wired into the program. As the AGC executes sub-
instruction DCAQO, relevant address (K+1) is available first and decremented
by one. Subinstruction DCAIl then uses the decremented address K. For
execution of subinstructions DCAQ and DCA1l, refer to rows 9 and 10 of table
32-4, When double precision quantities are taken from memory, K must not
be equal to the last address of any E or F memory bank in order to allow K+l
to be a legal address.

32-77. The execution of instruction DCA 0132 is illustrated in figures 32-10
and 32-11. It is assumed that this instruction is stored at location 2103,
Location 0132 contains quantity 33461 and location 0133 contains quantity
11231, Note that registers B, G, and S contain relevant address 0133 at the
start of subinstruction DCAO instead of 0132, Thus, E Memory enters the
quantity 11231 into register G at time 4 and actions 7 and 10 bring the quantity
into register L. Action 1 decrements address 0133 and action 8 enters the
decremented address 0132 into register S. At time 4 of subinstruction DCAIL,
E Memory enters the quantity 33461 into register G and actions 7 and 10
bring this quantity into register A, Action 8 enters the address of the next
instruction stored in register Z into register S as usual, and subinstruction
STD?2 increments the content of register Z and calls forward the next instruc-
tion,

32-71



FR-2-132

F ?
£ |23 ® 00000 : Ali23)
" }
|

s |oi33 } WS 4 0132
6 |o30133 WG § 000000 ¥ 01123 v RGT WG T o123l ®

[

| (@123) D

|

| ' .
B 030|33TRB I WB ¥ 01123 RB RBT

|

@ 000000 @132 @

A RSC+
x RSC+ WL ¥ 01123
Q RSC+
z |oozi103 —
u |oozios 000132 RU ®
v |ooz2i02 ¥ wyiz 000133

X 000000 MONEX 77776

CcI | CI |
sQ |13.0
ACTION I 2 3 4 5 6 7 8 9 10 1l 12
RB RSC RG RU RB RB
wYli2 WG wB US WG wL
MONEX STI
CI
ST |0
BR | O 0

2777A

Figure 32-10. Subinstruction DCAO

32-72



FR-2-132

F *
f
E |3346 ® 00000 l A 33461
|
T
H \
L
I
s |oiz2 WS 4 0103
I
f
6 |ol23 WG A 000000 ¥ 033461 v RGT WGT03346| 'y
} —t— —te
| <0334GD @3346D
| R e I
| l
g8 o123 | WBlO3346I RB RB
- — —i—
(ooooo@ @oono@ @334@
A RSC ¢ WA ¥ 033461
|
T
L RSC*
|
T
Q RSC ¢
|
:
z |oooio3 RSC & RZ ®
u |oooiz2
vy |ooo0i33
x |i177778
cI
sa [13.0
ACTION 2 4 5 6 7 8 9 10 I 12
RSC RG RZ RB RB
WG wB ws WG WA
sT2
sT | 2
BR (O o]

Figure 32-11.

Subinstruction DCAI

2778A

32-73



FR-2-132

32-78. INSTRUCTION DCS K

32=79. Instruction DCS K (Double Clear and Subtract K) is an Extra Code
Instruction which is represented by order code 14, and a 12 bit address.
Instruction DCS K must be preceded by special instruction EXTEND which
enters a ONE into bit position EXT of register SQ. Instruction DCS K con-
sists of subinstructions DCS0, DCS1, and STD2, the execution of which takes
three MCT's,

32-80. Instruction DCS K clears registers A and L, complements the data
stored at locations K and K+1, and enters this data into registers A and L,
respectively. The operation DCS K with 0024 = K = 7776, excluding the last
address of any E or F memory bank (tables 30-3 and 30-4), can be formulated
as follows:

(1) Set c(A) = c(K)
Set c(L) = c(K+1)
(2) Set c(B) = c(F1) =j, Ibeing the address of instruction
DCA K and j being the instruction stored at location
(I+1),
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) =b(Z) +1 = I+2.
(4) Restore c(K) = b(K), c(K+1) = b(K+1) and c(I+1) = b(I+1)
if K, (K+1), and/or (I+1) represents an address in
E Memory.

Point (2) implies that instruction j is executed next.
32-81. Special cases of DCS K:

a. DCS A, (alternate code DCOM, for double precision complement)
complements the contents of registers A and L,

b. DCS 0010 and DCS 0013 (table 30-4) may be useful and follow
the rules of paragraph 32-80,

c. Any other DCS K with 0000 = K = 0022 must be used with extreme
care so as not to destroy stored data; K must not be 0023 in
order to prevent destruction of data in counter T2, Whenever
locations 0020 through 0023 are involved, the content is edited
during the restoring operation,

32-82. The execution of instruction DCS K is similar to that of instruction
DCA K. Compare rows 11 and 12 of table 32-4 with rows 9 and 10.

32-74



FR-2-132

In action 10 of subinstructions DCS0 and DCS1, the control pulse RB is re-
placed by pulse RC to read the complemented quantity instead of the non-
complemented quantity out of register B.

32-83, INSTRUCTION TS E

32-84., Instruction TS E (Transfer to Storage E) is a Basic Instruction which
is represented by order code 05.4 and a 10 bit address. Instruction TS E
consists of subinstructions TS0 and STD2, the execution of which takes two
MCT's.

32-85., Instruction TS E enters the content of register A into location E of
E Memory (or a CP register) and skips if A contains an overflow bit, The
operation TS E with 0024 = E = 17777 can be formulated as follows:

If register A does not contain an overflow bit:

(1) Set c(E) = c(A).
Retain c(A).

(2) Set c(B) = c¢(I+1) = j, I being the address of instruction
TS E, and j being the instruction stored at loca-
tion (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) =b(Z)+1 = I+2,

(4) Restore c(It+1l) = b(I+1) if (I+1) represents an address
in E Memory.

If register A contains an overflow bit:

(1) Set c(E)
Set c(A)

I

c(A) except for overflow bit,
000001 if A contained a positive overflow,
Set c(A) = 177776 if A contained a negative overflow.
(2) Set ¢(B) = c(+2) = j, I being the address of instruc-
tion TS E, and j being the instruction located at (I+2)
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) =b(Z)+2 = I+3,
(4) Restore c(I+2) = b(I+2) if (I+2) represents an address
in E Memory.

]

1]

Point (2) of both cases implies that the respective instruction j is
executed next,

32-86, Special Cases of TS E:

32-75



FR-2-132

a. TS A (alternate code DVSK, for overflow skip) retains c(A),
including any overflow bit.

b. TS L and TS Q are useful. Registers L. and Q also store
an overflow bit contained in A; however, bits 16 through 13 of
c(Z) are cleared during the execution of STD2,

c. TS Z (alternate code TCAA, for transfer control to address in
A) is similar to TS L and TS Q.

d. TS EBANK, TS FBANK, and TS BBANK can be used; however,
the particular write operations must be observed.

e. TS ZERO has no purpose.

f. Instructions TS E with 0010 < E =< 0017 follow the rules of
paragraph 32-56.

g. Instructions TS E with 0020 = E = 0023 also follow the rules of
paragraph 32-85 except that the data to be stored is edited as it
is entered into location E.

32-87. When instruction TS E is executed, action 1 of subinstruction TS0
(row 13 of table 32-4) replaces the quantity contained in register S by the 10
bit address, thus erasing the quarter code contained in register S. Action 3
enters the content of register A into register B, and sets the branch flip-
flops if the quantity entered contains an overflow bit. If no overflow bit is
contained, actions 4 and 6 do not change the address contained in register Z.
This address is entered into register S by action 8 and made available for
subinstruction STD2., If an overflow bit is contained in register A at time 3,
actions 4 and 6 increment by one the address contained in register Z and
action 8 enters this incremented address into register S. In this case, sub-
instruction STD2 calls forward the instruction stored at the ''second next"
location.

32-88. If the quantity originally contained in register A does not include an
overflow bit, this quantity is copied from register B into register G by

action 7. If the relevant address E of instruction TS E represents a CP
register address, action 7 also copies the quantity into the addressed CP reg-
ister. If address E represents an E Memory location, the quantity is entered
into the addressed location at time 10.

32-89. If the quantity originally contained in register A includes an overflow
bit, this quantity is also entered into register G by action 7, and into a CP
register if required. Otherwise, the same quantity (but without the overflow
bit) is entered into E Memory at time 10. Furthermore, action 5 replaces
the overflow quantity in register A by quantity 000001 in case of positive over-
flow, or by 177776 in case of negative overflow.

32-76



FR-2-132

F
E 00411 ® 00000 4 10460
H
s |a200 TWS 0200 WS 4 2754
g =
G
¢ |os4200 WG 4 000000 ¥ 000411 WGT 010460 s
I
| 010460
il
B 054200 $RLIBE | wB T 010460 RB l
e S
000000 @046@ @0469 @@
x += =
A |ol0460 RSC ¢ RAl ¥ wsc
1 |
1 t
L RSC ¢ ¥ wsc
N 1
[ T
Q RSC ¢ ¥y wsc
| |
T T
z 002754 RSC & RZ I wz ? 002754 VY WSC RZ @
u |o02754 RU i
vy |002753 WYI2 ¥ 002754
x |oooooo ® 000000
cI ° 0
sq |os.4
ACTION ! 2 3 4 5 6 7 8 9 10 I 12
RLIOBB RSC RA RZ RU RB RZ
WS WG wB wyi2 wz WSC ws
TOV WG sT2
ST |o 2
BR (O o] o]

2724A

Figure 32-12. Subinstruction TS0, Without Overflow Bit in Register A

32-77



FR-2-132

F
E 00411 ¢ 00000 03511
H
s |4200 Tws 0200 WS & 2755
000200
. S
6 |o0s4200 WG 4000000 ¥ 000411 weTo435n ]
t W
| @435@
1 Sior.
T
B |054200 éRLI0BB | WBTO435II RBl
| |
—_— T — — —1-
= = — T y -
oooo@ 6435n) @oooo»} 643@ 6027%
= b e nucastil S st \’l’"// S
f l l f
A |043sil RSC ¢ RA WA ¥ 00000 ¥ WsC
| 1
T 1
L RSC$ Y wsc
] {
Q RSC ¢ ¥ wsc
: |
l |
z |oo2754 RSC® RZT wz ?002755 ¥ wsc orz
@2754 002755
u |oo2754 002755 Rul
Y |o02753 WYI2 Y002754
x |000000 ©000000
cI cle I
sq |05.4
ACTION I 2 3 4 5 6 7 8 10 I 12
RLIOBB  RSC RA RZ RBI RU RB RZ
ws WG WB wyiz wa wz wsc ws
Tov cI WG sT2
sT |o 5
BR |0 | 0
2725A

Figure 32-13. Subinstruction TS0, With Positive Overflow Bit in Register A

32-78



FR-2-132

32-90. The execution of subinstruction TS0 of TS 200, with A containing no
overflow bit, is illustrated in figure 32-12. Figure 32-13 illustrates the
execution of the same instruction when A contains a quantity with positive
overflow. In case of negative overflow, control pulse R1C replaces pulse
RB1 of action 5.

32-91. INSTRUCTION XCH E

32-92. Instruction XCH E (Exchange A and E) is a Basic Instruction which

is represented by order code 05.6 and a 10 bit address. Instruction XCH E

consists of subinstructions XCHO and STD2, the execution of which takes two
MCT's.

32-93, Instruction XCH E exchanges the data contained in register A with
the data stored at location E of E Memory (or in a CP register). The opera-
tion XCH E with 0024 < E < 1777 can be formulated as follows:

(1) Set c(A) = b(E)

Set c(E) = b(A) except the overflow bit which is lost.

(2) Set c¢(B) = ¢c(I+1) = j, I being the address of instruc-
tion XCH E, and j being the instruction stored at
location (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z)+]1 = I+2.

(4) Restore c(I+1l) = b(I+1) if (I+1) represents an address in
E Memory.

Point (2) implies that instruction j is executed next.
32-94, Special Cases of XCH E:

a. XCH A has no purpose.

b. XCHUL, XCHQ, and XCH Z exchange data without losing an
overflow bit.

c. XCH EBANK, XCH FBANK, and XCH BBANK can be used, but
the particular read and write operations must be observed.

d. XCH ZERO sets c(A) = 000000,

e. Instructions XCH E with 0010 = E = 0017 follow the rules of
paragraph 32-93,

f. Instructions XCH E with 0020 = E = 0023 also follow the rules
of paragraph 32-94 except that b(A) is edited as it is transferred
to location E.

32-~79



FR-2-132

F
E 43336 # 00000 4 66345
H
s |ea30 Twso43o WS 43744
000430
G |o0s6430 WG,4,000000 V143336 PRG WGf066345 ®
|
| -,
[ |
8 | 056430 8RLIOBB | waToee345 RB®
000000) (066345 @_@ 066345 @744
I l I 1
A | 066345 RSCe RA wa¥023336 wscy
f f
L RSCe wscy
1 1
] T
Q RSCH wscy
! !
T T
Z | 003744 RSC & wscy RZ®
U | 003744
Y | 003743
X | 000000
cI
sq | 056
ACTION ! 2 3 4 5 6 7 8 9 10 " 12
RLIOBB RSC RA RG RB RZ
ws w6 wB WA WSC ws
WG sT2
sT |o 2
BR |0 o

2729A

Figure 32-14. Subinstruction XCHO

32-80



FR-2-132

32-95. When instruction XCH E is executed, action 1 of subinstruction
XCHO (row 14 of table 32-3) replaces the quantity contained in register S by
the 10 bit address, thus erasing the quarter code contained in register S.
The quantity stored at location E is entered into register G at time 2 or 4 and
into register A by action 5. The quantity originally contained in register A
is entered into register B by action 3 and transferred to location E at time 7.
Action 8 enters the address of the next instruction into register S and subin-
struction STD2 calls forward the next instruction as usual.

32~96. The execution of subinstruction XCHO of XCH 0430 is illustrated in
figure 32-14. The overflow bit originally contained in register A is lost on
the way to location 0430 in E Memory. The sign bit originally contained in
location 0430 moves into bit position 16 as the quantity is entered into regis-
ter Q.

32-97, INSTRUCTION LXCH E

32-98. Instruction LXCH E (Exchange L and E) is a Basic Instruction which
is represented by order code 02.2 and a 10 bit address. Instruction LXCH E
consists of subinstructions LXCHO and STD2, the execution of which takes
two MCT's,

32-99, Instruction LXCH E exchanges the data contained in register L with
the data stored at location E of E Memory (or in a CP register). The opera-
tion LXCH E with 0024 = E = 1777 can be formulated as follows:

(1) Set c(L) = c(E).

Set c(E) = b(L)) except the overflow bit which is lost.

(2) Set c(B) = c(I+1) =j, I being the address of instruction
LXCH E, and j being the instruction stored at loca-
tion (I+1).

Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

(3) Set c(Z) = b(Z)+1 = I+2.

(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in
E Memory.

11

Point (2) implies that instruction j is executed next,
32~100. Special Cases of LXCH E:

a. LXCH A exchanges c(L) and c(A) and retains the overflow bit.

b. LXCH L has no purpose.

32-81



FR-2-132

c. LXCHQ and LXCH Z also exchange data and retain the over=-
flow bit.

d. LXCH EBANK, LXCH FBANK, and LXCH BBANK can be used,
but the particular read and write operations must be observed.

e. LXCH ZERO (alternate code ZL, for Zero L) sets c(L.) = 000000,

f. Instructions LXCH E with 0010 = E = 0017 follow the rules of
paragraph 32-99.

g. Instructions LXCH E with 0020 = E = 0023 also follow the rules
of paragraph 32-99 except that b(L) is edited as it is transferred
to location E,

32-101., The execution of instruction LXCH E is similar to that of instruction
XCH E except for actions 3 and 5. (Compare rows 14 and 15 of table 32-4,)
Subinstruction LXCHO enters the content of register L (instead of A) into
register B and enters the content of register G into register L instead of

into A,

32-102. INSTRUCTION QXCH E

32-103, Instruction QXCH E (Exchange Q and E) is an Extra Code Instruc-
tion which is represented by order code 12.2 and a 10 bit address. Instruc-
tion QXCH E must be preceded by Special Instruction EXTEND which enters
a ONE into bit position EXT of register SQ. (Code 2.2 is taken from bit
positions 16 and 14 through 11 of register B and entered into the correspond-
ing bit positions of register SQ.) Instruction QXCH E consists of subinstruc-
tions QXCHO and STD2, the execution of which takes two MCT's,

32-104. Instruction QXCH E exchanges the data contained in register Q with
the data stored at location E of E Memory (or in a CP register). The opera-
tion QXCH E with 0024 = E = 1777 can be formulated as follows:

(1) Set c(Q) = c(E)
Set c(E) = b(Q) except the overflow bit which is lost.
(2) Set c¢(B) = c(I+1) = j, I being the address of instruction
LXCH E, and j being the instruction stored at location
(1+1).
Set ¢(S) = relevant address of j.
Set c¢(SQ) = order code of j.
(3) Set c(Z) =.b(Z)+]1 = H+2.
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address
in E Memory.

Point (2) implies that instruction j is executed next.

32-82



FR-2-132

32-105. Special Cases of QXCH E:

a. QXCH A exchanges c(Q) and c(A) and retains the overflow bit.
b. QXCH L exchanges ¢(Q) and c(L) and retains the overflow bit.
c. QXCH Q has no purpose.

d. QXCH Z exchanges c(Q) and c(Z).

e. QXCH EBANK, QXCH FBANK, and QXCH BBANK can be used,
but the particular read and write operations must be observed.

f. QXCH ZERO (alternate code ZQ, for Zero Q) sets 'c(Q) = 000000.

g. Instructions QXCH E with 0010 = E = 0017 follow the rules of
paragraph 32-104.

h. Instructions QXCH E with 0020 < E < 0023 also follow the rules
of paragraph 32-104 except that b(Q) is edited as it is trans-
ferred to location E,

32-106. The execution of instruction QXCH E is similar to that of
instructions XCH E and LXCH E except for actions 3 and 5. (Compare
rows 14, 15, and 16 of table 32-4.,) Subinstruction QXCHO takes data
from and enters data into register Q instead of register A,

32-107, INSTRUCTION DXCH E

32-108. Instruction DXCH E (Double Exchange A and E) is a Basic Instruc-
tion which is represented by order code 05.2 and a 10 bit address. DXCH E
consists of subinstructions DXCHO, DXCHI1, and STD2, the execution of which
takes three MCT's.

32-109. Instruction DXCH E exchanges the double precision quantity con-
tained in registers A and L with the double precision quantity stored at loca-
tions E and (E+1) of E Memory (or in two CP registers). The operation
DXCH E with 0024 < E < 1776 excluding the last address of any E memory
bank (table 30-2) can be formulated as follows:

(1) Set c(A) = c(E).
Set c(L) = c(E+1).
Set ¢(E) = b(A) :, . .
Set c(E+1) = b(L)} except any overflow bit which is lost.
(2) Set c¢(B) = ¢(I+1) = j, I being the address of instruction DXCH E,

and j being the instruction stored at location (I+1).
Set c(S) = relevant address cf j.
Set c(SQ) = order code of j

32-83



FR-2-132

(3) Set c(Z) = b(Z)+1 = I+2,
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E
Memory.

Point (2) implies that instruction j is executed next.
32-110. Special cases of DXCH E:

a. DXCH A has no purpose

b. DXCH 0010 (DXCH ARUPT) and DXCH 0013 (table 30-4) are
useful and follow the rules of paragraph 32-110.

c. DXCH FBANK (alternate code DTCF for double precision trans-
fer control fixed bank) and DXCH Z (alternate code DTCB for
double precision transfer control both banks) can be used to
change the content of register Z and of a bank register. These
double precision transfer control instructions can be used to
"jump'' banks and store a return address plus its bank code in
registers A and L.

d. Any DXCH E with 0000 = E = 0022 must be used with extreme
care so as not to destroy stored data; E must not be 0023 in
order to prevent destruction of data in counter T2. Whenever
locations 0020 through 0023 are involved, a quantity entered
into any of these locations is edited.

32-111. The execution of instruction DXCH E is similar to the execution of
instructions DCA K, XCH E, and LXCH E. When instruction DXCH E is
executed, first the contents of register L. and location (E+1) are exchanged

by subinstruction DXCHO, then the contents of register A and location E are
exchanged by subinstruction DXCHI. The Yul Programming System accom-
plishes this by replacing instruction DXCH E with code DXCH (E+1) which is
wired into the program. As the AGC executes subinstruction DXCHO, relevant
address (E+1) (available first) is decremented by one. Subinstruction DXCHI
then uses the decremented address E. For execution of subinstructions
DXCHO and DXCHI refer to rows 17 and 18 of table 32-4. When double pre-
cision information is exchanged with memory, E must not be equal to the last
address of any E memory bank to allow E+]l to be the next address in the same
bank.

32-112. The execution of instruction DXCH 0132 is illustrated in figures

32-15 and 32-16 . Location 0132 contains quantity 21217 and location 0133
contains quantity 34677.

32-84



FR-2-132

F
E 34677 ® 00000 A 73660
H
s |ei33 fws 0133 WS 4 0132
I -
@00|33>

6 |052133 e ? 000000 ¥ 034677 @ RG WG T 173660 °

‘ 1

| @3660)
B8 |052133 @ RLIOBB : wB ? (73660 RB ¢ WB 4 000132

i N ; R e e P
@omz@ @oooo@ Q7366® 63467} Q7366@ @oonz@

A 023615 RSC + WsC +
L 173660 RSC + RL ® WL ¥ 034677 wsC +
Q RSC + WSC +
Z 002233 RSC# WSC ‘
U 002233 000132 RU @ 000132

Y 002232{7 wyi2 000133

X 000000@ MONEX 177776

CI 1@ CI
SQ |05.2
ACTION | 2 3 4 5 6 T 8 9 10 1 12
RLIOBB RSC RL RG RB RU STI
WG WG wB wL WSC wS
WYI2 WG WB
MONE X
CI
ST |O
BR [ O (0]

27224

Figure 32-15. Subinstruction DXCHO

32-85



FR-2-132

F
E 21217 @ 00000 A 23615

H

s |o0132 Tws 0132 wS 41233

G |[173660 WG 1 000000 \} 021217 @®RG WG T 023615 o

B8 |000132 ® RLIOBB | wB 4 023615 RB+

"t

A |o23615 RSC+ RAl WA¢02!2|7 wsc+

L |o3ae77 RSC+ wsc*

Q RSC+ wsc*

Z | 002233 RSC‘ wsc‘ RZ ® 001233

u |ooo0i132

y |o00133

X |[177776

cI

sqQ |05.2
ACTION I 2 3 4 5 6 7 8 10 1l 12

RLIOBB RSC RA RG RB RZ
WS w6 wB WA wSC ws
WG sT2

sT |o 2
BR |0 o]

32-86

Figure 32-16.

Subinstruction DXCHI

2723A



FR-2-132

32-113, MODIFYING INSTRUCTIONS

32-114, INSTRUCTION NDX E

32-115. Instruction NDX E (Index Next Basic Instruction with E) is a Basic
Instruction which is represented by order code 05.0 and a 10 bit address.
The alternate spelling for NDX E is INDEX E. Instruction NDX E consists
of subinstructions NDXO0 and NDX1, the execution of which takes two MCT's.

32-116. Instruction NDX E takes as the next instruction the arithmetic sum
of the instruction located at the next location plus the quantity stored at lo-
cation E. The operation NDX E with 0024 = E = 1777 can be formulated as
follows:

(1) Derive a new Basic Instruction (j) by adding the c(E) to the
c(I+1). The address of location I+l is initially contained in
Z, 1 being the address of instruction NDX E,
(2) Set c(B) =3].
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) = b(Z)+1 = I+2.
(4) Restore c(E) = b(E) and c{I+1l) = b(I+l) if E and/or (I+1) repre-
sent an address in E Memory.

Point (2) implies that instruction j is executed next.
32-117. Special Cases of NDX E:

a. NDX A, NDX L, NDX Q, and NDX Z are useful. Registers A,
L, Q, and Z are able to store a 4 bit order code besides a 12
bit address.

b. NDX EBANK, NDX FBANK, and NDX BBANK may be used; however,
the particular read and write operations must be observed.

c. NDX ZERO has no purpose,.

d. Instructions NDX E with 0010 = E < 0016 follow the rules of
paragraph 32-116.

e. NDX 0017 = RESUME. See paragraph 32-271.

f.  Instructions NDX E with 0020 = E = 0023 also follow the rules
of paragraph 32-116 except that c(E) is edited during restoring.

32-87



FR-2-132

32-118. The instruction derived by instruction NDX E may be similar to
the instruction stored at location (I+1l) or may be quite different. If the
quantity at location E is equal to or smaller than the complement of the rele-
vant address stored in location (I+1), then the order code of the new instruc-
tion is equal to the order code of the instruction contained at (I+1). If the
quantity at location E is larger, then the order code of the new instruction
differs from the order code at (I+1). For example, if NDX E with c(E) = 100
is followed by TC 2000, then the new instruction becomes TC 2100. If

c(E) = 5777, then the new instruction is TC 7777. However, if c(E) = 6000
or larger, the new instruction is CCS 0000, or any instruction other than

TC K. In general, the new instruction can be expressed as c(I+1l), c(E). If
the quantity at location E is equal to or small than the complement of the
relevant address K of instruction OC K stored at location I+1, then the new
instruction can be expressed as OC[K+c(E)] where OC stands for order code.
The derived instruction is always a Basic Instruction, not an Extra Code
Instruction as explained in paragraphs 32-125 and 32-126.

32-119. When instruction NDX E is executed, subinstruction NDXO0 (row 19
of table 32-4) enters the quantity stored at location E into registers G and B
and enters the address of the location following instruction NDX E (address
I+1 stored in register Z) into register S. Subinstruction NDX1 (row 20) then
enters the instruction from location I+l into the Adder, together with the
quantity from location E, and uses the sum as the next instruction. (The
quantity from location E is moved from register B via registers Z and A
into register X by actions 3, 5, and 7 while the quantity originally contained
in register A is temporarily stored in register B by action 4 and returned
to A by action 9.) Action 8 enters the relevant address of the new instruc-
tion into register S, action 10 enters the new instruction into register B,
and action 12 enters its order code into register SQ.

32-120. The execution of instruction NDX 0300 is illustrated in figures 32-17
and 32-18. It is assumed that the instruction is stored at location 2577, that
instruction AD 0420 is stored at location 2600, and that the indexing quantity
00003 is stored at location 0300. The modified instruction is as follows:

AD[ 0420+c(0300)] = AD 0423.

32-121., INSTRUCTION NDX K

32-122. Instruction NDX K ( Index Next Extra Code Instruction with K)

is an Extra Code Instruction which is represented by order code 15 and a
12-bit address. The alternate spelling for NDX K is INDEX K. Instruction
NDX K must be preceded by Special Instruction EXTEND which enters a
ONE into bit position EXT of register SQ. Instruction NDX K consists of
subinstructions NDXXO0 and NDXX1, the execution of which takes two MCT's.

32-88



FR-2-132

F
E |00003 #00000 400003
H
S 10300 WS 42600
6 [150300 we$oooooo ¥000003 RGT WGTOOOOO3 It
|
| 0003 000003
Wi o
‘ |
B |[is0300 ‘ WB ¥000003 RB
000000 (002600
I
A 137770 RSC
f
L RSC
T
Q RSC#
|
. L
Z | 002600 RSCé RZ ¢
U | 002600
Y | 002577
x | 000000
cI l
sQ [s.0
ACTION 2 4 5 6 7 8 9 10 I 12
RSC TRSM RG RZ RB STI
WG wB ws WG
sT |o
BR |0 0

Figure 32-17. Subinstruction NDX0

32-89



FR-2-132

F |e0420 *
3 ’ T
T
H | |
, I
i |
s |2600 | WS 4 0423
| |
X |
X |
t
6 |oo0003 WG 4000000 ) ¥060420 @RG l
t
|
1
8 |oo0003 | RBT WBTB???I RBT wmroeo‘zzs RB®
i
P —1- o A= P = T
000000 @ooo@ 63777@ @6042@ @604@ QynD
A | 13777 RSC® RA WATOOOOO3 WAlnwm
|
T T
L RSC & @oooo@
A o
Q RSC®
|
z oozeooTRz RSC WZ ¥ 000003 RZ® szoozeou
T — e T .
@ozeoc} <oozeoD @304@ (060429
% - ey i Mg
u |002600 |00260! RUIOOZGOI 060423 ®RU Rul
wYI2
y |002577 9002600 WY ¥ 060420
x |ooooo0e 000000 A2X 000003
cI | | ° 0
sq |05.0 WSQY¥06.0
ACTION I 2 3 4 5 6 7 8 9 10 I 12
RZ RSC RB RA RZ RU RG RU RB RU
wYi2 W6 w2z WB wa wz wY WS WA wB
cI NISQ A2X
ST |o (0]
BR |O 0

2r2IA

Figure 32-18. Subinstruction NDX1

32-90



FR-2-132

32-123. Instruction NDX K takes as the next instruction the arithmetic sum
of the instruction located at the next location plus the quantity stored at lo-
cation E, The operation NDX K with 0024 = K < 7777 can be formulated as
follows:

(1) Derive a new Extra Code Instruction (j) by adding c(K) to
c(I+1). The address of location (I+1) is initially contained
in Z, I being the address of instruction NDX K.
(2) Set c(B) = j.
Set ¢(S) = relevant address of j.
Set ¢(SQ) = order code of j.
Set c(EXT) = ONE.
(3) Set c(Z) = b(Z2)+1 = I+2.
(4) Restore c(E) = b(E) and c(I+1) = b(I+1) if E and/or (I+1) rep-
resent an address in E Memory.

Point (2) implies that instruction j is executed next,.
32-124, Special Cases of NDX K:

a. NDX A, NDX L, NDX Q, and NDX Z are useful. Registers
A, L, Q, and Z are able to store a 4-bit order code beside
a 12 bit address.

b. NDX EBANK, NDX FBANK, and NDX BBANK may be used;
however, the particular read and write operations must be
observed.

c. NDX ZERO has no purpose,

d. Instructions NDX K with 0010 < K =< 0017 follow the rules of
paragraph 32-124,

e. Instructions NDX K with 0020 = K =< 0023 also follow the rules
of paragraph 32-124 except that c(K) is edited during restoring.

32-125. Instructions NDX E (Index Next Basic Instruction) and NDX K
(Index Next Extra Code Instruction) are similar. In table 32-4 compare rows
21 and 22 with rows 19 and 20. The main difference is that action 10 of sub-
instruction NDXX1 re-enters a ONE into bit position EXT of register SQ
while action 10 of subinstruction NDX1 does not enter a ONE. A programmer
is not concerned with which of the two instructions he should use; for this
reason both instructions can be represented by the same mnemonic code,
i.e., NDX or INDEX. The Yul Programming System automatically enters
the proper instruction into the program.

32-91



FR-2-132

32-126. The instruction derived by an NDX instruction is of the same type
as the instruction stored after the NDX instruction, i.e., the derived and
the following instructions are both Basic Instructions or Extra Code Instruc-
tions. The EXT bit cannot be generated by the addition of action 7 of the
second subinstruction. Basic Instructions can be indexed with a quantity
stored in E Memory (or a CP register) only except location 0017, Extra
Code Instructions can be indexed with a quantity stored anywhere in memory,
including location 0017. (Action 5 of subinstruction NDX0 does test for ad-
dress 0017, subinstruction NDXXO0 does not. )

32-127. ARITHMETIC AND LOGIC INSTRUCTIONS

32-128. INSTRUCTION AD K

32-129. Instruction AD K (Add K) is a Basic Instruction which is represented
by order code 06. and a 12 bit address. Instruction AD K consists of sub-
instructions ADO and STD2, the execution of which takes two MCT''s.

32-130, Instruction AD K adds the content of location K to the content of
register A. The operation AD K with 0024 = K < 7777 can be formulated as
follows:

(1) Set c(A) = b(A)+c(K). When A and/or K contains an overflow
bit, the result may be erroneous.
(2) Set c(B) = c¢(I+1) = j, I being the address of instruction AD K,
and j being the instruction stored at location (I+1).
Set c(S) = relevant address of j.
Set ¢(SQ) = order code of j.
(3) Set c(Z) = b(Z2)+1 = I+2.
(4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or (I+1) rep-
resent an address in E Memory.

Point (2) implies that instruction j is executed next.

32-131, Special Cases of AD K:

B

AD A (alternate code DOUBLE) doubles the content of A.
b. AD L, ADQ, and AD Z are useful.

c. AD EBANK, AD FBANK, and AD BBANK can be used, how-
ever, the particular read and write operations must be observed.

d. AD ZERO has no purpose.

e. Instructions AD K with 0010 < K < 0017 follow the rules of
paragraph 32-130.

32-92



FR-2-132

F *
E |25252 ¢ 00000 ‘ 425252
H |
|
s [1213 | WS 4 2660
G |i61213 weﬁoooooo ¥ 025252 ‘ RGT weTozszsz 025252
f =
T
’ ' |
B |I161213 | WB ¥ 025252 RB RB @ 025252
— =
I
A |000102 RSC? WA A 025354
f
L RSC ¢
|
T
Q RSC ¢
|
T
Z |002660 RSC & RZ ® 002660
@25@ 02539
— .
u |oo2seo 025354 l RU
y |002657 WY ¥ 025252
x |ooooco A2X ® 000102
cI | ° 0
sq |06.1
ACTION 2 4 5 6 7 8 9 10 " 12
RSC RG RZ RB RB RU
WG WwB ws WG wY WA
ST2 A2X
ST |o 2
BR |0 0
_2727A

Figure 32-19.

Subinstruction ADO

32-93




FR-2-132

f. Instructions AD K with 0020 < K < 0023 also follow the rules
of paragraph 32-130 except that the sum is edited as it is
entered into K.

32-132. When instruction AD K is executed, the quantity from location K

is entered into register G at time 2, 4, or 6 of subinstruction ADO (row 23

of table 32-4). Action 7 enters the quantity into register B and action 9 re-
enters the quantity into register G for restoring in E Memory at time 10.
Action 10 enters the quantities in register B and register A into the Adder

and action 11 transfer the sum to register A, Action 8 takes the address of
the next instruction from register Z and enters it into register S. Subinstruc-
tion STD2 then calls forward the next instruction and increments by one the
content of register Z as usual.

32-133., Figure 32-19 illustrates the execution of subinstruction ADO of
instruction AD 1213 stored at location 2657. This is the first subinstruction
of the example discussed in paragraph 32-26. Location 1213 contains quan-
tity 25252 and register A the quantity 000102. The sum finally provided is
025354,

32-134, INSTRUCTION SU E

32-135. Instruction SU E (Subtract E) is an Extra Code Instruction which

is represented by order code 16.0 and a 10 bit address. Instruction SU E
must be preceded by Special Instruction EXTEND which enters a ONE into
bit position EXT of register SQ. Instruction SU E consists of subinstructions
SUO and STD2, the execution of which takes two MCT's.

32-136. Instruction SU E subtracts the content of location E from the con-
tent of register A, The operation SU E with 0024 = E < 1777 can be formua-
lated as follows:

(1) Set c(A) = b(A)+S(E). When A and/or E contains an overflow
bit, the result may be erroneous.
(2) Set c(B) = c(I+l) = j, I being the address of instruction SU E,
and j being the instruction stored at location (I+1).
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) = b(Z)+1 = 1+2.
(4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or (I+1) rep-
resent an address in E Mamory.

Point (2) imiplies that instruction j is executed next.

32-94



FR-2-132

32-137. Special Cases of SU E:

a. SU A clears register A.
b. SUL, SUQ, and SU Z are useful.

c. SU EBANK, SU FBANK, and SU BBANK can be used, but the
particular read and write functions must be observed.

d. SU ZERO has no purpose except replacing 000000 in A by
177777,

e. Instructions SU E with 0010 <= E < 0017 follow the rules of
paragraph 32-136.

f. Instructions SU E with 0020 < E =< 0023 also follow the rules
of paragraph 32-136 except that the difference is edited as it
is entered into E.

32-138. The execution of instruction SU E is very similar to that of instruc-
tion AD K. (Compare rows 23 and 24 of table 32-4.) Control pulse RB of
action 10 of subinstruction ADO is replaced by control pulse RC for subinstruc-
tion SUOD.

32-139, INSTRUCTION MP K

32-140., Instruction MP K (Multiply K) is an Extra Code Instruction which

is represented by order code 17. and a 12 bit address. Instruction MP K
must be preceded by Special Instruction EXTEND which enters a ONE into

bit position EXT of register SQ. Instruction MP K consists of subinstructions
MPO, MP1, and MP3, the execution of which takes three MCT's.

32-141, Instruction MP K multiplies the content of register A by the con-
tent stored in location K and stores the double precision result in registers
A and L. The operation MP K with 0024 = K =< 7777 can be formulated as
follows:

(1) Set c(A, L) = b(A) x c(K). Sign of ¢(L) agrees with sign of
c(A). When b(A) and/or b(K) contain an overflow bit, the
result is erroneous.

(2) Set c(B) = c(I+1) = j, I being the address of instruction MP K
and j being the instruction stored at location I+1.

Set ¢(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) = b(Z)+1e= 1+2,

32-95



FR=-2-132

(4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or (I+1) rep-
resent an address in E Memory.

Point (2) implies that instruction j is executed next.
32-142, Special Cases of MP K.
a. MP A (alternate code SQUARE) squares the content of reg-
ister A.

b. MP L, MP Q, and MP Z are useful.

c. MP EBANK, MP FBANK, and MP BBANK may be useful; the
particular read and write operations must be observed.

d. MP ZERO clears registers A and L,

e. Instructions MP K with 0010 = K < 0017 follow the rules of
paragraph 32-141.,

f.  Instructions MP K with 0020 = K =< 0023 also follow the rules
of paragraph 32-141 (the content of K is not edited when being
restored).

32-143., Principle of Operation

32-144, A multiplication as performed by instruction MP K is carried out
in TWO's complement arithmetic and in a way similar to a multiplication
done manually with quaternary numbers (to the base four). Let us first
assume that a positive 16 bit number as used in the CP of the AGC is to be
multiplied by another positive 16 bit number. The first quantity (ag) may
be 016344, the other, (kg) 010101 when expressed in octal numbers. The
two quantities can also be expressed in binary (azky) or quaternary (a4, kyg)
form as shown in figure 32-20.

32-145, Multiplying quantity (ky) by (ag4), starting with the lowest order
digit of (a4), the quantity zero can be taken first, or added to the starting
quantity zero. At step two, the quantity (k4) must be moved one place to the
left and added to the subtotal (zero in the given example). At step three, the
quantity (2ky) has to be added in a similar way because the third last digit

of (ag) is 2. In the fourth step, the quantity (3ky4) could be added; however,
subtracting the qNantlty (kg) and adding the quantity (kgq) at step five has the
same effect (1x4 1x4N = 3x4N) At step six, the quantity (ky) is sub-
tracted for the same reason as in step four because the sixth lowest digit is
a 3 like the fourth lowest. At step seven, the quantity (2ky) instead of (kg4)
must be added to make up for the carry over of step six. The product has
been translated into binary and octal notation. To prove the result, the
multiplication (a)x(k) has been carried out with octal numbers in the simplest
way. DBoth results agree as shown.

32-96



FR-2-132

32-146. In the second example, figure 32-21, (a) is a positive quantity and
(k) is a negative quantity. The quantity (k) is the TWO's complement of
quantity (k) of the first example. The correctness of the second example can
be proved by comparing its results with those of the first examples. The
binary, quaternary, and octal products of the second example are all TWO's
complement numbers of the first example.

32-147., Adding 0's in front of a positive TWO's complement quaternary
number does not change its value; adding 3's (minus zeroes) in front of a
negative number does not change its value. Adding 0's at the end of a positive
or a negative TWO's complement quaternary number does not change its
value.

32-148. Actual Execution

32-149., When instruction MP K is executed, the quantity from location K
is entered into register G at time 2, 4, or 6 of subinstruction MPO (row 25
of table 32-4 and figures 32-22 through 32-25). The quantity from K is later
used as the multiplicand (k). Action 3 enters the quantity from register A
into register B; this quantity is used as the multiplier (a). Action 4 enters
the multiplier (a) always in its positive form into register L. Action 7 enters
the multiplicand (k) into register B. The branch flip-flops have been set by
actions 3 and 7 as stated by notes A through in the last column of
row 25 in table 32-4. According to this setting of the branch flip-flops, the
multiplicand (k) is re-entered by actions 9 and 10 into register B either in
its positive or in its negative TWO's complement form.

32-150. After time 10, register L always contains the multiplier (a) in its
positive form. Register B contains the multiplicand (k) in its positive form
if (a) and (k) have the same sign, or in its negative form if (a) and (k) have
opposite signs. In case of equal signs, register A is set to zero at time 11
and later accumulates the product. In case of different signs, the quantity
177777 (minus one, TWO's complement) is entered into register A as a
starting quantity to make the final product a ONE's complement number;
furthermore, a ONE is entered into bit position 16 of register L by action 11
to indicate that the final product must be negative.

32-151. Eleven actions of subinstruction MP1 and the first three actions of
subinstruction MP3 (rows 26 and 27 of table 32-4) perform the actual mul-
tiplication. In figures 32-26 and 32-27, the maultiplication with multiplicand
and multiplier of equal sign (figure 32-22 and figure 32-25) is continued. In
figures 32-28 and 32-29 the multiplication with two quantities of opposite sign
(figure 32-23 and 32-24) is continued. The same multiplications are also
illustrated in figures 32-30 and 32-31 to explain the individual operations.
The results of figure 32-31 are the ONE's complement of the results of fig-
ure 32-30,

(text continued on page 32-112) 32-97



FR-2-132

ag = 0 1 6 3 4 4 k8 =0 1 0 1 0 1
a, = 0001110011100100 kz = 0001000001000001
a, = 01303210 k4 = 0100 100 1
k4xa4:
0O 0 0 0 0 0 0 O
+Cox Ky, 00 0 0 0 0 0 0
0O 0 0 0 0 0O 0O 0 O
+lxk4 0 1 0 0 1 o0 o0 1
0O 0 1 0 0 1 O o 1 o
+2 x ky 6 2 0 0 2 O 0 2
0o 0 2 1 0 2 1 0 2 1 O
—lxk4 3 2 3 3 2 3 3 3
33 3 2 0 3 2 0 3 2 1 o0
+1 x ky 0 1 o 0 1 0 0 1
6 0 0 3 2 1 3 2 1 3 2 1 0
-lxk4 3 2 3 3 2 3 3 3
33 3.0 3 1 1 3 1 1 3 2 1 0
+Zxk4 0O 2 0 0 2 0 0 2
k4xa4 6 o 1 3 1 1 1 2 1 1 1 3 2 1 0
(kxa)2 000001110101011001010111100100
(kxa)8 0 1 6 5 3 1 2 7 4 4
Proof: ag x kg 1 6 3 4 4
1 6 4 4

Figure 32-20. Positive Product, Principle of Multiplication

32-98



0 1 6 3 4 4

FR-2-132

8
a, = 0001110011100100
a, = 0130321 0
= 1
k8 6 7 6 7 7
kZ = 1110111110111111
k4 = 3233233 3
O 0 0 0 0 0 0 O
+0k4 60 0 0 0 0 0 0 O
0O 0 0 0 0 0 0O 0 O
+1k 32 3 3 2 3 3 3
33 2 3 3 2 3 3 3 90
+.2k4 31 3 3 1 3 3 2
33 1 2 3 1 2 3 1 3 0
-lk4 0O 1 0 0 1 0 0 1
0o 60 01 3. 0 1 3 0 1 3 0
+1k4 32 3 3 2 3 3 3
3 33 01 2 0 1 2 0 1 3 0
- 0 O 0
lk4 0 1 1 0 1
06 60 0 3.0 2 2 0 2 2 0 1 3 0
‘i-Z.k4 31 3 3 1 3 3 2
k4 x a, 3 32 0 2 2 2 1 2 2 2 01 3 0
(kxa)z 111110001010100110101000011100
(k x a)8 7 6 1 2 4 6 5 3 4
Figure 32-21. Negative Product, Principle of Multiplication

32-99



FR-2-132

d ?
.
1
g |io101 ® 00000 | A 010101
|
H |
| .
s |os21 | WS A 6534
|
|
G [170521 wefoooooo ¥ ol0I01 ‘ RGT ®
‘
B | 170521 | WB?OI6344 TRB wel0|0|0| RB @ WB 4 010101
000000 016344 @é@ 000000
T i ‘
A |016344 RSC? RA WA ¥ 000000
%
L |ooiroo RSC ¢ WL ¥ 016344
+
Q RSC &
|
T
Z 006354 RSC‘ RZ®
BN
010101 010101
U |ooes534 010101 lRU
Yy 006533 WY ¥ 010101
x [000000 ® 000000
c1 ° o]
sq |17.0
ACTION | 2 3 4 5 6 7 8 9 10 " 12
RSC RA RB RG RZ RB RU WA
WG wB WL wB WS wY wB
TSGN TSGN2 TSGN
NEACON
STI
ST (o
BR |O 0 (0] 0] 0]

2797A

Figure 32-22. Subinstruction MP0O, With Two Positive Quantities

32-100



FR-2-132

F ?
E |67676 ® 00000 } A67676
H ‘l
|
s |os2i | WS 4 6534
|
6 |i7os2 Wa 4 000000 ¥ 167676 v RG T °
|
|
B |i7052! ’I WB?O|6344 TRB WB¢I67676 RE ® WB 4167677
000000 016344 @@
A |ol6344 RSC+ RAl l 177777
L |ooi700 RSC + WL ¥ 016344 Lic @ 116344
Q RSC +
z |ooe534 Rsc & RZ ®
167@ 167677
u |ooes3a 167677 l RU
v |006533 WY ¥ 167676
x |oooooo ® 000000
c1 cre
sa [17.0
ACTION 2 3 4 6 7 8 ) 10 0 12
RSC RA RB RG RZ RBE  RU R8I
we wB wiL wB ws wY  we RIC
TSGN TSGN2 c1 TSGN wA
NEACON Ll
. STI
sT |o
BR |0 0 3 0
2799A
Figure 32-23. Subinstruction MP0O, With Positive Quantity in

A and Negative Quantity in E

32-101



FR-2-132

r '
g |00 ® 00000 | 4 10101
H |
l
s |os2l | WS 4 6534
6 |i170521 WG 4 000000 ¥ 010101 v RGT J;
] —-
| (oora)
I ) gl
| '
B |I170521 | WBTI6I433 TRC WB ¥ 01010| RC @ WB 4 167677
|
—t+— 1T— —T " - ,
@oooo@ Qem b @I63419 @06535 @7777)
e S s ol
A |181433 RSC & RA WA l 77777
|
T
L |ooi700 RSC ¢ y 016344 Li6 @ 116344
i
Q RSC ¢
|
T
z |ooes3a RSC & RZ ®
Qea?e?ea QG?G@
oo L
u |ooes3a 167677 i RU
y |o006533 WY ¥ 167676
x |o0o0000 ® 000000
cI CIe
sq |17.0
ACTION | 2 3 4 6 7 8 9 10 T 12
RSC RA RC RG RZ RC RU RBI
WB WL wB ws wY WB RIC
TSGN TSGN2 cI TSGN WA
NEACON Lie
ST
ST |o |
BR |O 2 2 2 o]
2800A

32-102

Figure 32-24.

A and Positive Quantity in E

Subinstruction MP0, with Negative Quantity in



FR-2-132

i !
,
{3
E |e7676 ® 00000 \ A67676
|
A \
|
s |os2l | WS A 6534
|
|
6 |i70521 WG 4 000000 ¥ 167676 ‘ RGT ®
|
' '
B |I7052 | wB T 161433 TRC WB ¥ 167676 RC ® WB 4 01010I
000000 016344 @534 000000
7 ! '
A |161433 RSC ¢ RA WA ¥ 000000
%
L |ooiroo RSC ¢ WL ¥ 016344
i
Q RSC ¢
|
T
z |ooes34 RSC & RZ ®
@IOI oloi0l
u |ooses34 monmlau
Yy |006533 WY ¥ 010101
x |000000 ® 000000
cI ' 0
sa |17.0
ACTION 2 3 4 5 6 7 8 9 10 T 12
RSC RA RC RG RZ RC RU WA
WG wB WL wB ws wy WB
TSGN TSGN2 TSGN
NEACON
STI
ST 0 |
BR |O 2 3 o

Figure 32-25.

Subinstruction MPO, With Two Negative Quantities

2798A

32-103



FR-2-132

32-104

Figure 32-26.

Subinstruction MP1, Positive Product

F
E
H
S 6534
L2GD
G 010101 @ 034710 L2GD @ 007162 L2GD® 021634 L2GD 044347 L2GD @ 071070 L2GD @ 036217
MCRO MCRO
B 010101 RBe® RBY RCe RB@® RCe
A |000000 WALS 4000000 WALS 4002020 WALS A004444 WALS4\I7707O WALS 4001636
WALS WALS WALS WALS WALS
L 016344 G2LSA00347] G2L.S 401076 G2LS4022163 G2LS 4074434 G2LSAOI7107
MCRO
Q
z 006534
TN
000000 000000 OIO@ -( oiol101 020202 022222 I67@ 174343 010@ 007171 @@
u |oloiol 000000 lRu olol10l l RU 0222221 RU 174343 l RU 007171 i RU 171535
' v J
Y |Ol0I0l ¥ 000000 WY ¥ 010101 wYD 020202 WY ¥ 167676 WY ¥ 010101 WY ¥ 167676
A2X
X |000000 ® 000000 A2X ® 000000 A2X ® 002020 A2X ® 004444 A2X ® | 77070 A2X ® 001636
cI oe 0 ° 0 ° 0 cre | cre
sQ (17.0
ACTION | 2 3 4 5 6 7 8 9 10 1 12
ZIP ZAP ZIP ZAP ZIP ZAP ZIP ZAP ZIP ZAP ZIP -
STI
ST2
ST |1 3
BR (O 0
280I1A



FR-2-132

F 954121
E t l
H I |
| |
s |e534 | wsT4|2| |
I |
| 154121 |
I |
6 |ose2r7 L2GD® 027442 wG J 000000 V54121 RG® °
| -
g8 |clool RB® | WB$I54I2! RB @
|
000000 012744
= l
A WALS 4176327 WALSA003526 $®RSC RA
,
T
WALS
L 62LS h053621 WALS hoi27a4  $RSC & RL
MCRO i
Q $RSC
|
z |oo0es534 &RscC RZT szooes35
@) (00 (aes3) oes33 (e
U I7I5351RU OIG53IlRU ooes3isu
vy | 167676 WYDV 020202 WYI2¥006534
X | oo63e A2X®176327 © 000000
cI I ° 0 ® |
sqQ |I170 wSQ ¥05.4
ACTION ! 2 3 4 5 6 7 8 9 10 I 12
ZAP ZIP ZAP RSC RZ RU RAD RA RL
NISQ WG wylz Wz wB
cI TLIS WS
NEACOF
ST |3 0
BR |O 0

2802A

Figure 32-27. Subinstruction MP3, Positive Product

32-105



FR-2-132

Figure 32-28.

32-106

Subinstruction MP1, Negative Product

F
E
CH
S |6534

L2GD MCRO
G |oloioI €134710 L2GDe®I67162 L2GD® 155634 L2GD ®i33347 L2GD®106670 L2GD®144557
B |167677 RB ® RB® RC® RB® RC®
A |ir7777 WALS AI77777 WALS 4175757 WALS 4173333 WALS 000707 WAL51H76|4|

WALS WALS WALS WALS WALS
L |ne344 G2LS 8177777 G2LS 8126716 G2LSAI15563 G2LS 4103334 G2LS 8120667
Q
z |oos6534
00000 177777 @@ @ 157576 155555 @@ 003434 @ew 170606 010@

u |otoiol l77777lRU xe767isu ISSSSSlRU 003434lnu |?osoisu 006242

&wwr
Y |oroior ¥ 000000 wy Yi67677 wYDYI57576 wy ¥010100 wy V167677 wy ¥010100

A2X
X |oooo00 @ 177777 A2X@ITTTTT A2X ®175757 A2X®173333 A2X ®000707 A2X®17614]
cI Oe 0 [ ] 0 L] o] Cle Cle |
sQ 170
ACTION I 2 3 4 5 6 7 8 9 10 1] 12

ZIP ZAP Z1P ZAP Z1P ZAP ZIP ZAP z1P ZAP ZIP

STI
sT2
ST 3
BR |© 0
2753



FR-2-132

F 95412
E [ f
|
| [
H | |
it
i T
s |es53a | ws?4|2| |
| }
! |
| 154121
- X |
G | 144557 L2GD®150332 wc*oooooo ¥15412| RG ¢ ¢
} -
| |54|-23
| e
| '
B 167677 RB® | wBY¥15412| RBY
}
' .
A WALS 4001450 WALS 4174251 @ RSC
|
|
L ‘g‘z‘tgmsmss ‘ggtg 125033 Q'RSC ®RL
|
Q ® RSC
|
|
z |ooe534 ®RSC RZT szooesss
. e b
U ooez4leu |6|24elRu ooesaslnu
Y |otoio0 wy ¥ (57576 wy12¥ 006534
x [176141 A2X® 001450 ® 000000
cI ° 0 ° |
sQ |170 wsqVo05.4
ACTION I 2 3 4 5 6 7 8 9 10 T 12
zap zip ZAP RSC RZ RU RAD RA RL
NISQ WG wYi2 wZ wB
c1 TLIS WS
NEACOF
ST |3 0
BR |0 o]

2754

Figure 32-29. Subinstruction MP3, Negative Product

32-107



FR-2-132

Initial Conditions:

After MPO:

0N
B
[¢]
e
w

<
i
1
\‘U'I
[op)

32-108

L2GD
A2X
WY

RU, WALS, G2LS

L2GD
A2X
RB, WY

RU, WALS, G2LS

L2GD
A2X
RB, WYD

RU, WALS, G2LS

L2GD, MCRO
A2X
RC,WY

CI
RU, WALS, G2LS,
MCRO

L2GD
A2X
RB, WY

RU, WALS, G2LS

c(A) =
c(E) =

c(B) =
c(L) =
c(A) =

c(G) =
c(X) =
c(Y) =
c(U) =
c(hA) =

O 0
—_— o~
> Q0
il = |

~
nou

016344
10101

010101
016344
000000

034710
000000
000000
000000
000000

007162
000000
010101
010101
002020

021634
002020
020202
022222
004444

044347
004444
167676
174343

1
177070

071070
177070
010101
007171
001636

a, =01303210

c(L)=003471

c(L)=010716

c(L)=022163

c(L)=074434

c(L)=017107

Figure 32-30. Positive Product, Actual Multiplication (Sheet 1 of 2)



FR-2-132

Step 6 L2GD, MCRO c(G) = 036217
MP1-11,12 A2X c(X) = 001636
MP3-1 RC, WY c(Y) = 167676
ch) = 171535
CI c(CI) = 1

RU,WALS, G2LS, c(A) = 176327 c(L)=053621

MCRO

Step 7 L2GD c(G) = 027442
MDP3-2,3 A2X o(X) = 176327
RB,WYD c(Y) = 020202
c(U) = 016531

RU, WALS, G2LS c(A) = 003526 c(L)=012744

Quantity in (A,L) = 165312744 as integer or
0.0725453620 as fraction

Figure 32-30. Positive Product, Actual Multiplication (Sheet 2 of 2)

32-109



FR-2-132

Initial Conditions:

After MPO:

Step 1
MP1-1,2

Step 3
MP1-5,6

Step 4
MP1-7, 8

Step 5
MP1-9, 10

32-110

L2GD
A2X
WY

RU, WALS, G2LS
LD

A2X

RB, WY

RU, WALS, G2LS
L2GD

A2X
RB, WYD

RU, WALS, G2LS

L2GD, MCRO
A2X

RC, WY

CI

RU, WALS, G2LsS,
MCRO

L2GD
A2X
RB, WY

RU, WALS, G2LS

c(A)
c(E)

c(B)
c(L)
c(A)

016344
67676

167677
116344
177777

134710
177777
000000
177777
177777

167162
177777
167677
167676
175757

155634
175757
157576
155555
173333

133347
173333
010100

1
003434
000707

106670
000707
167677
170606
176141

a =01303210
4

(Two's complement)

(Two's complement
minus one to make
final product a ONE's
complement number)

c(L)=133471

c(L)=126716

c(L)=115563

c(L)=103334

c(L)=120667

Figure 32-31. Negative Product, Actual Multiplication (Sheet 1 of 2)



FR-2-132

Step 6 L2GD, MCRO c(G) = 144557
MPI1-11 A2X c(X) = 176141
MP3-1 RC, WY c(Y) = 010100
CI c(CI) = 1
c(U) = 006242

RU, WALS, G2LS, c(A) = 001450 c(L)=164155

MCRO

Step 7 L2GD c(G) = 150332
MP3-2,3 A2X c(X) = 001450
RB, WYD c(Y) = 157576
c(U) = 161246

RU, WALS, G2LS c(A) = 174251 c(L)=125033

Quantity in (A, L)=612465033 as integer or
.7052324157 as fraction

Figure 32-31. Negative Product, Actual Multiplication (Sheet 2 of 2)

32-111



FR-2-132

32-152. Actions 4 through 12 of subinstruction MP3 conclude the operation
of instruction MP K. At time 4 of 6, the next instruction is called forward
from E or F Memory, respectively, action 8 enters the relevant address into
register S and the whole instruction into register B. At time 12, the order
code is entered into register SQ. Actions 5 and 6 increment by one the con-
tent of register Z. All these operations are normally performed by subin-
struction STDZ,

32-153. In case bit position 15 of register L contains a ONE at time 6 of
subinstruction MP3, indicating that a carry over from the last step remained,
the multiplicand is once more added to the product by actions 7 and 11.

32-154. INSTRUCTION DV E

32-155, Instruction DV E (Divide by E) is an Extra Code Instruction which
is represented by order code 11.0 and a 10 bit address. Instruction DV E
must be preceded by Special Instruction EXTEND which enters a ONE into

bit position EXT of register SQ. Instruction DV E consists of subinstructions
DVo, DV1l, DV3, DV7, DVé6, DV4, and STDZ, the execution of which takes
six MCT's. Subinstruction DVO has only three actions (1 through 3); subin-
struction DV1, DV3, DV7, and DV6 each have 12 actions (4 through 12, 1
through 3), and subinstruction DV4 has nine actions (4 through 12).

32-156. Instruction DV E divides the fractional double-precision quantity
contained in registers A and L by the fractional single-precision quantity
stored at location E of E Memory (or in a CP register). The quantity in E
must not include an overflow bit. The absolute value of the fractional quant-
ity contained in (A, L) must always be smaller than the absolute value of the
fractional quantity contained in E. (This implies that A cannot contain an
overflow bit.) The operation DV E with 0024 <= E < 1776 can be formulated
as follows:

(1) Set c(A) = b(A, L) + c(E), signs in A and L need not agree,
L must not contain an overflow bit.
Set c¢(L) = remainder.
If ¢(E) = 00000 or 77777, c(A) = 037777 or 140000, respectively.
(2) Set c¢(B) = ¢(I+1) = j, I being the address of instruction DV E,
and j being the instruction stored at location I+1.
Set ¢(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) = b(Z+1) = I+2.
(4) Restore c(E) = b(E) and c(I+1) = b(I+1) if E and/or (I+1) rep-
resent an address in E Memory.

Point (2) implies that instruction j is executed next.

32-112



FR-2-132

32-157. Special Cases of DV E:

a. DV A divides b(A, L) by b(A) but the sign is reversed if b(A)
is positive. DV L is not possible.

b. DV Q and DV Z can be used if Q and Z do not contain a positive
or negative overflow bit.

c. DV EBANK, DV FBANK, and DV BBANK could be used but
are not very useful.

d. DV ZERO results in 037777 or 140000,

e. Instructions DV E with 0010 = E =< 0017 follow the rules of
paragraph 32-156,

£, Instructions DV E with 0020 < E =< 0023 also follow the rules
of paragraph 32-156 (the content of E is not edited when being
restored).

32-158. Principle of Operation

32-159. A division as performed by instruction DV E is carried out in
ONE's complement arithmetic and in a way similar to a division done man-
ually with binary numbers. Assume first that registers A and L, and loca-
tion E, contain the positive quantities indicated in figure 32-32., The dividend
consists of 28 bits stored in registers A and L, the divisor of 14 bits stored
in location E. Because the value of the dividend is smaller than that of the
divisor, the division can be started by writing down the first 15 bits of the
dividend. Since the 15 bit number is larger than the divisor, the divisor

can be subtracted and a ONE can be written into the quotient immediately
following the binary point. The division can then be continued conventionally,
except that binary, instead of decimal numbers are used. To prove the cor-
rectness, the division has been carried out in octal numbers and the quotient
has been multiplied by the divisor to result in the dividend.

32-160. In figure 32-32, the same division is carried out but in a way re-
sembling the operation of instruction DV E. Instead of subtracting the di-
visor from partial remainders, the divisors are added to the complemented
remainders. Thus, the subtractions are carried out in inverted form. As
a starting step, the first 15 value bits of the dividend (contained in registers
A and L), are complemented and written down. Then the divisor is added
to the first number in ONE's complement arithmetic which is the same as
subtracting the divisor from the recomplemented form of the first number.
The ONE's complement sum is a negative number indicating that the divisor
has been successfully subtracted; the first remainder is expressed in ONE's
complement form and a ONE can be written as the first bit of the quotient.

32-113



FR-2-132

After adding the next complemented bit of the dividend to the remainder, the
divisor is added again. This time the sum is positive indicating that the
divisor is too large for subtraction, therefore a ZERO must be entered into
the quotient. For the next addition, the previous remainder, plus the added
bit, plus the next complemented bit of the dividend, must be used.

32-161. The division can be continued as shown in the figure. Whenever

an inverse subtraction is successful, a ONE must be written into the quotient
and the next complemented bit of the dividend has to be added to the remainder.
Whenever a subtraction is unsuccessful, a ZERO must be written into the
quotient and the next complemented bit of the dividend has to be added to that
remainder which resulted from the last successful subtraction together with
bits which had been added already.

32-162. Actual Execution

32-163. When instruction DV E is executed, the three actions of subinstruc-
tion DVO (row 28 of table 32-4) and the first nine actions (4 through 12) of
subinstruction DV1 (row 29) prepare the registers for the actual division.

The last three actions (1l through 3) of subinstruction DV1, all actions of
subinstructions DV3, DV7, and DV6 (rows 30 through 32) and the first two
actions (4 and 5) of subinstruction DV4 (row 33) perform the actual division.
The remaining actions (6 through 12) of subinstruction DVé place the results
in the proper registers.

32-164. Actions 1l through 3 of subinstruction DVO and actions 4 through 12
of subinstruction DV1 do the following:

a. Establish sign agreement of c(L) with c(A).

b. Complement c(A) and enter the complemented quantity into B
if ¢(A, L) represents a positive number. Enter c(A) into B
if c(A, L) represents a negative number. Thus, a negative
quantity, (the high order part of the dividend) is always entered
into B; or zero is entered into B if A contains zero.

c. Shift ¢(L) one place to the left and enter the shifted quantity
into L if ¢(A, L) represents a positive number. Complement
c(L) and shift it one place to the left, and enter the complemented
shifted quantity into L if c(A, L) represents a negative num-
ber. Thus, a positive quantity (low order part of dividend) is
always entered into L; or zero is entered into L if applicable.

d. Enter c(E) into A if ¢(E) is a positive quantity. Complement
c(E) and enter the complemented quantity into A if c(E) is a
negative quantity. Thus, a positive divisor is always entered
into A.

32-114



FR-2-132

e. A ONE is entered into bit position 16 of register Z if c(A, L)
represents a negative number. A ONE is entered into bit
position 15 of register Z if c(E) represents a negative number.
Thus, the quotients will be positive if bits 16 and 15 are ident-
ical; or will be negative if the two bits are not identical.

32-165. When the signs in A and L do not agree, the sign agreement can be
established by adding 177776 (minus 1) to c(A) and adding 040000 to c(L), or
by adding 000001 to c(A) and adding 137777 to c(L).

For instance c(A, L) = (012346, 173377) = (012345, 033400)
or c(A, L) = (165431, 004400) = (165432, 144377)

The method by which instruction DV E establishes sign agreement is based
on the same mathematical principle but is implemented in a different way.

32-166. 1If c(A, L) represents a positive quantity, the quantity 040000 is
always added to c(L). If L did contain a positive quantity, a ONE is entered
into bit position 15 by the addition; however, the content of the other bit po-
sitions is left unchanged. When c(L) is read out, bit position 16 is read into
WA's 16 and 15, thus eliminating the ONE in bit position 15. If L. did contain
a negative quantity (without overflow bit), the ONE added to the ONE contained
in bit position 15 changes it to a ZERO, changes the sign bit to a ZERO, and
causes end around carry. For instance, adding 040000 to 173377 results in
033400. When c(L) is read out, bit 15 is lost again, but this does not change
the quantity.

32-167. 1If c(A, L) represents a negative number, the quantity 040000 is
added to the complemented c(L) to provide the same end effect.

32-168. Figure 32-34 describes how actions 1 through 3 of subinstruction
DVO and actions 4 through 12 of subinstruction DV1 set the registers. First
the original content (a) of register A is entered into register B and tested
for sign and minus zero. If quantity (a) is positive, it is complemented and
again entered into register B; quantity (a) is then tested for plus zero., If it
is not equal to zero, the sign originally stored in register A defines the sign
of c(A, L). If the quantity (a) is equal to zero, the sign originally contained
in register L defines the sign of c(A, L).

32-169. Once the sign of (a, 1), the quantity originally contained in registers
A and L, has been defined, the operation branches in one of two directions.

(text continued on page 32-132)

32-115



FR~2-132

c(A) = 012345 c(L) = 033400 c(E) = 21212

.0101001110010111011100000000 <+ . 10001010001010 = .10011010111001
010100111001011
10001010001010 c(A) = 023271
00011101000001101
10001010001010
010111100000111
10001010001010
0011000111110110
10001010001010
0011110110110000
10001010001010
011011001001100
10001010001010
010011110000100
10001010001010
00010011111010000
10001010001010
00010101000110 c(L) = 002506

Proof

. 2471356000 + . 42424 = . 46562 . 46562 x . 42424
212120 232710
350156 115344
317170 232710
307660 115344
254544 232710
331140 2471343350
317170 012430
117500 2471. 356000
105050
012430

Figure 32-32. Principle of Division, Manual Method

32-116



1

FR-2-132

021212
10001010001010

= 012345 c(L)
= 01010011100101 c(L)

033400 c(E)
11011100000000 ¢(E)

1101011000110100 Quotient = 10011010111001
0010001010001010 c(A) = 023271

1111000101111100
0010001010001010
0001010000000111 1's indicate successful
1110001011111001 subtractions
0010001010001010 0's indicate unsuccessful
0000010110000100 subtractions
1100010111110010
0010001010001010
£1101000011111000
10010001010001010
A1110011100000100
0010001010001010
0000100110001111
1100111000001001
0010001010001010
J1110000100100111
0010001010001010
0000001110110010
1100001001001111
0010001010001010
£1100100110110011
1010001010001010
£1101100001111011
0010001010001010
J1111011000001011
0010001010001010
0001100010010110
1110110000010111
0010001010001010
0000111010100010
1101100000101111
0010001010001010
1111101010111001

Remainder 000010101000110 c(L) = 002506

Figure 32-33. Principle of Division, Machine Method

32-117/32-118






FR-2-132

c(By=c(A)y=a
ais positive ais minus zero
c(BR)=10 c(BR)=3
c(A)=C(B)=a Test .
a is negative non-zero
a is positive non-zero a is plus zero ¢(BR)=2
c(BR)=0 Test c(BR) =1 _ _
a o —‘
y

g (B)=c(L)=1¢
¥ v c

c(B)=c(L)y=1
C(BR)=1 . .
S L is positive Lis negative
c(BR) =0 c(BR) =1 Test c(BR)=3
* - - N
4
c(Y)=c(B)=¢
(at) positive ¢(X) = 040000 ‘ ‘
c(U) = ¢ +40000 o
c(Y)=¢(B) =¢
¢ (X) = 040000
czu; = 7440000 (2.2) negative
l ¢(Z) = 100000
c(L)=c(U)=1¢ 440000 ‘
c(L) = c(U) =z +40000
overflow, £ is positive no overflow, £ is negative
0=<¢ <437777 S3771 = ¢ =-1 erflow
- ’ =0 overflow,
C(BRV‘I Test C(BR) _ 37777 <4 <40 no overflow
£ 440000 o (£ is negative) +1=g <437777 (¢ is positive)
c(BR)=1 Test c(BR) =0
‘ - T+40000 1
c(B)=c(E)=e c(By=c(E)y=e c(B)zc(E)=e c(B)=c(E)=e
e is positive € s negative € Is positive e is negative € is negative € is positive e is negative e is positive
c(BR)=1 C(BR)=3 c(BR)=10 c(BR)=2 c(BR)=3 c(BR)=1 c(BR) =2 c(BR)=0

c(Y)=c(A)=7 c(¥)=c(A)=F eY)E shi=a cY)=c(A)=a c(Y)=c(A)=a c(Y)=c(A)za c(Y)=c(A) za c(Y)=c(A)=a

¢(X) = 000000 ¢(X) = 000000 c(X) = 000001 c(X) = 000001 C(X) = 000000 ¢ (X) = 000000 ¢(X) = 000001 ¢(X) = 000001

cU)=a cU)=7 cUyzatlza-1 cU)=a+l1=2-1 cU)=a c(U)=a cU)=a+l cU)y=a+1

c(A)=c(B)=¢ c(A)=c(B)=¢ c(Ay=c(B)=e c(A)=T(B)=¢
c(A)=c(B)=e €(Z) = 040000 +next cfA)=c(B)=e €(Z) = 040000 +next ¢(Z) = 140000 + c(Ay=c(B)=e ¢(Z) = 140000 + c(A)=c(B)=e
address address next address next address
cB)=cU)=7 c(B)=c(U)=2a cB)=cyza-1 cB)y=c(U)=a-T c(B)=c(l)=2a c(B)=cU)=a cB)=c(l)=a+] cB)=c()=a+l
c(L)y=2b(L) c(L)=2b(L) c(L) = 2n(L) c(L)=2b(L) c(L) = 2b(L) c(L) = 2b(L) c(L) = 2b(L) c(L) =2b(L)
2759 lof 2

Figure 32-34. Divide Instruction, Flow Diagram (Sheet 1 of 2)

32-119/32-120






Examples

1. a=012345 2.

£ = 033400
e = 021212

9. a=000000 or 10.

177777
¢ = 005162
e = 021212

¢(B) = 000000 or
unn
c(L) = 012344
c(A) = 021212
¢(Z) = next address

a = 012345

£ = 033400

e = 156565
¢ (B) = 165432
c(L) = 067000
c(A) = 021212
¢(Z) = 040000 +

next address

a = 000000 or
177717

= 005162
e = 156565

¢ (B) = 000000 or
177771
c(L) = 012344
c(A) = 021212
¢(Z) = 040000 +
next address

3.

a = 012346
¢ = 173377
e = 021212

c(B) = 165432
c(L) = 067000
c(A) = 021212
¢(Z) = next address

4. a=012346
¢ = 173377
e = 156565
c(B) = 165432
¢ (L) = 067000
c(A) = 021212
¢(Z) = 040000 +

next address

5

a = 165432
1 = 144377
e = 156565
c(B) = 165432
c(L)= 067000
c(A) = 021212
c(Z) = 140000 +
next address
a = 000000 or
177777
£ = 172615
e = 156565

¢(B) = 000000 or
177777
c(L) = 012344
c(A) = 021212
¢(Z) = 140000 +
next address

Figure 32-34.

6.

12

a = 165432

2 = 144377

e = 021212
c(B) = 165432
¢(L) = 067000
c(A) = 021212
¢(Z) = 100000 +

next address

a = 000000 or
177771
£ 2172615

€ = 021212

¢ (B) = 000000 or
177177

c(L)=1012344

c(A) = 021212

¢(Z) = next address

Divide Instruction, Flow Diagram (Sheet 2 of 2)

7

a = 165431

¢ = 004400

e = 156565
c(B) = 165432
c(L) = 067000
c(A) = 021212
¢(Z) = 140000 +

next address

FR-2-132

8. a=165431
¢ = 004400
e = 026212
¢(B) = 165432
¢(L) = 067000
c(A) = 021212
¢(Z) = 100000 +
next address

2759 2 of 2

32-121/32-122






FR-2-132

F
E
H
s |0200
G |010200
WB WB
B {010200 ? 012345 TRC 4006135
A ‘0|2345 l RA WAlI65432
L |033400
Q @las
Z |002135
U |002135 RU ®
Y |002134
X | 000000
cI
sQ |10
ACTION | 2 3
RA RC RU
wB WA wB
TSGN T™Z STAGE
T™Z DVST
ST |0 |
BR |O 0 0

2770A

Figure 32-35. Subinstruction DV0

32-123



FR-

2-132

32-124

Figure 32-36. Subinstruction DV1.

F
E |21212 €00000 A 21212
H
S 0200
G 010200V 021212 RGT L] L2GD ®056000 @RG
wB
B |006135 ?033400 TRB wB {02I2|2 RBT WBAI65432 RBI 174276 AWG
2 -
A 165432 +RSC RAe WAlOZIZIZ
L 033400@ RL WL 4073400 + RSC RL® WL 4 067000 WLY 056001
Q i RSC
zZ 002135 l RSC
@350) ) (s043) @0) (erond )
U (002135 073400 iRU 165432 Rul 067000 iRU 174276 RUl
Y 002134 WYV 033400 WY ¥ 165432 WwYD {7067000 WYD ¥ 153064
X |000000 BI5SX ® 040000 ® 000000 ® 000000 A2X®021212
CI o 0 o] ° [ 0
SQ |10
ACTION 4 5 6 7 8 9 10 I 12 [ 2 3
RL RB RU RG RA RB RU RL RU L2GD RG RU
wB WY WL RSC wY WA wB wYD wL RB RBIF wB
BISX TOV WB PIFL WL STAGE
TSGN WYD TSGU
A2X DVST
ST (i 3
BR |0 3 3 o
2771A



FR-2~132

F
E
H
s |o0200
L2GD
G | 056000 ©034002 @ RG L2GD ® 070004 @ RG L2GD ® 060010 $RG L2GD 040022 @ RG
B |i7a276 TRB WB 4 170574 TRB wB A 16137 TRB WB A 64174 TRB 171602 4 WB
174276 @@ 170574 @E 161371 @on 164174 040@
A |o21212
L loseoor WL ¥ 034002 WL ¥ 070004 WL ¥ 06001 WL ¥ 040023
Q
z |ooeizs
170574 @ 164174 171602
u |17a276 | 012007 RUll70574 002604 RUl!GB?l 164174 F?Ui|64l74 171602 |7|sozlau
WYD
Y 153064 ¥ 170574 WYD Y 161371 WYD ¥ 142762 WYD ¥ 150370
A2X CLXC cLXC
X |021212 ®021212 ® 000000 A2X ®02i212  ® 000000 AZX @ 021212 A2X @ 021212
c1 |o o o ) 0
sSQ 1.0
TIME 4 5 6 7 8 9 10 1 12 | 2 3
PIFL TSGU PIFL TSGU PIFL  TSGU SETS PIFL  TSGU SETS  STAGE
FINDS SETS FINDS SETS FINDS C(BR)=1X FINDS C(BR)=|X AND
LIS=1  C(BR)=0X LI5=0  C(BR)=OX LI5=1 AND CAUSES LI5=1 CAUSES RBI
AND AND RBI WHICH WHICH PLACES
CAUSES CAUSES PLACES 00000! ONTO
cLXC cLXC 00000 WRITE LINES
ONTO DVST SETS
WRITE STAGE COUNTER
LINES TO 111
ST 3 7
BR | O o
2772A

Figure 32-37.

Subinstruction DV3

32-125



FR-2-132

S 0200

G |040022 @ 000046 @ RG

L2GD ®000II4 ¢

L2GD®000232 @RG

L2GD®000464 @ RG

B 171602 TRB WB‘}I63404 ®RB wB 4“70223 TRB WB 4160447 TRB WB 162331 4
|
@ ooo@ 163404 @ns 170223 ooo@ 160447 @465
A 021212
L 040023 WLY 000046 WLVYOOO0II5 WLY 000232 WLJVOOO465
Q
b4 006135
|63@ 170223 160447 16233|
U 171602 004617 RUlI63404 170223 RUlI70223 001662 RUlI60447 162331 RU |6233ll
Y 150370 {'WYD 163404 WYDY 147011 WYDyi60447 wyp¥Y 141117
A2X
X [021212 ®@021212 @CLXC 000000 A2Xxe021212 A2X@021212 @CLXC 000000 A2Xe@021212
CI [0}
sQ | 110
TIME 4 5 6 7 8 9 10 1 12 | 2 3
PIFL TSGU PIFL TSGU PIFL TSGU PIFL TSGU STAGE
FINDS SETS FINDS SETS FINDS SETS FINDS SETS
LI5=1 C(BR)=0X LI5=0 C(BR)=1X LI5=0 C(BR)=0X LI5=0 C(BR)=1X
AND CAUSES AND CAUSES AND CAUSES AND CAUSES
cLXC RBIF WHICH cLxc RBIF WHICH
PLACES PLACES
00000!I 00000I ONTO
ONTO WRITE WRITE LINES -
LINES DVST SETS STAGE
COUNTER TO 110
ST |7 6
BR |© o}
2773A

32-126

Figure 32-38.

Subinstruction DV7



FR-2=132

F
E
H
s |o200
L2GD
G |000464@ 00il52 @RG L2GD ®002326 @RG L2GD ®@004656 @ RG L2GD @0I1534 @RG
wB
B |16233I TRB WB 4166075 TRB WB 4175405 TRB WB 4173013 ?RB 166027 A
|
16233| @lss 166075 @327 173013 @65) 166027) (001154
A [o021212
L |oooaes WLY 001153 wL ¥ 002327 WL ¥004656 WL ¥011534
Q
Z | ooelizs
166075 175405 173013 166027
: l [T
U |162331 | 166075 RU ® 166075 |175405 RU® 175405 |014226 RU 173013 007242 166027
WYD
Y 141117 ¥144663 WYDYI54173 WYD V¥ 173013 WYD V166027
A2X CLXC CcLXC
X |o21212 @ 021212 A2X ® 021212 A2X 021212 ®000000 A2X @ 021212 ® 000000
cI |o
sQ | 1o
TIME 4 5 6 7 8 9 10 1l 12 | 2 3
PIFL  TSGU SETS PIFL TSGUSETS PIFL  TSGUSETS PIFL  TSGUSETS STAGE
FINDS C(BR)=IX FINDS C(BR)=IX FINDS C(BR)=0X FINDS C(BR)=OX
LI5=0 AND CAUSES L15=0 ANDCAUSES LI5=0 AND CAUSES LI5=0 AND CAUSES
RBIF WHICH RBIF WHICH CLXC CLXC-DVST
PLACES PLACES SETS STAGE
00000! 00000 COUNTER
ON WRITE ON WRITE TO 110
LINES LINES
ST |6 4
BR O [0}
2774A

Figure 32-39.

Subinstruction DV6

32-127



FR~2-132

F
E
H
S |0200 WS 4 6135
L2GD
G |0I1534 @ 023270 T RG
023271
B |l66027 TRB WB ¥ 023271 WB A 17527! I RC
166027 006135 002506
A |0O21212 WAV 023271
WL
L [OlI534 WL 4175271 ¥ 002506
Q
Z |002i35 RZ ® RZ @
175271
U |166027 | 175271 RUl
WYD
Yy |166027 V154057
A2X
X 000000 @ 021212
CI 0
sQ |I1.O
ACTION 4 5 6 8 9 10 1 12
L2GD RG RZ RZ RU RC
RB RBIF TOV WS WwB WL
PIFL wB TSGN wL
WYD WA RSTSTG
A2X TSGU ST2
ST |4 0 0o
Br |0 0 o 0o 0

32-128

Figure 32-40.

Subinstruction DV4

2775A



FR-2-132

Initial Conditions: a, 1 =012345; 033400
e = 21212
After DV1-12; c(B) = 165432

c(L) = 067000
c(A) = 021212

Step 1
Dvl-1 L2GD c(G) = 056000
RB, WYD, PIFL, Ll15=1 c(Y) = 153064
A2X c(X) = 021212
c(U) = 174276
DV1-2 RG, WL, set ¢(BR1) =1, RBIF c(L) = 056001
DV1-3 RU, WB c(B) = 174276
Step 2
DV3-4 L.2GD c(G} = 034002
RB, WYD, PIFL, Ll15=1 c(Y) = 170574
AZX c(X) = 021212
c(U) = 012007
DV3-5 RG, WL, set ¢(BR1) = 0, CLXC c(U) = 170574
DV3-6 c(L) = 034002
RU, WB c(B) = 170574
Step 3
DV3-7 L.2GD c(G) = 070004
RB, WYD, PIFL, LI15=0 c(Y) = 161371
A2X c(X) = 021212
c(U) = 002604
DV3-8 RG, WL, set ¢(BR1) = 0, CLXC c(U) = 161371
c(L) = 070004
Dv3-9 RU, WB c(B) = 161371
Step 4
DV3-10 L2GD c(G) = 060010
RB, WYD, PIFL, Ll15=1 c(Y) = 142762
A2X c(X) = 021212
c(U) = 164174
DV3-11 RG, WL, set ¢(BR1) = 1, RBIF c(L) = 060011
DVv3-12 RU, WB c(B) = 164174

Figure 32-41. Actual Division (Sheet 1 of 3)

32-129



FR-2-132

Step 5

DV3-1 L2GD c(G) = 040022

RB, WYD, PIFL, L15=1 c(Y) = 150370

A2X c(X) = 021212

c(U) = 171602

DV3-2 RG, WL, set ¢(BR1) =1, RBIF c(L) = 040023

DV3-3 RU, WB c(B) = 171602
Step 6

DV7-4 L2GD c(G) = 000046

RB, WYD, PIFL, Ll5=1 c(Y) = 163404

A2X c(X) =021212

c(U) = 004617

DV7-5 RG, WL, set ¢(BR1) = 0, CLXC c(U) = 163404

c(L) = 600046

DV7-6 RU, WB c(B) = 163404
Step 7

DVT-1 L2GD c(G) = 000114

RB, WYD, PIFL, L15=0 c(Y) = 147011

A2X c(X) = 021212

c(U) = 170223

DV7-8 RG, WL, set ¢(BR1) = 1, RBIF c(L) = 0060115

Dv7-9 RU, WB c(B) = 170223
Step 8

DV7-10 L2GD c(G) = 000232

RB, WYD, PIFL, L15=0 c(Y) = 160447

A2X c(X) =021212

c(U) = 001662

DV7-11 RG, WL, set ¢(BR1) = 0, CLXC c(U} = 160447

‘ c(L) = 000232

DV7-12 RU, WB c(B) = 150447
Step 9

DV7-1 L2GD c(G) = 000464

RB, WYD, PIFL, L15=0 c(Y) = 141117

A2X c(X) = 021212

c(U) = 162331

Dv7-2 RG, WL, set ¢(BR1) =1, RBIF c(L) = 000465

DvV7-3 RU, WB c(B) = 162331

Figure 32-41. Actual Division (Sheet 2 of 3)

32-130



FR-2-132

Step 10

DV6-4 L.2GD c(G) = 001152

RB, WYD, PIFL, L15=0 c(Y) = 144663

A2X c(X) = 021212

c(U) = 166075

DVé6-5 RG, WL, set c(BR1) =1, RBIF c(L) = 001153

DVé-6 RU, WB c(B) = 166075
Step 11

DV6-7 L2GD c(G) = 002326

RB, WYD, PIFL, L15=0 c(Y) = 154173

A2X c(X) = 021212

c(U) = 175405

DV6-8 RG, WL, set c(BR1l) =1, RBIF c(L) = 002327

DV6-9 RU, WB c(B) = 175405
Step 12

DV6-10 L.2GD c(G) = 004656

RB, WYD, PIFL, L15=0 c(Y) = 173013

A2X c(X) = 021212

c(U) = 014226

DVé6-11 RG, WL, set c(BR1) =0, CLXC c(U) = 173013

c(L) = 004656

DVé6-12 RU, WB c(B) = 173013
Step 13

DV6-1 L.2GD c(G) = 011534

RB, WYD, PIFL, L15=0 c(Y) = 166027

A2X c(X) = 021212

c(U) = 007242

DVé6-2 RG, WL, set c(BR1l) = 0, CLXC c(U) = 166027

c(L) = 011534

DV6-3 RU, WB c(B) = 166027
Step 14

Dv4-4 L2GD c(G) = 023270

RB, WYD, PIFL, 1.15=0 c(Y) = 154057

A2X c(X) = 021212

c(U) = 175271
DV4-5 RG, WB, WA, set ¢(BR1) =1, RBIF  ¢(B)=c(A) = 023271

Final Sequence

DV4-6 RZ, set c(BR) =00

DV4-7 no effect

DV4-8 RZ, WS, set c(BR1) =0, c(BR) =00, c(S) =b(Z)

Dv4-9 RU, WB, WL c(B)=c(L)=175271

DV4-10 RC, WL c(L) =002506
c(A) =023271

Figure 32-41. Actual Division (Sheet 3 of 3)

32-131



FR-2-132

From there on the flow chart is self explanatory. Examples for the various
branches are shown on sheet 2. Figure 32-35 through 32-40 demonstrate
the execution of the first example. The quotient is entered into register L
bit by bit as the low order part of the dividend is shifted (and complemented)
bit by bit into register B via register Y and adder output gates (U). For de-
tails refer to figure 32-41.

32-170. Action 7 of subinstruction DV4 complements the quotient if the
quotient must be negative. Actions 9 and 10 recomplement the remainder if
the remainder must be positive. Action 8 enters the address of the next in-
struction into register S and subinstruction STD2 calls forward the next sub-
instruction as usual.

32-171. INSTRUCTION ADS E

32-172. Instruction ADS E {(Add to Storage E) is a Basic Instruction which

is represented by order code 02.6 and a 10 bit address. Instruction ADS E

consists of subinstructions ADSO and STDZ2, the execution of which takes two
MCT's.

32-173. Instruction ADS E adds the quantity in register A to the quantity in
location E of E Mamory (or a CP register), stores the sum in A with over-
flow bit, and stores the sum in E without overflow bit if E represents an
address in E Memory. The operation ADS E with 0024 < E < 1777 can be
formulated as follows:

(1) Set c(E)

b(E) + b(A) except positive or negative overflow bit,
Set c(A) = b(E) + b(A) with positive or negative overflow bit.
(2) Set c(B) = c(I+1) = j, I being the address of instruction ADS E,
and j being the instruction stored at location (I+1).
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) = b(Z)+1 = I+2.
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E
Memory.

I

Point (2) implies that instruction j is executed next,
32-174. Special Cases of ADS E:

a. ADS A doubles the content of register A whereby any overflow
bit is included in the new content of A,

b. ADS L, ADS Q, and ADS Z also enter an overflow bit into
registers L, Q, and Z, respectively.

32-132



FR-2-132

F
£ 00030 € 00000 407530
H
s |[e200 ?ws 0200 WS 4 2633
000200
6 |o026200 WG § 000000 V000030 ®RG WG A 007530 °
_‘r
|
Il
1
B |026200 @RLIOBB |
|
000000 @@ 000000) (002633
T l l
A |oo7s00 RSC ¢ wSsC A WA ¥ 000000 RC WA § 007530
i
L RSC ? wSC 4
[
Q RSC ¢ wsC &
}
z 002633 RSC WSC A RZ ®
007530 007530
u |oo2633 007530lRU Rul
v |ooze32 WY ¥ 000030
x |o0ooo00 A2X ® 007500
cI I . o
sq |o26
ACTION | 2 3 4 5 6 7 8 9 10 T 12
RLIOBB RSC RG RU WA RZ RC RU
ws WG WY WSC WS T™Z WA
A2X WG SsT2
TOV
ST |o 2
BR |O 0 0
2715A

Figure 32-42.

Subinstruction ADSO

32-133



FR-2-132

c. ADS EBANK, ADS FBANK, and ADS BBANK can be used but
the particular read and write operations must be observed.

d. ADS ZERO has no purpose.

e. Instructions ADS E with 0010 < E < 0017 follow the rules of
paragraph 32-173,

f. Instructions ADS E with 0020 = E < 0023 also follow the rules
of paragraph 32-173 except that the sum is edited as it is
entered into E,

32-175. When instruction ADS E is executed, action 1 of subinstruction
ADSO (row 34 of table 32-4) replaces the quantity contained in register S with
the 10 bit address thus erasing the quarter code contained in S. The quantity
from location E is entered into register G at time 2 or 4. Action 5 adds the
quantities in G and A, and action 6 enters the sum into register G or into
another CP register. At time 10, the sum without any overflow bit is entered
into an E Memory location if one was addressed. If positive or negative
overflow occurred during the addition, 000001 or 177776, respectively, is
entered into register A by action 7, however, action 1l replaces this quantity
by the sum including an overflow bit. Action 8 enters the address of the next
instruction into register S and subinstruction STD2 calls forward the next
instruction as usual.

32-176. Figure 32-42 illustrates the execution of subinstruction ADO of in-
struction ADS 0200. Initially, location 200 contains quantity 00030 and reg-
ister A contains quantity 007500.

32-177. INSTRUCTION DAS E

32-178. Instruction DAS E (Double Add to Storage E) is a Basic Instruction
which is represented by order code 02.0 and a 10 bit address. Instruction
DAS E consists of subinstructions DAS0O, DAS1, and STD2, the execution of
which takes three MCT's.

32-179. Instruction DAS E adds the double precision quantity contained in
registers A and L to the double precision quantity stored at locations E and
E+1 of E Memory (or two CP registers) and stores in A the overflow result-
ing from the addition as a whole. The operation DAS E with 0024 < E < 1776
excluding the last address of any E Memory bank (table 32-2) can be formu-
lated as follows:

(1) Set c(E, E+1) = b(E, E+1) + c(A, L) where c(E) includes any

overflow resulting from b(E+1) + c(L) but not any overflow
resulting from the addition as a whole.

32-134



FR-2-132

Set c(A) = 000000 if no net overflow occurred.

Set c(A) = 000001 if net positive overflow occurred.
Set c(A) = 177776 if net negative overflow occurred.
Set c(L) = 000000.

(2) Set c(B) = ¢(I+l) = j, I being the address of instruction DAS E,
and j being the instruction stored at location (I+1).
Set c(S) = relevant address of j.
Set ¢(SQ) = order code of j.
(3) Set c(Z) = b(Z)+1 = I+2.
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E
Memory.

Point (2) implies that instruction j is executed next.

32-180. If an overflow occurs during the addition of b(E+1)+c(L), b(A) is
incremented by one (in case of positive overflow), or decremented by one
(negative overflow) before b(E) and c(A) are added. If positive or negative
overflow occurs during the second addition, the quantity 000001 (positive
overflow) or 177776 (negative overflow) is stored in A, otherwise the quantity
000000 is stored in A. The c(L) is set to 000000. The sum which is stored
at E and E+1 may contain two different sign bits and 28 value bits.

32-181. Special Cases of DAS E:

a. DAS A, (alternate code DDOUBL for double precision double)
doubles the double precision quantity contained in registers
A and Lh whereby the final content of A includes any overflow
bit resulting from the second addition, i.e., b(A)+ [b(A) +
overflow of first addition]. The b(A) must not include an over-
flow bit.

b. DAS 0010 and DCA 0013 (table 30-4) are useful and follow the
rules of paragraph 32-182,

c. Any DAS E with 0000 = E = 0022 must be used with extreme
care so as not to destroy stored data; E must not be 0023 in
order to prevent destruction of data in counter T2, Whenever
locations 0020 through 0023 are involved, the sum is edited as
it is stored.

32-182. When instruction DAS is executed, first the sum c(L)+c(E+1) is
computed by subinstruction DASO which also stores the sum in location E+1,
adds 000001 or 177776 to the b(A) if an overflow occurred, and stores this
new quantity in the Adder. Thereafter, subinstruction DAS1 computes the
sum c{A)+c(E) and stores it in location E.

32-135



FR-2-132

E 20045 @ 00000 417123

S 0143 ? WS 0143

000143

G |020143 WG TOOOOOO ‘L 020045 RG @ WG 4057123 @

I

!
i

B |020143 @RLIOBB WB? 002731 RBT WB?OOOMZ

Goois) (Gaonod) (aoers) (2003 G002
WA l
A |00273I RSC + RA 037056 @ WA ¥ 002731 WSC 4 RA®

|
T wL
L |o370s6 RSC ¢ RL 4000142 RL WsC &
f
Q RSC + WSC &
1
T
z |oos3as RSC & WSC 4
000142 057123 @E
u |oos3a5 000142 RU looomz 057123 Rul
y |005344 ¥ wyi2 000143 WY ¥ 020045 WY ¥ 00273]
X |000000 @ MONEX 177776 A2X ® 037056 @ 00000|
cI | @CI 'Y o]
sQ |02.0
ACTION I 2 3 4 5 6 7 8 9 10 I 12
RLIOBB RSC RA RL RU RG RB RL RU RA
ws e wB WA wL WY WA wB WsC WY
WwYI2 A2X WG PONEX
MONEX Tov STI
cI
ST |o
BR |O 0

2707A

Figure 32-43. Subinstruction DASO

32-136



FR-2-132

F
£ 36666 $ 00000 401620
H
s [0143 1wsoq42 WS 45345
000142
G |os7i23 we*oooooo 036666 @®RG  WGA04(620 J
I
[
!
B |000142 @RLIOBB : RCT
It
@oooo 00000l 005@ 000142) (000000,
f i — —-
A [002732 RSCé WA 4002732 WSCA WA ¥ 00000I
1
| ;
L |ooo142 RSCe WSC4 WL ¥000000
T
Q RSC# wsc 4
|
+
Z |005345 RSCe wsC4 RZ ¢
002732 @@ 041620
U |002732 lRU o4|szolRu
Y (002731 WYV 036666
X [000001 A2X ® 002732
cI 0 ° o
SQ |02.0
ACTION | 2 3 4 5 6 7 8 9 10 1] 12
RLIOBB RSC RU RG RU RBI RZ RC wL
ws WG WA wy WG WA ws T™Z
A2X WSC ST2
Tov
ST || 2
BR |0 0 ¢}

Figure 32-44. Subinstruction DASI]

2708A

32-137



FR-2-132

The Yul Programming System accomplishes this by replacing instruction
DAS E with code DAS (E+1) which is wired into the program. As the AGC
executes subinstruction DASO, relevant address (E+1) is available first and
is decremented by one. Subinstruction DAS1 then uses the decremented ad-
dress E. For execution of subinstructions DASO and DAS1 refer to rows 35
and 36 of table 32-4. When double precision quantities are added to storage,
address E must not be equal to the last address of any E Memory bank in
order to allow (E+1) to be the next address in the same bank.

32-183. The execution of instruction DAS 0142 is illustrated in figures 32-43
and 32-44. The instruction is stored at location 5344, Location 0142 con-
tains quantity 36666 and location 0143, quantity 20045 to which quantities
002731 and 037056, contained in registers A and L, are to be added. Note,
that registers B, G, and S contain relevant address 0143 instead of 0142 at
the start of subinstruction DASO. Thus, E Memory enters quantity 20045 into
register G at time 4 and action 6 enters the quantity into the Adder together
with quantity 037056 which was temporarily stored in register A. Action 9
transfers the sum 057123 to register G from where it is entered into location
(E+1) at time 10. Action 9 also tests the sum, finds a positive overflow bit
and sets the branch flip-flops to 01l. Because of this, the quantity 000001 is
added to the original content of register A. (If no overflow had occurred,

the quantity 000000 would have been added; if negative overflow had occurred,
the quantity 177776 would have been added.)

32-184. Action 1 of subinstruction DASO decrements address (E+1) to obtain
address E = 0142 which is temporarily stored in registers L. and B before it
is entered into register S by action 1 of subinstruction DAS1. The quantity
36666 is entered into register G at time 4 and entered into the Adder by
action 5 together with the incremented quantity of A, The final sum is trans-
ferred to location E via register G. Because a positive overflow occurred
during the second addition, action 7 enters the quantity 000001 into register A,
(Otherwise, quantity 000000 or 177776 would have been entered.) Action 8
enters the address of the next instruction into register S and subinstruction
STD2 calls forward the next instruction as usual.

32-185. If address E has been 0000 (A), the first sum, 057123, would have
been entered into register L by action 9 of DASO and action 10 of DAS1 would

not have entered 000000 into L., Furthermore, action 11 of DAS1 would have
replaced the quantity 000001 in A by the second sum 041620,

32-186. INSTRUCTION INCR E

32-187. Instruction INCR E (Increment E) is a Basic Instruction which is
represented by order code 02.4 and a 10 bit address.

32-138



FR-2-132

Instruction INCR E consists of subinstructions INCRO and STD2, the execu-
tion of which takes two MCT's.

32-188.

Instruction INCR E increments by one the quantity stored at loca-
tion E in E Memory (or a CP register). The operation INCR E with
0024 < E < 1777 can be formulated as follows:

(1)

Set c(E) = b(E)+1 except overflow bit which is lost.

If overflow occurs when a certain counter is addressed, one
of the following operations is requested by the Counter Priority
Control:

Counter Addressed Oeeration

0025 T1 Instruction PINC 0024 or PINC T2
is executed.

0026 T3 Instruction RUPT and RUPT Trans-
fer Routine 3 dare executed.

0027 T4 Instruction RUPT and RUPT Trans-
fer Routine 4 are executed.

0030 Th Instruction RUPT and RUPT Trans-

fer Routine 5 are executed.

A Refer to table 30-4, EMA's 0024 and 0025.

A Refer to tables 30-4 and 30-6.

32-189.

Set ¢(B) = ¢(I+1) = j, I being the address of instruction INCR E,
and j being the instruction stored at location (I+1).

Set c(S) = relevant address of j.

Set c(SQ) = order code of j.

Set c(Z) = b(Z)+1 = I+2,

Restore c(I+1l) = b(I+1) if (I+1) represents an address in E
Memory.

Point (2) implies that instruction j is executed next.

Special Cases of INCR E:

a.

INCR A, INCR L, INCR Q, and INCR Z are useful. An incre-
mented quantity entered into A, L, Q, or Z may also contain
an overflow bit.

32-139



FR-2-132

;
E 22222 ¢ 00000 22223
H

S 4300 fWS 0300 WS4 2201

G 024300 WG*OOOOOO V022222 @RG WG 022223 | 0022223

B 024300 eRLIOBB

!
1
|
|

wscd
L RSC WwSCA
Q RSCe WSC 4
;
T
z |oo2z01 RSC® WSCA RZ®
u |oozz01 022223 ®RU
Y |002200 wy V022222
PONEX
x |000000 ©000000 00000
i ° 0 e 0
sQ [oz.4
ACTION | 2 3 4 5 6 7 8 9 10 " 12
RLIOBB RSC RG PONEX RU RZ
WS WG WY WSC WS
TSGN WG sT2
T™MZ WOVR
TPZG
sT |o 2
BR [0 0

2714A

Figure 32-45. Subinstruction INCRO

32-140



FR~-2-132

b. INCR EBANK and INCR FBANK have no purpose. INCR BBANK
can be used to increment the content of register EBANK.

c. INCR ZERO has no purpose.

d. Instructions INCR E with 0010 < E < 0017 follow the rules of
paragraph 32-188.

e. Instructions INCR E with 0020 < E < 0023 also follow the
rules of paragraph 32-188 except that the incremented quantity
is edited as it is entered into location E.

32-190., When instruction INCR E is executed, action 1 of subinstruction
INCRO (row 37 of table 32-4) replaces the quantity contained in register S

by the 10 bit address thus erasing the quarter code contained in S. The
quantity from location E is entered into register G at time 2 or 4 and entered
into the Adder by action 5. Action 6 adds the quantity 000001 to the content
of the Adder. Action 7 enters the sum into register G from where it is trans-
ferred to location E in E Memory at time 10, If a CP register is addressed,
the incremented quantity is entered by action 7. Action 7 also tests the in-
cremented quantity for overflow and signals the Counter Priority Control if
a certain counter is addressed. Action 8 enters the address of the next in-
struction into register S and subinstruction STD2 calls forward the next in-
struction as usual.

32-191. Figure 32-45 illustrates the execution of subinstruction INCRO of
instruction INCR 0300. Location 0300 initially contains quantity 22222.

32-192. INSTRUCTION AUG E

32-193. Instruction AUG E (Augment E) is an Extra Code Instruction which
is represented by order code 12. 4 and a 10 bit address. Instruction AUG E
must be preceded by Special Instruction EXTEND which enters a ONE into
bit position EXT of register SQ. Instruction AUG E consists of subinstruc-
tions AUGO and STD2, the execution of which takes two MCT's.

32-194, Instruction AUG E increases by one the absolute value of the quant-
ity stored at location E in E Memory (or a CP register). The operation
AUG E with 0024 < E < 1777 can be formulated as follows:

(1) If c(E) is positive, set c(E) = b(E)+1, except overflow bit
which is lost.

If c(E) is negative, set c(E) = b(E)-1, except overflow bit
which is lost.

32-141



FR-2-132

If overflow occurs when a certain counter is addressed, one
of the following operations is requested by the Counter Priority
Control:

Counter Addressed OEeration

0025 T1 Instruction PINC 0024 or PINC T2
is executed.

0026 T3 Instruction RUPT and RUPT Trans-
fer Routine 3 are executed.

0027 T4 Instruction RUPT and RUPT Trans-
fer Routine 4 are executed.

0030 T5 Instruction RUPT and RUPT Trans-

fer Routine 5 are executed.

A Refer to table 30-4, EMA's 0024 and 0025

/A Refer to tables 30-4 and 30-6.

(2)

(3)
(4)

Set ¢(B) = c¢(I+1) = j, I being the address of instruction AUG E,
and j being the instruction stored at location (I+1).

Set ¢(S) = relevant address of j.

Set ¢(SQ) = order code of j.

Set c(Z) = b(Z)+1 = I+2.

Restore c(I+1) = b(I+1) if (I+1) represents an address in E
Memory.

Point (2) implies that instruction j is executed next.

32-195. Special Cases of AUG E

32-142

AUG A, AUG L, AUG Q, and AUG Z are useful. An augmented
quantity entered into A, L, Q, or Z may also contain an over-
flow bit.

AUG EBANK and AUG FBANK have no purpose. AUG BBANK
can be used to increment or decrement the content of register
EBANK if bit 16 of register FBANK is known.

AUG ZERO has no purpose.

Instructions AUG E with 0010 < E < 0017 follow the rules of
paragraph 32-194.



FR-2-132

e. Instructions AUG E with 0024 < E =< 0023 also follow the rules
of paragraph 32-194 except that the augmented quantity is
edited as it is entered into location E.

32-196. The execution of instruction AUG E is similar to that of instruction
INCR E. Action 6 of subinstruction INCRO (row 37 of table 32-4) always adds
the quantity 000001 (plus one) to the content of location E. Action 6 of sub-
instruction AUGO (row 38) adds the quantity 000001 to the content of E only

if location E contains a positive quantity and enters 177776 (minus one) if E
contains a negative quantity.

32-197. INSTRUCTION DIM E

32-198. Instruction DIM E (Diminish E) is an Extra Code Instruction which
is represented by order code 12.6 and a 10 bit address. Instruction DIM &
must be preceded by Special Instruction EXTEND which enters a ONE into
bit position EXT of register SQ. Instruction DIM E consists of subinstruc-
tions DIMO and STD2, the execution of which takes two MCT's.

32-199. Instruction DIM E decreases by one the absolute value of the quant-
ity stored at location E in E Memory (or a CP register). The operation
DIM E with 0024 < E < 1777 can be formulated as follows:

(1) If c(E) is positive nonzero, set c(E) = b(E)-1.
If c(E) is negative nonzero, set c(E) = b(E)+1.
If ¢(E) is plus or minus zero, set c(E) = b(E).
(2) Set c(B) = b(I+1) = j, I being the address of instruction DIM E,
and j being the instruction stored at location (I+1).
Set c(S) = relevant address of j.
Set ¢c(SQ) = order code of j.
(3) Set c(Z) = b(Z)+1 = I+2.
(4) Restore c(I+1l) = b(I+1) if (I+1) represents an address in E
Memory.

Point (2) implies that instruction j is executed next.
32-200. Special Cases of DIM E:

a. DIM A, DIM L, DIM Q, and DIM Z are useful.

b. DIM EBANK and DIM FBANK have no purpose. DIM BBANK
can be used to decrement or increment the content of register
EBANK if the content of bit position 16 of register FBANK is
known.

c. DIM ZERO has no purpose.

32-143



FR-2-132

d. Instructions DIM E with 0010 < E < 0017 follow the rules of
paragraph 32-199.

e. Instructions DIM E with 0020 < E = 0023 also follow the rules
of paragraph 32-199 except that the augmented quantity is
edited as it is entered into location E.

32-201. The execution of instruction DIM E is similar to that of instructions
INCR E and AUG E. Action 6 of subinstruction DIMO (row 39 of table 32-4)
adds the quantity 177776 to the content of location E if E contains a positive
nonzero quantity, adds the quantity 000001 if E contains a negative nonzero
quantity, and adds the quantity 000000 if E contains plus or minus zero.

32-202. INSTRUCTION MSU E

32-203. Instruction MSU E (Modular Subtract E) is an Extra Code Instruc-
tion which is represented by order code 12.0 and a 10 bit address. Instruc-
tion MSU E must be preceded by Soecial Instruction EXTEND which enters

a ONE into bit position EXT of register SQQ. Instruction MSU E consists of
subinstructions MSUO and STD2, the execution of which takes two MCT's.

32-204. Instruction MSU computes the ONE's complement difference from
the cyclic TWO's complement numbers stored in register A and location E.
The operation M5U E with 0024 = K = 1777 can be formulated as follows:

(1) Set c(A) = b'(A)-c'(E) where b'(A) and c'(E) are cyclic TWO's
complement numbers and c(A) is a ONE's complement num-
ber.

(2) Set c(B) = c(I+1) = j, I being the address of instruction MSU E
and j being the instruction stored at location (I+1).

Set c(S) = relevant address of j.
Set ¢(SQ) = order code of j.

(3) Set c(Z) = b(Z)+1 = I+2,

(4) Restore c(E) = b(E) and c(I+1) = b(I+1) if E and/or (I+1) rep-
resent an address in E Memory.

Point (2) implies that instruction j is executed next,

32-205. Special Cases of MSU E

a. MSU A enters 000000 into A whether bits 16 and 15 of b(A) agree

or not.

b. Register L, Q, Z, EBANK and FBANK normally do not con-
tain cyclic TWO's complement numbers.

32-144



FR-2-132

c. MSU ZERO does not change the content of register A if bit
position 16 of A contains a ZERO but decrements by one the
c(A) if bit position 16 of A contains a ONE.

d. Locations 0010 through 0024 normally do not contain cyclic
TWO's complement numbers.

32-206. Many navigational computations require the calculation of the dif-
ference of two angles. Angular information stored in several counters
(table 30-4) is expressed in cyclic TWO's complement numbers. Instruction
MSU E is provided to calculate the difference of two cyclic TWO's comple-
ment numbers and to supply the angular difference in a ONE's complement
number for use in further calculations.

32-207. Cyclic TWO's complement numbers contained in a memory location
E indicate angular quantities as shown below.

c(E) angle c(A)

00000 0° 000000
10000 450 010000
20000 900 020000
30000 135° 030000
40000 180° = -180° 140000
50000 2259 = -135° 150000
60000 2700 = -90° 160000
70000 3159 = -450 170000
00000 360° = 0° 000000

When these quantities are transferred from a location E to register A, the
quantities shown in the third column appear in A,

32-208. Before instruction MSU E is executed, one cyclic TWO's comple-
ment number, the minuend, is entered into register A, When instruction
MSU E is executed, the subtrahend is transferred from location E to register
G at time 4 of subinstruction MSU E (row 40 of table 30-4). Action 6 enters
the minuend into register X of the Adder, the complemented subtrahend into
register Y, and forces a carry bit into bit position one, thus performing the
addition in TWO's complement arithmetic (as during instruction MP). Action
7 enters bit 15 (normally the overflow bit) provided by the output gates into
bit positions 16 and 15 of register A while the other bits provided by the
Adder are entered into the corresponding bit positions of register A.

32-145



FR-2-132

F
E 35555 @ 00000 4 035555
H
s |osoo0 I WS 0500 WS 41330
000500
6 |o20500 WG ? 000000 ¥ 035555 T RG WG T 035555 ®
) -
8 0205008 RLIOBS | w8 l 035555 @ RC RB i
|
600000
A 143333 RSC + WA § 005556 WA 4 005556
L RSC +
Q RSC+
z |oo01330 RSCe RZ ®
|422@ @ 005556
u |ooizzo 105556 L RUS RUS .
v |ooizer WY V142222
x | 0ooooo A2X @ 143333
cI |
sa |iz.0
ACTION | 2 4 5 6 7 8 9 10 1 2
RLIOBB  RSC RG RC RUS RZ RB RUS
ws w6 we wy WA WS WG wA
cl TSGN sT2
AzX
sT |0 5
BR |O o] 0

32-

146

Figure 32-46.

Subinstruction MSUO

2783A



FR-2-132

32-209. Action 7 also tests bit 15 provided by the Adder. If bit 15 is a
ZERO, indicating that the difference angle is positive (smaller than 180°) no
action is taken at time 10 and the c(A) is the final angle difference. If bit

15 is a ONE, indicating that the difference angle is negative (180° or larger),
the quantity one is subtracted from the c(A) to convert the cyclic TWO's
complement number to a ONE's complement number. Action 9 returns the
subtrahend to register G for restoring in E Memory and action 8 enters the
address of the next instruction into register S. Subinstruction STD2 calls
forward the next instruction as usual.

32-210. Figure 32-46 illustrates the execution of subinstruction MSUO of
instruction M3U 0500. The minuend is 43333, c(A) = 143333, and the sub-
trahend is 35555, The remainder is 05556,

32-211, Further examples are given to demonstrate various operational
conditions.

a. Assume c(E1l) = 30000 (1359 and c(E2) = 20000 (90°). By
transferring c(E1l) to register A and executing MSU E2, the
following computation is performed:

c(Y) = c(A =030000
c(X) = c(E2) = 157777
Cl = 1
c(U) = 010000 no carry around because of control pulse CI
final c(A) = 010000 (45°)
c(E3) = 010000 if the result is transferred to location E3,

b. Assume c(E1) = 70000 (315°) and c(E2) = 60000 (270°) and
the same operation is performed.

c(Y) = c(A) = 170000
c(X) = c(E) = 017777
Cl = 1
c(U) = 010000
final c(A) = 010000 (45°)
c(E3) = 010000
c. Assume c(E1) = 50000 (225°) and c(E2) = 30000 (135%)
c(Y) = c(A) = 150000
c(X) = ¢(E2) = 147777
Cl = 1
c(U) = 120000
final c(A) = 020000 c(Ul5) is entered into Al6 and Al5 as in
all examples
c(E3) = 020000

32-147



FR-2-132

32-148

d. Assume c(E1) = 10000 (45°) and c(E2) = 70000 (315°).

I

c(Y) = c(A) = 010000
c(X) = ¢(E2) = 017777
cl = 1
c(U) = 020000
final c(A) = 020000
c(E3) = 020000

e, Assume c(E1l) = 20000 (900) and c(E2) = 30000 (1350).

1]

c(Y) = c(A) = 020000

c(X) = c(E2) = 147777

Cl = 1

c(U) = 170000

c({A) = 170000

plus 177776 because a ONE was entered into Al6
c(U) = 167777

final c(A) = 167777

c(E3) = 67777 = -10000 (-45°)

f.  Assume c(E1) = 60000 (270°) and c(E2) = 70000 (315°).

c(Y) = ¢(A) = 160000
c(X) = ¢(E2) = 007777
Cl = 1
c(U) = 170000
c(A) = 170000
plus 177776
c(U) = 167777
final c(A) = 167777
c(E3) = 67777 = -10000 (-45°)

g. Assume c(E1) = 30000 (135°) and c(E1) = 30000 (135°) and
c(E2) = 50000 (225°)

c(Y) = c(A)Y = 030000
c(X) = ¢(E2) = 027777
Cl = i
c(U) = 060000
c(A) = 160000
plus 177776
c(U) = 157777
final c(A) = 157777
c(E3) = 57777 = -20000 (-909)



FR-2-132

h. Assume c(E1) = 70000 (315°) and c(E2) = 10000 (45°).

c(Y) = c(A) = 170000
c(X) = S(E2) = 167777
Cl = 1
c(U) = 160000
c(A) = 160000
plus 177776
c(U) = 157777
final c(A) = 157777
c(E3) = 57777 = -20000 (-90°)

32-212. INSTRUCTION MSK K

32-213. Instruction MSK K (Mask with K) is a Basic Instruction which is
represented by order code 07. and a 12 bit address. The alternate spelling
of MSK K is MASK K. Instruction MSK K consists of subinstructions MSKO
and STD2, the execution of which takes two MCT's.

32-214. Instruction MSK performs the Boolean operation AND (symbol A)
with the content of register A and the data stored at location K. The truth

table for each bit position of A and K is shown below.

AAK

—_—0 o
= O = o X
_ O O O

The operation MSK K with 0024 = K =< 7777 can be formulated as follows:

(1) Set c(A) = b(A) A c(K) whereby bit 15 of ¢(K) is AND'd with
bits 16 and 15 of c(A).
(2) Set c¢(B) = c(I+1) = j, I being the address of instruction MSK K,
and j being the instruction stored at location (I+1).
Set c(S) = relevant address of j.
Set ¢(SQ) = order code of j.
(3) Set c(Z) = b(Z)+1 = I+2.
(4) Restore c(K) = b(K) and c(I+1) = b(I+1) if K and/or (I+1) rep-
resent an address in E Memory.

32-215. Special Cases of M3K K.

a. MSK A has no purpose,
b. MSK L, M3K Q, and MSK Z also AND the overflow bits.

32-~149



FR~

2-132

F ?
E 33215 ® 00000 : 433215
|
" |
s |oi00 | ws 4 2232
|
6 |o70100 W6 § 000000 ¥ 033215 v RG T © 033215
|
B |o7oi00 !‘ we T 000222 T RC w8 ‘033215 RC® WB A177577 T RC
000000 @@ 000200

A |oooze2 RSC + RA l WAl 177555 RA @ wh ¢ 000200

L RSC+

Q RSC +

z |ooze32 RsC & RZ &

|77@ (77577

u |oo2232 177577 lRU

vy |o0oz223i WY ¥ 177577

x | 000000 ® 000000

c1 | . 0

sa |o7.0
ACTION 2 3 4 6 7 8 9 10 n 2

RSC RA RC RG RZ RC RU RC
WG wB WA wB ws RA wB WA
sT2 WY

st |o 2

BR |0 0

32~150

Figure 32-47. Subinstruction MSKO

2728A



FR-2-132

c. MSK ZERO sets c¢(A) = 000000.

d. Instructions MSK K with 0010 < K =< 0023 follow the rules of
paragraph 32-17. (The content of K is not edited when being
restored.)

32-216. Instruction MSK K in reality performs the Boolean OR operation
B(A) v T(K) instead of the AND operation b(A) A c(K), both having the same
effect. When instruction MSK K is executed, the quantity from location K is
entered into register G at time 2, 4, or 6 of subinstruction MSKO (row 41 of
table 32-4), and into register B by action 7. Actions 3 and 4 complement the
content of register A. Action 9 enters the complemented content of register
B (control pulse RC) and the complemented content of register A (control
pulse RA) onto the WA's and into register Y. The quantity b(A) v c(K) is
provided by the output gates of the Adder. Actions 10 and 11 complement this
quantity, enter the complemented quantity, which is the final result b(A) v ¢(K) =
b(A) A c(K), into register A, Action 8 enters the address of the next instruc-
tion into register Z and subinstruction STDZ2 calls forward the next instruc-
tion as usual.

32-217. Figure 32-47 illustrates the execution of subinstruction M3KO0 of
instruction MSK 0100, The quantities AND'd are 000222 and 033215.

32-218. CHANNEL INSTRUCTIONS

32-219. INSTRUCTION READ H

32-220. Instruction READ H (Read H) is a Channel Instruction which is
represented by order code 10.0 and a 9 bit channel address (table 30-5).
Instruction READ H must be preceded by Special Instruction EXTEND which
enters a ONE into bit position EXT of register SQ. Instruction READ H con-
sists of subinstructions READO and STD2, the execution of which takes two
MCT's.

32-221. Instruction READ H enters the content of channel H into register A.
The operation READ H with 005 = H = 033 can be formulated as follows:

(1) Set c(A) = c(H) whereby bit H15 is entered into bit positions
Alé and Al5,
Retain c(H).
(2) Set c(B) = c(I+1) = j, I being the address of instruction READ H
and j being the instruction stored at location (I+1).
Set ¢(S) = relevant address of j.
Set c(SQ) = order code of j.

32-151



FR-2-132

F
E
H 00011 RCHe®
S 0015 TWS 0015 WS 4 2333
000015 OOO@
G 000015
B 000015 @ RL 10BB TWB 033412 WB \‘OOOOII TRB wB ?OOOOH
A 033412 RA l WA‘OOOOII lRA
L
Q
z 002333 RZ 002333
U 002333 ® 000000
Y 002332 WY ® 000000
X 000000 © 000000
CI | L] [¢]
sqQ |100
ACTION | 2 3 4 5 6 8 10 il 12
RLIOBB RA wY RCH RB RA RZ
WS WB wB WA wB WS
sT2
ST 0 2
BR |© 0
28304

32-152

Figure 32-48.

Subinstruction READO



FR-2-132

(3) Set c(Z) = b(Z)+1 = I+2.
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E
Memory.

Point (2) implies that instruction j is executed next.
32-222. Special Cases of READ H:

a. READ L and READ Q enter all sixteen bits of c(L) or c(Q) into
A,

b. READ 003 and READ 004 enter fourteen bits of c(SCALER?2)
or c(SCALERI) into A.

c. Instructions READ H with 005 < H =< 033 follow the rules of
paragraph 32-221.

d. Channels 034 and 035 (downlink channels) cannot be read by a
Channel Instruction, therefore 000000 is entered into A.

32-223. When instruction READ H is executed, the quantity from channel H
is entered into register B by action 4 of subinstruction READO (row 42 of
table 30-4), and action 5 transfers the quantity to register A. Action 8 enters
the address of the next instruction into register S and subinstruction STD2
calls forward the next instruction as usual.

32-224, Figure 32-48 illustrates the execution of subinstruction READO of
instruction READ 015, channel 15 containing the quantity 00011, a keycode
from the keyboard of the main panel DSKY.

32-225. INSTRUCTION WRITE H

32-226. Instruction WRITE H (Write H) is a Channel Instruction which is
represented by order code 10.1 and a 9 bit channel address (table 30-5),
Instruction WRITE H must be preceded by Special Instruction EXTEND which
enters a ONE into bit position EXT of register SQ. Instruction WRITE H
consists of subinstructions WRITEO and STD2, the execution of which takes
two MCT's.

32-227. Instruction WRITE H enters the content of register A into channel H.
The operation WRITE H with 005 = H =< 014 can be formulated as follows:

(1) Set c(H) = c(A) whereby bit Al5 is entered into bit position

H15 and bit A1l5 is not transferred.
Keep c(A).

32-153



FR-2-132

(2) Set c¢(B) = c(I+1) = j, I being the address of instruction WRITE H,
and j being the instruction stored at location (I+1).
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) =Db(Z) + 1 = I+2.
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E
Memory.

Point (2) implies that instruction j is executed next.
32-228. Special Cases of WRITE H

a. WRITE L and WRITE Q enter all sixteen bits of c(A) into L
or Q.

b. SCALERZ2 and SCALERI1 cannot be written into by a Channel
Instruction.

c. Instruction WRITE H with 005 = H < 014 follow the rules of
paragraph 32-327,

d. Channels 15 through 33 cannot be written into by a Channel
Instruction,

e. WRITE 034 and WRITE 035 enter bits Al6, Al4 through Al,
and a parity bit into channel 034 or 035.

32-229. The execution of instruction WRITE H is similar to that of instruc-
tion READ H. (Compare rows 42 and 43 of table 30-4.) Action 5 of subinstruc-
tion READO transfers the channel information from register B to register A,
Action 5 of subinstruction WRITEO transfers the content of register A to the
addressed channel.

32-230. INSTRUCTION RAND H

32-231, Instruction RAND H (Read and AND H) is a Channel Instruction

which is represented by order code 10.2 and a 9 bit channel address (table 30-5).
Instruction RAND H must be preceded by Special Instruction EXTEND which
enters a ONE into bit position EXT of register SQ. Instruction RAND H con-
sists of subinstructions RANDO and STD2, the execution of which takes two
MCT's.

32-232. Instruction RAND H performs the Boolean operation AND (symbol

A) with the contents of register A and channel H and stores the logical product
in A. The truth table for each bit of c(A) and c¢(H) is shown below.

32-154



FR-2-132

A H AAH
0 0 0
0 1 0
1 0 0
1 1 1
The operation RAND H with 005 = H = 033 can be formulated as follows:

(1) Set c(A) = b(A) A c(H) whereby bits Al6é and Al5 are AND'd
with bit H15,
Retain c(H).
(2) Set c(B) = c(I+1) = j, I being the address of instruction RAND H,
j being the instruction stored at location (I+1).
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) = b(Z)+1 = I+2.
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E
Memory.

Point (2) implies that instruction j is executed next.

32-233. Special Cases of RAND H:

a. RAND L and RAND Q make use of all sixteen bits in L or Q to
form the logical product.

b. RAND 003 and RAND 004 can be used to form a logical product
with the fourteen bits in SCALERZ2 or SCALER 1.

c. Instructions RAND H with 005 < H =< 033 follow the rules of
paragraph 32-236.

d. RAND 034 and RAND 035 cannot form a logical product be-
cause downlink channels cannot be read by a Channel Instruc-
tion; 000000 is entered into A.

32.234. Instruction RAND H in reality performs b(A) v c(H) = m; c(A)=m
which supplies the same result. When instruction RAND H is executed,
action 1 of subinstruction RANDO (row 44 of table 32-4) replaces the quantity
in register S by a 10 bit address, thus erasing two bits of the eighth code.
Actions 2 and 3 complement the b(A) and enter the complemented quantity into
the Adder which supplies the b(A) at its output gates (U). Action 4 enters
c(H) into register B. Action 5 reads c(H) from the complement side of reg-
ister B and b(A) from the output gates both onto the WA's and into register A
thus forming b(A) v c(H). Actions 6 and 7 complement the content of A to
provide the desired logical product.

32-155



FR-2-132

F

E

H 5432) RCH®

s |2o010 Twsooro 4 ws 2033

G |oo02010

B |002010 ®#RL10BB T\glgl’MS T V]\gism TRC ?}Neiwe TRC

A 012345 RAl wzx:‘:nsmse lRA WAlmoso:

L

Q

Z |002033 RZ 002033

U |002033 165432 RUl

Y |002032 wy ¥165432

X |oooo00 ¢ 000000

cI . 0

sQ |10.2

ACTION I 2 3 4 5 6 7 8 9 10 1 12

RLIOBB RA RC RCH RC RA RC RZ
ws wB wY wB RU wB WA WS
WA

ST |o 2

BR |O (o]
2832A

32-156

Figure 32-49.

Subinstruction RANDO



FR-2-132

Action 8 enters the address of the next instruction into register S and sub-
instruction STD2 calls forward the next instruction as usual.

32-235, Figure 32-49 illustrates the execution of subinstruction RANDO of
instruction RAND 010, AND'ing quantities 012345 and 154321, the logical
product being 010301,

32-236. INSTRUCTION WAND H

32-237. Instruction WAND H (Write and AND H) is a Channel Instruction
which is represented by order code 10.3 and a 9 bit channel address

(table 30-5). Instruction WAND H must be preceded by Special Instruction
EXTEND which enters a ONE into bit position EXT of register SQ. Instruc-
tion WAND H consists of subinstructions WANDO and STD2, the execution of
which takes two MCT's.

32-238. Instruction WAND H forms the logical product described in para-
graph 32-232 and stores it in register A and in channel H. The operation
WAND H with 005 < H =< 014 can be formulated as follows:

(1) Set c(H) = c(A) = b(A) A b(H) whereby bits Alé and Al5 are
AND'd with bit HI15.
Retain c(H).
(2) Set c(B) = c(I+1) = j, j being the address of instruction WAND H,
and j being the instruction stored at location (I+1).
Set ¢(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) = b(Z2)+1 = I+2,
(4) Restore c(I+1) = b(I+1l) if (I+1) represents an address in E
Memory.

Point (2) implies that instruction j is executed next.
32-239. Special Cases of WAND H:
a. WAND L and WAND Q make use of all sixteen bits in L or Q

to form the logical product.

b. WAND 003 and WAND 004 cannot enter the logical product into
SCALER2 or SCALERI.

c. Instructions WAND H with 005 < H < 014 follow the rules of
paragraph 32-238.

d. Instructions WAND H with 015 <= H < 033 cannot enter the
logical product into these channels.

32-157



FR-2-132

e. WAND 034 and WAND 035 cannot form a logical product be-
cause downlink channels cannot be read by a Channel Instruc-
tion; 000000 is entered into A and H.

32-240. The execution of instruction WAND H is similar to that of instruc-
tion RAND H. (Compare rows 44 and 45 of table 32-4.) Action 7 of subin-
struction WANDO also enters the logical product into the addressed channel.

32-241. INSTRUCTION ROR H

32-242., Instruction ROR H (Read and OR H) is a Channel Instruction which
is represented by order code 10.4 and a 9 bit channel address (table 30-5).
Instruction ROR H must be preceded by Special Instruction EXTEND which
enters a ONE into bit position EXT of register SQ. Instruction ROR H con-
sists of subinstructions RORO and STD2, the execution of which takes two
MCT's.

32-243. Instruction ROR H performs the Boolean operation OR (symbol V)
with the contents of register A and channel H, and stores the logical sum in

A, The truth table for each bit of c(A) and c¢(H) is shown below.

AvH

»—-»—-oo;;p
O =~ O T
= b - O

The operation ROR H with 005 = H = 033 can be formulated as follows:

(1) Set c(A) = b(A) vV c(H) whereby bits A16 and Al5 are OR'd with
bit H15,
Retain c(H).
(2) Set ¢(B) = c(I+1) = j, I being the address of instruction ROR H
and j being the instruction stored at location (I+1).
Set ¢(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) = b(Z)+1 = I+2.
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E
Memory.

b

Point (2) implies that instruction j is executed next.
32-244. Special Cases of ROR H:

a. ROR L and ROR Q make use of all sixteen bits in LL or Q to
form the logical sum.

32-158



FR-2-132

F
E
H 5432) RCHy
s |a030 $wsooso WS 41346

000030 @E
6 |004030

wB
B |004030 6RLIOBB Ton2345 TRB WBVI5432| TRB wstlsews
012345 @ 154321 ) (156535 60|@
T i o T St 53 \\V
A |oi2345 RA WA®I156535 lRA
L
Q
z |o002346 RZ#002346
—
=D

u |oo2346 012345 Rul
v |oo234s WY ¥ 012345
x {000000 ©000000
cI | ° 0
sa |10.4
ACTION I 2 3 4 5 6 7 8 9 10 T 12

RLIOBB RA RB RCH RB RA RZ

WS w8 wY WB RU wB ws

WA sT2

sT |o 2
BR |0 0

2834A

Figure 32-50. Subinstruction ROR0O

32-159



FR-2-132

b. ROR 003 and ROR 004 can be used to form a logical sum with
the fourteen bits in SCALERZ2 or SCALERI,

C. Instructions ROR H with 005 < H =< 033 follow the rules of
paragraph 32-243,

d. ROR 034 and ROR 035 cannot form a logical sum because
downlink channels cannot be read by a Channel Instruction;
b(A) is retained in A.

32-245. When instruction ROR H is executed, action 1 of subinstruction
RORO (row 45 of table 32-4) replaces the quantity in register S by a 10 bit
address plus erasing two bits of the eighth code. Actions 2 and 3 enter the
content of register A into the Adder which supplies the c(A) at its output
gates (U). Action 4 enters c(H) into register B. Action 5 reads b(A) from
the Adder and c(H) from register B into the WA's and into register A, thus
forming b(A) v c(H). Action 8 enters the address of the next instruction into
register S and subinstruction STDZ calls forward the next instruction as
usual.

32-246. Figure 32-50 illustrates the execution of subinstruction RORO of
instruction ROR 030, OR'ing quantities 012345 and 154321, the logical sum
being 156365.

32-247. INSTRUCTION WOR H

32-248. Instruction WOR (Write and OR H) is a Channel Instruction which
is represented by order code 10.5 and a 9 bit channel address (table 30-5).
Instruction WOR H must be preceded by Special Instruction EXTEND which
enters a ONE into bit position EXT of register SQ. Instruction WOR H con-
sists of subinstructions WOR0 and STD2, the execution of which takes two
MCT's.

32-249. Instruction WOR forms the logical sum described in paragraph 32-243
and stores it in register A and in channel H. The operation WOR H with
005 = H = 013 can be formulated as follows:

(1) Set c(H) = c(A) = b(A) v b(H) whereby bits Al6 and Al5 are
OR'd with bit H15.
(2) Set c(B) = c¢(I+1) = j, I being the address of instruction WOR H
and j being the instruction stored at location (I+1).
Set c(S) = relevant address of j.
Set ¢(SQ) = order code of j.
(3) Set c(Z) = b(Z)+1 = I+2.
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E
Memory.

Point (2) implies that instruction j is executed next.

32-160



FR-2-132

32-250. Special Cases of WOR H:

a. WOR L and WOR Q make use of all sixteen bits in L, or Q to
form the logical sum.

b. WOR 003 and WOR 004 cannot enter the logical sum into
SCALERZ2 or SCALERL.

c. Instructions WOR H with 015 < H =< 014 follow the rules of
paragraph 32-249.

d. Instructions WOR H with 015 < H =< 033 cannot enter the log-
ical sum into these channels.

e. ROR 034 and ROR 035 cannot form a logical sum because down-
link channels cannot be read by a Channel Instruction, b(A)
is entered into A and H.

32-251. The execution of instruction WOR H is similar to that of instruction
ROR H. (Compare rows 46 and 47 of table 32-4.) Action 5 of subinstruction
WORO enters the logical sum into the addressed channel also.

32-252, INSTRUCTION RXOR H

32-253. Instruction RXOR H (Read and Exclusive OR H) is a Channel In-
struction which is represented by order code 10.6 and a 9 bit channel ad-
dress (table 30-5). Instruction RXOR H must be preceded by Special Instruc-
tion EXTEND which enters a ONE into bit position EXT of register SQ. In-
struction RXOR H consists of subinstructions RXORO0 and STDZ2, the execu-
tion of which takes two MCT's.

32-254, Instruction RXOR H performs the Boolean Operation Exclusive OR
(symbols) with the contents of register A and channel H, and stores the
logical result in A, The truth table for each bit of c(A) and c(H) is shown
below.

AvH

—— O O :)>

H
0
1
0
1

O = = O

The operation RXOR H with 005 =< H = 033 can be formulated as follows:

(1) Set c(A) = b(A) ¥ c(H) whereby bits Al6 and Al5 are XOR'd
with bit H15. Retain c(H).

32-161



FR-2-132

F
E
H |54321 RCHe RCH®
s |eoi2 Tws ool2 WS § 2044
6 |ooeol2 WGT033757 RGT WGTI‘MOZO RG®
15432 @

B8 |oos0l2 GLRLIOBB ?\géus #RC WBLI5432I $RC walo33757 Rcl WB?I75733 $RC
A |o12345 RAl RAlL WAlI46064
L
Q
Z 002044 RZ®
u |oo02044 175733 RU®
Yy 002043 WY ¥ 175733
x |oooooo ©000000
YCI 1 ° 0
sq |i06
ACTION I 2 3 4 5 7 8 9 10 I 12

RLIOBB RA RC RCH RA RG RZ RC RU RC

WS wB RCH WB RC wB WS WG WB RG

WY WG sT2 WA

sT |o 2
BR |0 0

32-162

Figure 32-51.

Subinstruction RXORO0

2B36A



FR-2-132

(2) Set c(B) = c(I+1) = j, I being the address of instruction RXOR H
and j being the instruction stored at location (I+1).
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) =b(Z) + 1 =1+2.
(4) Restore c(I+1) = b(I+1) if (I+1) represents an address in E
Memory.

Point (2) implies that instruction j is executed next.
32-255. Special Cases of RXOR H:

a. RXOR L and RXOR Q make use of all sixteen bits in L or Q
to form the Exclusive OR.

b. RXOR 003 and RXOR 004 can be used to form an Exclusive OR
with the fourteen bits in SCALER2 or SCALERI.

c. Instructions RXOR H with 005 < H < 033 follow the rules of
paragraph 32-254,

d. RXOR 034 and RXOR 035 cannot form an Exclusive OR because
downlink channels cannot be read by a Channel Instruction;
b(A) is retained in A.

32-256. Instruction RXOR H in reality performs b(A) V _C—(H) = m, b(A) V ¢(H) =
n, c(A) = W™ v 7, which supplies the same result. When instruction RXOR H
is executed, action 1 of subinstruction RXORO (row 48 of table 32-4) replaces
the quantity in register S by a 10 bit address, thus erasing two bits of the
eighth code. Actions 2 and 3 form B(A) v c(H) = n which is entered into the
Adder. Actions 4 and 5 form b(A) v c(H) = m which is entered into register
G. Actions 7 and 9 form m which is stored in register G, and actions 10

and ll1form m VvV n which is entered into register A. Action 8 enters the ad-
dress of the next instruction into register S and subinstruction STD2 calls
forward the next instruction as usual.

32-257. Figure 32-51 illustrates the execution of subinstruction RXORO0 of
instruction RXOR 012, XOR'ing the quantities 012345 and 154321 and pro-
viding 146064.

32-258. SPECIAL INSTRUCTIONS

32-259. INSTRUCTION EXTEND
32-260. Instruction EXTEND is a Special Instruction which is represented

by order code 00.0006. Instruction EXTEND causes the execution of sub-
instruction STD2 which takes one MCT.

32-163



FR-2-132

F |oooos e
E [ T
|
H | \
| |
s |o02442 | WS 40443 [
| |
| |
| |
] WG 4 000000 # ¥ 000006 l
f
i
B | WB 000443 RB
|
000000 @443
A RSC+
L RSC+
Q RSCl
|
Z |002442 $RZ RSC l szooo443 RZ®
!
000442 000443 0009
:
u | 002443 Rul 000443
Y wYI2 ‘ 002442
X ® 000000
CI |cI
sQ |ose.l wsQ Jyoo.o
ACTION | 2 3 4 5 6 7 8 9 10 1 12
RZ RSC RU RAD
WY 12 WG w2z wB
o NISQ WS
(STD2)
ST |2 0
BR |0 o)

2734A

Figure 32-52. Subinstruction STD2, Preceding Instruction EXTEND

32-164



FR-2-132

32-261. Instruction EXTEND enters a ONE into bit position EXT of reg-
ister SQ to execute next an Extra Code Instruction. The operation EXTEND
can be formulated as follows:

(1) Enter a ONE into bit position EXT of register SQ and set flip-
flip INHINT /RELINT.
(2) Set c(B) = c(I+1) = j, I being the address of instruction RELINT,
and j being the instruction stored at location I+1.
Set ¢(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) = c(Z2+1) = I+2.
(4) Restore c(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

32-262. As the instruction preceeding EXTEND is executed, its last subin-
struction (STD2, TCO0, BZF0, BZMFO0, MP3, or R5M3) enters the order code
of instruction EXTEND into register G at time 2, 4, or 6. (Compare fig-

ure 32-52 with figures 32-1, 32-2, 32-8, and 32-27.) Register G recognizes
the presence of code 0.0006 and control pulses RZ and ST2 are generated at
time 8 instead of control pulse RG in reply to control pulse RAD. Further-
more, a ONE is entered into bit position EXT of register SQ, and flip-flop
INHINT/RELINT is set. Action 8 transfers the address of the next instruction
from register Z to registers B and S, and the order code 00.0 is transferred
to register SQ at time 12. Thereafter, subinstruction STD2 is executed to call
forward the Extra Code Instruction following instruction EXTEND. During

the execution of the last subinstruction of the Extra Code Instruction, except
for instruction NDX K, bit position EXT and flip-flop INHINT/RELINT are
reset.

32-263. INSTRUCTION INHINT

32-264. Instruction INHINT (Inhibit Interrupt) is a Special Instruction which
is represented by order code 00.0004. Instruction INHINT causes the ex-
ecution of subinstruction STDZ which takes one MCT.

32-265. Instruction INHINT commands the Sequence Generator (SQG) to re-
fuse to accept any request for the execution of instruction RUPT. The op-
eration INHINT can be formulated as follows:

(1) Set flip-flop INHINT/RELINT.
(2) Set c(B) = c(I+1l) = j, I being the address of instruction RELINT,
and j being the instruction stored at location I+1.
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.

32-165



FR-2-132

(3) Set c(Z) = c(2+1) = I+2.
(4) Restore c(I+1) if (I+1l) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

32-266. The execution of instruction INHINT is similar to that of instruc-
tion EXTEND described in paragraph 32-262. When register G recognizes
the presence of code 00.0004, control pulses RZ and ST2 are generated in-
stead of control pulse RG at time 8, flip-flop INHINT/RELINT is set, but bit
position EXT of register SQ is not set.

32-267. INSTRUCTION RELINT

32-268. Instruction RELINT (Release Interrupt Inhibit) is a Special Instruc-
tion which is represented by order code 00.0003. Instruction RELINT causes
the execution of subinstruction STD2 which takes one MCT.

32-269. Instruction RELINT commands the Sequence Generator (SQG) to
accept any request for the execution of a RUPT instruction. The operation
RELINT can be formulated as follows:

(1) Reset flip-flop INHINT/RELINT.
(2) Set c(B) = c(I+1) = j, I being the address of instruction RELINT,
and j being the instruction stored at location I+1,
Set c(S) = relevant address of j.
Set c(SQ) = order code of j.
(3) Set c(Z) = c(Z+1) = I+2.
(4) Restore c(I+1) if (I+1) represents an address in E Memory.

Point (2) implies that instruction j is executed next.

32-270. The execution of instruction RELINT is similar to that of instruc-
tions EXTEND and INHINT described in paragraphs 32-262 and 32-266.
When register G recognizes the presence of code 00. 0003, control pulses
RZ and ST2 are generated instead of control pulse RG at time 8, flip-flop
INHINT/RELINT is reset, and bit position EXT of register SQ is not set.

32-271. INSTRUCTION RESUME
32-272. Instruction RESUME (Resume Interrupted Program) is a Special
Instruction which is represented by order code 05.0017. Instruction RESUME

consists of subinstruction NDXO0 and RSM3, the execution of which takes two
MCT's.

32-166



FR-2-132

F
E |31234 900000 31234
H
s |ooi7 WS 4 2064
G |osool? WG 4000000 V031234 RGI WGAO31234 @
— —t— —t— T
@oo@ 031234 @054 031234
ot
| .
8 050017 | WBYO031234 RB
|
T
|
|
|
A RSCé
|
|
L RSCe
f
Q RSC+
T
z |002064 RSC® Rz ®
u |oo2064
Y 002063
x 000000
cI i
sQ [05.0
ACTION | 2 3 4 5 6 7 8 9 10 I 12
RSC TRSM RG RZ RB STI
WG wB WS WG
sT |o 3
BR |O 0
2716 A

Figure 32-53.

Subinstruction NDXO of Instruction RESUME

32-167



FR-2-132

F
E 02531 ¢ 00000 431234
H
S WS TOOlS wSs T 1234
000015 031234
G 031234 WG 4 000000 ¥ 0253| TRG wcT03|234 RG ¢
+
T l L
B |o31236 | RB WB ¥031234 RBT
1
000000 @
A RSCl
|
L RSC+
Q RSCT
Zz |oo02064 RSCL WZ 02531
U |o02064
Y |002063
X |000000
cI
sQ |05.0 WSQ Y03
ACTION | 2 4 5 6 8 9 10 I 12
RIS RSC RG RB RAD
WS w6 wz WG wB
NISQ WS
ST |3 o}
BR |0 0
2717A

32-168

Figure 32-54.

Subinstruction RSM3



FR-2-132

32-273. Instruction RESUME commands the Sequence Generator to accept
any RUPT request, returns pertinent data of the interrupted program from
memory to CP registers, and resumes the execution of the interrupted pro-
gram section if no RUPT request has been made. The operation RESUME
can be formulated as follows:

(1) Reset flip-flop INHINT/RELINT.

(2) Set c(B) = ¢(BRUPT) = c(0017).
Set ¢(S) = relevant address of instruction contained in B.
Set c(SQ) = order code of instruction contained in B.

(3) Set c(Z) = b(ZRUPT) = c(0015),

(4) Restore ¢(BRUPT) = b(BRUPT).
Set c(ZRUPT) = ¢(BRUPT).

Point (2) implies that the instruction which was stored in BRUPT
will be executed next.

32-274. At the time instruction RUPT was executed the last time, flip-flop
IIP was set to prevent the interruption of an interrupting program section,
the next instruction of the interrupted program section was transferred from
register B to location BRUPT = 0017, and the address of the second-next in-
struction was transferred from register Z to location ZRUPT = 0015, (Refer
to paragraphs 30-123 and 32-282.) By returning ¢(BRUPT) and c(ZRUPT) to
registers B and Z,respectively, the execution of the interrupted program
section is continued. Subinstruction NDXO0 of instruction RESUME (NDX 0017)
returns the ¢(BRUPT) to register B. Subinstruction RSM3 returns c(ZRUPT)
to register Z and enters the relevant address and the order code of the re-
turned instruction now contained in register B into registers S and SQ, re~
spectively. (Refer to row 49 of table 32-4 and figures 32-53 and 32-54.)

32-275. INSTRUCTIONS CYR, SR, CYL and EDOP

32-276. Instruction CYR (Cycle Right) is a Special Instruction which is
represented by code . 0020, SR (Shift Right) by . 0021, CYL (Cycle Left) by
. 0022, and EDOP (Edit Operator) by .0023. These codes can be used with
most Basic and Extra Code Instructions. Whenever one of these codes is
used, the quantity being entered into register G is edited as listed below
(refer to paragraph 30-41 and table 30-1),

CYR cycled one place to the right

SR shifted one place to the right
CYL cycled one place to the left
EDOP shifted seven places to the right

The effect of codes . 0020 through . 0023 is described under special cases
with each Basic or Extra Code Instruction.

32-169/32-170






FR-2-132

32-277. INVOLUNTARY INSTRUCTIONS

32-278. INTERRUPTING INSTRUCTIONS

32-279. INSTRUCTION RUPT

32-280. Instruction RUPT (Interrupt Program Execution) is an Interrupting
Instruction which is executed at the occurrence of certain events (para-
graph 30-131) by entering order code 10. 7 into register SQ. Instruction
RUPT initiates certain programmed operations (paragraph 30-132 and

table 30-6) and consists of subinstructions RUPTO0, RUPTI1, and STD2, the
execution of which takes three MCT's. The execution of instruction RUPT
is inhibited if a RUPT was executed after the last RESUME or if an INHINT
was executed after the last RELINT,

32-281. Instruction RUPT commands the Sequence Generator (SQG) to refuse
to accept any other RUPT request (until instruction RESUME is executed),
transfers pertinent data of the program section being interrupted to memory,
and transfers program control to the requested programmed operation. The
operation RUPT can be formulated as follows:

(1) Set flip-flop INHINT/RELINT.

(2) Set c(BRUPT) = c(0017) = c(B).

(3) Set c(ZRUPT) = c(0015) = c(Z).

(4) Set c(Z) = address of RUPT Transfer Routine provided by

Interrupt Priority Control,

(5) Set c¢(B) = first instruction of desired RUPT Transfer Routine.
Set c(S) = relevant address of instruction contained in B.
Set c(SQ) = order code of instruction contained in B.

Point (5) implies that the first instruction of the desired RUPT
Transfer Routine will be executed next,

32-282. When instruction RUPT is executed, subinstruction RUPTO (row 50
of table 32~4 and figure 32-55) transfers c(Z) to location ZRUPT = 0015 in
memory (table 30-4). Subinstruction RUPTI1 (row 51 of table 32-4 and fig-
ure 32-56) transfers c(B) to location BRUPT = 0017, and enters the address
of the RUPT Transfer Routine into registers Z and S. Subinstruction STD2
calls forward the first instruction of the RUPT Transfer Routine.

32-171



FR-2-132

Figure 32-55.

32-172

Subinstruction RUPTO

F
E 04321 900000 402034
H
s |[7a33 Twsoms

I\

@\ooo@
6 |o3z7a33 WG ® 000000 ¥00432! WGA002034 @
B [037433

oz

A
L
Q
z |ooz034 RZ ®
u |002034
Y |002033
x |oooooo
cI
sa [10.7
ACTION I 2 3 4 5 6 7 8 9 10 " 12

RIS RSC RZ STI

WS WG WG
sT |o I
BR [0 0

2850A



FR-2-132

F
E 65201 @ 00000 ) 037433
H
S 0015 TWS 0017 WS404004
G 002034 WGe 000000 v165201 WG103?433 ®037433
B 037433 RBl
04004
A
L
Q
4 002034 WZT 04004 ) RZe
U 002034
Y 002033
X 000000
o3¢ |
sQ |10.7
ACTION | 2 3 4 5 6 7 8 9 10 1 12
RI5 RSC RRPA RZ RB
RB2 WG Wz WS WG
WS sT2 KRPT
ST | 2
BR |O 0

2851A

Figure 32-56. Subinstruction RUPT]

32-173



FR-2-132

32-283., INSTRUCTION GO

32-284. Instruction GO is an Interrupting Instruction which is executed at
the occurrence of certain errors (if signal GOJAM is generated) by entering
order code 00. into register SQ and entering 1l into the stage counter (ST).
Instruction GO initiates the execution of the restart sequence (table 30-6) and
consists of subinstructions GOJ1 and TCO, the execution of which takes two
MCT's.

32-285. Instruction GO enters TC 4000 into registers B and S, 4000 being
the address of RUPT Transfer Routine GO, (Refer to row 52 of table 32-4.)

Instruction TC 4000 is executed after instruction GO.

32-286. COUNTER INSTRUCTIONS

32-287. INSTRUCTION PINC C

32-288. Instruction PINC C (Plus Increment C) is a Counter Instruction
which is executed at the occurrence of certain events (paragraph 30-137)
without entering an order code into register SQ and is independent of the con-
tent of register SQ. Instruction PINC C consists of subinstruction PINC, the
execution of which takes one MCT.

32-289. Instruction PINC C increments by one the content of that E Memory
counter C the address of which is supplied by the Counter Priority Control.
The operation PINC C can be formulated as follows:

(1) Set c(C) = b(C)+1 except for overflow bit,
(2) Retain c(B).

Retain c(S).

Retain c(SQ).
(3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.
32-290. Special Cases of PINC C.

a. PINC 0024 causes the execution of PINC 0025 in case of over-
flow of c(0024),

b. PINC 0026, PINC 0027, or PINC 0030 causes execution of
RUPT in case of an overflow.

32-291, When instruction PINC C is executed, action 1 of subinstruction

PINC (row 53 of table 32-4) enters into register S the counter address C
provided by the Counter Priority Control.

32-174



FR-2-132

F
E 00102 # 00000 4 00103
H
s |0234 TWS 0025 WST0234
6 |oi0234 ¥ 000102 TRG WS 4 000103 © 000103
&
B |010234 RB ®
A
L
Q
Z | 002371
u |o0237I 000103 lRU
Yy |oo02370 WY ¥ 000102
X 000000 PONEX ® 00000
CI |
sa |ol.o
ACTION I 2 4 5 6 7 8 9 10 n 12
RSCT RSC RG PONEX RU RB
WS WG wy wsc ws
TSGN WG
™Z WOVR
TPZG
ST |o 0
BR |0 0

Figure 32-57.

Subinstruction PINC

28534

32-175



FR-2-132

The content of the addressed counter is transferred to register G at time 4.
Actions 5, 6, and 7 add the quantity 000001 to the content of register G. At
time 10, the incremented quantity is returned to the addressed counter in

E Memory. Action 8 re-enters into register S the relevant address contained
in register B to establish the original conditions.

32-292. Figure 32-57 illustrates the execution of instruction PINC 0025,
Counter 0025 contains quantity 00102 which becomes 00103 after being incre-
mented. If the counter contained 37777, it would contain 00000 after being
incremented, and the execution of PINC 0024 would be requested. If the
addressed counter was counter 0026, 0027, or 0030, the execution of instruc-
tion RUPT would be requested in case of overflow of the addressed counter.

32-293. INSTRUCTION MINC C

32-294, Instruction MINC C (Minus Increment C) is a Counter Instruction

" which is executed at the occurrence of certain events (paragraph 30-137)
without entering an order code into register SQ and is independent of the con-
tent of register SQ. Instruction MINC C consists of subinstruction MINC, the
execution of which takes one MCT.

32-295. Instruction MINC C decrements by one the content of that E Memory
counter C the address of which is supplied by the Counter Priority Control.
The operation MINC C can be formulated as follows:

(1) Set c(C) = b(C)+1 except for overflow bit,
(2) Retain c(B).

Retain c(S).

Retain c(SQ).
(3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.

32-296. There are no special cases of MINC C. Instructions PINC C and
MINC C are identical except for action 6 (compare rows 53 and 54 of table 32-4).
Control pulse MONEX of subinstruction MINC replaces PONEX of subinstruc-
tion PINC.

32-297. INSTRUCTION DINC C

32-298. Instruction DINC C (Diminish Increment C) is a Counter Instruction
which is executed at the occurrence of certain events (paragraph 30-137)
without entering an order code into register SQ and is independent of the con-
tent of register SQ. Instruction DINC C consists of subinstruction DINC, the
execution of which takes one MCT.

32-176



FR~2-132

32-299. Instruction DINC C diminishes (decreases magnitude) by one the
content of that E memory drive counter C the address of which is supplied by
the Counter Priority Control. The operation DINC C can be formulated as
follows:

(1) If c(C) is positive non-zero, set ¢c(C) = b(C)-1, and generate
one plus drive pulse.
If ¢(C) is negative non-zero, set c(C) = b(C)+1 and generate
one minus drive pulse.
If ¢(C) is plus or minus zero, set c¢(C) = b(C) and generate no
drive pulse.
(2) Retain c(B).
Retain c(S).
Retain c(SQ).
(3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.

32-300. There are no special cases of DINC. Instruction DINC C is identical
to instructions PINC C and MINC C except for action 6. (Compare rows 53
through 55 of table 32-4.) The main difference is that instruction DINC C is
used with drive operations as described in paragraphs 30-90 through 30-104.

32-301. INSTRUCTION PCDU C

32-302. Instruction PCDU C (Plus CDU C) is a Counter Instruction which is
executed at the occurrence of certain events (paragraph 30-137) without enter-
ing an order code into register SQ and is independent of the content of reg-
ister SQ. Instruction PCDU C consists of subinstruction PCDU, the execu-
tion of which takes one MCT,

32-303. Instruction PCDU C increments by one the content of that CDU
counter C in E Memory the address of which is supplied by the Counter Pri-
ority Control. The incrementing is carried out in TWO's complement arith-
metic since CDU counters contain cyclic TWO's complement numbers (para-
graphs 30-46 and 30-47). The operation PCDU C can be formulated as follows:

(1) Set c'(C) = b'(C)+1 where ¢'(C) and b'(C) are cyclic TWO's
complement numbers.
(2) Retain c(B).
Retain c(S).
Retain c(SQ).
(3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.

32-177



FR-2-132

32-304. There are no special cases of PCDU C. Instruction PCDU C is
similar to instruction PINC C. (Compare rows 53 and 56 of table 32-4.)
Control pulse PONEX of subinstruction PINC is replaced by CI of PCDU, and
RU is replaced by RUS. If the ONE's complement quantity 37777 (plus 37777)
contained in a counter is incremented by PINC C, the resulting quantity is
00000 (plus zero) because the overflow bit was lost during the storing of the
incremented quantity. If the TWO's complement quantity 37777 (nearly 180°
as shown in paragraph 32-209) is incremented by PCDU C, the resulting
quantity is 40000 (180°) because of control pulse RUS which placed the over-
flow bit into bit position 15 of the counter. If the ONE's complement quantity
77777 (minus zero) is incremented by PINC C, the resulting quantity is 00001
(plus one). If the cyclic TWO's complement quantity 77777 (maximum, i.e.
nearly 360°) is incremented by PCDU, the resulting quantity is 00000 (360°
or zero).

32-305. INSTRUCTION MCDU C

32-306. Instruction MCDU C (Minus CDU C) is a Counter Instruction which
is executed at the occurrence of certain events (paragraph 30-137) without
entering an order code into register SQ and is independent of the content of
register SQ. Instruction MCDU C consists of subinstruction MCDU, the ex-
ecution of which takes one MCT.

32-307. Instruction MCDU C decrements by one the content of that CDU
counter C in E Memory the address of which is supplied by the Counter Pri-
ority Control. The decrementing is carried out in TWO's complement arith-
metic since CDU counters contain cyclic TWO's complement numbers (para-
graphs 30-46 and 30-47). The operation MCDU C can be formulated as follows:

(1) Set c'(C) = b'(C)-1 where c'(C) and b'(C) are cyclic TWO's
complement numbers.
(2) Retain c(B).
Retain c(S).
Retain c(SQ).
(3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.

32-308. There are no special cases of MCDU C. Instruction MCDU C is
similar to instructions MINC C and PCDU C. (Compare rows 53, 56, and 57
of table 32-4.) Action 6 of subinstruction MCDU consists of control pulses
MONEX and CI which together add the TWO's complement quantity 77777
(minus one) to 00000 (zero or 360°) if this quantity is contained in an address-
ed counter. If a counter contains 40000 (180°) 37777 is contained after the
decrementing due to control pulse RUS.

32-178



FR-2-132

32-309. INSTRUCTION SHINC C

32-310. Instruction SHINC (Shift Increment C) is a Counter Instruction which
is executed at the occurrence of certain events (paragraph 30-137) without
entering an order code into register SQ and is independent of the content of
register SQ. Instruction SHINC C consists of subinstruction SHINC, the ex-
ecution of which takes one MCT.

32-311. Instruction SHINC C shifts one place to the left the content of that
E Memory counter (0045 or 0046) the address of which is supplied by the
Counter Priority Control. The operation SHINC C can be formulated as
follows:

(1) Set c(C) = 2b(C) where b(C) is always a positive quantity and
c(C) includes an overflow bit (instead of a sign bit) in bit
position 15 inc ase of overflow.

(2) Retain c(B).

Retain c(S).
Retain c(SQ).
(3) Retain c(Z).

Point (2) implies that the instruction stored in B is executed next.

32-312. Instruction SHINC C is used for serial to parallel conversion. If
SHINC 0045 is executed and an overflow occurs, the execution of instruction
RUPT is requested.

32-313. When instruction SHINC C is executed, action 1 of subinstruction
SHINC (row 58 of table 32-4) enters into register S the counter address C
provided by the Counter Priority Control. The content of the addressed
counter is transferred to register G at time 4. Action 5 doubles the quantity
and enters this doubled quantity into the Adder. Action 7 enters the doubled
quantity into register G whereby any overflow bit is entered into bit positions
16 and 15 of G. At time 10 the content of register G is entered into the ad-
dressed counter. Action 8 re-enters into register S the relevent address
contained in register B to re-establish the original conditions.

32-314. Figure 32-58 illustrates the execution of instruction SHINC 0045,
Originally, counter 0045 which contained 05530 before the shifting operation,
contains 013260 after the shifting operation. If quantity 25530 were contained
originally, 53230 would be contained after shifting and the execution of in-
struction RUPT would be requested.

32-179



FR-2-132

F
E 05530 900000 413260
H
S 2123 ?WS 0045 WS?ZIZS
G 152123 WG e 000000 ¥005530 TRG WG 4013260 0013260
005530
B 152123 RB®
A
L
Q
4 002664
(013260

U 002664 013260 RUSl
Y 002663 WYD V013260
X 000000 ® 000000
CI ! ° 0
SQ |05.2
ACTION | 2 4 5 6 7 8 10 1l 12

RSCT RSC RG RUS RB

WS WG WYD WSsC WS

TSGN WG
WOVR

ST |O 0
BR O 2 0

32~180

Figure 32-58.

Subinstruction SHINC

2857A



FR-2-132

32-315. INSTRUCTION SHANC C

32-316. Instruction SHANC C (Shift and Add Increment C) is a Counter In-
struction which is executed at the occurrence of certain events (paragraph 30-137)
without entering an order code into register SQ and is independent of the con-

tent of register SQ. Instruction SHANC C consists of subinstruction SHANC C,
the execution of which takes one MCT.

32-317. Instruction SHINC C shifts one place to the left the content of that
E Memory counter (0045 or 0046) the address of which is supplied by the
Counter Priority Control and adds a ONE into bit position 1. The operation
SHANC C can be formulated as follows:

(1) Set c(C) = 2b(C)+1 where b(C) is always a positive quantity and
c¢(C) includes an overflow bit (instead of a sign bit) in bit
position 15 in case of overflow,

(2) Retain c(B).

Retain c(S).
Retain c(SQ).
(3) Retain c(Z).

Point (2) implies that instruction stored in B is executed next.

32-318. Instruction SHANC C is also used for serial to parallel conversion
similarly to instruction SHINC C. (Compare rows 58 and 59 of table 32-4.)
Control pulse CI of action 5 adds the ONE into bit position 1 of the Adder;
this ONE is later transferred to bit position 1 of the counter. If SHANC 0045
is executed and an overflow occurs, the execution of instruction RUPT is
requested.

32-181/32-182






FR-2-132

32-319. PERIPHERAL INSTRUCTIONS

32-320. SEQUENCE CHANGING TEST INSTRUCTIONS

32-321. INSTRUCTION TCSAJ K

32-322. Instruction TCSAJ K (Transfer Control to Specified Address K) is
a test instruction which is executed on command from Ground Support Equip-
ment (GSE) such as the Computer Test Set (CTS) or the Program Analyzer
Console (PAC). The address K is supplied by the CTS or PAC. Instruction
TCSAJ K consists of subinstructions TCSAJ3 and STD2, the execution of
which takes two MCT's.

32-323. Instruction TCSAJ K takes the next instruction from location K.
The operation TCSAJ K with 0024 = K =< 7777 can be formulated as follows:

(1) Retain c(Q).
(2) Set c(B) = ¢(K) = k, k being the instruction stored at location
K.
Set ¢(S) = relevant address of k.
Set c(SQ) = order code of k.
(3) Set c(Z) = K+1.
(4) Restore c(K) = b(K) if K represents an address in E Memory

Point (2) implies that instruction k is executed next.

32-324. The special cases of TCSAJ K are the same as for TC K (para-
graph 32-35). Instruction TCSAJ K is similar to instructions TC K and
TCF F in effect but differs in the number of subinstructions. Action 8 of
subinstruction TCSAJ3 (row 60 of table 32-4) enters the address K supplied
by the GSE into registers S and Z. Subinstruction STD2 then increments by
one the content of register Z and calls forward the instruction located at K.

32-325, DISPLAY AND LOAD TEST INSTRUCTIONS

32-326. INSTRUCTION FETCH K

32-327. Instruction FETCH K is a display instruction which is executed on
command of the GSE. The address K is supplied by the GSE. Instruction
FETCH K consists of subinstructions FETCHO and FETCHI1, the execution of
which takes two MCT's.

32-183



FR-~2-132

32-328. Instruction FETCH K enters into either register EBANK or FBANK,
a bank number received from the GSE; enters into register S an address K
received from the GSE, and provides for display at the WA's the content of
that location K and the final content of BBANK.. Thereafter, the before con-
tents of BBANK and S are restored. The operation of instruction FETCH K
is illustrated on figures 32-59 and 32-60. Action 1 of subinstruction FETCHO
(row 61 of table 32-4) enters the quantity 000006 into register S to simultan-
eously address registers EBANK and FBANK. In the example, register
FBANK contains F bank number 1 (a ONE in bit position 11 as shown in

table 30-3) and register EBANK contains E bank number 6 (ONE's in bit po-
sitions 11 and 10 as shown in table 30-2). If both registers are addressed
and their contents are read into the WA's, the quantity 020006 appears be-
cause the content of register EBANK is shifted eight places to the right

(table 30-1). Action 2 stores this quantity in the Adder. Action 4 enters a
new bank number into register EBANK or FBANK or both. Action 8 enters
the address of the required location (0343) into register S. At time 4 of sub-
instruction FETCHI1 (row 62 of table 32-4) the content 76543 of location 0343
is entered into register G at time 4. (In case a CP register or an F Memory
location is addressed, the quantity is entered into register G at time 2 or 6,
respectively.) Action 7 places the same quantity into the WA's for display.
Action 8 restores the original contents of register S, EBANK, and FBANK,
Thus, program execution can be continued after the execution of instruction
FETCH K. Restoring the contents of registers EBANK and FBANK may be
inhibited. Action 10 places the content of registers EBANK and FBANK into
the WA's for display. At time 10, the original content of location K is restored.

32-329. INSTRUCTION STORE E

32-330. Instruction STORE E is a load instruction which is executed on
command of the GSE. The address E is supplied by the GSE. Instruction
STORE E consists of subinstructions STOREO and STOREIL, the execution of
which takes two MCT's.

32-331, Instruction STORE E enters into either register EBANK or FBANK
a bank number received from the GSE, enters into register S an address E
received from the GSE, and enters into that location E the quantity provided
by the GSE. Thereafter the before content of BBANK is restored unless

E = BBANK. The before content of S is always restored. The operation of
instruction STORE E is similar to that of instruction FETCH K. (Compare
rows 62 and 63 of table 32-4 with rows 61 and 62.) Subinstruction STOREOQ
is identical to subinstruction FETCHO in that both address a specific location.
Action 4 and action 9 of subinstruction STORE1 enter the quantity, which is
entered into the WA's by the GSE into the addressed location. If 0020 < E <
0023, the quantity entered is edited.

3

32-184



FR~-2-132

F
E
H 020006 ® RSC wSCA
WS
s |o300 Toooooe wsTo343
N EXTERNAL EXTERNAL
oooo% 020006 000004)*— | NpUT 000343)<— 6T
6 | 020300 WGVLOZOOOG
B8 | 020300
A
L
Q
z | oo02664
U | 002664 020006
Y |oo2663 WY ¥ 020006
X | 000000 ® 000000
cI ° o
sQ |o2.0
ACTION | 2 3 4 5 6 7 8 9 10 il 12
R6 RSC wsc ws
ws WG
wY
ST lo |
BR |© o

2864A

Figure 32-59. Subinstruction FETCHO

32-185



FR-2-132

F *
}
£ |76543 900000 ] 76543
|
|
BB | U2BBK 8020006 .
f
s |o3a3 | ws?osoo
|
|
| 020300
:
6 |o030006 WG4 000000 V176543 ) RGI 6176543
|
T
EXTERNAL EXTERNAL
1 @ ™ output  \030006 OUTPUT
|
B [020300 | RB®
L
000000
A RSC+
|
L RSCé
|
|
Q RSC®
t
z |oozee4 RSC®
u |o20008
Y 020006
x |oooooo
cI 0
sa [oz2.0
ACTION 2 4 5 6 7 8 9 10 I 12
RSC RG RB RBBK
WG WS
U2BBK
ST | 0
BR |0 0

32-186

Figure 32-60. Subinstruction FETCH]

2865A



FR-2-132

32-332. INSTRUCTION INOTRD H

32-333. Instruction INOTRD H is a channel display instruction which is ex-
ecuted on command of the GSE. The channel address H is supplied by the
GSE. Instruction INOTRD H consists of subinstruction INOTRD, the execu-
tion of which takes one MCT.

32-334., Instruction INOTRD H provides at the WA's for display the content
of channel H, which is specified by the GSE. Action 1 of subinstruction
INOTRD {row 65 of table 32-4) enters into register S the address of channel
H, address H being supplied by the GSE. Action 5 enters the content of the
addressed channel into the WA's for display. Action 8 restores the original
content of register S.

32-335. INSTRUCTION INOTLD H

32-336. Instruction INOTRD H is a channel load instruction which is executed
on command of the GSE. The channel address H is supplied by the GSE. In-
struction INOTRD H consists of subinstruction INOTRD, the execution of
which takes one MCT.

32-337. Instruction INOTLD enters into channel H, as specified by the GSE,
the quantity provided by the GSE. The operation of instruction INOTLD is
similar to that of instruction INOTRD. (Compare rows 65 and 66 of table 32-4.)
Action 7 of subinstruction INOTLD enters the quantity provided into channel

H.

32-187/32-188






